COMPLEX CUBIC SPLINES

BY
J. H. AHLBERG, E. N. NILSON AND J. L. WALSH

Introduction. The past two decades have witnessed an increasing intensity of
investigation, [1]-[26], into the properties of spline functions. These functions,
which in their simplest form yield the analytic counterpart of the draftsman’s tool
for drawing a smooth curve through a number of prescribed points, play an im-
portant and fundamental role in many parts of numerical analysis.

Many of the properties which these functions possess, such as the minimum
curvature property [3], [8], [13], [14], are associated with obvious attributes of the
elastic beam. Some relate to the best approximation of linear operators [15], [20],
and have rather profound meanings in approximation theory. Others, such as
orthogonality [24], rate of convergence [12], {17], [23], [25], and completeness [25]
of certain bases of splines, are at first rather surprising. A few (cf. [22, p. 241]) are
still quite puzzling.

The application of spline theory to the approximation of a function analytic
interior to a rectifiable Jordan curve and continuous in the corresponding closed
region has been considered to a limited extent in an earlier paper, [24], by the
authors. There splines were treated which are piecewise polynomial in the arc
length s on the curve. The present development is concerned with cubic splines
in the complex variable z and provides some insight into the structure of the spline
approximation generally. In particular, it serves to establish a connection with the
classical theory of approximation to an analytic function.

As part of this development, proofs are given for the convergence of the complex
cubic spline and its derivatives for the situations in which the approximated
function is of class C* («=0, 1, 2, 3, or 4) on the boundary. These may be modified
in an obvious manner for the standard real cubic spline and for the convergence
properties of second and third derivatives. There result noteworthy simplifications
over proofs already existing in the literature [12], [17], for «=2, 3, 4.

The convergence properties of cubic splines for cases in which the approximated
function is assumed merely to be continuous or to have continuous first derivative
constitute significant new developments in spline theory. In addition, a curious spline
property is here presented relating to the approximation of the fourth derivative.

The complex spline approximation. Let K be a rectifiable Jordan curve in the
complex plane. Let 7, t,, . . ., ty be points on K arranged in counterclockwise order,
separating K into arcs K; (j=1,..., N) with X the arc from ¢,_, to t; (ty .1 =1,).
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For this subdivision A of K we form a spline ¢,(¢) on K composed of complex
cubics: for # on KX,

qa(t) =A—§‘;z?(tj—t)a +——j(t t_1)+ (f;l;l M, lhj)(t )
M
(t ti 1)9

42

where h;=t;—1,_1, f;=qa(t;), and M,=q,(t;). The quantities M, are to be so
chosen that the limiting values of g,(z,), obtained by approach to ¢, on K;,, and
K,, are equal: for j=1,2,..., N,

hy hi+hy.a hyaa _Jinamfi fi—fima
(2) 6 MJ—1+ 3 MJ'+ 6 Mj+1 - hj+1 hj
If we set
hyy 1
My M
we obtain
(3 Mo+ 2M+ MM = 6f 81, 5, 141]

Here ft;,_., t;, t;.,] is the second divided difference [27] involving functional
values f;_;, f;, f;+1 at the points ¢;_4, ¢, ;1.

The existence of the spline g,(¢) on X, assuming prescribed values f; at the mesh
locations t;, rests upon the possibility of solving the N simultaneous equations (3)
for the quantities M;. Now the coefficient matrix 4 has dominant main diagonal
provided that, for each j (=1, 2,..., N),

2{h;+hyial > Byl 1Byl

This condition is equivalent to requiring, for each j, that #; lies within the ellipse
with foci #;,_; and ¢, ; and with eccentricity 1/2. If K is a smooth Jordan curve (i.e.,
has a continuously turning tangent), then this condition is satisfied for sufficiently
small mesh norm

@ AL = max Ih.

We assume throughout the remainder of the paper that K is smooth and that |A|
is sufficiently small that 4 be nonsingular. The piecewise cubic function ¢,(¢) then
exists and is unique for arbitrary complex values f3, /5, . . ., fx-

Alternatively we may represent the spline ¢,(¢) in terms of its first derivative at
the mesh points, m,=g,(¢;). On K, we have

gat) = FF (t;— 1) —t;_ )~ hzj (t—t;,_1)%(;—1)
(5)

f’ l(t, 2[2(t—t;_ 1)+h,]+£3 (t—t;_0)%[2(t;— 1) +hy),
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and the quantities m, satisfy the requirement that g(t,—)=qa(t,+) for j=1,

2,...,N:
m 1 m fio1=fi o ] f 1
6 §— 1+2( )m j+1 =3 j+1 /+3 7 1
© R VAo R el
which may be rewritten in the form
@) Ay +2my+ pmy g = 3[ fina fj+)‘ A ﬁ 1]
] +1

The complex spline S,(z) is now defined interior to K by the Cauchy integral

L[ w0,
®) Saz) = 2mi t—z
with S,(), t on K, as the limiting value (cf. [29]) for approach from within X,
1 d:
©) Si0) = 4as) 45, [ 2D

Convergence on the boundary. We consider first the convergence of {g,,(?)}
and the corresponding sequences of derivatives for a sequence of meshes {A.}
with |A.] — 0 as k — co. Let the mesh points of A, be #, 4, t.3,. .., b, The
row-max norm of the inverse of the coefficient matrix A4, in (3), or B, in (7) does
not exceed (cf. [10, p. 97]) {min; [2— Ay, ;| — | 5|1}~ and for arbitrary >0 this
bound can be made not to exceed 1+7 by taking ||A,| sufficiently small. Let
by:; represent the general element of the inverse matrix By *. For convenience in
notation, we will frequently drop the index £ on the mesh A, as in the following
proof.

