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Introduction. The past two decades have witnessed an increasing intensity of
investigation, [1]—[26], into the properties of spline functions. These functions,
which in their simplest form yield the analytic counterpart of the draftsman's tool
for drawing a smooth curve through a number of prescribed points, play an im-
portant and fundamental role in many parts of numerical analysis.

Many of the properties which these functions possess, such as the minimum
curvature property [3], [8], [13], [14], are associated with obvious attributes of the
elastic beam. Some relate to the best approximation of linear operators [15], [20],
and have rather profound meanings in approximation theory. Others, such as
orthogonality [24], rate of convergence [12], [17], [23], [25], and completeness [25]
of certain bases of splines, are at first rather surprising. A few (cf. [22, p. 241]) are
still quite puzzling.

The application of spline theory to the approximation of a function analytic
interior to a rectifiable Jordan curve and continuous in the corresponding closed
region has been considered to a limited extent in an earlier paper, [24], by the
authors. There splines were treated which are piecewise polynomial in the arc
length s on the curve. The present development is concerned with cubic splines
in the complex variable z and provides some insight into the structure of the spline
approximation generally. In particular, it serves to establish a connection with the
classical theory of approximation to an analytic function.

As part of this development, proofs are given for the convergence of the complex
cubic spline and its derivatives for the situations in which the approximated
function is of class C (a=0, 1, 2, 3, or 4) on the boundary. These may be modified
in an obvious manner for the standard real cubic spline and for the convergence
properties of second and third derivatives. There result noteworthy simplifications
over proofs already existing in the literature [12], [17], for a=2, 3, 4.

The convergence properties of cubic splines for cases in which the approximated
function is assumed merely to be continuous or to have continuous first derivative
constitute significant new developments in spline theory. In addition, a curious spline
property is here presented relating to the approximation of the fourth derivative.

The complex spline approximation. Let K be a rectifiable Jordan curve in the
complex plane. Let tlt t2,...,tN be points on ^arranged in counterclockwise order,
separating /Tinto arcs K¡ (j=\,..., N) with K¡ the arc from t¡^x to t, (rAr + 1 = ii).
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For this subdivision A of K we form a spline qA(t) on K composed of complex
cubics : for t on K¡,

o)
ís(,)-%i(r,-,r + ̂ (,-„.,,'+(^-Í%^)(,,-0

+(f^)«-"->.
where hJ=tj — tj_1, f=qA(tj), and M¡=q'A(t¡). The quantities M¡ are to be so
chosen that the limiting values of q'A(t,), obtained by approach to t¡ on Kj+1 and
K], are equal: for7= 1, 2,..., N,

(2) hi M^. + ̂ Ltl Mj + ̂  Mj + 1 = U±±z£í_Uz£lz±.
O ó o rlj + 2 ^y

If we set
} "y + i 1     \

we obtain

(3) /*,M,_ ! + 2M; + AÍMÍ + i = 6f[t¡_u th ti+1].

Here /[íy_i, í„ íy+J is the second divided difference [27] involving functional
values/y_i,//,/y+x at the points r3_!, i;-, ri+1.

The existence of the spline qA(t) on K, assuming prescribed values/ at the mesh
locations r3, rests upon the possibility of solving the TV simultaneous equations (3)
for the quantities M¡. Now the coefficient matrix A has dominant main diagonal
provided that, for each j (j= 1, 2,..., N),

2\h}+hi+1\ > |A,| + |A,+1|.

This condition is equivalent to requiring, for each j, that t¡ lies within the ellipse
with foci iy_! and tj+1 and with eccentricity 1/2. If ATis a smooth Jordan curve (i.e.,
has a continuously turning tangent), then this condition is satisfied for sufficiently
small mesh norm

(4) ||A|| = max |A,|.

We assume throughout the remainder of the paper that K is smooth and that ||A||
is sufficiently small that A be nonsingular. The piecewise cubic function qA(t) then
exists and is unique for arbitrary complex values fi,f2,.. .,fN.

Alternatively we may represent the spline qA(t) in terms of its first derivative at
the mesh points, mj=q'A(t¡). On K¡ we have

?a(0 = 'I1^1(ti-t)2(t-tj-1)-^i(t-ti-d2(ti-t)

(5)
+fj§T (í;-02[2(í-íy-1) + Ay]+^3 (r-íy-i)2[2(/y-í) + Ay],
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and the quantities m¡ satisfy the requirement that ql(tj—)=q'L(tj+) for j=\,
2,...,N:

7 Ay \A/    A/+l/    '     Ay + i Af+l A2

which may be rewritten in the form

(7) Xjmi.1 + 2mj+p.jmi+1 = i^Ù^îi^Ùzâzl^

The complex spline SA(z) is now defined interior to K by the Cauchy integral

with SA(0> r on A', as the limiting value (cf. [29]) for approach from within K,

Convergence on the boundary. We consider first the convergence of {qAk(t)}
and the corresponding sequences of derivatives for a sequence of meshes {Ak}
with ||Afc|| -h* 0 as k->co. Let the mesh points of Ak be rfc>1> tk¡2,..., tk,Nk. The
row-max norm of the inverse of the coefficient matrix Ak in (3), or Bk in (7) does
not exceed (cf. [10, p. 97]) {min, [2-|Afc>y| — \¡ikJ]}"1 and for arbitrary 77 >0 this
bound can be made not to exceed I+77 by taking ||Afc|[ sufficiently small. Let
bk;ui represent the general element of the inverse matrix Bkx. For convenience in
notation, we will frequently drop the index k on the mesh Afc as in the following
proof.

Consider the interval K¡. On K¡ set t=(tj-1 + tj)/2+e. Let f(t) be continuous
on K. Then from (5) we have

<7a(0-/(0 = Mj-emhi + e)r^-(ïhj + e)2(îhj-e)mj

+ ̂ jf ^h]-e)2(hi + e) + 2^ (^hi + e)2(hj-e)-f(t).

