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COMPLEX CURVES AND SURGERY

by Simon K. DoNALDsON

Dedicated to Professor R. Thom.

1. Introduction

The genus of a smooth algebraic curve C of degree 4 in the complex projective
plane is given by the well-known formula:

genus(C) = -:12 (d—1)(d—2).

The degree can be viewed as the fundamental homology class [C] of G, expressed as a
multiple of the standard generator % for H,(CP2). An entrancing problem in Geometric
Topology, usually ascribed to R. Thom, asks wether C minimises the genus among all G*
representatives for the homology class. We formulate this as:

Conjecture 1. — For any smoothly embedded, oriented surface % in CP2, with homology
class [Z] = d.h, d> 0, we have

genus(XZ) > % (d—1)(d—2).

One can extend this conjecture by considering, in place of CP?% an arbitrary
smooth complex projective surface S (a G* four manifold).

Conjecture 2 (cf. [11], Problem 4.36). — For any smooth complex algebraic curve C
in S and embedded C* surface T homologous to C, we have genus(X) > genus(C).

The nature of these conjectures is clarified by the following elementary remarks.
Let X be a surface embedded in a smooth 4-manifold X and p, ¢ be distinct points of Z.
For each embedded arc y in X, starting at p and ending at ¢ but otherwise disjoint
from =, we can form a new embedded surface Z#Y by removing small discs about p
and ¢ from X and adding a tube S X [0, 1] in the boundary of a regular neighbour-
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hood of y. The new surface is homologous to = but its genus is increased by 1. A given
homology class can thus be represented by surfaces of arbitrarily large genus (there always
exists some connected embedded representative) but it is interesting to ask for the minimal
genus of a representative. We define a function

gx Hy(X;Z) >N

by gx(«) = min { genus(X) | [Z] = «}, where the minimum runs over smoothly embedded,
connected, oriented surfaces X.

The obvious approach to this minimising problem is to attempt to perform the
surgical procedure inverse to that above yielding Z#¥, Let E be a surface embedded

in a 4-manifold X and § be a loop in E with [8] non-zero in H,(Z). Suppose we can find
an embedding of the 2-disc:

1:D* - X

with (@ D2) = § but {(D?) otherwise disjoint from E. The tangent bundle of E defines
a non-zero section of the normal bundle to {(D?) over §; suppose we can extend this to
a non-zero section of the normal bundle over the disc. Then there is a pair of disjoint
¢ parallel ” discs ¢, ,¢_: D% — X with boundaries parallel curves §,,3_ in E. We cut
out the cylinder in E bounded by 8, , 8_ and replace it by the discs ¢, (D?), i_(D?) to get
a new surface ¥ with genus(Z) = genus(E) — 1, and such that E = Z*¥ for a suitable
are y. In this case we say that X has been obtained from E by surgery within X along 3.
If we could always find surgering discs the problem of representing homology classes
would become trivial, since the genus could always be decreased to zero. But in fact this
cannot always be done, and the search for these discs (closely akin to ¢ Whitney discs )
leads to the fundamental special difficulties of 4-manifold topology (see [13], for example).

A number of results related to Conjectures 1 and 2 have been proved. Kervaire
and Milnor [10] showed that, in CP2, 34 is not represented by a sphere, thus verifying
Conjecture 1 for d< 3. Hsiang and Sczarba [9] and Rohlin [14] used cyclic branched
covers to produce lower bounds on gx. For example we have:

fomld.B) > 3 — 1

when d is even. For large d this is roughly half the bound asked for in Conjecture 1.
More recently the results and techniques of Yang-Mills theory have been applied to
these problems by Kuga [12], Fintushel and Stern [3] and Furuta [5]. These authors
have shown that certain homology classes cannot be represented by embedded spheres,
exploiting the fact that the result of collapsing a 2-sphere T in a 4-manifold to a point
is an orbifold if .3 + 0 and a smooth manifold if .2 = 4 1. Unlike those of Rohlin,
Hsiang and Sczarba these techniques make essential use of the assumption that the
surfaces are smoothly embedded. In this regard Rudolph [15] has shown that Conjec-

ture 1 is false if one replaces ‘ smoothly embedded > with ¢ topologically locally flat
surfaces.
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In this note we wish to point out a general result which gives further evidence for
the truth of Conjectures 1 and 2. Recall that to an algebraic curve C in a projective
surface S one associates a holomorphic line bundle L, and that L is said to be ample
if the sections of some large positive power LE" define a projective embedding of S.
(If we can take n = 1 then G is a hyperplane section of S.)

Theorem. — Let S be a simply connected complex projective surface and C a smooth complex
curve in S with Ly ample. Then it is impossible to perform smooth surgery within S on any loop 3
in G (not homologous to zero).