Consider the interval K. On K set t=(t,_; +1¢,)/2+¢. Let f(¢) be continuous
on K. Then from (5) we have

my_1

4a(t)—f(t) = (bhy—e)*(Gh;+e) ——-—(%hj+6)2(%h;—€)%

+3 7 (e +)+ 2 2 =0 =10,

Thus
_ 833(1'1"’])‘2 |fi+1—ﬁ| |ﬁ_ft—1|
)~ S @lh+ep D2 maxi[lml g ]
i +1 3e
it g0+ [ £ - -s
since
_ 3 -1 ﬁ+1—f ﬁ- -1
(10) '""321”“(‘ Firs =)

and 3 |bj| S 1+,
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Now [e|/|h,| £1/2, |u,| <1, and |A;| <1 for [|A| sufficiently small. If we assume
that the meshes A possess the property that

(11) [max [Al/lA]] = €1 < e

and if we designate by u(8;f) the modulus of continuity of the function f(¢),
then on X;
lga() =] = [12(1 +7)Cy+2Ju(|A], f).

Since the constants are independent of j, we have proved

THEOREM 1. Let f(t) be continuous on K. Let {A,} be a sequence of subdivisions of
K with lim.. |Ax]| =0 and with [max; |Ag|/|h|]1S Ci<oo. Let qy,(t) be the
complex cubic spline on K of interpolation to f(t) onA. Then{q, (t)} — f(t) uniformly
as |Ax| = 0. If f(t) satisfies a Holder condition of order B on K (0<B<1), then
|94, (8) —f()} = O(|Ax|?).

In order to obtain the convergence properties of the complex spline defined in
equation (8), it is necessary to show that g,(¢)—f(¢) or its derivatives satisfy
suitable Holder conditions. These conditions become involved in the definition
of the Cauchy Principal Value of the integral in (9).

For ¢t and 7 on K, we obtain from (5) (¢*=(t;,_, +1,)/2)

ga(t) —qa(7)

= (t—T){[m;-1+mj—2ﬁ_hf:-1] [(t—t*)2+(’—t*11(j;-t*)+(r—t*)2_%]

(12)

—2t* —_
+(my;—my_,) t+;h12t +(ﬁ hfj_l) .

If f(¢) satisfies a Holder condition of order 8 (0<8<1) and if 0=<3 <8, it follows
when |A] is sufficiently small that for ¢ and = on K],

g~/ ~lgs)~fN = lr=plas- bl

_.|1-8 lff - 1| t—7[- ﬁ]‘l
{[lm! vHmy|-|t—7["8+2. TTRIE R 1
IRTO I | St i et /8 1| ORIONE
2|m1 my_y| [t—7' 70+ T Th,? IT 1P

Thus, by means of (10), it is seen that [g.(¢)—f(¢)]/|A]#~° satisfies a uniform
Holder condition of order 6.

COROLLARY. Under the conditions of Theorem 1 with f(t) satisfying a Holder
condition of order B (0 <B<1), the function [qa () —f(1))/|Ax||? ¢ satisfies a Holder
condition of order 8, 0< 8 < B, uniformly with respect to k.

We turn to a consideration of the case in which f(z) has a continuous derivative
on K.
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THEOREM 2. Let f(t) be of class C* on K. Let Ay: ty 1, ty gy . . - tew, (k=1,2,...)
represent a sequence of subdivisions of K with lim,._,  |Ay|=0. Let g, (2) be the
complex cubic spline on K of interpolation to f(t) at the points of Ay. Then {q4,(t)}
converges uniformly on K to f'(t) and [, (t)—f(£)]=0(]|Ax|).

Proof. If we write (7) as
Bkmk = 3ek

where e, is the Ny-vector (ey,1, €3, - . -, €,n,)7 With

€5 = e, s U (te,5+1) =@ D hic,g 41+ A JU e, ) =S, 5 - 1)) e, 5

and m, the corresponding vector of spline first derivatives, (my,1, My o, . . ., My 5,)7,
then

(13) B(m;—e,) = (3, — By)e,.

Here I, is the N, x N, identity matrix. The jth row in 31, — B, has three nonzero
clements centered on the main diagonal position: A ;, —1, ;. ;. Thus the right-hand
member of (13) has the jth element

Me,1€k,s—1— €5 e i, 01 = A, €k, 1— €x,g) + e, (€1 5+ 1 — €k, p)-

Now f’(z) is continuous on K so that max, |f’( ;) — e, ;| can be made arbitrarily
small, uniformly with respect to &, by taking |A,| sufficiently small. Thus

]| (31, —By)e, ” =3 [male A, (€re,5 -1, 5) + l"’k,j(ek,j +1—€7) | )

can be made uniformly (in k) arbitrarily small. Hence max, |m, ;—f'(t,.,)] — O as
|Ag|| = O. For ¢ on K, ; with t1=(t, ;_,+1,,)/2+e¢, we have

ga.(0) St ) =f(t5-1)
i
(32 1 fe) —ftes-1)) , &
= (K’—z) (mk.!—l +my, ;=2 “—hk,k_j_l) +m (my j—my, ;_1).

For ||A,| sufficiently small, |¢/h;| <1. The uniform convergence of {g4,(¢)} to f(t)
is a direct consequence. Since for ¢ on X, ; we have

(14)

a0 = |

e,s

_ [q;k(t)_fl(t)] dt’

it is evident that [g,,(t) —f(¢)]=0(]|Ax]).
Since we may write, for ¢ on X j,

- Led=flesd) L L% 10y pio)ar,

hk.! hk.l te,3-1
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it follows from (14) that [g4, (1) =1 '(1)]=O(JAc||®) if f'(¢) satisfies a Holder con-
dition of order B on K, 0<B=<1. Thus we have

COROLLARY 1. Under the conditions of Theorem 2 on f(t), {A}, and {g, ()}, if
f(t) satisfies a Holder condition of order B on K (0 <B=1), then for p=0, 1 we have

SO —q&A1)=O0(|Ai]**277).
We can also prove

COROLLARY 2. Under the conditions of Corollary 1, [qs,(t)—f'(£))/|Ak|?~° satis-
fies a uniform Hélder condition of order 8, 0 < 8 < B, provided

[max [Al/lh]] S s < .

