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Abstract

For the plane, sphere, and hyperbolic plane we consider the canonical invariant determinan-
tal point processes Zρ with intensity ρdν, where ν is the corresponding invariant measure.
We show that as ρ → ∞, after centering, these processes converge to invariant H1 noise.
More precisely, for all functions f ∈ H1(ν) ∩ L1(ν) the distribution of

∑

z∈Z
f(z)− ρ

π

∫

fdν
converges to Gaussian with mean zero and variance 1

4π
‖f‖2

H1

.
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1 Introduction

Determinantal processes are point processes with a built-in pairwise repulsion. They were first
considered by Macchi (13) as a model for fermions in quantum mechanics, and have since been
understood to arise naturally in a number of contexts, from eigenvalues of random matrices to
random spanning trees and non-intersecting paths, see (1; 2; 4; 11; 12; 14; 17; 19).

A point process Z on C is determinantal if for disjoint sets D1, . . . , Dk we have

E
[

k
∏

i=1

#(Di ∩ Z)
]

=

∫

Λk

det
(

K(xi, xj)
)

1≤i,j≤k
dµ(x1) · · · dµ(xk), (1)

for each k ≥ 1. Here K(x, y) is a symmetric, non-negative kernel and µ is a (also non-negative)
Borel measure. The integrand is often called the joint intensity or correlation function of the
point process.

Conversely, if a kernel K defines a self-adjoint integral operator K on L2(Λ, µ) which is locally
trace class with all eigenvalues lying in [0, 1], then there exists a point process satisfying (1). In
this case we speak of the determinantal process (K, µ). In a weak sense, the points repel one
another because the determinant vanishes on the diagonal.

The processes we consider are defined by two properties. First, they correspond to a projection
K to a subspace of analytic functions with respect to a radially symmetric reference measure.
Second, their distribution is invariant under the symmetries of their underlying space Λ. The
latter is either the complex plane C, 2-sphere S, or hyperbolic plane U. We will think of them
as a subsets of C, or strictly speaking C∪{∞}, though for the sphere S usually there is no harm
in ignoring the point at infinity.

These properties are uniquely satisfied by a family of processes indexed by a single density
parameter ρ > 0 on each space, see Krishnapur (10, Theorem 3.0.5).

Planar model. Here Λ = C and for any ρ > 0, consider the kernel

Ǩρ(z, w) = eρzw̄ with respect to dµρ(z) =
ρ

π
e−ρ|z|2dz.

Here, as in the sequel, dz stands for Lebesgue area measure on C. We call the measure µρ the
reference measure.

Note that the kernel Ǩρ is the projection onto the span of the orthonormal set {
√

ρk

k! z
k}∞k=0 in

L2(C, µρ), and so the above pair defines a determinantal process of infinitely many points in the
complex plane.

Spherical model. The space Λ is S = C ∪ ∞, the two-sphere. Now ρ is integer valued,
ρ = 1, 2, . . . and the (Ǩ, µ) pair reads

Ǩρ(z, w) =

ρ−1
∑

k=0

(

ρ − 1

k

)

(zw̄)k = (1 + zw̄)ρ−1, with respect to dµρ(z) =
ρ

π
(1 + |z|2)−(ρ+1)dz.

Note that the reference measure µρ is typically not a constant multiple of the invariant measure

ν. Ǩρ is a projection kernel, onto the orthonormal polynomials
√

(

ρ−1
k

)

zk, k = 0, . . . , ρ − 1 in

L2(S, µρ). In this case, ρ is really the total number of particles.
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Hyperbolic model. Take Λ = U, the unit disk, which we identify with the hyperbolic plane.
Let

Ǩρ(z, w̄) =
1

(1 − zw̄)ρ+1
with respect to dµρ(z) =

ρ

π
(1 − |z|2)ρ−1dz,

for any ρ > 0. As in the planar model, (Ǩρ, µρ) defines a determinantal process with infinitely

many points; the orthonormal polynomials in L2(U, µρ) being
√

(

ρ+k
k

)

zk for k = 1, 2, . . . .

The mean measure, or one-point function, in any determinantal processes is K(z, z)dµ(z). In
the above models we find that Ǩρ(z, z)dµρ(z) = ρ

πdν(z), where ν is the invariant measure on Λ,
unique up to constant multiples. Here we use

dνC(z) = dz, dνS(z) =
dz

(1 + |z|2)2 . and dνU(z) =
dz

(1 − |z|2)2 ; (2)

The distribution of the above processes is invariant under symmetries of the respective Λ, i.e.
linear fractional transformations of C preserving the measure νΛ.

Our main theorem concerns the linear statistics for the point process. For f : Λ → R, νΛ the
invariant measure, and the intrinsic gradient ∇ι we set

‖f‖2
H1(ν) =

∫

Λ
|∇ιf |2 dνΛ, ‖f‖L1(ν) =

∫

Λ
|f | dνΛ,

and say that f is in H1(ν) or L1(ν) if the corresponding norm is finite. With this definition
H1(ν) consists of equivalence classes of functions which differ by a constant.

Theorem 1. For either the planar, spherical or hyperbolic model, let f ∈ H1(ν)∩L1(ν). Then,
as ρ → ∞, the distribution of

∑

z∈Z

f(z) − ρ

π

∫

Λ
f dν

converges to a mean zero normal with variance 1
4π‖f‖2

H1(ν).

Note that for both the limiting variance and the shift to make sense it is necessary to have
f ∈ H1 ∩ L1, so the theorem holds for the most general test functions possible.

The fact that the variance is of order one manifests the advertised repulsion. The H1-norm is
conformally invariant, so one may replace the intrinsic gradient and intrinsic measure by the
planar gradient and Lebesgue measure for the embedding.

