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Summary 

Complex demodulation is a technique that allows the examination of the 
variation with time of the amplitude and phase of selected frequency 
components of a time series. Complex demodulates can form the basis for 
estimates of the power spectrum of the time series. They are computed 
most efficiently by the use of the Fast Fourier Transform. 

Two examples of the application of complex demodulation to the 
analysis of geomagnetic time series are given. In the first example, the 
technique is used to demonstrate the modulation of a periodic phenomenon, 
the daily variation, by mechanisms with apparent periods of 6 months 
and 27 days. The second example, discussed in greater detail, is an 
application to the calculation of Geomagnetic Deep Sounding transfer 
functions. The spectra of simultaneous records of variations in the three 
components ( H ,  D and 2) of the magnetic field recorded at a single station 
are divided into bands, and each band demodulated in turn. The polariza- 
tion azimuth of the horizontal field at each instant of time can be computed, 
and, for the example considered, the azimuth tends to be constrained to 
the north-south direction. 
The detailed response of the local conductive structure to different source 
field polarizations can be demonstrated. Everett & Hyndman’s Unit Vector 
Method is used to investigate the effect of the observed bias in the azimuth 
of the source field on estimates of GDS transfer functions made by 
conventional methods. The demodulates can be used to devise criteria 
for selecting events according to their signal/noise ratio. The selection 
procedure is most useful when applied to records containing only sporadic 
activity in the frequency band of interest. 

1. Introduction 
In 1967, Bingham, Godfrey & Tukey published a paper summarizing the impact 

that the rediscovery of the Fast Fourier Transform (FFT) had had on time series 
analysis and spectral estimation. They also discussed likely developments in time 
series analysis which would be made possible by the advent of the FFT algorithm. 
Many references to this paper have been made by workers in many different fields, 
but nearly all of them refer to it as a source of information on the application of the 
FFT to conventional spectral analysis. In fact, approximately half of the paper 
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88 R. J. Banks 

consists of a discussion of the FFT algorithm, and how it can be used to estimate 
power spectra, either directly or by way of the autocovariance function. 

However, a very substantial fraction of the paper is devoted to a quite different 
though related technique of time series analysis and spectral estimation known as 
complex demodulation. As far as I have been able to determine, there have been 
very few references made to this part of the paper, and none that I have been able to 
find in the field of geophysics. It is the purpose of this paper to draw the attention of 
geophysicists to the technique, and to give examples that illustrate its use in the 
analysis of geomagnetic time series. Of the sections which follow, those which define 
the technique and describe its computational implementation are very much indebted 
to the paper by Bingham et aZ. 

2. The definition and significance of complex demodulates 

The process of complex demodulation as applied to a time series x ( t )  (assumed to 
be sampled at a series of points spaced at equal intervals of time At) is defined in 
terms of two very simple mathematical operations. Each frequency band of interest 
in the spectrum is shifted to zero frequency by multiplying each term of the time 
series by the complex exponential function exp ( -iwrt). or is the central frequency 
of the shifted band. A new series Xs(o ' ,  t )  is produced for each frequency band, i.e. 

X s ( o ' ,  t )  = x( t )  exp (- io't). 

The frequency-shifted series is low-pass filtered using a set of weights ak(k = - m  to 
+m), and the result is the (complex) demodulated time series x d ( w ' ,  t ) .  

The demodulates can be expressed most conveniently in the form 

x d ( o r ,  t >  = Ixd(w', t ) l  exp (-i+(o', t > )  

in terms of the modulus and phase of X,(w', t ) .  