Proof. We obtain from (5) (dropping the index k; again ¢ *=(t,_, +¢,)/2)
9 { [m;-l "'(J;:lj_fj—l)/hj cm=U -—f;-l)/h/]

ga(t)—qa(r) = (t—

hy
(135)
.3(t+‘r—2t*)+m,—m,_1}.
hy hy

It is seen from (13) and the properties of f'(z) that the quantities

my—(fi=f3-D/h my_1—(f5=fi-D/hy
(INE N

are uniformly bounded as is (m;—m;,_,)/|A]%. Hence for |A| sufficiently small,
|lga®) 1" O = [ga(r) = (]|

< {t—-rl"l[A]I""’-{[3 |m1-1—'(“]2":ﬁ-1)/h1|+3 |m1—(.flfA—"f;/—1)/h1|

S 1Y

, F@=f10)
D

|‘r—t]3

t—r

[my—m,_| =T
hy

AR

The conclusion of the corollary follows.
It is to be noted that the mesh restriction (11) appearing in Theorem 1 is not
required in Theorem 2 or in the next theorem. We remark also that by (12) we

have, without this mesh restriction,

COROLLARY 3. Under the conditions of Theorem 2, for arbitrary 8, 0< 851, the
quantity [q, (£)—f(1)])/|Ax|* ~¢ satisfies a Holder condition of order & on K uniformly
with respect to k.

THEOREM 3. Let f(t), {A:}, and {q,, ()} satisfy the requirements of Theorem 2 but
with f(t) of class C? on K. Then {q4,(t)} — f"(t) uniformly on K as k — .

Proof. Write (3) as
A M, = 3d,,
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1967] COMPLEX CUBIC SPLINES 397
where M,=(My 1, M3, ..., M, x)" and d, is the N,-vector whose jth com-
ponent is 2ft; ;_1, te.j» te.+1) Then

A(M—dy) = (3, —4,)d,.
The vector (31, — A;)d, has norm equal to

3 mjax | e, (e, 11— e, 1) + i, (i, 1 41—, 1)

If f°(t) is continuous, then 3d, ; (the right-hand member of (3)) can be made
uniformly close to 3/”(z ;) by taking ||A,]| sufficiently small. In fact, we have from
the Taylor theorem with integral remainder,

STes-15 tess teog+1]— 3" (8,

1 1 teg 1 " "
i s [ @ G dr

k.f

(16)
1 (tes ., ’
+m ftk.’_l (r=tw ;- DL (7)) =f"(t, )] d,},

The left-hand member of (16), therefore, does not exceed in absolute value the

quantity
[;max 10—l sl
ton Ky.g g B LT
4o %
") —f" LY B _ .
+[¢°nn;g§_l lf"@-f (tk,,)l] ot by = 20—t 1)

for |A,| sufficiently small.

From the boundedness of ||4;!| (uniform with respect to k) it follows that
|My—d,| — 0 as k — co. The linearity of g, (¢) between junctions #, ; and the
uniform continuity of f”(¢) now give the conclusion of the theorem.

If f7(z) satisfies a Holder condition of order 8 on K, 0<B=1, then it follows
from (16) that |M, —d,[ = O(||A,]|?). Moreover, for ¢ on K, ; we have

f@) _f(tk.l—l)_fl(tk’j_l) - 1 Jj ] (t—7)f"(=) d,

=1l -1 I—tey-1
and so from the interpolation property
’ ’ 1 tk" ” "
Tonltes-D) S o) = = [ (tey= e~ @) dr.
K,J Vi, g-1
Thus [ga, (te.)) —f ' (tx.9)]=O(|Ac||* *#). By using, for ¢ on K, ;, the relation
t
90, () =f(t) = g2, () —f /(tk.j)+J; [95.(D—=f"(D] dr
¥

k

and by a repetition of this argument for g,,(¢) —f(¢) we obtain
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COROLLARY 1. Under the conditions of Theorem 2, if f"(t) satisfies a Holder
condition of order B on K (0<BZ1), then [q&(t)—f®(t)]=0(|A]|?*2-7)
(p=0, 1, 2). If f"(¢) is continuous on K, then [q&(t)—f®(t)]=0(]|A]|% 7).

We have also

COROLLARY 2. If f"(t) satisfies a Hélder condition of order B (0<B=Z1), then
(92, () —f"())]|Ak|2~¢ satisfies a Holder condition of order & on K (0<3<p8)
provided [max, |A,|/|h 4|1 C1<o0.

Proof. We have, for ¢ and r on K, (dropping mesh index k),
-M;., ) =f"(7) .

hj t—7

an GO~ Ol=lgiD—r @1 = |t

Since M;—M,_,;=0(|A|?), it is seen that the left-hand member of (17) does not
exceed

(U= AL MMy -1 i
e e e T = )

and that the term within braces is uniformly bounded with respect to the meshes A.
Without the mesh restriction (11) we have

COROLLARY 3. If f(2) is of class C* on K, then [qa (t)—f"(1))/|Ax]|* = satisfies a
Hélder condition of order 8 on K, 0<d<1.