This work is partially motivated by the recent results of Sodin and Tsilerson (18) on the three
canonical Gaussian analytic functions (GAFs) with zero sets invariant under the symmetries of
the plane, sphere, and hyperbolic plane. These processes are also indexed by a density parameter,
and (18) establishes asymptotic normality for the corresponding linear statistics, with f ∈ C2

0 .
What is striking is that for GAFs the variance actually decays as the density tends to infinity:

Var
∑

z∈Z

f(z) ∼ const × ρ−1‖∆ιf‖2
L2(ν).

Thus, the zeros of typical GAFs exhibit a higher level of repulsion than their determinantal
counterparts.
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The determinantal processes studied here, while attractive solely on the basis of their invariance,
also arise as matrix models. The planar case is really just the infinite dimensional Ginibre
ensemble. If A is an n × n matrix of iid. standard complex Gaussians, then as n ↑ ∞ the point
process of A-eigenvalues converges to the planar model, and ρ here corresponds to scaling. As
for the spherical model, Krishnapur (10) has proved that this coincides with the eigenvalues of
A−1B, where A and B are independent ρ×ρ Ginibre matrices. Further, for integer ρ, Krishnapur
provides strong evidence that the hyperbolic points have the same law as the singular points of
A0 + zA1 + z2A2 + · · · in |z| < 1 with again A0, A1, . . . independent ρ × ρ Ginibre matrices.

In all three cases, Krishnapur provides natural random analytic functions for which Z is the set
of zeros. Using an integration by parts argument, Theorem 1 can be interpreted to say that the
log characteristic polynomial of these matrix models converges to the Gaussian Free Field. See
Section 3 in (15) for this relation in the Ginibre ensemble.

Theorem 1 also identifies the present as a companion paper to (15) which treats the limiting
noise for the Ginibre eigenvalues. Those eigenvalues define a determinantal process in C, see (6).
In (15) it is shown that, along with an H1-noise in the interior of U similar to above, there is
an H1/2(∂U) noise component in the corresponding n ↑ ∞ Central Limit Theorem. (The H1/2

boundary noise makes yet another connection to the, again determinantal, process of eigenvalues
drawn from Haar measure on the Unitary group, see (5) or (9) for example.) The invariance
and lack of boundary effects in the three models considered here makes for essentially different
proofs that are shorter and rely less on combinatorial constructions.

The proof consists of three steps. In Section 2 we establish some general conditions under
which (smooth) linear statistics are asymptotically normal, without computing the asymptotic
variance. For this, the fact that the kernels are analytic projections, along with their specific
decay properties, is crucial. In Section 3 we check that these properties are satisfied by our
models. In Section 4 we determine the asymptotic variance and extend the convergence to
general test functions.

2 General conditions for asymptotic normality

Taking a broader perspective, this section shows that under certain conditions satisfied by the
models we are considering, linear functionals are asymptotically normal.

Let B be a compact subset of C. Consider the following set-up. Kρ : B2 → R is a set of kernels
indexed by ρ, which ranges in an unbounded subset of the positive reals. The kernels here are
the Hermitian and are with respect to Lebesgue measure; more precisely, if Ǩρ denotes the kernels
outlined above, then here and below

Kρ(z, w) = Ǩρ(z, w) (κ(z)κ(y))1/2 (3)

where κ = dµρ(z)/dz is the density of the reference measure.

Kernel Properties

The eventual asymptotic normality rests on the following asymptotic properties of Kρ as ρ → ∞;
all limit statements and o(·) notations refer to this limit. Throughout, c denotes a numerical
constants which may change from line to line.
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• Uniform bound (UB). It holds

‖Kρ‖∞ := sup
x,y∈B

|Kρ(x, y)| ≤ cρ. (4)

• L1 bound (L1B). For x, y ∈ B we have a bound

|Kρ(x, y)| ≤ ϕρ(x − y) with ‖ϕρ‖1 ≤ c. (5)

• Interaction decay (ID). The above bounding function satisfies

‖|y|3ϕρ‖1 = o(ρ−1). (6)

• Limited local analytic projection (LLAP) property. Assume that B ⊂ C. Fix B2

compact so that B2 ⊂ B0. For p = 0, 1, 2 we have

sup
x,z∈B2

∣

∣

∣

∣

xpKρ(x, z) −
∫

B
Kρ(x, y) yp Kρ(y, z) dy

∣

∣

∣

∣

= o(1), (7)

Similarly,

sup
x,z∈B2

∣

∣

∣

∣

Kρ(x, z)z̄p −
∫

B
Kρ(x, y) ȳp Kρ(y, z) dy

∣

∣

∣

∣

= o(1). (8)

• Covariance (CO). For any function F with bounded third derivatives and compact
support in the interior of B we have Covρ(∂z,z̄F, zz̄) = o(1).

Note of course that Covρ(f, g) indicates the covariance of
∑

z∈Z f(z) and
∑

z∈Z g(z) in the
Kρ-process. The main proposition of this section (proved as Proposition 8) is:

Proposition 2. Suppose that the above conditions are satisfied. Then, for the corresponding
determinantal process any linear statistic f with compact support in the interior Bo and bounded
third derivatives is asymptotically normal. We also have convergence of all moments.

That these conditions are satisfied by the planar, spherical and hyperbolic models is delayed to
the next section. Here we provide a lemma that sheds more light as to how condition LLAP
arises.

Lemma 3 (Analytic projections restrict to LLAP). Let K̂ρ : S2 → R be a kernel for the
projection to the space of all analytic functions on the open set S ⊂ C with respect to measures
µρ. For compact B ⊂ S, let Kρ denote the restriction of K̂ρ(x, y)(µρ(x)µρ(y))1/2 to B × B. If
Kρ satisfies UB and ID, then Kρ satisfies the LLAP.