2.1 Relationship to power spectra 

If Sxx(o) is the power spectrum density of x( t ) ,  then by definition Sx.(o) A@ is 
the variance in the frequency band o - Aw/2, o + Awl2. The power spectrum is usually 
estimated as the Fourier Transform of the autocovariance function. However, as 
Bingham et al. show, and as is fairly clear from the definition, the spectral density 
can also be estimated from a suitable average of the complex demodulates: 

Sxx(o) AW = < x d ( W ,  t )  X d * ( a ,  t ) )  
where the brackets represent an average over successive points in the demodulated 
time series, and &(o, t )  is the demodulate of the frequency band centred on o and 
lying between o- A 4 2  and o+ Aw/2. In a similar way, the cross-spectrum of two 
time series x ( t )  and y( t )  can be estimated by 

Sxy(W) A o  = < x d ( o ,  r> y d * ( @ ,  ?)>* 

Power and cross-spectra calculated by conventional means are averages over the 
whole length of the data series. Power spectra calculated by complex demodulation 
can also be averages over the whole series, but alternatively they can be taken over 
some specially selected subset of the data. The data with which we have to deal in 
geophysics are usually non-stationary, and therefore properties of the data determined 
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Complex demodulation of geomagnetic data 89 

from averages over the whole of the time series (such as the conventionally calculated 
power spectrum) will not necessarily be the same as the ‘ instantaneous ’ (what 
Bingham et al. call the ‘ time-local ’) properties of the data. By taking suitable 
averages, over subsets of the data chosen on the basis of our special interest in it, we 
can use the complex demodulates to investigate the non-stationary properties of the 
time series. 

2.2 Demodulation of data containing periodic components 

peak in the spectrum at frequency wo i.e. 
Let us suppose that the data contain a periodic component that would produce a 

x ( t )  = A cos (wot +y) .  

X,(w’, t )  = (A/2)  exp(-i(oo+6w)t) { e x p i ( o o t + y ) + e x p ( - i ( w , t + y ) ) }  

The simple complex demodulate centred on frequency w’ = wo+6w will be 

= ~ 2 )  (exp (- i(6w. t - + exp ( - i((2w0 +6w)t + y ) ) ]  

which contains frequencies -60 and - (20, +6w). 

- (2w0 +6w) is removed completely, leaving 
The frequency-shifted series is low-pass filtered, and hopefully the component at 

Xd(wo+fh ,  t )  = (A/2)exp(-i(dw.t-y)) 

(I have assumed that the filter response is unity and introduces no phase shift at 
frequency -60.) 

If we know that the data contain a periodic variation with a frequency of oo, it is 
natural to choose o’ = wo as the central frequency of the demodulate, and to shift 
down to zero the band of frequencies immediately around wo. In that case, 60 = 0, 
and 

i.e. the modulus of the demodulate is A/2 and its phase is equal to the phase ofthe 
periodic variation at wo. If A and y change with time, there will be a corresponding 
change in the modulus and phase of the demodulate. An example of this application of 
complex demodulation is given in Section 4. 

Another use of complex demodulation is to detect the presence of a hidden period- 
icity in a data series, and to determine its frequency and phase. If we compute 
&(a)’, t ) ,  where w’ = wo+6w, the phase of the demodulate will be -6o.t+y,  
which will vary linearly with t .  By plotting 4 as a function of t, we can est:mate 
6w and hence wo. 

xd(OO, t> = (A/2) exp iy, 

3. Computational procedures 

The obvious technique is to use the defining formulae-to multiply each term of 
x( t )  by exp ( - iw‘t) ,  and then to low-pass filter the resultant data series. Such a 
procedure is computationally expensive and leads to a redundancy of information 
in the demodulated series. Because X, has been low-pass filtered, adjacent points in 
the demodulated series are strongly correlated, and the new series need only be 
sampled at every nth point, where the value of n will depend on the characteristics 
of the filter. 

Much the fastest way of computing the demodulates is by means of the Fast 
Fourier Transform. This method has the further advantage that the oversampled 
character of the resultant time series is made quite explicit, and the number of 
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independent points required to fully specify the demodulated series is quite clear 
from the frequency response of the filter. 