Proof. Since by (1) we have for ¢t and 7 on X, ;

, , 2t —t— t+ 2t
19 gh=aa ) = (=) Mooy Lo =T g g, T B,
2h,4 2hy 4

it follows that, for |A,| sufficiently small,
|lg4.(8) —f' (O] lga (D) —f (D]
= o= rloU 0 Mol 10 + 2L

Sharma and Meir [28] have announced the results of Theorem 3 for the case
of a real nonperiodic spline with special end conditions. The proof given above is
readily adapted to a wide class of splines including that of Sharma and Meir.

The third derivatives of the spline have jump discontinuities at the junctions
t; of the mesh A; nevertheless they possess important convergence properties relative
to the function approximated. Some of these have been demonstrated by Birkhoff
and deBoor [17] for the special spline later considered by Sharma and Meir. Their
proofs are rather involved. We study the problem here for the complex cubic
splines (periodic) ¢a(?), giving a simple proof which is readily adapted to real
splines of general type.

A somewhat more surprising result is the relation of the jumps in g3(z) to f*°(¢)
when the latter is continuous. This is presented in Theorem 5.
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THEOREM 4. Let f"(t) be continuous on K. Let {A,} be a sequence of meshes on K
with lim_, , |Ag|=0. Let g, (t) be the complex cubic spline of interpolation to
f@) on A,. If [max, |A.|/|hes|] is uniformly bounded with respect to k, then
{g4, ()} = f"(t) uniformly on K as k — .

Proof. Set o,=(M;— M;_,)/h,. In equations (3) we subtract the (j— 1)th equation
from the jth. Noting that

hy_s = M-ty hy = Ar—1py ,
hi—ythi+hy 1—pyoady hyithythyey  1—pgiky
hyis _ Ao ,
hy_ithithiy 1—pad
we set
(1 + pn + A)Avps Avd§ 0 B
1—- [LNA;l 1- [LNhl T 1- }LNA]_
13pa (1 +py+ Az)A pa A Ag 0
C= 1"#1/\2 I—F-l/\z 1—1»41/\2 o
Av-1A% 0 BN - 1py (4 py -1+ M)Ay —1pn
I_F'N—II‘N 1"'F'N—1/\N l—ll-u—ﬂ\n
Then
(19) Co = 6r,
Whel‘e C=(01, Ogy oo vy UN)T alldl'=(r1, Fay ...y rN)T, WIth r]=f[tj_.2, tj—l! t/, t/+1]. we
may write
(20) GCH = E,
where G and H are the diagonal matrices
[ 1—pydy 0 b
1Ay
1—py
Bijeg
G = ’
(1 —I"z)‘a))ﬁ
Faifrata
0 (I—py_1A)MAg - - Ay g
L Kt * ° ° By J
-1 0 -
as}
A
Bifrte
H= Ails ’
0 Papra " fN-1
L MAg- - Ay
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and, since A Az« - - Ay=ppq - - - iy,

T+py+ 2y A 0 ey
™ T4pi+2: Ay 0
E= :
0 -z l+py_atAy_, An-y
Av 0 BN -1 l4py -1+ Ay

Now |E~-!|=1+7 (arbitrary n>0) provided |A| is sufficiently small. We
assume, for all meshes A, that we have |A|/min, |k =C;<c0. We find, for
arbitrary positive integers i and p, that

cir g M o Ay (g

= é Cl’
By Pyya Bivp 1
and that for |A| sufficiently small,
|h1| < C1+1) C1+1’
= =< s Al £ =5
o lh+hsa| = 14+C Al = 1+ G

from the smoothness of the curve K. We require 7 <1. Then

1 1 __a+Cc)y
MT—p A = 1=(Ci+9)¥(A+C)2 (1-mQRC,+7+1)

It follows that |C~*| S (1+ C )’ (1 +9)C¥/[(1 —p)Q2Ci+7+1)].
Write (19) as

C(e—6r) = 6(I—C)r.
The sum of the elements of each row of I—C is zero. Thus the jth component of
(I-C)ris

__MaX
1—py_12y

2

Hi-1ty
r —_r +_____ ri—ri_+).
(1+1 /) 1 F‘/—lAj(j i 1)

1
Taylor’s Theorem with integral remainder gives
(] (4 1 t ‘",
J@O) = f@)+@=1)f 1)+ =112+ 55 ft (t—7))"(7) dr.
* )
Thus we obtain

f[tl—la tj’ tj+1]
B L,”_*_(l/h;n) Jo*t =" @D dr = /h) [} (41— 7V "(r) dr
T2 2(hy+hy40)
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and
Sl o 1, by 8] — (2h; - llg?éz{}}i-}z(ijhffsj+1)f}”
B 2(h:-1+izf+h,+1){£’l [ro-E5] ¢
h,+lh,+1 [h,lﬂ f (=D (D)=f dr
22

-+ (=P )= f71 ]

1 1 (4 ar pm .
+hj—1+h, [_;1—] J;’_l =72 (r)=fiZ1] dr

b [ GO s ] |

Now if we write ¢,,; —7=pe'®, then |dr|=|1+ pi d$/dp| |dp| and |d¢/dp| < H, on
K for some constant H,. Thus

te1

lhyoal) [ tg0n=rPlde] S lhyoal20/3+ Halhyal )
1

It follows that the left-hand member of (22) is in absolute value not greater than

p(A]L S 1+V'112+ lhf+1|2+ Ay |*+ |h1|2}.(1+H1”A”).
2|h;_y+hy+hy | [+ Ay 4| |hy—1+hy| 3 4

Here the coefficient of u(]|A|, f™) is seen to be dominated by a function of H;
alone provided ||A| is sufficiently small.

The left-hand member of (22) is the difference between r, and a weighted mean
of 7, and f]". We may conclude that ||[(/— C)r| — 0 as | A]| = 0. From the uniform
boundedness of |C~!| we have |e—6r| —0 by (21) and {g"(t)} —f"(¢) uni-
formly on K as |A| —0 (¢"(¢) is constant on each K, and f"(¢) is uniformly
continuous on K). This completes the proof of the theorem.