Proof. Note that since for each z, the function y 7→ yKρ(y, z) is analytic, it follows from the
analytic projection property that

∫

S
Kρ(x, y)ypKρ(y, z) dy = xpKρ(x, z).
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Thus, for (7) it suffices to show that

sup
x,z∈B2

∣

∣

∣

∣

∣

∫

S\B
Kρ(x, y) yp Kρ(y, z) dy

∣

∣

∣

∣

∣

= o(1), (9)

where recall B2 ⊂ Bo. Setting s = y− z, there is a polynomial q of degree p so that |yp| ≤ q(|s|)
for all choices of z ∈ B2, y ∈ Bc. Also, q(|s|) ≤ c|s|3 as soon as |s| bounded away from zero. So,
for z a positive distance from S \ B, we have that

|yp Kρ(y, z)| ≤ c|s|3ϕρ(s),

and by UB, ID, the absolute value of the left hand side of (9) is bounded above by

cρ

∫

|s|3ϕρ(s)ds = c × ρ × o(ρ−1) = o(1).

The proof of (8) is identical since Kρ is hermitian symmetric.

Cumulants

Recall that for any random variable X, the cumulants Cumk(X), k = 1, 2, . . . , are the coefficients
in the expansion of the logarithmic generating function,

log E[eitX ] =
∞

∑

k=1

(it)k

k!
Cumk(X),

and X is Gaussian if and only of Cumk(X) = 0 for all k ≥ 3. In any determinantal process
(Kρ, µρ), the cumulants of the linear statistic

∑

f(zk) have the explicit form,

Cumk,ρ(f) =

m
∑

m=1

(−1)m−1

m!

∑

k1+···+km=k

k1,...,km≥1

k!

k1! · · · km!

∫

[

m
∏

i=1

f(xi)
kiKρ(xi, xi+1)

]

dx1 . . . dxm, (10)

where xm+1 = x1 is understood, the integral ranges over m copies of the full space (here B),
and again we are absorbing the reference measure µρ into the Kρ kernel. The structure behind
formula (10) has been employed several times in the past to establish asymptotic normality
for various determinantal processes with various assumptions on the regularity of f . See in
particular the pioneering work of Costin-Lebowitz (3) and the later papers of Soshnikov, (20)
and (21). While going through cumulants, the method here is quite different.

We define the multiple integrals: for f a function of x1, . . . xk,

K̃◦k
ρ (f) =

∫



f(x1, . . . , xk)
k

∏

j=1

Kρ(xj , xj+1)dµ(xj)



 (11)

(the indices are mod k), and, as another shorthand, if the fi are all functions of one variable,
we set

K̃ρ(f1, . . . , fk) = K̃◦k(f1(x1) · · · fk(xk)). (12)
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Note that the cumulant (10) is just a weighted sum of terms of the form K̃ρ(g1, . . . , gm), obtained
by partitioning {1, 2, . . . , k} into m parts I1, . . . , Im of sizes k1, . . . km and setting gi =

∏

j∈Ii
fj .

Hence, we more generally seek conditions for the vanishing of Cumρ(f1, . . . , fk), defined in the
obvious way, for k ≥ 3.

The first step is a collection of estimates on the integrals (12). The most fundamental of these
are Lemmas 8 and 9 below. The former allows one to reduce the dimension in certain instances;
the latter allows for the replacement of the test functions fi by their cubic approximations.

Lemma 4. Assumptions L1B and UB imply that

|K̃ρ(f1, . . . , fk)| ≤ cρ‖f1‖1

∞
∏

ℓ=2

‖fℓ‖∞.

Proof. The integral is bounded above by

∫

Bk

|f(x1)|ϕρ(x2 − x1) · · ·ϕρ(xk − xk−1) dx1 · · · dxk × ‖f2‖∞ · · · ‖fℓ‖∞ × sup
x,y∈B

|Kρ(x, y)|.

Changing variables, yi = xi − xi−1 for i ≥ 2 allows the remaining integral to be bounded above
by

∫

B×(2B)k−1

|f1(x1)|ϕρ(y2) · · ·ϕρ(yk) dx1dy2 · · · dyk = ‖f1‖1‖ϕρ‖k−1
1 ,

and the claim follows from assumptions (L1B, UB).

Lemma 5. Assume L1B, UB, ID and that fi are bounded for all i. If any fi and fj are supported
on disjoint compact sets, then K̃ρ(f1, . . . , fk) → 0.

Proof. Now use the bound

K̃ρ(f1, . . . , fk) ≤ c‖K‖∞
∫

ϕρ(x2 − x1) · · ·ϕρ(xk − xk−1) dx1 · · · dxk

where the integral on the right is over the product of the supports of the f1 to fk. By adjusting
c, we may insert |xi − xj |3 (which is bounded below on the domain of integration) to produce

K̃ρ(f1, . . . , fk) ≤ c‖Kρ‖∞
∫

B×(2B)k−1

ϕρ(y2) · · ·ϕρ(yk)|yi+1 + . . . + yj |3 dx1dy2 · · · dyk

≤ c‖Kρ‖∞
j

∑

ℓ=i+1

∫

B×(2B)k−1

ϕρ(y2) · · ·ϕρ(yk)|yℓ|3 dx1dy2 · · · dyk

≤ c × ρ × o(ρ−1) = o(1),

after a change of variables (yi = xi − xi−1, i > 1) in line one.

Lemmas 4 and 5 were developed for the following purpose.
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Lemma 6. Assume L1B, UB, ID, and LLAP. Let f1, . . . , fk be bounded in B, with, for some i,
fi supported in a compact B1 ⊂ Bo, and, for some j 6= i, fj(z) = zp for z ∈ B, with p ∈ {0, 1, 2}.
Then

K̃ρ(f1, . . . , fk) = K̃ρ(f1, . . . , fj−1 × fj , fj+1 . . . , fk) + o(1).

Similarly, for fj(z) = z̄p we have

K̃ρ(f1, . . . , fk) = K̃ρ(f1, . . . , fj−1, fj × fj+1 . . . , fk) + o(1).