The raw data series is prepared for the FFT in the usual way-reduced to zero 
mean and zero linear trend, the ends tapered to zero by half cosine bells, and zeros 
added to bring the number of data points up to 2K (where K is an integer). We then 
compute the FFT of the modified time series. The real and imaginary parts of the 
Fourier Transform are multiplied by a suitable discrete function of frequency centred 
on 0'. This function defines the filter which smoothes the series of raw demodulates 
X,. The resultant band of frequencies is shifted to zero, care being taken to arrange 
the resulting negative frequency components in the correct storage locations. The 
new set of Fourier Transforms created by this sequence of operations can be truncated 
so as to produce a demodulated series consisting of independent data points. The 
new Nyquist Frequency (0,') is chosen so that there is no overlap of the positive 
and negative frequency components (aliasing), and so as to reduce zeros to as few 
as are compatible with computational efficiency (see Fig. l(d)). Finally, an inverse 
FFT operation converts the transforms back into the time domain, and generates the 
series of complex demodulates centred on frequency w'. The sampling interval of the 
demodulated series is At', given by At' = 1/2mN'. 

The complete procedure is illustrated diagrammatically in Fig. 1. In the example 
shown, the spectrum of the data series has a peak at w = coo, and the demodulated 
band is naturally centred on o' = coo. Exactly the same procedure would apply to 
any other part of the spectrum not containing a periodic component. 

Problems in the choice of jilter 

Ideally, we would wish to use a filter of the form 

W(O) = 1 0 ' -60 /2  < w < w'+A0/2  

= 0 elsewhere 

which simply passes a band of frequencies of width do centred on m = w'. However, 
multiplication in the frequency domain is equivalent to convolution in the time 
domain, and we need to bear in mind the form of the filter weights in the time domain 
corresponding to the frequency characteristics specified above. In addition, we have 
to remember that because of the cyclic nature of the Fourier Transform, the demo- 
dulated series and the set of weights repeat themselves at interval T = NAt' ( N  is 
the number of points in the demodulated series). 

The set of weights in the time domain corresponding to the simple rectangular 
bandpass filter will vary with t as sin (Am.  t / 2 ) / (Aw.  r/2) which has substantial side- 
lobes that die away rather slowly. The result of the convolution of such a set of cyclic 
weights with the cyclic data series is leakage from one data interval T to the next. 
One way of getting round the difficulty is to modify "(0) so as to make the corres- 
ponding set of weights die away more quickly. A possible choice of bandpass filter 
would be a cosine bell : 

1 2 7 Am 
2 n ( w - o ' )  

W ( w )  = - l+cos 

= o  elsewhere. 

If such a function is felt to have insufficient definition of the required frequency band, 
a compromise would be a ' boxcar ' filter tapered at the low and high frequency 
cut-offs by half cosine bells. A second method of minimizing leakage is to add zeros 
a t  each end of the data series, thus spacing it further from its cyclic ' image '. Such 
a procedure is, in any case, normally followed for reasons of computational efficiency. 
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FIG. 1. Schematic diagram of the procedure for computing complex demodulates 
X,(o,,t) from the time series x(t).  (a) Raw Fourier Spectrum; (b) Filtered 
Fourier Spectrum; (c) Frequency shifted Spectrum; (d) Truncated frequency shifted 
Spectrum. Note that no attempt has been made to indicate a realistic shape for the 

filter. 

4. Complex demodulation of the daily variation 

In order to illustrate the use of complex demodulation as a means of studying a 
periodic phenomenon, I have computed the demodulates of a series of hourly mean 
values of the horizontal north ( H )  component of the geomagnetic field recorded at 
Hartland. The original data series was 2208 points long, from October I to December 
31, 1964. Its length has been increased to 3072 points by adding zeros at each end 
(after removal of the mean, etc.). The central frequency of the demodulated band 
is 1 cday-', at which there is known to be a peak in the spectrum produced by the 
daily (3 variation, and the band stretches from 0.8 to 1 .2 c day-'. 

In Fig. 2 the modulus and phase of the demodulated time series are plotted, which 
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Time (days) 

FIG. 2. Modulus and phase of Hartland H component daily variationdemodulates. 
Time in days relative to October 1, 1964. 

correspond to ' time-local ' estimates of the amplitude and phase of the daily variation. 
The sampling interval of the demodulated series is 2 days. The modulus shows very 
clearly the effects of an annual or semi-annual modulation, with the maximum near 
the beginning of the record and the minimum at the end. In addition, it shows what 
appears to be a rather irregular modulation with a period of about 13.5 days, pre- 
sumably associated with the 27-day recurrence tendency of magnetic storms. The 
phase also shows interesting features, including a long-term trend and consistently 
high values on days when the amplitude of S is small. 