M0-/C0I ^ (iN+*)3^r^max([|Mj| !¿|¿=j& +|A,| ̂ j^]
Thus

+

since

fj+fl + l     yy.J , |3  e      2.31

'-m^rW'-^

(10) M,-3|^^+A|£^)

and ZtlbrM Ú l+rj.
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Now \e\l\hj\ ̂ 1/2, |íty|<l, and |A;|<1 for ||A|| sufficiently small. If we assume
that the meshes A possess the property that

(11) [max |A||/|A,|] í C, < co

and if we designate by p(S;f) the modulus of continuity of the function f(t),
then on K¡

I?a(0-A0I = [12(1+^)^+2^(1^11,/).
Since the constants are independent of/ we have proved

Theorem 1. Letf(t) be continuous on K. Let {AJ be a sequence of subdivisions of
K with lim,,...«, ||Afc||=0 and with [maxy ||Afc||/|Afcií|]áC1<oo. Let qAk(t) be the
complex cubic spline on K of interpolation tof(t) onAk. Then {qAk(t)} -*-f(t) uniformly
as ||Afc|| ->0. If f(t) satisfies a Holder condition of order ß on K (0</3^ 1), then
1^(0-/(01 = 0(^11«).

In order to obtain the convergence properties of the complex spline defined in
equation (8), it is necessary to show that qA(t)—f(t) or its derivatives satisfy
suitable Holder conditions. These conditions become involved in the definition
of the Cauchy Principal Value of the integral in (9).

For t and t on K¡ we obtain from (5) (t* = (ti-1 + tj)/2)

?a(0-?a(t)
- (,-,){[„„,+M)-2^] [(,-, ^c-^-, .H(T-,.)._n

+(m,_m(JÍ±i*:+«^)}.

If/(0 satisfies a Holder condition of order ß (0<ßu 1) and if 0^ 8^ß, it follows
when ||A || is sufficiently small that for t and t on K,,

|[?a(o-/(0]-[?a(t)-/(t)]| = if-riw-a-te&d

.{K1+/m;|-|í-t|1-« + 2 l/y-//-il Ay  I     J'4
ízi!1" i/i-/y-ii, m-m\
h¡ I     '     |Ay|'    +   \r-t\» j'

Thus, by means of (10), it is seen that [?a(0_/(0]/IIaIIí-í satisfies a uniform
Holder condition of order 8.

Corollary. Under the conditions of Theorem 1 with f(t) satisfying a Holder
condition of order ß (0<ß^ 1), the function [qAlc(t)-f(t)]/\\^k\\e~ô satisfies a Holder
condition of order 8,0<o^ß, uniformly with respect to k.

We turn to a consideration of the case in which/(0 has a continuous derivative
onü:.
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Theorem 2. Letf(t) beof class C1 onK.LetAk: tkl, tk>2, ■ ■ -, tKNk (fc=l, 2,...)
represent a sequence of subdivisions of K with \ivnk^K ||Ak||=0. Let qAk(t) be the
complex cubic spline on K of interpolation to f(t) at the points of Ak. Then {q'Ak(t)}
converges uniformly on K tof'(t) and [qàk(t)—/(0] = o(l|Ak||).

Proof. If we write (7) as

Bkmk = 3ek

where ek is the Nk-\ector (ekA, ekt2,..., ekfNk)T with

ek.i = P-k.iUifk.i+1) -Atk.iñlKí+1 + K.iWitkj) -f(tk,j-i)]/hk,i

and mk the corresponding vector of spline first derivatives, (mkA, mk¡2,.. .,mktíik)T,
then

(13) Bk(mk-ek) = (3Ik-Bk)ek.

Here Ik is the NkxNk identity matrix. They'th row in 3Ik—Bk has three nonzero
elements centered on the main diagonal position: XkJ, — 1, p.kJ. Thus the right-hand
member of (13) has the/'th element

Xk,jek,j -1 — ek,i + P'k.^k.J +1  = K,j(ek,J -1 — ek,j) + P-k,j\ek,i + l~ek,i)-

Now/'(0 is continuous on Aso that max, \f'(tkJ) — ekJ\ can be made arbitrarily
small, uniformly with respect to k, by taking ||Ak|| sufficiently small. Thus

||(3/k-.8k)ek| = 3[ma\j\XkJ(ekj_1-ekti)+p.k¡j(ekJ+1-ek¡j)\]

can be made uniformly (in k) arbitrarily small. Hence max, \mkJ—f'(tk¡,)\ -> 0 as
||Ak|| -> 0. For t on KkJ with t = (tkJ-1 + tki,)/2 + e, we have

_. M  AtkJ-Atkj-i)

For ||Ak|| sufficiently small, \e/hf\ ¿ 1. The uniform convergence of {q'Ak(t)} to f'(t)
is a direct consequence. Since for / on KkJ we have

<U0-/(0 = f       [q'Ak(t)-f'(t)]dt,

it is evident that [q&k(t)-f(t)] = o(\\Ak\\).
Since we may write, for t on KkJ,

m_f(tk,)-f(tk,-ù =    1     p-    [/'(0-/'W]rfr,
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396 J. H. AHLBERG, E. N. NILSON AND J. L. WALSH [December

it follows from (14) that [qkk(t)-f'(t)] = 0(\\Ak\\s) if/'(0 satisfies a Holder con-
dition of order ß on K, 0 < ß ̂  1. Thus we have

Corollary 1. Under the conditions of Theorem 2 on f(t), {Ak}, and {qAk(t)}, if
f'(t) satisfies a Holder condition of order ß on K (0 < ß g 1), then for p — Q, 1 we have
/(p)(0-<(0=o(l|Ak||1+"-!').

We can also prove

Corollary 2. Under the conditions of Corollary 1, [9Alc(0-/'(OJ7l|Ak!/,~'5 satis-
fies a uniform Holder condition of order 8, 0 = S g ß, provided

[max ||Afc||/|Aw|j ̂  Q < co.

