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The thickness of, for example, insulating layers or photo resists for
the fabrication of electronic chips now reaches the order of a few
nanometres, resulting in new challenges for guaranteeing stability

during production and use of the device1. In an experimental model
system, a thin polystyrene (PS) film on a Si wafer, we have established
stability criteria for the thin film that take into account the thickness of
the SiO layer on top of the Si wafer and the thickness h of the PS film.
The free energy � of this system is given by the expression

where x→ denotes a spatial point within a two-dimensional substrate Ω.
This expression comprises a long-wavelength approximation for the
capillary energy with surface tension σ and V(h) as an effective interface
potential that covers intermolecular forces beyond capillarity. An
analysis of the evolving structures allowed insight into the underlying
forces of the system2. Thus, given sufficient knowledge of system
parameters (such as dielectric constants of the participating media),the
principal question of stability or instability of a given thin film can now
be answered.

This knowledge, however, is not sufficient to enable understanding
of the evolution of the instability of a thin film.As simulations based on
molecular dynamics are still too complex numerically, the theoretical
framework for the description of fluid flow is based on approaches from
continuum mechanics3,4. In the case of interest here, the viscosity of the
liquid and the disparity between horizontal and vertical lengthscales
permit the associated free-surface problem for the Navier–Stokes
equations to be replaced by a dimension-reduced free-boundary
problem of lower complexity. This is accomplished along the lines of a
lubrication approximation, and leads to a fourth-order degenerate
diffusion equation for the film height h(x→, t) above Ω,involving singular
terms of second order4. Energy is dissipated solely due to viscous
friction, and scaling arguments performed in the framework of the
Navier–Stokes equations indicate that the horizontal flow profile is
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parabolic to leading order. Averaging the horizontal flow components
over the vertical direction, and taking the incompressibility of the fluid
into account, the following evolution equation4 is established for h,

Here, η is the viscosity, t is time and the augmented Laplace pressure is
given by p = –σ∆h + V ′(h), where the prime here and later denotes
differentiation of a function with respect to its argument. Finally, m(h)
is a non-negative mobility coefficient, which vanishes for h = 0 and
depends on the boundary conditions of the liquid flow at the
substrate—for example,no-slip entails5 m(h) = (h3/3).

The thin-film equation (2) has a number of peculiar properties that
make the design of efficient numerical schemes a challenging task.First,
despite the lack of a maximum principle, globally non-negative
solutions exist6–8—a novelty in the theory of fourth-order parabolic
equations. This is due to the degeneracy of m(h) in zero, and therefore
the arising nonlinearities have to be discretized in a subtle way to let their
impact on the qualitative behaviour carry over to the qualitative
behaviour of discrete solutions. Second, the destabilization of thin
liquid films can be divided into various phases evolving on vastly
different timescales, characterizing, for example, film rupture, droplet
formation and coarsening. Consequently, adaptivity of the numerical
scheme with respect to time becomes highly desirable. Moreover,
reliable information about morphology and macroscopic contact
angles affords a proper tracking of moving contact lines.Altogether, it is
natural to require a good numerical scheme to comply with the
following catalogue: (i) non-negativity of discrete solutions; (ii) low
numerical cost; (iii) convergence in all physically relevant space
dimensions; (iv) precise resolution of the morphology and precise
tracking of moving contact lines and free boundaries. To accomplish

this, the numerical scheme used here9,10 is inspired both by the analysis
in the continuous setting and by the physics to be modelled (see
Methods: Simulation).