It is not my purpose to discuss here the detailed temporal behaviour of the daily, 
variation, or the mechanisms responsible for the modulation, but to point out how 
the demodulates can help us to study that behaviour. For example, one line of enquiry 
made easy by the demodulates would be to look at the relationship between the 
amplitude of the 13.5-day modulation and the incidence of magnetic storms. 

5. The application to geomagnetic deep sounding (GDS) data 

5.1 Estimation of GDS transfer functions 

The raw data derived from geomagnetic deep sounding (GDS) experiments 
consists of simultaneous magnetograms of the three components (probably H ,  D and 
2, the horizontal north, declination, and vertical components respectively) of the 
magnetic field recorded at one or more locations. The first step in the analysis is the 
transformation of these time series into the frequency domain. Two different pro- 
cedures have been applied to two different classes of magnetic disturbance: 
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FIG. 3. Kabianga magnetogram for April 21-22, 1971. 

(1) Bays and other quasi-cosinusoidal transient variations are picked out from 
the magnetograms, and the disturbed portion of the record Fourier Transformed 
directly. There are two advantages to this approach: a good signal/noise ratio is 
guaranteed at frequencies around l/AT, where AT is the length of the oscillatory 
disturbance; and the polarization of the horizontal field, and probably also of the 
external current source, is likely to be relatively constant throughout the event, and 
therefore easy to define. The disadvantage of the method is that a large number of 
events is needed to sample the response of the conductive structure to all polarizations 
and frequencies of the external field. 

(2) Magnetic storms and other continuously disturbed periods, containing 
superimposed variations generated by independent current systems, and having a 
wide range of source field polarizations and frequencies, are analysed by computing 
the power spectrum of the entire record. The power and cross-spectra may be cal- 
culated either from smoothed Fourier Transforms, or from modified autocovariance 
and cross-covariance functions (computed either naively or by an inverse Fast 
Fourier Transform of the raw power spectrum or cross-spectrum). The advantage 
of this approach is that the spectra are averages over a wide range of disturbances, 
and substantial power is present at a wide range of frequencies. There are a number of 
disadvantages: the form of the averaging in a given spectrum is unknown; it is not 
certain that the averages give equal weight to all polarizations of the external field, 
and it is likely that the field will tend to be constrained to some range of azimuths. 
Some frequencies may only be present in the magnetic record for a short length of 
t h e .  Their contribution to the total power spectrum is diluted by the uncorrelated 
digital noise which is present throughout the record, and whose relative contribution 
to the spectrum increases as the length of the record increases. 

On the whole, it is clear that method (1) is to be preferred. Unfortunately, very 
often it is just not possible to obtain a sufficient number of magnetograms of bays or 
similar disturbances that covers the whole frequency spectrum and samples a reason- 
able range of source polarizations. Stretches of continuous disturbance of type (2) 
tend to be much more common. 
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94 R. J. Banks 

Complex demodulation provides a means of analysing type (2) data so as to 
obtain type (1) results. If we make use of complex demodulation, we have to surrender 
some of the frequency resolution we would obtain using conventional spectral analysis. 
In practice, this is not a serious limitation because the response of the Earth to magnetic 
field variations must vary smoothly and relatively slowly with frequency, and response 
estimates centred on half-a-dozen representative frequencies (based on a division of 
the spectrum into a corresponding number of frequency bands) will probably provide 
us with more information than we can comfortably handle. In return for this loss of 
resolution, we are put in a position to examine the way in which the amplitude, phase, 
and polarization of the disturbance in each frequency band change with time. 

5 . 2  Complex demodulation of Kenya GDS data 

Fig. 3 displays the three components of a magnetic disturbance recorded at 
Kabianga in western Kenya. The low amplitudes of all frequency components in the 
Z magnetogram are very characteristic of magnetic disturbances at low magnetic 
latitudes, as also is the strong tendency for the horizontal field variations to be 
polarized in a magnetic north-south direction. Kabianga is approximately lo" south 
of the magnetic equator, and the magnetic disturbances recorded there are pre- 
dominantly generated by the return currents of high latitude events, which tend to 
flow east-west, parallel to the magnetic equator. 