This result says that, with the stated hypotheses, the obvious approach for seeking
a counterexample to Conjecture 2 will always fail. It says nothing about the possibility
of finding a counterexample by some other procedure.

2. The proof

The theorem follows quite easily from a general result proved in [2]. While the
arguments used are probably routine for experts, it seems worth writing down the proof

in view of the interest of the Thom conjecture and its generalisations. The result we need
is this:

Proposition (see [2]). — Let Z be a simply connected complex projective surface. If Z can
be decomposed as a smooth connected sum Z = X #(S? X S?), then the 4-manifold X has a negative
definite intersection form.

This is proved using the invariants of smooth 4-manifolds provided by Yang-Mills
theory; we shall apply it to our problem by considering branched covers so our approach
here is in some repects an amalgam of those mentioned above.

Suppose that S and C are as in the statement of the theorem, and that there is,
on the contrary, a loop & in G which can be surgered. We will derive a contradiction to
the proposition above. We are given that C = Z#¥ for some arc y in S. Now the isotopy
class of the surface Z#* in S depends only upon the isotopy class of y. More precisely,
if arcs v,, v, can be joined by an isotopy y, with y,(0) and v,(1) in X for all s and v,(f)
not in X for ¢+ 0, 1, then T#Y) ¥ are isotopic. We have in particular the isotopy
class of a “ trivial ” arc, wholly contained in a small ball in S, and we denote the corres-
ponding surface by ¥,

Lemma. — If surgery can be performed on a loop in C then C is isotopic to Z* for some
embedded surface X in S.

To prove this lemma we consider the fundamental group of the complement S\ Z,
where C = Z#¥, By an application of Van Kampen’s theorem we see that m,(S\X)
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is isomorphic to m;(S\ C). The latter group is however well understood. The homotopy
version of the Lefschetz hyperplane theorem ([8], p. 156) asserts that S is obtained from C
by the addition of 2-, 3- and 4-cells. It follows that any loop in S\ C can be deformed
in the complement onto the boundary dN of a tubular neighbourhood N of C. Hence
7;(S\ C) is a quotient of =;(6N), which is a central extension of =,(C) by the class of a
small circle v linking G. On the other hand, since S is simply connected, any class in
7;(S\C) can be expressed as a product of elements of the form ava™?, for « in =, (S\ C).
But v is in the centre of w,(0N), therefore also in the centre of =;(S\C). So we deduce
that = (S\ C) is generated by v. Therefore the fundamental group of S\ X is also gene-
rated by a loop linking X and it follows that the arc y in S can be deformed, with end
points fixed, into a small neighbourhood of Z. If the deformation is generic it will be an
isotopy. Finally we deform vy into the trivial arc by sliding the end points on Z. This
shows that C is isotopic to =¥ as stated.

We now introduce branched covers. In general if E is a surface in a 4-manifold X
such that [E] is divisible by 2 in Hy(X; Z), so we have [E] = 2a« say, the corresponding
double cover X of X branched over & is defined as follows. Let L be the complex line
bundle with ¢, (L) Poincaré dual to «, so that L®? has a section s cutting out E. Then
S: is the subspace of the total space of L:

Se={leL|®eT,}

where I',C L®? is the “ graph » of s. Strictly, the double cover depends on the choice
of «, but for simply connected 4-manifolds X this is uniquely determined by E.

Lemma. — If T is an embedded surface in a 4-manifold X and =¥ is obtained from = by
adjoining a tube around a trivial arc as above, then the double cover Xg# is diffeomorphic to the
connected sum of )NCE and S% X S2

Here we are assuming that the same homology class « is used to construct the cover
in each case.

To prove this lemma we choose a small ball B in X containing the arc used to
construct ¥, The boundary of this ball is a 3-sphere S which, we can suppose, meets
both ¥ and =% in a circle S'. The circle is unknotted in S*: it is the boundary of the portion
of ¥ in B, which is the standard disc. Now the double cover of S® branched over an
unknotted circle is again a 3-sphere. In terms of complex co-ordinates (z, w) we have
the explicit description of the covering map:

(B w) > (| 2]+ |w[)7" (& w).

So the preimages of this sphere in )N(,; and }’Zz# are again 3-spheres. It is easy to see that
the double cover of the ball over the disc £ N B is likewise a ball in iz, o) )~(z:: is the
connected sum of Xy with another manifold Y, where Y\{ ¢t} is the double cover of B
branched over B N =¥, We now glue another standard 4-ball and disc pair to (B, B n Z¥)
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to see that Y is the double cover of the 4-sphere branched over the standard image of
S x Si. It is then easy to recognise Y as S* X S% we can write down a covering map
Sf:S% x §% > S84 explicitly in the form:

SUx 015 205 (%95 955 )] = [(8F — 1) (98 — D172 (%, %5, 015 215 V5 %)

where 27 + 37 + 22 = 1/2. (More generally the double cover of S?*+?*2 branched over
the standard image of S? X S? can be identified with S?*1 x §?+1))