Proof. We obtain from (5) (dropping the index k; again t* = (tj-1 + tj)/2)

*a(0-<7a« = (f-T){[^-i-^-^ + ^-C^-/,-i)/*,]

Wy-i)
Ay '        A,      /'

(15)
3(r+T-2f *)   m,-mi_ x

It is seen from (13) and the properties of/'(0 that the quantities

mi-(fj-fi-i)/hi        Wy-i-(/y-/y-i)/Ay
l|A||" ' |A||"

are uniformly bounded as is (/Wy—/Wy-O/HAI*. Hence for ||A|| sufficiently small,

|[9A(0-/'(0]-[9Á(r)-/'W]|

g i?-rHiAir-^{[3|^-i-^-/-^l+3

I/'(t)-/'(0I

hy-(/y-/y-i)/Ay|
Il A ||"

^JWy-Wy-tl
HAP

r-T
Ay |Ay

-,+
|r-f|'

The conclusion of the corollary follows.
It is to be noted that the mesh restriction (11) appearing in Theorem 1 is not

required in Theorem 2 or in the next theorem. We remark also that by (12) we
have, without this mesh restriction,

Corollary 3. Under the conditions of Theorem 2, for arbitrary 8, 0<8gl, the
quantity [qAk(t) —/(0]/l|Ak||1-i satisfies a Holder condition of order 8 on Kuniformly
with respect to k.

Theorem 3. Letf(t), {Ak}, and{qAk(t)} satisfy the requirements of Theorem 2 but
withf(t) of class C2 on K. Then {qAk(t)} -*f"(t) uniformly onKask^oo.

Proof. Write (3) as
AkMk = 3dfc)
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1967] COMPLEX CUBIC SPLINES 397

where Mk = (Mk>1, MK2,..., MktNk)T and dk is the A^-vector whose jth com-
ponent is 2/[rk>J_!, tkJ, tkJ+1]. Then

Ak(Mk-ák) = (3/k-^k)dk.

The vector (3Ik—Ak)ik has norm equal to

3 max \p-kj(dktJ-i-dkj) + Xkj(dkJ+1-dktJ)\.
j

If f"(t) is continuous, then 3dkJ (the right-hand member of (3)) can be made
uniformly close to 3f"(tkJ) by taking ||Ak|| sufficiently small. In fact, we have from
the Taylor theorem with integral remainder,

/[*k,y-l> tk.j, tk,i + l]~if"(tk,i)

= J—TT-{-r^— it,e''+1(^ + i-r)[r(T)-/UJ]^
(16) "k,J-T"kJ + l   \."k,l + l Jtk,,

nK) Jtk.j-i J

The left-hand member of (16), therefore, does not exceed in absolute value the
quantity

(16')
[max \nt)-fVkj\]-Jhkr:nl1 ■
ltonKk,f j  \nk¡j-tnk¡j+i\

+ \   max    |/'(0-/U./)l1-|A   !hj     I * M\t-tHJ\,n
UonKkj-! J   \nkj + nkj + 1\

for ||Ak|| sufficiently small.
From the boundedness of \Ak 1|| (uniform with respect to k) it follows that

||Mk-dk|| ->0 as k-+oo. The linearity of q'Lk(t) between junctions tkJ and the
uniform continuity of f"(t) now give the conclusion of the theorem.

If f"(t) satisfies a Holder condition of order ß on K, 0<ß^ 1, then it follows
from (16) that ¡Mk-dk| = 0(||Ak||Ä). Moreover, for t on KkJ we have

/(/)-/fa.y-i)_/,fayi) =        1_ j"       (,_t)/»(t) dTf

and so from the interpolation property

UJßH-1)-f\tKi. ¿-J- Ç"'    (tkJ-r)[q"Ak(r)-f"(r)] dr.

Thus [q'Ak(tkj)-f'(tkj)] = 0(\\Ak\\1+B). By using, for t on KkJ, the relation

?ik(o -/'(o = ¿,(y-/'fe.y) + f [«Lw -/'(*>] ^
and by a repetition of this argument for qnk(t)—f(t) we obtain
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Corollary 1. Under the conditions of Theorem 2, if f(t) satisfies a Holder
condition of order ß on K (0<|3gl), then [<)(0-/<p)(0] = O(l|Afc||2 + i-p)
(p = 0, 1, 2). Iff {f) is continuous on K, then [qiPXt)-f(p)(t)] = o(\\Ak\\2->).

We have also

Corollary 2. If f"(t) satisfies a Holder condition of order ß (0<j8^1), then
[^(0-/"(0]/||Afc||i-'s satisfies a Holder condition of order 8 on K (0<8^ß)
provided [max, ||Ak|/|Afc J] ^ Q < oo.

Proof. We have, for t and t on K, (dropping mesh index k),

(17)      \lg"Át)-r(t)]-[q:(r)-f(r)]\ = \t-r\^ hj t-T

Since Mj—Mj-i = 0(\\A\\B), it is seen that the left-hand member of (17) does not
exceed

''     ' "   "     I Ail L     1A|'     +    \t-r\»      ||A|H,-r|H/
and that the term within braces is uniformly bounded with respect to the meshes A.

Without the mesh restriction (11) we have

Corollary 3. Iff(z) is of class C1 on K, then [q'Ak(t)-f(t)]/\\Ak\\1-i satisfies a
Holder condition of order 8 on K,0<8¿1.

Proof. Since by (1) we have for t and r on KkJ

(18)        <7Ak(0-?At(r) = (t-r)^,,-, 2tk2hkt~T+M' t+T2h!kj'Í'1\

it follows that, for ||Afc| sufficiently small,

\[q^(t)-f'(t)]-[q'Ak(T)-f'(r)]\

» \t-4')b\l--\\M*J-i\ + \MuA+\fiT)TZft (%

Sharma and Meir [28] have announced the results of Theorem 3 for the case
of a real nonperiodic spline with special end conditions. The proof given above is
readily adapted to a wide class of splines including that of Sharma and Meir.

The third derivatives of the spline have jump discontinuities at the junctions
tj of the mesh A ; nevertheless they possess important convergence properties relative
to the function approximated. Some of these have been demonstrated by Birkhoff
and deBoor [17] for the special spline later considered by Sharma and Meir. Their
proofs are rather involved. We study the problem here for the complex cubic
splines (periodic) qA(t), giving a simple proof which is readily adapted to real
splines of general type.