If £7(¢) satisfies a Holder condition of order 8 on K (0 <8 = 1), then the quantities
(21) may be shown to be less than b- |A|# for some constant b independent of A.
Thus f"(t) —qz(t) = O(| A[%).

To obtain the degree of convergence of {gx (¢)} we must circumvent the diffi-
culty that g%, (¢) is not continuous. We have

(fj+1 —fj)/hfn_(ff_fj—l)/h/
hi+h .,

_f, (/hysn) [ (gar =) dr=(U k) [2_ (-1 =" (7) dr
B 2(hy+hytr)
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Using (3) and the interpolation property of g.(z), we obtain
fi—M;

Uk ) 2 W= P (D) =0 dr—( k) [2 (41— DPLf (1) =)l dr
N hy+h.,

Thus f; — M;=0(]|A||**#) and, for ¢ on Kj,

F@=-ai0) = =M+ [ U)ol dr

so that [f"(¢) —qa(£)]=O(| Af**4).
The corresponding convergence rates for [f'(t)—ga(r)] and [f(¢)—q,(¢)] now
result by integration as before and we have

COROLLARY 1. Under the conditions of Theorem 4, let f(t) satisfy a Hélder
condition of order B (0<B=1) on K. Then q¥Xt)—f(t)=0(]| A|®*%~?), p=0, 1,
2,3. If f"(t) is continuous on K, then [q)(t)—f®(¢)]=o0(]| Ax| 7).

The function ¢"(t)—f"(¢) does not, of course, satisfy a Holder condition on K.
We do, however, have

COROLLARY 2. If f"(2) satisfies a Hilder condition of order B (0<BZ1), then for
arbitrary & (0<82P) the functions [qx,(1)—f"(t))/| Al *2~¢ satisfy a Holder
condition of order 8 uniformly with respect to k.

Proof. We have on X, ;
_LO)-f"()
t—r

23 g8, () =" (D] = [ga, () =" (D] = |t—7] oW, :
Now
fn(t)__f”(tt):{”(‘r) — lt_l.-rl J‘: [f”(t)—f’"(r)] dr

is O(] Ax||®) and so is o, ;—f"(¢)| by Corollary 1. Thus the left-hand member of
(23) does not exceed

It_T|1-6

AT % =70 SOOIt~

r—1]- A1 *8-0
1=l 1A AT Ta

The corollary follows.

COROLLARY 3. Under the conditions of Theorem 4 but without the additional
mesh restriction (11), for arbitrary 6 (0 <8< 1) the functions

(92, =" OV Ae[* 2

satisfy a Holder condition of order & on K uniformly with respect to k.
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and the bracketed expression is finite. This completes the proof.
Consider next the jump in gx(¢) at the junctions ¢; of A. Define

Proof. The right-hand member of (23) does not exceed
f@)=f"(7)
t_

T

|t—~r|”]|Ak||1'°[sup max|a; ;| +sup
k J K

_ %+179
8, = =

- h1+hj+1

Subtract each of the component equations of (19) from its successor and obtain
(j=1,2,..., N) the equation

2
Bi-1P4 1 1 )
—2— (e, —0,;_4)+ )\( g —0
1_“1_1A1(1 7-1) + #idy 1=y, T=pA e (0541—0))
Ai 12+1
+———(04,2—0 = 6(r;s1—r)).
[ (02— 0100) = 650177
Note that
Aosdtpayan B _ Aoy A

hj—1+hj+h/+1+hj+2 - hj_1+hj - hj+hj+1 - hj+1+hj+2
Set oj-:(l —}LJ_IAI)_I and

Avhapipa(6: + 62) AvAiA30, 0 Bhpiugb
AnAs + pape AvAr+ papg o AnAy+ papg
#irdusbs Mdgpaps(f2+ 03) A A3A30; 0
D= AAg + pops Atz + paps Ao+ paps e 5
Ay -125A%0, 0 by - pppaly  Aw-o1Avpwpa (O + 0;)
Av -1+ pap An -1 An+ twpa Av - 1An + pwpy

aISO let 8—_—(81, 82, ce ey SN)T and d=(d1, dz, cesy dN)T, Where

d; = 6f[t;_o, t; 1, 8, tyi1, tyaa)
Then

24 D§ = d.

As in the proof of Theorem 4 we transform D into a matrix with dominant main
diagonal by left and right multiplication by suitable diagonal matrices. We multiply
the rows of D by

(AnAy+papa)An/(uipg), (Mada + papa) A ((ae2)ps)s - - -,
Ay -2Ay -1+ oy - 1)AwAy - -+ Ay —8)* Ay —of((p1 - - - v -1)%0w)
= (Aw-2hy -1+ oy 1)/ (AF - 1A - 2), - 1A+ i)/ - 1),
and the columns by
pr/(AFAL), pipaf((AnAs)?A2), « - s (1 - - - iy —2) P 1 /((AwAs -+ Ay —2)*Aw 1)
= Av-1f(py-168), 1/QAwpew).
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We obtain as a result the matrix

0,40, M8, O ... 0 0 b

pbs 0,40, Aby ... 0 0 0
(25)

0 0 oo oo pwgByoy By_1+0y  AyBy

MO O L. L. 0 pv-10y  Oy+0,

If we assume for the meshes A under consideration that |A|/min, |A;| £ C* < co,
we find by the methods used previously that | D ~!| is uniformly bounded (the
matrix (25) has dominant main diagonal for |A| sufficiently small).