The sampling interval of the digitized magnetogram is 1 min, and there are 720 
points in the raw record. It was high-pass filtered, reduced to zero mean, and tapered. 
High-pass filtering was found to produce less distortion of the lowest frequencies 
than removal of a linear trend. The use of a linear filtering operation preserves linear 
relationships between components over the whole frequency spectrum, though it is 
more time consuming than detrending. Zeros were added to bring the length of the 
series to 1024 points, giving a fundamental spectral resolution of Sf = 1/1024 c min-'. 
For the purposes of complex demodulation, the spectrum has been divided into six 
bands centred on frequencies (in units of Sf) of 5, 12,24,48,96, and 192. The bands 
contain Fourier components with periods of 512-128, 128-64, 64-32, 32-16, 16-8, 
and 8-4 min respectively. Fig. 4(a) displays the modulus of the demodulate of the 
2 component for band 4 (periods of 32-16 min). There is a continuous but very low 
level of activity in this band throughout most of the record, except for the event 
which occurred at 2240 h. 

Previous studies of these data using conventional techniques of spectral analysis 
(Banks & Ottey 1974) have shown that, at Kabianga, 2 variations in the period range 
5-100 min are strongly correlated with horizontal field variations having azimuths 
of - 120" or +60". It is now possible, using the demodulates, to see whether this 
correlation stands up in detail. For each instant of time, the demodulates of the 
H and D fields can be used to calculate the polarisation characteristics of the horizontal 
field: the azimuth I,$ of the major axis of the polarization ellipse, the magnitude 
H ,  of the major axis of the ellipse, and the ratio of the lengths of minor and major 
axes (Lilley & Bennett 1972). When investigating the dependence of anomaly response 
on the azimuth I,$, allowance has to be made for changes in the amplitude of the 
horizontal field variations, so rather than simply comparing 2 with I,$, we compare 
Z/H* and $ . 

Fig. 4(b) shows the azimuth Ic/ of the major axis of the polarization ellipse plotted 
as a function of time. It shows quite clearly the confinement of the horizontal field to 
azimuths between 0" and -40" (no distinction is made in the diagram between 
azimuths of $ and $ + 180"). The conventional analysis indicates that such a polarisa- 
tion is very unfavourable for the excitation of the conductivity anomaly, which is 
confirmed by the low level of the Z / H ,  ratio ( < O  1) for such polarizations (Fig. 4(c)). 
However, at about 2030 and 2230, the polarization azimuth swings to values of 60"E 
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FIG. 4. Demodulates of the Kabianga magnetogram: (a) blodulus of Zcomponent 
demodulate; (b) Azimuth 4 of major axis of horizontal field polarization ellipse; 

(c) Z / H , .  Periods 32-16 min. 

and 40"E respectively. The favourable azimuth leads to the excitation of thc 2 
anomaly, producing peaks of about 0.4 in the ZIN, ratio. A similar peak is produced 
at  1900 h by an azimuth of - 85". 

A diagram like Fig. 4 enables us to see in detail how the response of the anomaly 
changes with changing source azimuth. If we are to be able to investigate the functional 
form of the relationship, some means of plotting Z/H@ against $ is required. For 
instance, the demodulates and polarization estimates could form the basis of a 
Parkinson plot. However, there are difficulties in adequately representing by graphical 
means the azimuthal dependence of the anomaly response. Conventional Parkinson 
plots take no account of the phase differences between variations in different magnetic 
field components. Similarly, a straightforward plot of Z/H,  as a function of $ does 
not take account of the elliptical rather than linear polarization of most of the 
horizontal field disturbances. If an event is elliptically polarized, then although the 
azimuth of the major axis may be such as not to produce any Z anomaly, the azimuth 
of the minor axis will be most favourable, and the anomaly will respond accordingly, 
producing a 2 variation whose amplitude will depend on the value of the ratio R ,  of 
minor/major axis lengths. 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/43/1/87/587085 by guest on 20 August 2022