A somewhat more surprising result is the relation of the jumps in qA(t) to f(t)
when the latter is continuous. This is presented in Theorem 5.
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Theorem 4. Letf(t) be continuous on K. Let {Ak} be a sequence of meshes on K
with limfc.,00 ||Afc||=0. Let qAk(t) be the complex cubic spline of interpolation to
f(t) on Ak. If [maxy ||Afc||/|Afc>J|] is uniformly bounded with respect to k, then
{?Ât(0) -^/"(O uniformly onKask-^co.

Proof. Set Oj=(M¡—M¡ _ ̂ /Ay. In equations (3) we subtract the (j- l)th equation
from the y'th. Noting that

Ay-l _ P-l-lP-i Ay _ Ay_^y
Ay_!+Ay + Ay+1 l-/iy_lAy' Ay _ 1 + Ay + Ay + j. l-fiy^Ay'

Ay + i _       Ay^Ay

we set

C =

(1 + iiN + A^Xf/Pi
1—fjiAi

Pins
1 —F1A2

Ay_!+Ay + Ay + 1 1 ~/"./- 1 Ay

A«"i „
1— PnK

(l+/*i + A2)Aift2        AXA1
1—iiiA2

0

1 —ii,A.^1*2
0

l¿N - lFW (1 + FW - 1 + Aw) Aw - 1/JAf
1~ pN-l"N 1— Pn-I^N- l-f*N-lMN

Then

(19) Co = 6r,

where e-fai. <j2, ..., ct*)t and r = (/1; ra,..., r*)1", with ry=/[fy_2, íy_!, íy, fy+1]. We
may write

(20) GCH = E,
where G and tY are the diagonal matrices

'1— MiA

G =

Mi-**
1 -^1^2

¿¿1^2

(1-^2A3)A1
P-lP-ZP-3

(1 ~/¿AT-l^W^l^ ' ' ' ^W-2

Ml/*2 • • ■ /%

/V =

Ml

M1M2
AjA2

/*1^2 • " • P'N -1

AjAa ■ ■ • Atf.i
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and, since AXA2 • • • XN=p.1p,2 ■ ■ ■ p,N,

E =

I+p-n + Xj, Ai 0
P-i 1+í¿i + A2      A2

PN

0

0
XN

pN-2       l+Míí-2 + Ajv-l A,,.!

0 p.N_1 1+Mw-i + Ajr.

Now ¡/J"1!! ̂ l+ij (arbitrary 77 >0) provided ||A|| is sufficiently small. We
assume, for all meshes A, that we have \\A\\/min¡ \hj\^C1<cc. We find, for
arbitrary positive integers i and p, that

Ci-1 < At Al + 1 Xi + P _
Pí + pPi Pi + i

and that for || A || sufficiently small,

"¡+p+p+i
hi SCU

N - |a,+ai+1| = TTcï     |Af| = T+c7

from the smoothness of the curve K. We require r¡ < 1. Then

1 „ 1 (1 + Ci)2

It follows that IC-1! ^(1 + d)2(l +i?)Cf/[(l -?X2Ct+i}+l)].
Write (19) as

C(o -6r) = 6(7-C)r.

The sum of the elements of each row of 7- C is zero. Thus the j'th component of
(7-C)ris

(21) A=î^^+i-rJ)+74=aÛ_ (,,_.,,_,).
1-Mí-iAí 1— M/-iAy

Taylor's Theorem with integral remainder gives

At) =f(ti) + (t-ti)fVJ)Ht-tl)2f"(ti)/2l+Yl f {t-r)T(r) dr

Thus we obtain

/[/,_!, r„ r/+1]

// | (l/hj + 1) íl'^ (ti + 1-r)T(r) dr-^/hj) Í^Ati-i-r^nr) dr
2(hi+hj+1)

-2+
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1967] COMPLEX CUBIC SPLINES 401

and

,r, , ,      , 1       (2Ay_1+Ay)/y"-1+(Ay + 2Ay+1)/'flt,-a, íy-1, íy, iy + lJ 12(Ay_1+Ay + Ay + 1)

-!£' (íy-i-wv)-/;"]^]

+Â7^y4L^)W^)-/A^
+¿ J^"1 (íy-2-r)2l/"(r)-/y"1] rfr]}-

Now if we write íy+i — t= /}£'■*, then \dr\ = \l+pi d<f>/dp\ \dp\ and \d(/>/dp\^H1 on
A^ for some constant //i. Thus

(22)

(l/|Ay + 1|) f,hl |íy+1-r|a|</T| = |*r+iIaa/3+JSr1|A/+xI/4>.
«y

It follows that the left-hand member of (22) is in absolute value not greater than

MlA||,/")       f   . |Ay|2 + |Ay+1|2    lAyxI' + jAyl^  (I    H,||AI\
2|Ay_1+Ay + Ay + 1|V+       |Ay + Ay + 1|        +       fAy-X+Ayj      J   ' ̂ 3 + 4 /'

Here the coefficient of /¿(||A||,/") is seen to be dominated by a function of Hx
alone provided ||A| is sufficiently small.

The left-hand member of (22) is the difference between r¡ and a weighted mean
of/," 1 and/". We may conclude that ¡(I- C)r| -> 0 as || A|| -> 0. From the uniform
boundedness of ¡C"1! we have |o-6r|->-0 by (21) and {qm(t)}->f(t) uni-
formly on Ä' as |A|| ->0 (qm(t) is constant on each K} and f(t) is uniformly
continuous on K). This completes the proof of the theorem.

If/"(i) satisfies a Holder condition of order ß on K (0 < ß ^ 1), then the quantities
(21) may be shown to be less than b- \A\B for some constant b independent of A.
Thus f(t)-ql(t) = 0(\AY).