Now consider the sum of elements in the jth row of D,

G. = P a1 0 A Agpty 1 (8,4 650 1) Ay ATNE 10,44
! A1+t

_ (15 1ptsf Ay - 1A 0,4+ (6,+ 054 1) + (AAF 4 1 figpty + 1), 1
Vigsgor+ 1/ 1

If the meshes A become asymptotically uniform as k — co; that is, if

max [A,—1/2| -0,
7

then max; |G;—1/2{ — 0. In general, let G be the diagonal matrix with G, the
diagonal element in the jth row. Then for G~1D—1I the sum of elements in each
row is zero (G, #0 for |A| sufficiently small).
We write (24) as
D8—G'Dd = (I—G~1D)d.

Let f¥(¢) be continuous on K. The quantities 4d; differ from a weighted mean of
S Y, fiY, by an amount which is O(]|A])). This follows from the uniform
continuity of /¥ and properties of the d;. Thus |(/—G~*D)d| — 0 as |A] — 0.
Since | D~*|| is uniformly bounded, it is evident that |[§ — D='G~1Dd| — 0. If the
meshes become asymptotically uniform as [Af — 0, then |§ —2d|| — 0. Thus we

have
THEOREM 5. If f(t) is continuous on K and if, as | A,| — 0, we have
(184l min ] 5 € < o

then ||8.—D;'G;'Dd,| — 0. If the meshes become asymptotically uniform as
[ Ag]| = O, then
-0

Finally we show that the convergence rate of g&(t) —f®(t) to zero can be no
higher than O(||A,||*~?). Let us assume f*'(¢) to be continuous on X and that

(e, s+) —qa,(te,;—) _ e,
R 2

lim [max
A lf—=0 7
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|[g&(t)—f®X(t)| £ By|| Agf*~?** for some x>0 and some p (p=0, 1, 2, 3, or 4). If
p=4, then f(+)=0. If p=3, then as in the proof of Corollary I of Theorem 4 we
have gy, (t) —f"(£)=O(| A|?**); hence, as in the proof of Corollary 1 of Theorem 3,
g&x(t) —fP(t)=O(] Ayl|**#~7) for p=0, 1. In all cases, therefore, we are led to the
situation in which |g,.(¢) —f(t)| £ B|| A, |***. Subdivide each interval [t ,_,, ¢, Jinto
four subintervals of equal length by points & o=t;_1, &1, &5,2, &5.3, &;,4=1, (drop-
ping mesh index k); set h; ,=¢;,—€;.2-1 (n=1, 2, 3,4). Form the difference of
fourth divided differences

galéio €11 - - o5 €l =f1E10s €51 - - o5 Eral = @a—S)€r 0 €115 -+ 5 €,4).
The right-hand member of this equation does not exceed
(||A”/|h1|)““'(|hf|/m3n By, )t | Ryl /6.
If |A|/|hy| £ Cy <o, then the right-hand member is O(|A|*). Since ga(f) is cubic

in ¢ over the interval ¢,_,, t;, and since f[£, 0, &1, - - -, €5,4]—f"(t,_1) = 0, we have
f¥(t)=0 on K. Hence

THEOREM 6. Let f'(¢t) be continuous on K. Let {A,} be a sequence of meshes on
K with lim,, — | Ay[| =0 and [max; | Ac[/|hy, ;1€ Ci<o0. If

|g&(@) = PO = O(|A]***~7)
Jorany p (p=0,1,2,3,4) and >0, then f*(t)=0on K.

The analytic spline. Let f(¢) be continuous on K. Let A be a mesh on K and
q(t) the complex cubic spline of interpolation to f(¢) on A. If R represents the
region interior to K, then the complex spline S,(z), z in R, is defined by (8).

We note that if for z in R we let z — ¢ on K, then [29] Si(z) — Sa(2), where

31 5.0) = 300+ 5; [ 2D ar

Here the Cauchy principal value of the integral on the right is intended. On K,
if gA(£) —f(¢) satisfies a Holder condition of order 8> 0, we have

(32) Sa(0)=f(1) = 5 L= +2 l J‘ qA("') f(f) dn.
From the Corollary to Theorem 1 and Corollary 3 of Theorem 2, together with an

application of the Principle of Maximum for analytic functions, we obtain

THEOREM 7. Let f(2) be analytic in R and continuous in R=R+K. Let {A} be a
sequence of meshes on K with lim,_,, |A.]| =0 and [max; | A|/|Ax |15 Cy < 0. If
f(@t) satisfies a Holder condition on K of order B (0<B=1), then for z in R and any
B, 0< B’ < B, we have

(33) S8 (2)=f(2) = O(| Al ®).
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Iff'(¢) exists and is continuous on K, then (33) is valid for arbitrary 8’, 0< 8’ < 1, with
only the restriction lim;, . ., | Ac| =0 on the meshes A,.

Let f'(¢) satisfy a Holder condition on K. Then we have
SKO-10) = 3 L -7 O+ [ BT,

We obtain from Corollary 2 of Theorem 2 and Corollary 3 of Theorem 3 the
following:

THEOREM 8. Let f(z) be analytic in R and of Class C* in R. Let {A,} be a sequence
of meshes on K with lim_, , | A =0 and max, | A,||/|h ;| £ C<o0. Iff'(t) satisfies
a Hélder condition of order B on K (0<B=1), then for z in R and any B', 0< B’ <B,
we have

(34) S =@ = O(|A]*** ") (p=0,1).

If f7(t) exists and is continuous on K, then (34) is valid for arbitrary 8, 0<p' <1,
with only the restriction lim,._, . |A.|=0 on the meshes A,. In this case also
SE(2)—fP(2)]=O(| Ax|**#) for p=0, 1, ..., on any closed subset of R.