Proof. We prove the first claim with fj = zp; the proof of the second claim is identical. By the
cyclic nature of K̃ρ, we may assume i = 1. Fix a compact set B2 such that B1 ⊂ Bo

2 ⊂ B2 ⊂ Bo.
By the disjoint union decomposition

(B × B) \ (B2 × B2) = ((B \ B2) × B ) ∪ ( B2 × (B \ B2))

and Lemma 5 we have the following (restrictions are placed only on functions with indices
adjacent to j):

∣

∣

∣
K̃ρ(f1, . . . , fk) − K̃ρ(f1, . . . , fj−11B2

, fj , fj+11B2
, . . . , fk)

∣

∣

∣

≤
∣

∣

∣K̃ρ(f1, . . . , fj−11B\B2
, fj , fj+1, . . . , fk)

∣

∣

∣

+
∣

∣

∣
K̃ρ(f1, . . . , fj−11B2

, fj , fj+11B\B2
, . . . , fk)

∣

∣

∣
= o(1).

Also,

K̃ρ(f1, . . . , fj−11B2
, fj , fj+11B2

, . . . , fk) − K̃ρ(f1, . . . , fj−11B2
× fj , fj+11B2

, . . . , fk) (13)

=

∫

Kρ(z1, z2) · · ·S(zj−1, zj+1) · · ·Kρ(zk, z1)

k
∏

i=1

i6=j

fi(zi) dzi,

where

S(x, z) =

(∫

B
Kρ(x, y)ypKρ(y, z) dy − xpKρ(x, z)

)

1(x, z ∈ B2).

But, by the LLAP assumption, we have that

sup
x,z∈B

|S(x, z)| = o(1),

and, after the familiar change of variables yi = xi − xi−1 for i 6= j + 1, the argument used in
Lemma 4 yields that the difference (13) converges to zero. An identical application of Lemma 5
gives

K̃ρ(f1, . . . , fj−11B2
× fj , fj+11B2

, . . . , fk) − K̃ρ(f1, . . . , fj−1 × fj , fj+1, . . . , fk) = o(1),

which concludes the proof.

We close this subsection by showing that the assumed conditions enable one to Taylor expand
inside the K̃ρ integrals.
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Lemma 7. Assume that UB, L1B and ID hold. Let fj, 1 ≤ j ≤ k have bounded third derivatives.
Then we have

K̃ρ(f1, . . . , fk) =

2
∑

m=0

∑

m2+...+mk=m

K̃◦k
ρ

[

f1(x1)

k
⊗

i=2

(

f
(mi)
i (x1)(xi − x1)

⊗mi

)

]

+ o(1),

where we use the standard tensor notation for the full first and second derivatives.

Proof. Starting at ℓ = 2, we will step-by-step replace f1(x1)f2(x2) · · · fℓ(xℓ), ℓ ≥ 2 by an ap-
proximation gℓ of degree 2 at x1:

gℓ(x1; x2, . . . , xℓ) = f1(x1)
2

∑

m=0

∑

m2+...+mℓ=m

[

ℓ
⊗

i=2

(

f
(mi)
i (x1)(xi − x1)

⊗mi

)

]

Note that all the gℓ are bounded on Bℓ. For the step-by-step replacement procedure we need to
bound dℓ = gℓ−1fℓ − gℓ. Towards this end, let

f∗
ℓ = f∗

ℓ (x1, xℓ) = fℓ(x1) + f ′
ℓ(x1)(xℓ − x1) + f ′′

ℓ (x1)(xℓ − x1)
⊗2.

Certainly,
|f∗

ℓ (x1, xℓ) − fℓ(xℓ)| ≤ c|x1 − xℓ|3,
for C independent of ℓ, x1, xℓ. Also,

|dℓ| = |gℓ−1fℓ − gℓ| ≤ |gℓ−1||fℓ − f∗
ℓ | + |gℓ−1f

∗
ℓ − gℓ|.

Let yℓ = xℓ − x1. Since gℓ−1 is bounded, we have

|gℓ−1||fℓ − f∗
ℓ | ≤ c

(

|y2|3 + . . . + |yℓ|3
)

(14)

for the range of yi. As gℓ is produced from gℓ−1f
∗
ℓ by dropping all terms that are of degree 3 or

4 in the yi, there is a constant c such that

|gℓ+1 − gℓf
∗
ℓ+1| ≤ c

(

|y2|3 + . . . + |yℓ|3
)

(15)

on the range of the yi. (Any monomial in yi of degree 3 or 4 and coefficient 1 is bounded above
on the compact range by the right hand side for c large enough).

Now we write the difference
∣

∣K̃ρ [gℓ−1(x1; x2, . . . , xℓ−1)fℓ(xℓ) · · · fk(xk)]

− K̃ρ [gℓ(x1; x2, . . . , xℓ)fℓ+1(xℓ+1) · · · fk(xk)]
∣

∣

=
∣

∣

∣
K̃ρ [dℓ(x1; x2, . . . , xℓ)fℓ+1(xℓ+1) · · · fk(xk)]

∣

∣

∣
. (16)

By UB and L1B (16) is bounded above by

c‖Kρ‖∞
∫

Bk

ϕρ(x2 − x1) · · ·ϕρ(xk − xk−1)|dℓ(x1; x2, . . . , xℓ+1)|dx1 · · · dxk

≤ c‖Kρ‖∞
∫

B×(2B)k−1

ϕρ(y2) · · ·ϕρ(yk)
(

ℓ
∑

i=2

|yi|3
)

dx1dy2 · · · dyk,
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with (14) and (15) used in the second line. Again by L1B and ID, this in turn is upper bounded
by

c|B|‖Kρ‖∞
∥

∥ ϕρ × |y|3
∥

∥

1
≤ cρ × o(ρ−1) = o(1)

as required.

Proof of the proposition

The above bounds on K̃ρ made use of UB, L1B , ID, and LLAP. If we add CO to the mix, the
result is the following.

Proposition 8. Assume that Kρ satisfies conditions UB, L1B, and ID. For k ≥ 3, let f1, . . . fk,
be of compact support and have continuous third derivatives. If in addition CO holds, then
Cumρ(f1, . . . , fk) → 0.