To obtain the degree of convergence of {qAk(t)} we must circumvent the diffi-
culty that qAk(t) is not continuous. We have

0,H-/y)/*Hi-(/r//-i)/*/
Ay + Ay + 1

//    d/Ay + 1) Jl;+1 fty^-rjyCOrfT-O/Ay)/!;., (fy^-ryrHrfr
2   + 2(Ay + Ay + 1)
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Using (3) and the interpolation property of qA(t), we obtain

fî-Mj
(llhi + 1)jtt'l+1(ti + 1-r)2[f-(r)-ai + 1]dr-(\/hi)St_1(tí-i-r)2[f"'(r)-af]dr

hj+hj+1

Thus/"-MJ = 0(||A||1+i) and, for t on K„

f'V)-ql(t) =f"-MJ+ f [r(r)-o,]dr,Jt,

so that [f"(t)-q"à(t)} = G(|| A||*+')•
The corresponding convergence rates for [f'(t)-q'A(r)] and [f(t)—qA(t)] now

result by integration as before and we have

Corollary 1. Under the conditions of Theorem 4, let f"(t) satisfy a Holder
condition of order ß (0</3^1) on K. Then qApkXt)-fXt) = 0(\\Ak\\3+i¡-»), p = 0, 1,
2,3. Iff"(t) is continuous on K, then [<)(0-/(p)(0] = o(||Ak||3-'').

The function qm(t)—f"(t) does not, of course, satisfy a Holder condition on K.
We do, however, have

Corollary 2. lff"(z) satisfies a Holder condition of order ß (0<ß^ 1), then for
arbitrary 8 (0<8^ß) the functions [q"Ak(t)-f"(t)]/\\Ak\\1 + e-6 satisfy a Holder
condition of order 8 uniformly with respect to k.

Proof. We have on KkJ

(23) \[qlk(t)-f"(t)]-[qlk(r)-f"(r)]\ = \t-r\ 'k.r
f'Xt)-f"(r)

t-r

Now

fm(t) f"(t)-f"(r)
t-r

= TT—M' Um(t)-fm(r)]d,
\t~T\ \Ji

is 0(||Ak||Ä) and so is \okJ—/""(/) | by Corollary 1. Thus the left-hand member of
(23) does not exceed

\t-r\-\\AkV +B-ó
iiAkr

°*.i-r(t) , r(t)-[f"(t)-f(r)]/(t-r)
I A II«la)cll

■ +
IAJI*

The corollary follows.

Corollary 3. Under the conditions of Theorem 4 but without the additional
mesh restriction (11), for arbitrary 8 (0<oá 1) the functions

[«WO-AOl/IM1-1
satisfy a Holder condition of order 8 on K uniformly with respect to k.
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Proof. The right-hand member of (23) does not exceed

|r-TH|Afcp-«[sup maxK,y| +sup /'('>-■/>) 11
L   k        y K t—T |J

and the bracketed expression is finite. This completes the proof.
Consider next the jump in qA(t) at the junctions t¡ of A. Define

Ay + Ay + 1

Subtract each of the component equations of (19) from its successor and obtain
(j= 1, 2,..., N) the equation

jt^tl- ^-aj_1) + pjXj(—^ + —Lr.Wy + 1-CTy)
1— My-iAy \I— p-j-x^i     l—p-jAj + ll

A A2
+ 1   j 't1    (gy+a-gj + i) = 6(ry + 1-ry).

Note that
Ay-i^y + MyMy + i       _   MyMy + i   _ ^y-iMy + i _      AyAy-i

Ay_!+Ay + Ay+1+Ay + 2 Ay_j+Ay Ay + Ay + j. Ay+1+Ay + S

Set öy = (l-/xy_!Ay)"1 and

Z) =

A„A1 + /x1fi2 AvAi + fiif(2 AnAi + hx^
Fl^2^3^2 A1A2/^2M3(^2+ ^3) AiA2A3fl3

AlA2 + ft2ii3 A1A2 + /¿2f*3 A1A2 + /H2Íi3

Aw-iAjAJfli ^-ícJfi*»     A^-íAw/íw/íjÍ^ + O!)
L AN_iAN + fíjí/ii Ajf-iAjy + íx^! A^-íAn + zí^^.!     J

also let 8 = (81; 82,..., S^)T and d = (du d2,..., i/,,)7, where

dj  =  6/ [íy_2, tj-1, tj, /y + i, Íy + 2J.
Then

(24) Z)6 = d.

As in the proof of Theorem 4 we transform D into a matrix with dominant main
diagonal by left and right multiplication by suitable diagonal matrices. We multiply
the rows of D by

(XNXx+pxp2)\N/(ix\p2), (AiAa + fia^Aj&Aj/XOxj^Va), . . .,

(XN_2Ajf_! + [iN-i/ijvXAjvAi ■ • • hN-3)2^N-2/((p-i ■ • • Pn-iYp-n)

= (AN_2AN_1+/iN_1/iN)/xw/(Aiv_1AAr_2), (K-iK + P-nP'i)/(K-iP'i)>

and the columns by

/*i/(A$Ai), M?íi2/((A;íA1)2A2),..., (mi • ■ • /%-2)V¡v-i/((AA ■ - ■ K-if^-i)
= Ajv-i/Oiji-i^2), ll(XNp,N).
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We obtain as a result the matrix

[December

(25)

h + (fa
Pi62

0
.   AA

A202

92 + 63

0
0

0
x3o3

0
0

0
0

Pn-2^n-i     &n-i + 0n

0 Pn-i°n

Pn9i
0

XN6N

If we assume for the meshes A under consideration that || A||/miny \h¡\ SC*<oo,
we find by the methods used previously that || D "1 || is uniformly bounded (the
matrix (25) has dominant main diagonal for ||A|| sufficiently small).