The last conclusion of the theorem follows from the Cauchy Integral Formula.
By Corollary 2 of Theorem 3 and Corollary 3 of Theorem 4 we are led to conclude
the following theorem:

THEOREM 9. Let f(z) be analytic in R and of Class C? in R. Let {A,} be a sequence
of meshes on K with lim,_, , | Ay =0 and max, |A;|/hy ;| £ C<o0. If f'(t) satisfies
a Hélder condition of order B on K (0<B=1), then for z in R and any B', 0< 8’ <B,
we have (p=0, 1, 2)

(35) SR = P(2) = O(| A2+ ~7).

If f7(t) exists and is continuous on K, then (35) is valid for arbitrary 8, 0<p' <1,
without the additional mesh restriction. Here also SE(z)—f®(z) is O(|A,|2*¥)
(p=0, 1, 2) on any closed subset of R.

If f(2) is analytic in R and of Class C?in R, we wish to examine the convergence
of the sequence {S3, (z)}. The method employed in the preceding three theorems
does not apply without modification since g;(z) is discontinuous at the mesh
points ¢, ;. However, using Corollary 2 of Theorem 4 we obtain

THEOREM 10. Let f(z) be analytic in R and of Class C® in R. Let {A} be a
sequence of meshes on K with lim,._., |A,] =0, and [max, | Ay|/|h ]S C<c0. If
f7(t) satisfies a Holder condition of order B on K, 0<B<1, then for z in R and any
B, 0< B <B we have (p=0, 1, 2)

(36) (P)(z) _f(P)(z) 0(” Ak ” 3+8 -P).
On any closed subset of R, SE((z)—f®(2)=O0(|A¢]®*%) (p=0, 1, 2, 3).
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Structure of the analytic spline. The integration indicated in (8) may be carried
out explicitly. We have

2miSy(z) = f %a. ’(’) dr,

when g, (1) is the cubic given by (1) or (5) which coincides with ¢,(¢) on the arc
K;. Employing (1), rearrange g, ,(7) as follows:

—z)®=3(t;—2)(r—2)+ 3(t;— z)(7—2)* — (+— 2)*]

daf7) =

g e+ 3=ty =)+ 3=ty 7= 2P (2]
+(fy-1/hy— M;_1h,[6)[(t,— 2) — (7 —2)]
+(filhy— Mk [6)[(z—1;-1) +(7—2)].

We obtain, using >}.; M, (h;+h,,,)=0, the relation

. N t— 5 N
(36) 27iS,(2) = Z qa.(z) log 1, ,l_Z T3 Z Myhythy, )t -1+t +140).
i=1 - i=1

The quantity z is, of course, generally outside the domain of definition of g, ,t).
Here g, ,(z) represents the result of substituting z for # in (1). Thus

Z (t/ Z)2 Mj+1—Mj—Mj—Mj_1],

27iSi(z) = Z qa.A2) lOg

h/+1 hf
N t,—z y 5(t —Z) M -M; M,—M,_
wisSiz) = > ghz) log -H1=E + : T H]’
miSi(E) = 2, a0 log 7 jZl o 2
N
27iSx(z) = Z q1.42) 108 Z slog t, -z

N
POV 944105
27iSY(z) = ;Zl =z
We have previously established the fact that, for a sequence of meshes {A,} on
K with | Al — 0, [max, |Ax|/|A ]2 C<oo and [max, [A,—1/2|] - 0 as k — oo,
and a function f{(¢) with /%(z) continuous on K, we have

Ok,i+1 " Ok,5 1 iy ]
= t
hkj+hkj+1 2f (1)

If in addition f(r) represents the boundary values of a function f(z) analytic in R,
then we know from the convergence properties of {S,.(z)} that

= 0.

lim [max

kK— o

Ok,j+1 " %.,1 1 .hk,j+hk,/+1 - fw(t)
(37) I}Lnl 2771 Z (hk./+hk,/+l)/2 t,—z 2 271'1 K - d

Furthermore, for z on any closed subset of R the rate of convergence is O(|| Ax[|*).
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This relationship, however, sheds some light on the nature of the spline approx-
imation. The sum in the left-hand member of (37) may be interpreted as a
“trapezoidal” approximation of the integral appearing on the right, and more
generally relates to the classical theorem by Runge concerning the approximation

of a function analytic in R by rational functions with poles on K [30].

The last term in (36) can be further simplified. If we multiply equation (2) by

t; and sum over j, the term in M, is

hy hy+hy .y

h M
M’(6 tj—1+_3_ t+-LH tj+1) = Tj(h1+h1+1)(t1—1+t1+t1+1)-

6

Thus we have

1 N N
- Mh,+h ti_1+t,+1 =
§ 2, Mllthyty-a bt ta) = 3t Z
N
= > (fi=fi-D)
j=1

which is equal to 0. Thus (36) becomes

l

1 X —
Sa@) = 5= 2. qa.f2) log ———
27 &y z

The unit circle. The inverse of the coefficient matrix for (3) or (7) when the
curve K is the unit circle and the intervals ¢, _ 4, ¢, are of equal length can be easily

obtained. We have t,_,=e"%® («=2n/N) and

A = Lesri—le _ €%
L S
k+1— k-1 4

=t fiin)

The coefficient matrix for (3) in this situation is the N x N circulant

C[2, \,0,...,0,1=2],

2 A0 ... 1=2
1-x 2 a2 ... O

0 1-x 2

A o o0 ... 2

Representing the inverse matrix by the circulant Cla;?, a3 ?, ..

2a7 +dagt+(1—-Naz! =

2a5 4 dap+(1-Nazt =
(38) 2 1 :( ) 3

2a5t 4+ Aazt,+(1—Aazt = 0.
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Thus the quantities a;; * satisfy the difference equation Aa; 2, +2a; ' +(1 - A)a; =0
(k=2,3,..., N—1), subject to the two conditions represented by the first and last
of equations (38).