To prove this, remember that Cumρ(f1, . . . , fk) is a weighted sum of terms in the form
K̃ρ(g1, . . . , gm) each gj being a product of the underlying f ’s (here m ≤ k). Lemma 7 gives

K̃ρ(g1, . . . , gm) =
2

∑

ℓ=0

∑

ℓ2+...+ℓk=m

K̃◦m
ρ

[

g1(z1)
k

⊗

i=2

(

g
(zi)
i (ℓ1)s

⊗ℓi

i

)

]

+ o(1), (17)

in which si = zi − z1, and we use complex coordinates si, s̄i. For example,

g
(2)
i (z1)s

⊗2
i = ∂z∂zgi(z1)s

2
i + ∂z̄∂z̄gi(z1)s̄

2
i + 2∂z∂z̄gi(z1)sis̄i.

Further, the k-fold integrals on the right hand side of (17) are all of the form K̃◦k
ρ (h(z1)σiσj)

where h(z1) is a C3 compactly supported (in B) function of z1 and ση = sη, s̄η or 1. Since
functions of at most three of the zi-s are present in this integrand, Lemma 6 with p = 0 allows
us to reduce it to an at most threefold integral:

K̃◦k
ρ (h(z1)σiσj) = K̃◦(d+1)

ρ (h(z1)σiσj) + o(1),

where d = 0, 1 or 2 is the number of distinct variables in σiσj .

Next, two applications of Lemma 6 gives

K̃◦2
ρ (h(z1)s2) = K̃ρ(h, z) − K̃ρ(hz, 1)

= K̃ρ(h, z) − K̃ρ(hz) + o(1) = o(1).

Similarly, all except the sis̄j terms vanish. Even among those, only half of the terms with i 6= j
survive, depending on the order of conjugation. Again by successive applications of Lemma 6

K̃◦3
ρ (h(z1)s2s̄3) = K̃◦2

ρ (s̄1h(z1)s2) + o(1) = o(1),

while
K̃◦3

ρ (h(z1)s̄2s3) = K̃◦3
ρ (h(z1)s̄2s2) + o(1) = K̃ρ(h, zz̄) − K̃ρ(hzz̄) + o(1). (18)

Apart from the error, the latter equals −Covρ(h, zz̄).
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Therefore, aside from a constant term, the only O(1) contributions to the cumulant sum are of
the form (18). The possible choices of h are: with F = f1f2 · · · fk,

Gi = F × (∂z,z̄gi)/gi

Gij = F × (∂zgi)(∂z̄gj)/(gigj),

and our full K̃ρ formula reduces to K̃ρ(·, zz̄) − K̃ρ(· × zz̄) applied to

m
∑

i=2

Gi +
∑

2≤i<j≤m

Gij .

Reverting back to the original test functions f1, f2, . . . , fk, this is a weighted sum of the functions

Fu = F × (∂z,z̄fu)/fu

Fuv = F × (∂zfu)(∂z̄fv)/(fufv).

Since Cumρ(f1, . . . , fk) is symmetric under permutations of indices of the fi’s, it suffices to show
that the total weight over the cumulant sum for each one of the two types of terms Fu and Fuv

vanishes. Also, as each gi is a product of ki of the fi, then Gi is a sum of ki terms of type Fu

and ki(ki − 1) terms of type Fuv. Similarly, when i 6= j, Gij is a sum of kikj terms of type Fuv.
Thus, the total number of terms of each type is given by

type Fu : k2 + . . . + km

type Fuv :
m

∑

i=2

ki(ki − 1) +
∑

2≤i<j≤m

kikj ,

while each type appears in the cumulant sum with a different coefficient.

Finally we invoke property CO: K̃ρ(∂z,z̄F, zz̄) − K̃ρ((∂z,z̄F ) × zz̄) → 0. Since

∂z,z̄F = F ×
(

∑

(∂z,z̄fu)/fu +
∑

∂zfu(z)∂z̄fv/(fufv)
)

,

after subtracting ∂z,z̄F/k from each term of type Fu it can be replaced by k − 1 terms of type
Fuv with the opposite sign. Thus, our final count is

type Fuv :
m

∑

i=2

(k2
i − kki) +

∑

2≤i<j≤m

kikj . (19)

That is to say, each m ≤ k term in the cumulant sum is the same constant multiple of (19).
That this vanishes for k ≥ 3 when summed over the full cumulant expansion is the content of
the next lemma.

Lemma 9. For each m ≥ 1 let ϕ(k, m, k1, . . . , km) be a real-valued function. With

Υk(ϕ) =
k

∑

m=1

(−1)m−1

m

∑

k1+...+km=k

k1,...,km≥1

ϕ(k, m, k1, . . . , km)

k1! · · · km!
,
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it holds that

Υk





k
∑

i=2

(k2
i − kki) +

∑

2≤i<j≤m

kikj



 = 0. (20)

for all k ≥ 3.

Proof. First realize, if we denote ϕ ≡ 1 by 1, then

log(ex) =
∞

∑

m=1

(−1)m−1

m

(

x

1!
+

x2

2!
+

x3

3!
+ . . .

)m

=
∞

∑

k=1

Υk(1)xk,

which explains why the k ≥ 3 cumulant of any constant is zero. Now set

f = f(x, y) = ex + xyex = 1 +
x(1 + y)

1!
+

x2(1 + 2y)

2!
+

x3(1 + 3y)

3!
+ . . .

so that the coefficient of the y term in the y-power series expansion of log f is

d

dy
(log f)

∣

∣

∣

∣

y=0

=
∞

∑

k=1

Υk(k1 + . . . + km)xk

and similarly,

1

2

d2

d2y
(log f)

∣

∣

∣

∣

y=0

=
∞

∑

k=1

Υk

(

∑

1≤i<j≤m kikj

)

xk.

In order to obtain the pure quadratic sums we set

g = g(x, y) = ex + y(xex + x2ex) = 1 +
x(1 + y)

1!
+

x2(1 + 22y)

2!
+

x3(1 + 32y)

3!
+ . . . .