96 R. J. Banks 

-"90 -60 -30 0 30 60 90 

V E  

FIG. 5. Plot of ZIH, against $ for all Kabianga records, using events for which 
minor axis/major axis ratio was less than 0.2. Periods 32-16 min. 
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Problems of representation can be overcome if sufficient data are available. 
However, for present purposes, the problem can be partly overcome by plotting only 
those points for which the value of R ,  is small, say, less than 0.2. Fig. 5 is an example 
of such a diagram; the results from the analyses of two other similar stretches of data 
have been included. Even so, the sampling of the response at a wide range of azimuths 
is scarcely adequate. The vast majority of the data points have azimuths which lie in 
the range -40" to 0". The distribution of azimuths for the whole data set can be 
demonstrated more clearly by plotting a histogram showing the numbers of points in 
ten-degree sectors as a function of azimuth (Fig. 6). 

In essence, the GDS single station transfer function technique involves fitting a 
relationship of the form 

to the plot of Z/H* as a function of $ (0, is the azimuth of the horizontal field with 
which 2 shows maximum correlation, G is the transfer function, and the disturbance 
is assumed to be linearly polarized at azimuth $). The plot of Z / H ,  should show a 
cosinusoidal dependence on $, with Z / H ,  = 0 at $ = 0, + 90". Fig. 5 does show the 
expected features, if a little imagination is used to interpolate the data. Z/H+ = 0 at 
$ = - 25", and a roughly cosinusoidal $ dependence can be detected. 

However, the diagram does raise the question of whether the procedure used to 
fit the data to equation (l), or to a more sophisticated form such as 2 = A .  H + B . D, 
can cope with very unequal distributions of polarization. It is important to know 
whether the source bias leads to a corresponding bias in the transfer function estimates, 
and the effect on the accuracy of the estimates. This problem can be investigated by 
using Everett & Hyndman's (1967) ' Unit Vector ' approach to the estimation of 
GDS transfer functions. 

z = GH, cos (II/ -0,) (1) 

5.3 The unit vector method 
In the unit vector method, as described by Everett & Hyndman, individual events 

are linearly combined in such a way as to form two horizontal vectors of unit amplitude, 
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FIG. 6.  Histogram showing distribution with azimuth of H field polarizations 
recorded at Kabianga. Periods 32-16 min. 

polarised north and east, respectively. The vertical fields that correspond to the linear 
combinations are estimates, A and B, of the ideal transfer functions, A’ and B‘, and 
they are unbiased estimates. Everett & Hyndman write 

(2) 
where the residual e, is an unbiased estimate of erf. In Everett & Hyndman’s notation, 
the subscript r refers to the result of the Fourier Transformation of the rth record, 
usually of a single event (method 1 of Section 5.1). However, it can equally well 
refer to a single complex demodulate, estimated at or around one particular instant 
of time. In what follows, an event can either be a selected record from which con- 
ventional Fourier Transforms are computed, or a single demodulate. 

Z, = A H r + B D r + e r  = A’Hr+B’Dr+er’ 

Complex weighting factors are found such that 
n 

r = l  
C yr(Hr9 D,, Zr) = (190, A),  (3) 

i.e. a linear combination of the events is formed to produce an event of unit magnitude 
in the horizontal north direction. The corresponding linear combination of vertical 
component events must then be an estimate of the transfer function A .  The expectation 
of the square of the modulus of the error in A is: 

n 

r = l  
E(6A.6A*j = C yrer‘.yr*er’* (4) 

The likely error 16.41 is made a minimum by minimizing E(6A.6A”)  with respect to 
yt, subject to the constraints ‘ 

I1 II 

C y r H r  = 1 and C y r D ,  = 0 
r = l  r = l  

using the method of Lagrange multipliers. 
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Everett & Hyndman weight their events before the analysis by a factor JT,, T, 
being the length of the rth record. All the events should then have the same expected 
noise level, and equation (4) can be simplified: 

n 

r = l  
E(6A .6A*) = e2 C yr y,* ( 5 )  

where e2 = E(e,‘. e,’*). The set of weights is found to be 

S D D H , * - S H D *  D,* 
Yr = 

SHH SDD - SHD SHD* 

S D D  is the power spectrum of D, S H D  is the cross-spectrum of H and D, etc., and 