The roots of the characteristic equation are

(—1£(1-X1—-X))Y2)/x = e~**'2[—2 cos /2 + (4 cos? /2 —1)Y2].

Here the radicand is positive if «<2#/3; i.e., if N>3. Designate these roots by r
and s. Then
a;! = Ar*+ Bs*,
and
A4 2rY (1= Dr] + B[AsY 71 425% +(1-2)s] = 0,
A +2r + (1= 2]+ BAs" + 25+ (1= )s?] = 1.

Hence
-5 r
A== - w1
and, since rs=A/(1 —)=¢*,
_ cos «f2 p¥-k+1 g pk-1

% = “Wcosta—1)R  r¥_1
Alternative type of complex spline. Closely related to the same problem of
approximating a function analytic interior to the curve K are the complex-valued
splines of the real variable s (arc length) on K. These have been investigated to a
limited extent previously [24]. Here we can sharpen and extend the earlier resuits.
Equations (3) become

(39 w1+ 28+ MMy = 6f[s;- 1, 855 841,

with ¥M,=d?f]ds?, but now the quantities h,=s,—s;_; and p;=1—X;=h,/(h;+ by, 1)
are real and positive. The coefficient matrix has dominant main diagonal for all
meshes on K and the inverse matrix has row-max norm not greater than unity.
Similarly, equations (7) become

(40) Aghy 1+ 2+ pgtiy o = (i fL85 85411+ A f85-1, 55))

with 7, =df]ds.
The complex spline within the region R is defined as

540 = 57 [ A5 s,

where ¢=1(s) is the complex representation of the curve K and §,(s) is the complex-
valued spline given in the interval 5,_; £s<s, by

~

0) = Lt 5,y B (55,
+(f;-1/hy— M _ 1 hy[6)(s;— 5)+ (f,/h;— Mhy[6)(s— 3, 1),
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or, equivalently, by

-1

qa(s) = hz (55—5)*(s—s;- 1)+ 72 S (s—5;-1)%(s;—5)

f’ 1(s,—s)2[2(s -5 1)+h,]+f’(s —5;-1)%[2(s;—5)+h,).

As z in R approaches #(s) on K, S,(z) approaches

ga(s)
S40) = 300 +55; [ - aro)
Similarly §’,(z) and Si(z) approach, respectively,

& () = 1 dgy ds (qu/ds) (ds/dr)
St = 3% @ 2mf =t )

and
A’y (ds\* | ddy d%
"o = d2f, (ds\*  dg, d°s 1 ds® \dr ds dr?
Sat) [d a (dt) +E‘W] +2_1riJ.K =1 9
The properties corresponding to Theorems 1-6 and their corollaries carry over
to the present situation. Some simplification in the proofs results from the fact
that we are concerned here with splines in the real variable s. The convergence
properties set forth in Theorem 7-10 are valid in this situation and follow as in the
preceding section.

The cubic splines in the real variable s have the important property that they
satisfy two fundamental integral relations. We have

LI - 60507 o 58] oo | (-5

ds? ds?  ds? ]\ ds?
and integration by parts gives

f (%_ﬁg)(dsz)dg z (%—%)(d%) 2 U= qA)(dsa)

The First Integral Identity which results since §, is a spline of interpolation to f on

Ais
2
f ds = f ds+f
K

Actually we require only that df]ds be absolutely continuous on K and that d?f/ds?
be Lebesque square integrable.
As an immediate consequence we have [24] the following extremal properties:
(i) The quantity [, |d2(f—h,)/ds?|? ds for arbitrary cubic splines ha(s) on A is
minimum when A,(s) =ga(s).

d2
ds.2

d3f d%ga

ds® ds?

= 0.

ty-1

tr-1

2

2 2%,
d¥ dq ds.

ds? ds2

d°’ga
ds?

af
ds?
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(ii) Of all the C? functions g(s) on interpolating to f(s) on A, the quantity
{4 |g"(s)|? ds is minimum when g(s) =4a(s).
We define a pseudo inner product

@1) (u, v) = fx £(s)0"5) ds

when u(s) and v(s) are absolutely continuous on K (necessarily periodic in 5) with
L?-integrable second derivatives. We say that « and » are orthogonal if (1, v)=0.
An immediate consequence [21] is that if A and A" are two meshes on K with
Ac A, if b, and h,. are splines on A and A’ such that 4,.=0 on A, then 4, and A,.
are orthogonal.

Using a sequence of imbedded meshes {A,} with [A.| — 0 and with A,
consisting of the points of A, together with a point s,.; not in A, and taking
ha, ,, to be the complex cubic spline on A, ,; which is 1 at s, and 0 on Ay, we
obtain a complete sequence of orthogonal splines which is a dense subset of the
space of continuous functions on K. Many other orthogonal sequences may be
constructed, of course.

We obtain further that if {A,} is any sequence of subdivisions of K with |A,| —0
as k — oo, and if f'(s) is absolutely continuous with f”(s) L%-integrable, with g, (s)
the corresponding cubic splines on K of interpolation to f(s) on A,, then gx,(s)
converges in the mean to f"(s):

) lim [ [(/=gu)]?ds = 0.

The set of all functions f(s) with absolutely continuous first derivatives and L2-
integrable second derivatives form a Hilbert space with respect to the pseudo-
scalar product (41). A basis for this space may be taken, for example, to be the
sequence of orthogonal splines introduced above.

We note for the sake of completeness the so-called second integral relation [23],
valid if f(s) is Lebesgue integrable and g.(s) is the complex cubic spline of inter-
polation to f(s) on K:

@3) [ 1r-a0r12ds = [ (7= ds.
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