The coefficient of the y term in this power series expansion reads

d

dy
(log g)

∣

∣

∣

∣

y=0

=
∞

∑

k=1

Υk(k
2
1 + . . . + k2

m)xk.

These series produce the types of terms we are after up to the fact that our cumulant expressions
do not have the first coefficient k1. To omit this, the above may be modified as in

s1 =
d

dy

(log f)(ex − 1)

f − 1

∣

∣

∣

∣

y=0

=
d

dy

∞
∑

m=1

(−1)m−1

m
(ex − 1)(f − 1)m−1

∣

∣

∣

∣

∣

y=0

=
∞

∑

k=1

Υk(k2 + . . . + km)xk,
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and

s2 =
d

dy

(log g)(ex − 1)

g − 1

∣

∣

∣

∣

y=0

=
∞

∑

k=1

Υk(k
2
2 + . . . + k2

m)xk,

and finally

s11 =
1

2

d2

d2y

(log f)(ex − 1)

f − 1

∣

∣

∣

∣

y=0

=
∞

∑

k=1

Υk

(

∑

2≤i<j≤m kikj

)

xk.

Now we have an easy proof of the claim. Simply note that the right hand side of (20) equals the
coefficient of the xk term in

−x
d

dx
s1 + s2 + s11 =

x2

2
;

the latter being a straightforward computation.

3 Properties satisfied by our models

We now verify that the conditions for asymptotic normality of Section 2 hold for the three
invariant models. First the simple bounds UB, L1B and ID are checked. Note that for the planar
and hyperbolic models, property LLAP follows from Lemma 3: both kernels are projections onto
the space of analytic functions on the plane or unit disk. For the spherical model, in which the
kernel projects onto a set of finite degree, LLAP requires separate proof.

The first three properties follow from a similar pointwise bound for each of the kernels in question.
Recall the definition (3) of Kρ(z, w).

Planar model. We have
Kρ(z, w) =

ρ

π
e ρ(zw̄−|z|2/2+|w|2/2),

and so
|Kρ(z, w)| =

ρ

π
e ρ(ℜ(zw̄)−(|z|2+|w|2)/2) =

ρ

π
e−ρ|z−w|2/2. (21)

That is, ϕρ(z) = ρ
φe−ρ|z|2/2, and it is immediate that conditions UB, L1B, and ID are satisfied

for all z, w ∈ C.

Hyperbolic model. Denote t = (1− |z|2)(1− |w|2) and s = (1− zw̄)2. Then |s| = t+ |z−w|2,
and we have

Kρ(z, w) =
ρ

πs
(t/s)(ρ−1)/2.

If |z| < R < 1, then |s| ∈ [(1 − R)2, 4], and, assuming ρ ≥ 2, we get

|Kρ(z, w)| =
ρ

π|s| |t/s| ρ−1

2 =
ρ

π|s|

[

1 − |z − w|2
|s|

]

ρ−1

2

(22)

≤ ρ

(1 − R)2

[

1 − |z − w|2
4

]

ρ−1

2

≤ ρ

(1 − R)2
e−(ρ−1)|z−w|2/8 =: ϕρ(z − w).
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Thus, conditions UB, L1B, and ID are satisfied for all |z| ≤ R, |w| < 1.

Spherical model. Now put t = (1 + |z|2)(1 + |w|2), s = (1 + zw̄)2. Then t = |s| + |z − w|2,
and the kernel reads

Kρ(z, w) =
ρ

πt
(s/t)(ρ−1)/2.

If, both |z| and |w| < R, then t ∈ [1, b] with b = (1 + R2)2, and

|Kρ(z, w)| =
ρ

πt
|s/t| ρ−1

2 =
ρ

πt

[

1 − |z − w|2
t

]

ρ−1

2

(23)

≤ ρ

πt
e−(ρ−1)|z−w|2/(2t) ≤ ρ e−(ρ−1)|z−w|2/(2b) =: ϕρ(z − w)

as soon as ρ ≥ 2. Just as before, we have UB, L1B, and ID when |z|, |w| ≤ R.

Rounding out the basic properties we have:

Lemma 10. The spherical model restricted to a ball {z ≤ |B|} has the LLAP property.

Proof. Fix p > 0, and assume that ρ ≥ 1 + p. We consider a truncated kernel, which is a
projection to the space of polynomials of degree at most ρ − 1 − p with respect to the same
measure as Kρ, that is µρ. That is, we introduce

πt
ρ+1

2

ρ
K̂ρ(z, w) =

ρ−1−p
∑

k=0

(

ρ − 1

k

)

(zw̄)k,

with again t = (1− |z|2)(1− |w|2). This truncated kernel is shown to have LLAP, and then the
truncation is shown to make a negligible difference.

First note that
∫

C

Kρ(x, y)ypK̂ρ(y, z)dy = xpK̂ρ(x, z), (24)

since Kρ is a projection into the space of polynomials of degree at most ρ − 1 and for z fixed
and ypK̂ρ(y, z) is µρ(y)1/2 times such a polynomial. Also, since for z fixed, Kρ(y, z) − K̂ρ(y, z)
is orthogonal to all powers at least ρ − 1 − p of ȳ on any radially symmetric set, we have

∫

|y|≤B
Kρ(x, y)yp(Kρ(y, z) − K̂ρ(y, z))dy = 0. (25)

Next, using the bound
(

ρ−1
k

)

≤
(

ρ−1−p
k

)

ρp we find

πt
ρ+1

2

ρ
|K̂ρ(z, w)| ≤ ρp(1 + |zw|)ρ−1−p.

And, when |z| < b < B < |w|, we have (1 + |zw|)2/t < a2 for some a < 1. Thus,

|K̂ρ(z, w)| ≤ ρp+1

tp/2+1

[

1 + |zw|
t1/2

]ρ−1−p

≤ ρp+1

tp/2+1
aρ−1−p.
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Similarly, for |z| < b < |B| < |w|, we have

|Kρ(z, w)| ≤ ρ

t

[

1 + |zw|
t1/2

]ρ−1

≤ ρ

t
aρ−1.