These two lemmas provide the main ingredients in our proof. Suppose for the
moment that the homology class of the complex curve C in S is even. Then the double
cover §c of S branched over C is again a projective surface ([1], p. 128) and it follows
easily from the Lefschetz hyperplane theorem, as used above, that Sy is simply connected.
If C can be surgered then it has the form Z# by the first lemma, and this gives a connected
sum decomposition of S, into Sy and S2 X S2 by the second lemma. If we also assume
that the rank, 5*(S,), of a maximal positive subspace for the intersection form of S
is strictly greater than 1 we obtain the desired contradiction to the Proposition (since
b+ (8z) = b+(5c) — 1>0).

It remains only to extend the argument to remove the two extra assumptions
—that [C] is even and b*(S;) > 1. Let ¢ be the holomorphic section of L cutting out C,
so for n> 0, ¢®* is a section of LE** vanishing with multiplicity 2z on C. For large =
the linear system | LE2" | has no base points and it follows from Bertini’s Theorem ([8],
p. 137) that we can choose another section © of LE?" such that for all sufficiently small
non-zero complex numbers &, ¢*® 4 et vanishes transversely on a complex curve C*(g).
The homology class of C*(¢) is 2n[C] and as e tends to zero C*(c) degenerates into C
counted with multiplicity 2z. For small &, C*(¢) is contained in a tubular neighbourhood
of C and by choosing a (non-holomorphic) projection map in the tubular neighbour-
hood we express C*(e) as a 2n-fold cyclic cover

w:C*(e) - C,

branched over the zeros of T on C. Suppose 3 is a loop in C which admits a surgering
disc ¢: D? — S. The same is true for any loop isotopic to § on G. Now by moving the
loop across a suitable collection of branch points of = we can suppose that the restriction
of 7 to § is trivial; that is, 7~ *(3) consists of 2z disjoint ¢ parallel > loops in C*(g). A small
stretching of ¢ then gives a surgering disc for one of these loops. Moreover the lifted
loops are non-trivial in H,(C*(¢)) if § is in H;(C). In short, if G can be surgered then
so can C*(g).

The homology class of C*(¢) is even, by construction, so the proof of the theorem
is now completed by observing that b+(§c.(s,) tends to infinity with n. To see this, one
can either do a calculation with characteristic classes or use the Hodge Index formula:

b+ (Sewe) = 1 + 28,(Sevce)-
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A meromorphic 2-form on S with only a simple pole along C*(¢) lifts to a holomorphic
form on the double cover, so

£,8ove) > dim H(K ® L)

and the latter tends to infinity with n. Thus, by our previous argument C*(¢) cannot
be surgered for large 7, and we deduce that C cannot be surgered.

3. Further remarks

In the last few year strong connections between the geometry and differential
topology of complex surfaces have been established, and this trend provides a general
reason for hoping that Conjectures like Thom’s may be true. The formula for the genus
of a complex curve C in a surface S is:

genus(C) = —é— (G.C + K§.C) + 1.

The right hand side represents a polynomial function of the homology class [C] of C.
If Conjecture 2 is true the differential topological function gy is given, at least on the
classes represented by complex curves, by this polynomial expression and this would
lead to a differential topological interpretation of the canonical class [Kg] of the surface.
Now the invariants introduced in [2] are also polynomial functions on the homology
of 4-manifolds: in the case of algebraic surfaces it is quite likely that the canonical class
can be extracted from them, and this has been proved for many surfaces by Friedman
and Morgan [7]. In that case we would get a differential topological interpretation of
the canonical class through Yang-Mills theory. It is thus possible that if Conjecture 2
is true it will provide a means for understanding the differential topological significance
of the Yang-Mills invariants more directly, via the functions gy.

The prospects of proving the conjectures by a refinement of the approach in this
paper do not seem to be very good. The difficulty is comparable to that with the
¢ 11/8ths. conjecture ’—that for a simply connected, spin, 4-manifold X one always has

by(X) > (11/8) | sign(X)|.

In that case too one knows that one cannot obtain a counterexample by performing
surgery on an algebraic surface [6], but the conjecture has only been proved so far for
small values of the signature.

Returning to the proof of this paper: the basic scheme is to use information about
the Yang-Mills invariants of 4-manifolds of the form iz.(,,, where Z*(¢) is a surface
obtained by smoothing the ¢ divisor ’ 22X as above. It would be interesting to know
if one could say more about the invariants in this situation. A possible approach would
be to use the natural degeneration of the branched cover, as € tends to zero, into 2z copies
of X glued along 2. In other contexts one can use degeneration arguments to give for-
mulae for the Yang-Mills invariants involving the ¢ instanton homology > groups for
3-manifolds defined by Floer [4].
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