Now consider the sum of elements in the y'th row of D,

G,= P2-iP2Pj+i6i + hj-ihjPíPi+Á9i + 0j+i) + hi-iXjXj+i6i+i
Xj-1Xj + p.jp.j + 1

_ (pf- iP)ßf -1\¥i + (8j + A/ +1) + (A,A2+ Jfijiij + i)gy +1
l/M#y+i + l/Aj-iAy

If the meshes A become asymptotically uniform as k -> oo ; that is, if

max |A;-1/2| ^0,
i

then max, |G; —l/2j -^-0. In general, let G be the diagonal matrix with G¡ the
diagonal element in the y'th row. Then for G'1D—I the sum of elements in each
row is zero (G¡^0 for || A|| sufficiently small).

We write (24) as
DS-G1Dd = (7-G-17J))d.

Let/lv(r) be continuous on K. The quantities Ads differ from a weighted mean of
ffii, ff, /7-i by an amount which is G(||A||). This follows from the uniform
continuity of/lv and properties of the d¡. Thus ||(7-G-17))d|| ^0 as ||A| ->0.
Since ¡T)-1!! is uniformly bounded, it is evident that \\&-D-1G-1Dd\\ -> 0. If the
meshes become asymptotically uniform as ||A|| -h*0, then ||8 — 2d|| ->0. Thus we
have

Theorem 5. Ifflv(t) is continuous on K and if as ||Ak||

[||Ak||/min |Afc,,|] = C < oo,

0, we have

then  ||8k — Dk 1Gk 17)kdk|j ->-0. If the meshes become asymptotically uniform as
■ 0, then

lim   max
IIAkl|-.0L     1

\qlk(tkj + )-qlk{tkj-)     flv(tk,,) ]-ahj+hj+i :
Finally we show that the convergence rate of qAkXt)-fipXt) to zero can be no

higher than 0(||Ak||4-''). Let us assume fiv(t) to be continuous on K and that
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\q$(t)-fpXt)\ ^B1\\Ak\\i-p+l' for some /¿>0 and some p (p=0, 1, 2, 3, or 4). If
p=4, then/lv(r) = 0. If p = 3, then as in the proof of Corollary I of Theorem 4 we
have q'Ak (t) —f"(t) = 0( || Afc |2 + ") ; hence, as in the proof of Corollary 1 of Theorem 3,
<lA¡(t)-f{pXt) = 0(\\Ak\\i+u-1>) for/>=0, 1. In all cases, therefore, we are led to the
situation in which \qAk(t) -f(t)\ fk B\ AJ4 + ". Subdivide each interval [tkJ-U rfcjy] into
four subintervals of equal length by points íy>0=íy-i, £y,i> £y,2, £y,3> £y,4 = fy (drop-
ping mesh index k); set hhn = ihn-^j¡n-1 (n = l,2, 3,4). Form the difference of
fourth divided differences

^aIsV.Oí sy,i> • ■ •> íy,4]—/l?y,o» £y,i> • • •> £y,4j = Wi_/)[sy,o> ?y,i> • ■ ■■> Çj.il-

The right-hand member of this equation does not exceed

(||A||/|Ay|)*+"-(|Ay|/min|Ay.n|)*-|Ay|V6.
n

If ||A||/|Ay| ̂ Ci<oo, then the right-hand member is 0(|A||"). Since qA(t) is cubic
in t over the interval tj_1, t¡, and since/[iy,0, fy.i, • • -, ¿7,4]—/iv(iy-i) -*■ 0, we have
/"(OsOon/r. Hence

Theorem 6. Let fiv(t) be continuous on K. Let {Ak} be a sequence of meshes on
K with lim* -> ||Afc||=0a«u?[maxy || Afc|f/|Afc>y|] ^ Ct <co. If

\qkPXt)-fPXt)\ = 0(\\Ak\\^"-")

for any p (p=0, 1, 2, 3, 4) and p>0, thenfiy(t)=0 on K.

The analytic spline. Let f(t) be continuous on K. Let A be a mesh on K and
qA(t) the complex cubic spline of interpolation to f(t) on A. If R represents the
region interior to K, then the complex spline SA(z), z in R, is defined by (8).

We note that if for z in R we let z -> / on K, then [29] SA(z) -»■ SA(i), where

Oí) Sa(0 = 1ía(0+¿^££U.

Here the Cauchy principal value of the integral on the right is intended. On K,
if qA(t)—f(t) satisfies a Holder condition of order S>0, we have

(32) SA(t)-f(t) = \ [qA(t)-f(t)] + ±.. £ qÁT)TZ{(T) dr.

From the Corollary to Theorem 1 and Corollary 3 of Theorem 2, together with an
application of the Principle of Maximum for analytic functions, we obtain

Theorem 7. Let f(z) be analytic in R and continuous in R=R+K Let {Ak} be a
sequence of meshes on K with limfc_oo |Afc||=0 and [maxy ||Afc||/|Afc>J|]^Ci<oo. If
f(t) satisfies a Holder condition on K of order ß (0<ß^ 1), then for z in R and any
ß',0<ß'<ß, we have

(33) SAk(z)-f(z) = 0(\\Ak\n
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IffXO exists and is continuous on K, then (33) is valid for arbitrary ß', 0 < ß' < 1, with
only the restriction lim/t-.,» || Ak|| =0 on the meshes Ak.

Let f'(t) satisfy a Holder condition on K. Then we have

S'A(t)-fXt) = \ [q'Át)-fXt)]+¿¡ ¡k qk(TlZtiT) dr.

We obtain from Corollary 2 of Theorem 2 and Corollary 3 of Theorem 3 the
following:

Theorem 8. Letf(z) be analytic in R and of Class C1 in R. Let {Ak} be a sequence
of meshes on K with limk^M || Ak| =0 and max, || Ak|/|Ak3| ^ C<oo. 7//'(0 satisfies
a Holder condition of order ß on K (0 < ß = 1 ), then for z in R and any ß', 0 < ß' < ß,
we have

(34) SFk(z)-f™(z) = 0(||Ak|r«'->)       (p = 0, 1).

Iff"(t) exists and is continuous on K, then (34) is valid for arbitrary ß', 0<ß' < 1,
with only the restriction limk_00 |Ak||=0 on the meshes Ak. In this case also
[SApk\z) -fw(z)] = 0( || Ak ||1+<>') for p = 0, 1,..., on any closed subset of R.