Equation (7) is the familiar expression usually obtained by a simple minimization of 
E(er’ er’*). An equivalent set of weights 6,, which determine B, can be found by 
minimizing E(6B .6B*), subject to the constraints 

n I1 C 6,Dr = 1 and C 6,Hr = 0. 
r = l  r = l  

The equivalence of the results obtained by the straightforward least squares 
approach and by the unit vector method, shows that estimates of the transfer functions 
using formulae such as equation (7) do involve a quite subtle weighting of individual 
events. The nature of the relative weighting can be seen more clearly if we restrict 
our attention to a group of events for which the cross spectrum of H and D, SHD, is 
zero. For such a set of data, the weight to be applied to the rth event would be 

7, = - H r *  = Hr* 2 fl H ,  H,* 
S H H  r = l  

In other words, the contribution which the rth event makes to the estimate of A is 
directly proportional to the H amplitude of the event. If there are only a few events 
in the group of digitized records that have significant variations in the H component, 
they will be the ones to effectively determine the estimate of A. The remaining events, 
though they may form the majority, will make a much smaller contribution, deter- 
mined by their weighting. We can see that the effect of the weighting procedure is to 
prevent the source bias from biasing the transfer function estimates. 

However, we can expect source bias to reduce the accuracy of one or other of the 
transfer function estimates. The minimum error in A can be estimated from equation 
(5)  by substituting for y, from equation (6). The error is then (approximately) 
given by 

“2 

where RDH2 is the coherence of D and H. Assuming again a group of events for which 
SDH iszero (i.e. R,,’ = 0) 
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and the error in A is inversely proportional to the square root of the total power of the 
I I  component records. If a group of events happens to have a predominantly east- 
west polarization, SHH will be small, and the resulting error in A will be large. By 
analogous reasoning, the corresponding error in B will be smaller. 

5.4 Weighting and selection of events 

The investigation of the East Africa data in Section 5.2,  using complex demodu- 
lation, demonstrated the unequal distribution of polarizations of the events. The unit 
vector approach to transfer function estimation shows that the standard least squares 
method weights events in such a way as to minimize the effects of source bias, and 
explains the effectiveness of the method in coping with inadequate data. However, 
the unit vector method also enables the estimation of the errors in A and B, and thesz 
should be computed because they will show the effects of source bias. 

It might be thought that the weights y,, 6, represent the optimum set, and that for 
a given set of data, no further weighting or selection is required. Further weighting 
or selection must reduce Saw, and according to equation (8) increase the likely errors 
in A and B. However, a form of weighting has already been applied to the data, 
since the records being analysed have themselves been selected from the totality of 
available magnetic data. Records used for transfer function analysis are selected by 
visual inspection, involving some assessment of the degree of disturbance and of the 
range of frequencies present. We would not consider analysing a record that contained 
nothing in N or D but digital noise; we would intuitively expect to obtain superior 
results fro= the analysis of records with large amounts of power in each frequency 
band. 

The discrepancy between equation (8) and what we intuitively expect is explained 
by the assumption made in the unit vector analysis (on which equation (8) is based) 
that H and D are noise-free. This assumption is implicit in equation (2). If the assunip- 
tion were strictly correct, then every event, however small the values of H ,  and D,, 
would contribute to the estimates of A and B,  and would help to reduce the errors 
6 A  and 6B. Digital noise in H and D makes no contribution to the estimation of 
A and B, but does lead to an apparent (though spurious) reduction in the errors. 

The intuitive approach is consequently a reasonable one, and we may expect to 
achieve more reliable transfer function estimates if we apply a process of selection or 
weighting to the demodulates, based on the amplitude of the disturbance, as measured 
by H ,  for instance. However, if we were to weight the demodulates in proportion 
to (H&, one of the requirements of the unit vector analysis would no longer be met- 
that the events, or demodulates, should have the same expected noise level. Instead, 
the noise level would be proportional to (H$),., and we would have to minimize the 
full expression in equation (4), rather than the simpler form in equation (5). 