By Hermitian symmetry this implies that

sup
|x|,|z|<b

∣

∣

∣

∣

∣

∫

|B|<|y|
Kρ(x, y)ypK̂ρ(y, z)dy

∣

∣

∣

∣

∣

≤ ρp+2a2ρ−2−p

∫

|B|<|y|

|y|p
(1 + |y|2)p/2+2

dy = o(1). (26)

Finally, an easy estimate shows

sup
|x|,|z|<b

|xpKρ(x, z) − xpK̂ρ(x, z)| = o(1), (27)

and (24),(26),(25),(27) together imply the first part of the LLAP property. The second part
follows from Hermitian symmetry.

4 Asymptotic variance and general test functions

Our goal is to prove asymptotic normality with explicit variances for any f ∈ L1 ∩ H1. We do
this by proving normality and determining the variance asymptotics for an ‖ · ‖H1-dense set of
functions and then giving a uniform variance bound for all functions.

First note the general formula valid for all bounded f, g of compact support:

Covρ(f, g) =

∫

f(z)g(z)Kρ(z, z) dz −
∫ ∫

f(z)g(w)Kρ(z, w)Kρ(w, z) dzdw

=

∫ ∫

f(z)(g(z) − g(w))|Kρ(z, w)|2 dzdw

which, after symmetrization, reads

Covρ(f, g) =
1

2

∫ ∫

(f(z) − f(w))(g(z) − g(w))|Kρ(z, w)|2 dzdw (28)

Lemma 11. The subset of smooth functions with compact support not containing ∞ is ‖ · ‖H1-
dense in H1(ν) ∩ L1(ν).

Note that this subset is not dense in H1(U), only among H1 ∩L1 functions: harmonic functions
h in U are H1-orthogonal to any compactly supported f . This can be seen via an integration
by parts, moving the gradient from f to produce a △h = 0.

Proof. Replacing f by (f ∧b)∨ (−b) and letting b → ∞ shows that bounded functions are dense.
Then convolving a bounded f with a smooth probability density approaching δ0 shows that
bounded C3 functions are dense.

First consider the planar or hyperbolic case, and use the invariant gradient ∇ι, measure ν and
distance distι. We may apply a sequence of smooth cutoff functions gr to f which are equal to
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1 on the ball of radius r but are compactly supported and have |∇ιgr| ≤ 1. Let hr = 1− gr. We
have

∇ι(f − fgr) = hr∇ιf + f∇ιhr

and therefore

‖f − fgr‖2
H1 ≤ 2

∫

|hr∇ιf |2 + |f∇ιhr|2 dν(z)

≤ 2

∫

distι(0,z)>r
|∇ιf(z)|2 dν(z) + 2‖f‖∞

∫

distι(0,z)>r
|f(z)| dν(z)

these converge to 0 for bounded f ∈ L1 ∩ H1 as r → ∞.

For the sphere, we again consider smooth f and now recall that adding a constant to f does not
change its H1-norm. Nor does adding a constant change the fact that f ∈ L1, as the invariant
measure νS is finite. Thus, we may assume that f(∞) = 0, and by smoothness and compactness
f(z) ≤ cf distι(∞, z). We now take gε(z) = ((distι(z,∞)/ε − 1) ∨ 0) ∧ 1, which is supported on
points at least ε away from ∞. Also, |∇ιg(z)| ≤ 1/ε and vanishes for z more than 2ε away from
∞. As before, we have

‖f − fgε‖2
H1 ≤ 2

∫

distι(∞,z)<2ε
|∇ιf(z)|2 dν(z) + 2

∫

distι(∞,z)<2ε

c2
f distι(∞, z)2

ε2
dν(z)

Both terms converge to 0 when ε → 0, as required.

Lemma 12 (Asymptotic variance for a dense set). Let f and g be C1 and of compact support
in Λ, where Λ = C for the plane or the sphere or U for the hyperbolic plane. Then

Covρ(f, g) → 1

4π
〈f, g〉H1

. (29)

Proof. It suffices to compute limρ→∞ Varρ(f) for f ∈ C1
0 as the covariance may be identified

by substituting f + g for f . First, by Taylor’s theorem with remainder there is a bounded
non-negative function ε(r) tending to 0 as r ↓ 0 for which

∣

∣

∣Varρ(f) −
∫

B

∫

B
(∇f(z) · (w − z))2|Kρ(z, w)|2 dzdw

∣

∣

∣

≤
∫

B

∫

B
ε(|z − w|)|z − w|2φ2

ρ(z − w) dzdw = o(1).

Now examine the remaining integrand

I(z, w) := |∇f(z)|2|z − w|2 cos2(θ)|Kρ(z, w)|2,

where θ(z, w) is the angle between f(z) and w−z, under the change of variables w = z+ρ−1/2w′.
Pointwise, in each of the three models, we have

1

ρ2
|Kρ(z, z +

w′

√
ρ
)|2 → 1

π2ψ(z)2
exp

(

−|w′|2/ψ(z)
)

,
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where ψ(z) = 1 (plane), = 1 + |z|2 (sphere), = 1 − |z|2 (hyperbolic plane). This would result in
the limiting formula for the variance: with θ′ denoting the limiting angle between z and w′,

Varρ(f) → 1

2π2

∫

B
|∇f(z)|2

∫

C

cos2(θ′)
|w′|2
ψ(z)2

e−|w′|2/ψ(z) dw′dz (30)

=
1

2π2

∫

B
|∇f(z)|2

∫ ∞

0

∫ 2π

0
cos2(θ′)|w′|3e−|w′|2 dθ′d|w′|dz =

1

4π

∫

B
|∇f(z)|2 dz.

On the other hand, z and w ranging in a bounded set and ||∇f ||L∞ < ∞, the right hand side of

|I(z, z +
w′

√
ρ
)| ≤ c|w′|e−|w′|2/c

is integrable on B ×C (this again uses (21), (22), and (23)). Therefore, dominated convergence
validates (30) and completes the proof.