The comparison of the results of our simulations with experiment is
shown in Figs 1 and 2. Fig. 1a and 2a display atomic force microscopy
(AFM) scans taken in situ of liquid PS films beading off an oxidized Si
wafer (oxide layer thickness of 191nm) (see Methods:Experiment).The
effective interface potential for this system can be written as2,11

where εdenotes the strength of the short-range part of the potential,ε =
6.3(1) × 10–76 Jm6, and ASiO is the Hamaker constant of PS on SiO,
ASiO = 2.2(4) × 10–20 J (the number in parentheses always denotes the
error in units of the last digit).Note that retardation effects giving rise to
a correction term proportional to h–3 in equation (3) are negligible.The
location of the global minimum in V(h) was determined by X-ray
reflectometry to lie at h= 1.3(1) nm,reflecting the equilibrium thickness
of a PS film on top of the SiO wafer. Equation (3) serves as input into
equation (2), together with the experimental parameters12 for the
(temperature-dependent) viscosity η = 12,000 Pa s (Fig. 1) and
η = 1,200 Pa s (Fig.2)and the surface tension σ = 30.8 mN m–1.We note
that equation (3) is a faithful representation of the interactions of our
system without fitting parameters.

The difference between Figs 1 and 2 solely arises from the choice of
the initial height of the film.In Fig.1,the film is 3.9(1) nm thick,whereas
in Fig. 2, it is 4.9(1) nm thick12. In both cases the system has a long-wave
instability (spinodal dewetting)13–22,but in the thicker film,dewetting by
heterogeneous nucleation of holes pre-empts the onset of the
instability2,23.The resulting differences in the dynamical evolution of film
rupture are clearly discernible by comparison of Figs 1 and 2. In Fig. 1,

(2) t h – ∇ . (m(h)∇p) = 0η∂

(3) V (h)
π

=
ε
h8 – A

12 h2

SiO

Figure 1 Dewetting morphology of a thin film. a,Experiment:Temporal series of AFM scans recorded in situ at T = 53 °C; a 3.9 nm PS film beads off an oxidized Si wafer.b,Simulated
dewetting morphology with the identical system parameters as in the experiment.Highest points reach 12 nm above hole ground.The simulation started with a slightly perturbed film.
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the film surface is seen to develop a correlated pattern of indentations,
whereas in Fig. 2, uncorrelated holes appear that rapidly grow in size.
Owing to mass conservation, the material removed from the inner side
of a hole is accumulated at the boundary of the hole, with a film
depression developing behind this rim24.Figure 2 shows a novel pattern-
formation process during dewetting: from a certain size of the first hole
onwards, a second row of holes (‘satellite holes’) appears in this film
depression, followed by a third one and so on, in a kind of hole-forming
cascade. It is worth mentioning that preliminary non-dimensionalized
numerical results on cascadic dewetting have been presented22.
However, it must be emphasized that the snapshots to be found in that
work (see, for example, Figure 5 in ref. 22) show holes of rectangular
shape. This is at variance with our experimental findings, and it would
be astonishing if this peculiarity were not a consequence of their
numerical method being based on central differencing and hence
rectangular grids.

We note that, for both scenarios of film rupture, our results in
simulation and experiment are in close qualitative and quantitative
agreement. This can, for example, already be seen by looking at the
timescales involved. Taking the formation of the first hole as the origin
of the time axis in simulation and experiment,the absolute timescale for
the appearance of, for example, connected holes in Fig. 1 or the satellite
holes in Fig.2,are of the same order of magnitude.

Although the accordance of the timescales of experiment and
simulation are a first indication of the quantitative nature of our results,
the precise nature of the simulation results can be demonstrated by
pattern analysis based on integral geometry, which provides accurate
comparison tools beyond the visual inspection of the patterns25–27.This
is of particular relevance,because the morphology of the rupturing film
has two contributions of different character: although in the AFM
image, the holes are easy to identify by eye, a description of the film in

between the holes requires a closer inspection. For this we have
developed a novel tomographic scheme which is applicable to both the
experimental and the simulation data. To characterize the surface
structures we introduce contour lines given by isosurfaces h(x→→, t) = l
where l is a fixed threshold value and t is time, and use the Minkowski
functionals s(l), u(l), and κ(l) to characterize the resulting set of black
and white images (see Methods: Pattern analysis). These functions are
sensitive to the geometry of the film surface and measure spatial features
that are not visible to the eye. An unexpected finding of this
mathematical analysis is that both experiments and simulations shown
in Fig. 1 follow a gaussian random-field model for contours above the
average film thickness at l0 ≈ 3.9 nm, namely s(l) = s0,
u(l) = u0 – u2(l – l0)