In order to avoid this complication, we can apply a simple selection procedure lo 
the data, by assigning weight 1 to all events for which (H& exceeds a specified level, 
and weight 0 to all events for which the reverse is true. The determination of the 
critical value of H, can be based on a visual inspection of the complete set of demodu- 
lates from all available records. It should be possible to estimate the likely maximum 
noise level, and to use this as i! basis for the choice of the critical value of H,. More 
complicated automatic schemes could be devised if required. 

Selection criteria of this kind have been applied to the East African data, and the 
estimates of A,  B,6A,  6B, and other transfer functions compared with those obtained 
from the complete data set. Fig. 7 is a comparison of the coherence R2 of the observed 
vertical component with that predicted by 2 = A H i - B D .  R2 is equal to the fraction 
of the total vertical field power Szz that can be fitted to the linear combination of 
horizontal field components. It is clear that the effect of selection is to increase the 
proportion of coherent 2 power, and that the criterion used is discriminating against 
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FIG. 7. Coherent fraction of vertical field power in the six frequency bands, at 
Kabianga: all data (circles), and selected data (crosses). 

uncorrelated noise. The difference is most marked at the higher frequencies, where 
the discrimination is most severe-only only 28 per cent of the data were passed in 
band 5 ,  and 15 per cent in band 6, compared with percentages of 83, 67, 45, and 43 
in bands 1 to 4 respectively. The transfer function estimates themselves (not shown) 
were very little affected by the discrimination; the estimated errors in the transfer 
functions increased slightly, presumably because of the reduction in the total amount 
of data. The slightness of the effects produced might be seen as an indication that 
there is no need under any circumstances for any refinement of the usual methods of 
analysis. However, my own view is that the insensitivity of the transfer functions to 
the removal of substantial portions of the data is rather an indication that the original 
visual selection procedure was carried out efficiently and correctly. I can readily 
envisage other types of data to which some such selection procedure could be applied 
with great benefit. For instance, in my (1969) analysis of long period magnetic storm 
data, I selected records from periods of sunspot maximum in order to increase the 
real power levels of 2 variation data. Using the demodulates, a much more refined 
selection procedure could be applied to the data to enhance signal/noise ratios. 
The greatest benefits will accrue when we are dealing with events for which the level 
of the horizontal field disturbance is generally low, and only infrequently rises 
substantially above the noise level. 

6. Conclusions 

The experience that has been gained so far in the calculation of GDS transfer func- 
tions by way of complex demodulation indicates that the approach carries with it 
substantial advantages. The spectrum can be divided up into bands whose widths 
can be related to the power levels. The straightforward Fourier spectrum is really 
tailored to processes generating essentially white spectra. Where power levels vary 
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logarithmically with period (as is often the case for geomagnetic data) a division of the 
spectrum into logarithmic frequency ranges seems appropriate. 

The computed transfer functions are automatically averaged over the chosen 
frequency bands, thereby reducing the independent frequency estimates to a manag- 
able number, and producing much more stable estimates in the process. The estimation 
of errors for the transfer functions is a simple extension of the basic calculations if 
Everett & Hyndman’s unit vector method is used. However, similar results could be 
achieved by averaging the raw spectral estimates in the frequency domain. The 
major bonus that complex demodulation has to offer is information about temporal 
changes in the characteristics of the source field, and the possibility of using the 
information as a basis for selecting those parts of the data that are likely to give the 
most satisfactory transfer function estimates. 

Results similar to those achieved by complex demodulation could, up to a point, 
be obtained by dividing the time series into a number of segments, and estimating the 
spectrum of each portion in turn by the usual methods. However, complex demodula- 
tion, besides being very much more efficient in computational terms, allows a very 
much greater degree of flexibility. The information can be divided in any way we 
choose between the time and frequency domains; between the two extremes represented 
by the original time series of N data points and the raw Fourier spectrum with N 
Fourier coefficients. Complex demodulation seems to be an excellent way of having 
the cake and eating it. Geophysicists should Iook hard at complex demodulation as a 
method of spectral estimation, and as a way of simultaneously examining the non- 
stationary properties of time series. 

Department of Environmental Sciences, 
University of Lancaster 
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