The last conclusion of the theorem follows from the Cauchy Integral Formula.
By Corollary 2 of Theorem 3 and Corollary 3 of Theorem 4 we are led to conclude
the following theorem:

Theorem 9. Letf(z) be analytic in R and of Class C2 in R. Let {Ak} be a sequence
of meshes on K with lin^-.«, ||Ak|| =0 and max, || Ak||/Aki| ̂  C<oo. Iff"(t) satisfies
a Holder condition of order ß on K(0<ßfil), then for z in R and any ß', 0<ß'<ß,
we have (p = 0, 1, 2)

(35) Sfflz)-f»Xz) - 0(||Ak|2^--").
Iff"(t) exists and is continuous on K, then (35) is valid for arbitrary ß', 0<ß' < 1,
without the additional mesh restriction. Here also S{il(z)—fivXz) is G(||Ak||2+fi)
(p = 0, 1, 2) on any closed subset of R.

If/(z) is analytic in R and of Class C3 in R, we wish to examine the convergence
of the sequence {SAk(z)}. The method employed in the preceding three theorems
does not apply without modification since qk(t) is discontinuous at the mesh
points tktj. However, using Corollary 2 of Theorem 4 we obtain

Theorem 10. Let f(z) be analytic in R and of Class C3 in R. Let {Ak} be a
sequence of meshes on K with limk^œ ||Ak||=0, and [max, ||Ak||/|/ikji|]^C<oo. If
f"(t) satisfies a Holder condition of order ß on K,0<ß^l, then for z in R and any
ß', 0<ß'<ß we have (p = 0, 1, 2)

(36) S&Kz)-fKz) = G(||Ak||3+"'-").
On any closed subset of R, SiAvkXz)-fi''Xz) = 0(\\Ak\\3+»■) (j> = 0, 1, 2, 3).
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Structure of the analytic spline.   The integration indicated in (8) may be carried
out explicitly. We have

WSM-f   f   q-f^dr,JTlJKi    T-Z

when qAJ(t) is the cubic given by (1) or (5) which coincides with qA(t) on the arc
Kj. Employing (1), rearrange qAJ(r) as follows:

?A» = ^ [(ti~z)3-3(ti-z)2(r-z) + 3(ti-z)(r-z)2-(r-z)3]

+ ^[(Z-íy_1)3 + 3(Z-/y_1)2(r-z) + 3(z-íy_1)(r-z)2 + (T-z)3]

+ (/ . i/Ay - My . ¿¡¡CM, -Z)-(T- Z)]
+ (/y/Ay - MyAy/6)[(Z - fy.J + (t~ »)].

We obtain, using 27= i ^y(Ay + Ay+1)=0, the relation

(36) 27r^A(z) = 2 ^»log^-;-*? 2 Afy(Ay + Ay+1Xf/-i + f> + /y+i).

The quantity z is, of course, generally outside the domain of definition of qAJ(t).
Here qA,,{z) represents the result of substituting z for / in (1). Thus

2^A(z) = 2.A,(oiog;^-z- £-g- l-s^-ÄT^J'

2,iSl(z) = 2 ,¡,(z)log-^£-+ 2 aßfa fÄ±LZÄ-ÄZÄ=j|,
y = i tj-\—Z     /ri       O        L      "y + i "y        J

2^/5^) = 2 ^.y(z)log^- = 2 ^ylogr^'

MSfc) = 2 ^rz?-y = i    'y   z

We have previously established the fact that, for a sequence of meshes {Afc} on
K with ||AfcI -^0, [max, ||Afc||/|Afc,y|]^C<oo and [maxy |A,-1/2|]-»0 as A^co,
and a function/(/) with/lv(r) continuous on K, we have

lim Uxl^^-i/^y)
k-.cc L   1    |«k,y + »k,y + i    2

= 0.

If in addition/(0 represents the boundary values of a function/(z) analytic in R,
then we know from the convergence properties of {SAk(z)} that

(37)        Jim _L y    ak,i+i-°k,j_1_Afc,y+Afc,y+1 = J_ j" /'Y(0¿f
k-» 2wl/tl(Afcfy + Ak,y + i)/2 fy-z 2 2niJKt-Z

Furthermore, for z on any closed subset of Ä the rate of convergence is 0(|| Afc||4).
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This relationship, however, sheds some light on the nature of the spline approx-
imation. The sum in the left-hand member of (37) may be interpreted as a
"trapezoidal" approximation of the integral appearing on the right, and more
generally relates to the classical theorem by Runge concerning the approximation
of a function analytic in R by rational functions with poles on K [30].

The last term in (36) can be further simplified. If we multiply equation (2) by
t¡ and sum over/ the term in M¡ is

M^/y_1+4d£±i ,,+**! ,,+1) . ^{hj+hj+l)(tj_1+tj+tj+1y

Thus we have

which is equal to 0. Thus (36) becomes

5A(Z)  =  ¿-.Í^»l0gT^l£;-
Z7TÍ y'T'j Ij _ i — Z

The unit circle. The inverse of the coefficient matrix for (3) or (7) when the
curve Kis the unit circle and the intervals ffc_j, rk are of equal length can be easily
obtained. We have tk-1 = eika (<x=2-n/N) and

\ tk +1—" ¿k e        _ \

'te + l     »fc-1        c    -t-1

The coefficient matrix for (3) in this situation is the N x N circulant

C[2,A,0,...,0,1-A],
-   2 A      0    ...    1-A-

1-A      2      A    ...       0
0      1-A   2    ...       0     .

.A        0      0    ...       2
Representing the inverse matrix by the circulant C[al1, a2 1,. ■ ■, a¡j1], we have

2ûr1 + AaJ71 + (l-A)a21 = 1,

2a2-1 + Aar1 + (l-A)a3-1 = 0,
(38)

2a¿1 + AaJ7Í1 + (l-A)ar1 = 0.
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Thus the quantities ak 1 satisfy the difference equation Xak}1 + 2ak 1 + (1 - A)ak +\ = 0
(k=2, 3,..., N— 1), subject to the two conditions represented by the first and last
of equations (38).