2,and κ(l) = κ1(l– l0).In Fig.3 only the time-averaged
normalized data are shown for clarity, but a similar good agreement
between model expectation and data are found for each snapshot at any
given time. Only the parameters s0 = t–νs, u2 = t–νu and κ1 = t–νκ depend
algebraically on t with exponents 2νs ≈ 2νκ ≈ νu ≈ 1.8 ± 0.2 over at least
two decades. An excellent consistency check is provided by the ratio
Y = s0κ1/u2 = 2/π2 ≈ 0.203 (compare with Fig. 3d), which remains
constant for gaussian random fields.Moreover,the expected zeros u′(l0)
= 0 and κ(l0) = 0 are matched by experiments and simulations for all
times.Such a gaussian random-field behaviour is not found for the data
(experiments and simulations) shown in Fig. 2, because the process of
satellite hole formation involves not only uncorrelated Fourier modes,
but also follows a correlated deterministic structural evolution. Details
will be given elsewhere (K.R.Mecke,et al.,unpublished results).

In conclusion, our results demonstrate the capability of the thin-
film model of equation (2) to quantitatively describe the dynamical
evolution of thin-film rupture. In particular, the temporal evolution of
the film morphology is mimicked perfectly by our simulations without
any fitting parameter over a time-interval far exceeding the initial

Figure 2 Satellite holes. a,Experimental dewetting scenario of a 4.9 nm PS film on an oxidized Si wafer; temporal series of AFM scans recorded in situ at T = 70 °C.b,Simulated scenario
for a system with identical properties as in the experiment.Highest points reach 12 nm above hole ground.As initial data we took a slightly corrugated film with a depression in its centre.
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rupture event. The development of the film profiles for different
complex evolution patterns can thus be monitored in both space and
time.We are able to resolve fine differences in the film dynamics caused
by a change in initial film thickness of only 1 nm, as observed in
experiment (see Figs 1 and 2). Our pattern-analysis approach reveals
that the spinodally dewetting liquid film evolves as a gaussian random
field with a time-dependent variance, and allows the first quantitative
characterization of the spinodal dewetting dynamics beyond the onset
of the instability. Novel experimental results on a rupture process, in
which deterministic events occur simultaneously with uncorrelated
events,demonstrate the need for the quantitative characterization of the
late-time regimes of dewetting, for which theoretical tools have not
existed up to now.

The unprecedented quantitative agreement of theoretical model,
experiment and simulation allows the full evolution of complex film
patterns to be monitored for the first time, giving the chance to
quantify the dewetting dynamics in fully nonlinear regimes—
inaccessible so far to simulation or theoretical analysis. Our work will
therefore have an impact on an improved understanding of thin-film
dynamics and the development of thin-film technologies at
nanometre scales. This is particularly relevant for the development of
microfluidic devices, for example, based on the dynamics of thin,
liquid films on patterned substrates28.

METHODS

EXPERIMENT
The liquid used in our experiments was atactic PS with a molecular weight of 2 kg mol–1 (Polymer Labs,

Church Stratton, UK, polydispersity (Mw/Mn = 1.05). This is large enough to assure non-volatility, but at

the same time small enough for the polymer melt to be approximately a Newtonian fluid. This is essential

for comparison with simulations, in which viscoelastic effects were neglected29. Films were prepared by

spin-casting a toluene solution (Selectipur toluene, Merck, Germany) of PS onto polished, oxidized Si

wafers (Silchem, Freiberg, Germany). Before coating, the wafers were thoroughly cleaned using standard

procedures2,11,19. The oxide layer and PS film thickness were determined by ellipsometry (Optrel, Berlin,