Corollary 13. The property CO holds for out models: Covρ(∂zz̄f, zz̄1B(z)) → 0 for f ∈ C3,
supp(f) ⊂ Bo and B compact.

Proof. Consider a smooth g satisfying 1B′ ≤ g ≤ 1B, where B′ is a neighborhood of supp(f).
Lemma (12) with implies

4π Covρ(∂zz̄f, g zz̄) → 〈∂zz̄f, gzz̄〉H1
= −〈f, ∂zz̄(gzz̄)〉H1

= 0.

For the last equality, note that ∇f and ∇∂zz̄(gzz̄) have disjoint support.

Now
Cov(∂zz̄f, (1B − g)) = K̃ρ(∂zz̄f, (1B − g)) − K̃ρ(∂zz̄f × (1B − g)),

where the second term vanishes, and the first one converges to 0 by Lemma 5 and the fact that
the arguments have disjoint support.

Lemma 14 (Variance bound). Let f ∈ H1(ν) ∩ L1(ν). There is a universal c > 0 so that for
all ρ > 1 we have

Varρ(f) ≤ c

∫

Λ
|∇ιf(z)|2 dν(z). (31)

Proof. By considering the negative and positive parts of f separately, we may assume f ≥ 0. In
each of the three models by (28) we have, for f bounded and compact support

Varρ(f) =
1

2

∫

Λ

∫

Λ
|f(z) − f(w)|2|Kι(z, w)|2dν(z) dν(w), (32)

where Kι(z, w) = K(z, w)(η(z)η(w))−1/2 and η = dν(z)/dz is the density of the invariant
measure.

Repeating the identities in (28) for the invariant Kι, and using that for ρ fixed Kι is bounded,
we get that (32) extends to all f ∈ L2(ν), in particular for bounded f ∈ L1(ν). Now replace
the nonnegative f ∈ L1(ν) by fn = f ∧ n. Let V(f) denote the right hand side of (32).
Since |fn(z) − fn(w)| is monotone increasing in n, the monotone convergence theorem gives
V(fn) → V(f). We also have Varρ(fn) → Varρ(f): the mean converges to a finite limit as
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f ∈ L1(ν) and the second moment converges by the monotone convergence theorem. Thus (32)
holds for all nonnegative f ∈ L1(ν), although a priori both sides may be infinite.

For isometries T of Λ (i.e. linear fractional transformations preserving ν) we have

|Kι(T (z), T (w))| = |Kι(z, w)| (33)

A simple way to check (33) is to write |Kι(z, w)| directly as a function of the single variable
|Tz(w)|, where Tz is the isometry taking z to 0; such an expression is clearly invariant. It is also
possible to get (33) from the invariance of the process and the covariance formula (28).

Let γzw be a geodesic connecting ω and z that proceeds at speed szw = distι(z, w) given by the
invariant distance between z and w. Then we have

|f(z) − f(w)|2 =

∣

∣

∣

∣

∫ 1

0
∇ιf(γzw(t)) · γ′

zw(t) dt

∣

∣

∣

∣

2

≤ s2
zw

∫ 1

0
|∇ιf |2(γzw(t)) dt.

Thus Varρ(f) is bounded above by |∇ιf |2 integrated against the measure

dϑ(ζ) =
1

2

∫

Λ

∫

Λ

∫ 1

0
s2
zwδγzw(t)(ζ)|Kι(z, w)|2 dt dν(z) dν(w).

This is defined in an invariant way, so it must be a some α(ρ) ∈ (0,∞] times the invariant
measure. In fact, ‘it is the invariant convolution on the symmetric space Λ (see, for example (7)
for background) of the standard invariant measure with the radially symmetric measure

dϑ′(ζ) =
1

2

∫

Λ

∫ 1

0
s2
0wδγ0w(t)(ζ)|Kι(0, w)|2 dt dν(w).

and therefore

α(ρ) = ϑ′(Λ) =
1

2

∫

Λ
s2
0w|Kι(0, w)|2 dν(w)

∫ 1

0
dt

= π

∫ RΛ

0
rs2

0r|Kι(0, r)|2η(r)dr =
π

η(0)

∫ RΛ

0
rs2

0r|K(0, r)|2dr

Here RΛ = ∞ or 1 is the radius of the planar model for Λ. A direct computation now shows that
for all three models this quantity is bounded by an absolute constant, verifying our claim.

Proof of Theorem 1. Corollary (13) shows that condition CO holds, and the other conditions
have been checked in Section 3. For f ∈ C3 of compact support Proposition 2 gives asymptotic
normality and Lemma 12 gives the limiting variance, so we have

Zρ(f) :=
∑

z∈Z

f(z) − ρ

π

∫

Λ
|f |dν ⇒ N

(

0,
1

4π
‖f‖2

H1(ν)

)

. (34)

Lemma 14 allows us to extend the preliminary conclusion (34) to the advertised result. For any
f ∈ H1(Λ) (and of appropriate support) there is a sequence of fε ∈ C3

0 with ||f − fε||H1 → 0 as
ε → 0. Moreover, Lemma 14 implies that the family {Zρ(f)} is tight and also that

∣

∣

∣
E[eiZρ(f)] − E[eiZρ(fε)]

∣

∣

∣

2
≤ E

∣

∣

∣
Zρ(f) − Zρ(fε)

∣

∣

∣

2
≤ c

∫

Λ
|∇ι(f − fε)|2.
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The right hand side can be made small at will. Now, choosing a subsequence ρ′ over which
Zρ(f) has a limit in distribution, we find the Fourier transform of that limit is as close as we
like to that of a mean zero Gaussian with variance 1

4π

∫

Λ |∇ιf |2. (The full limit for Zρ(fε) exists
for any ε > 0). Since this appraisal is the same for any subsequence ρ′, we have pinned down
the unique distributional limit of Zρ(f).
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