The roots of the characteristic equation are

(-l±(l-A(l-A))1/2)/A = e-fa/2[-2cos«/2±(4cos2a/2-l)1'2].

Here the radicand is positive if oc<2t7-/3; i.e., if N> 3. Designate these roots by r
and s. Then

akx = Ark+Bsk,
and

A[XrN-1+2rN+(l-X)r] + B[XsN-1+2sN + (l-X)s] = 0,

A[XrN + 2r+(l-X)r2]+B[XsN+2s+(l-X)s2] = 1.
Hence

A _ -s „ r
X(r-s)(rN-l)' X(r- s)(sN-l)'

and, since rs=A/(l — A) = eia,

-i _ cos a/2 rN-k + i + rk-i
ûh    "     (4 cos2 a/2-1)1'2'       rN-l

Alternative type of complex spline. Closely related to the same problem of
approximating a function analytic interior to the curve K are the complex-valued
splines of the real variable j (arc length) on K. These have been investigated to a
limited extent previously [24]. Here we can sharpen and extend the earlier results.

Equations (3) become

(39) piÑj-1+2MJ + XjMj + 1 = 6/[^_!, sjt sj+1],

with Mj = d2f/ds2, but now the quantities h¡=Sj—s} _ ! and p.¡ = 1 — A, = hj/(hj+hj+x)
are real and positive. The coefficient matrix has dominant main diagonal for all
meshes on K and the inverse matrix has row-max norm not greater than unity.
Similarly, equations (7) become

(40) Xjmj_1+2mj + p,jmj + 1 = 3(p,y/[s„ si + 1] + Xjf[sj.1, Sj])

with m, = df/ds.
The complex spline within the region R is defined as

where t=t(s) is the complex representation of the curve AT and qA(s) is the complex-
valued spline given in the interval sj-1^s^sjby

Us) = %f(si-s)3+§(s-si.1)3

+ (fj-1/hi-Mj-1h1/(>)(s¡-s) + {filh1-M¡h¡l(>)(s-s1-1),
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or, equivalently, by

[December

?a(í) = ^5^ (íy-í)2(í-Jy-i) + S (j-Jy-i)2(jy-j)Ay2

+ ̂ i (Ä/-5)«[2(5-iy.1) + Ay]+^ (í-íy-if^y-^ + Ay].

As z in R approaches t(s) on K, SA(z) approaches

SA(t) = iqA(s) + ±l^-tdr(s).

Similarly S'A(z) and §A(z) approach, respectively,

Sitß) = 5^Í+¿ í W*X{d5JdT)¿«s),
2 ds   dt    2-rrt JK t(s) — t

and

_ 1 r</a& lds\2    dqA d2s)      1    f
¿a(0 - 2 L"^" l*/ + ¿T^J +2WJ,

rf2^ /t¿y\2 i dqA d2s
ds  dr

d%(ds\
1   f  ¿s2 W +

r(í)-r
¿ríí).

The properties corresponding to Theorems 1-6 and their corollaries carry over
to the present situation. Some simplification in the proofs results from the fact
that we are concerned here with splines in the real variable s. The convergence
properties set forth in Theorem 7-10 are valid in this situation and follow as in the
preceding section.

The cubic splines in the real variable s have the important property that they
satisfy two fundamental integral relations. We have

/Jiff*"/.\d2f    d2qA
\ds2     ds2

and integration by parts gives

(d2f   d2qA\[d^

*+LW*+*i.&-m%)*-
L &-%)<&> - -1 (i-f )&)l - ! *-«&>= 0.

The First Integral Identity which results since qA is a spline of interpolation to /on
A is

/.ISff*-/.\d2f    d2qA
ds2     ds2 ds+LIds2 ds.

Actually we require only that df/ds be absolutely continuous on K and that d2f/ds2
be Lebesque square integrable.

As an immediate consequence we have [24] the following extremal properties:
(i) The quantity jK \d2(f—hA)/ds2\2 ds for arbitrary cubic splines hA(s) on A is

minimum when hA(s)=qA(s).
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(ii) Of all the C2 functions g(s) on interpolating to f(s) on A, the quantity
Ik \q'Xs)\2 ds is minimum when g(s)=qA(s).

We define a pseudo inner product

(41) (u, v) = j u"(sWX7) ds

when u(s) and v(s) are absolutely continuous on K (necessarily periodic in s) with
L2-integrable second derivatives. We say that u and v are orthogonal if (u, v)=0.
An immediate consequence [21] is that if A and A' are two meshes on K with
Ac A', if hA and AA. are splines on A and A' such that hA-=0 on A, then hA and hA.
are orthogonal.

Using a sequence of imbedded meshes {Ak} with ||Ak|| -»-0 and with Ak+1
consisting of the points of Ak together with a point ik+1 not in Ak, and taking
hAk+1 to be the complex cubic spline on Ak+1 which is 1 at jk+1 and 0 on Ak, we
obtain a complete sequence of orthogonal splines which is a dense subset of the
space of continuous functions on K. Many other orthogonal sequences may be
constructed, of course.

We obtain further that if {Ak} is any sequence of subdivisions of AT with || Ak|| -> 0
as k -> oo, and if/'CO is absolutely continuous with/"(i) L2-integrable, with qAk(s)
the corresponding cubic splines on K of interpolation to f(s) on Ak, then qAle(s)
converges in the mean to f"(s):

(42) lim  f \(f-qAk)T ds = 0.
*-»«> Jk

The set of all functions f(s) with absolutely continuous first derivatives and L2-
integrable second derivatives form a Hubert space with respect to the pseudo-
scalar product (41). A basis for this space may be taken, for example, to be the
sequence of orthogonal splines introduced above.

We note for the sake of completeness the so-called second integral relation [23],
valid if f(s) is Lebesgue integrable and qA(s) is the complex cubic spline of inter-
polation to f(s) on K:

(43) f   \(f-qA)Tds=  f (f-qA)f*(s)ds.
Jk Jk
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