Germany). The surface of the wafers consists of amorphous, silicon oxide 191(1) nm thick. On such a

substrate, PS films are unstable11 up to a film thickness of about 300 nm. The symmetry-breaking 

mechanism of dewetting was monitored by AFM (Nanoscope III, Digital Instruments, Santa Barbara) in

tapping mode. Annealing took place on top of the AFM sample holder, which enabled us to follow the

dewetting process at a real timescale. We therefore continuously scanned the sample and recorded one

scan every 60 s. Scanning parameters were carefully adjusted not to affect the liquid layer11.

SIMULATION
We used a finite element method on a simplicial triangulation of the substrate, semi-implicit with respect

to time, and employed linear finite elements both for the height h and the augmented Laplace pressure p.

It is crucial with regard to the requirements (i)–(iii) described above, that all the integral estimates known

in the continuous setting carry over to the discrete setting. In that case the analysis used in the continuous

setting can be mimicked in the discrete setting. This translates to the question of how to discretize the

nonlinear term m(h) on each element E. Surprisingly, all the integral estimates necessary for the analysis

can be retained if we replace the scalar-valued mobility m(h) in the discrete setting on each finite element

E by a symmetric, positive semi-definite mobility matrix9 M(H). Its eigenvalues are given by certain 

harmonic integral averages involving the scalar function m(h) and the values of the discrete solution H in

the vertices of E. Fortunately, explicit simple formulae are available to determine the coefficients of these

discrete mobility matrices. As a consequence, the numerical cost compared to previous approaches is

drastically reduced9, and discrete solutions share the non-negativity properties of the corresponding

solutions in the continuous setting. In particular, it is the only numerical scheme for which convergence

in all the physically relevant space dimensions could be rigorously proved10. Finally, to guarantee a precise

resolution of the morphology and of moving contact lines and to further lower the numerical cost, the

scheme is adaptive both in space and in time. The time-increment was chosen to be proportional to 

the ratio of grid size and the spatial maximum of the vertically averaged velocity of the horizontal flow,

the latter of which is of the same order as | M (H) ∇ P | / H (where P is discrete pressure). The refinement

of the spatial grid is controlled by ad hoc methods involving the moduli of spatial gradients. Design and

numerical analysis of algorithmic concepts9,10,30–33 for the thin-film equation as well as the simulation of

dewetting processes20–22,33 have been a topic of intensive research during the past five years. To the best 

of our knowledge the scheme developed in refs 9 and 10, and used for the simulations presented here,

is the only one that complies with the all requirements formulated in the main text.

PATTERN ANALYSIS
Minkowski functionals Mν(A) of domains (patterns) A in d dimensions can be defined as integrals over

the  boundary ∂A, Mν(A) = ∫δAdx→Cν(x→) with, for instance, in two dimensions C0(x→) = x→ ⋅ n→/2 where n→ is the

normal vector at the boundary point x→∈∂A, and C1(x→) = 1, and C2(x→) denote the curvature25. The measures

Mν(A) of a threshold image A are related to familiar morphological quantities of area F(l) = M0, boundary

length U(l) = M1, and Euler characteristic χ(l) = M2 of the domains where the height h>l exceeds the

threshold l. For convenience, we define an effective slope s(l) = –F′(l)/U(l) of the height h, a logarithmic

length u(l) = lnU(l) and an effective curvature κ(l) = χ(l)/U(l). Owing to the additivity of the Minkowski

functionals this calculus is convenient for digitized data of experimental and simulation results alike: only

a sum over weighted pixels has to be performed which is fast and robust26. Such a morphological analysis

of patterns has successfully been applied before to such diverse phenomena as chemical reactions27, liquid

film rupture19, and the distribution of galaxies in the universe (for a review, see ref. 25). Our application of

Minkowski functionals is the first, to our knowledge, for gaussian random field processes in a condensed

matter system.
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