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of Maryland, College Park, MD 20742, USA

6Università degli Studi di Napoli Parthenope, 80143 Napoli, Italy

We describe a flexible and modular delayed-feedback nonlinear oscillator that is capable
of generating a wide range of dynamical behaviours, from periodic oscillations to
high-dimensional chaos. The oscillator uses electro-optic modulation and fibre-optic
transmission, with feedback and filtering implemented through real-time digital signal
processing. We consider two such oscillators that are coupled to one another, and we
identify the conditions under which they will synchronize. By examining the rates of
divergence or convergence between two coupled oscillators, we quantify the maximum
Lyapunov exponents or transverse Lyapunov exponents of the system, and we present an
experimental method to determine these rates that does not require a mathematical
model of the system. Finally, we demonstrate a new adaptive control method that
keeps two oscillators synchronized, even when the coupling between them is changing
unpredictably.

Keywords: nonlinear dynamics; chaos; synchronization; control

1. Introduction

Private communications, fast physical random number generators and spatio-
temporally distributed sensor networks have provided the context for possible
new applications of chaotic dynamical systems. A key requirement for such
applications is the development of reliable and robust generators of chaotic
waveforms with broad spectral bandwidths. By reliable, we mean that given
parameters of the system, the dynamical properties are reproducible, both
experimentally and theoretically. Robust implies that the system exhibits chaotic
behaviour over a region of parameter space (i.e. with few periodic windows). There
have been several realizations of delayed-feedback opto-electronic oscillators that
meet these criteria. Systems that can be configured for integrated opto-electronic
fabrication and can function at frequency ranges from tens of GHz down to
kHz may find applications in acoustic, biological, chemical, electromagnetic and
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mechanical scenarios on nano- to macroscopic spatial scales (Argyris et al.
2005, 2008; Kouomou et al. 2005; Uchida et al. 2005, 2008; Illing et al.
2007; Yousefi et al. 2007; Cohen et al. 2008; Sorrentino & Ott 2008, 2009a,b;
Reidler et al. 2009).

Our focus in this paper is on the dynamics of delayed-feedback nonlinear
oscillators constructed from modular opto-electronic components. Delayed
feedback enables such systems to generate a wide variety of waveforms,
with differing degrees of complexity that depend on the parameters used. In
particular, the time-delay, feedback strength and filter parameters can be tuned
to produce highly stable periodic waveforms (Yao & Maleki 1996), as well as
complex waveforms that are characteristic of robust, high-dimensional chaos
(Peil et al. 2009).

In §2, we introduce the basic opto-electronic system and the delay differential
equations used for a continuous-time description of the dynamics (Kouomou et al.
2005; Cohen et al. 2008). The intrinsic nonlinearity of the system arises from the
integrated optical Mach–Zehnder modulator, which changes the intensity of light
transmitted depending on the cosine squared of a modulation voltage applied
to its electrodes. We then chart the dynamical behaviour of the system, using
bifurcation diagrams, as the feedback strength and delay time of the feedback
loop are varied. The complexity of the waveforms generated is assessed by the
Lyapunov dimension, and we illustrate the wide range of dynamics accessible.

In §3, we first motivate and then show how to incorporate digital signal
processing (DSP) capabilities in the delayed-feedback system. This enables
precise, real-time control of system parameters, such as the time delay and
filter characteristics, in a flexible manner that is well suited for applications
in communications and sensor networks. The transition from continuous-time
to discrete-time equations is outlined; the system is now governed by finite-
difference equations that describe its time evolution in terms of the system state,
as sampled at discrete times by an analogue-to-digital converter (ADC; Toomey
et al. 2009). Even though our DSP implementation was aimed at kHz frequencies,
such systems can be extended easily into the GHz range.

The question of isochronal synchronization of these nonlinear oscillators
(Fischer et al. 2006; Klein et al. 2006; Rogers-Dakin et al. 2006; Schwartz & Shaw
2007; Zhou & Roy 2007; Franz et al. 2008) is central to possible applications in
sensor networks (Sorrentino & Ott 2008, 2009a,b). We thus consider coupled
oscillators in §4, where the many different configurations, in which even two
oscillators may be coupled, are outlined. We then restrict ourselves to the
schemes that we have explored in some detail. A diffusive-coupling scheme
that allows the coupled systems to synchronize and retain the dynamical
behaviour of the uncoupled systems is of particular interest. Several results
on the dependence of synchronization error on coupling strength, which have
been obtained mathematically, are verified through numerical simulations and
tested experimentally. In particular, we emphasize that, in the experiments, noise
and differences in nominally matched system parameters are unavoidable. We
identify parameter regimes for the coupling strength where stable synchronization
is observed.

While the steady-state synchronization error is an important quantity to
measure with regard to sensor and communication applications, the transients
towards synchrony and away from synchrony are important as well, and we study
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Figure 1. Chaotic opto-electronic oscillator: (a) experimental setup and (b) corresponding
mathematical block diagram.

these in §5. The time scales for these transients set the limits on communication
rates and detection of environmental perturbations. One may determine the
maximum Lyapunov exponent for a dynamical system by measurement of
transients away from synchrony (Cohen et al. 2008). When a mathematical
model is available, one may predict the dynamics of an experimental system
for several delay times by performing assimilation of experimental data using
synchronization of the mathematical model to the data (So et al. 1994; Cohen
et al. 2008; Mariño et al. 2009; Quinn et al. 2009; Sorrentino & Ott 2009b).
Further, it is possible to estimate distributions for finite-time Lyapunov exponents
of the system. It should be noted that, given two replicas of a dynamical system,
one may estimate Lyapunov exponents from transients, even when one does not
have a mathematical model of the system.

For applications of synchronized chaotic systems to sensor networks, a novel
adaptive synchronization approach has been recently conceived by Sorrentino &
Ott (2008, 2009a,b). When the coupling channels between diffusively coupled
chaotic dynamical systems serving as nodes of the network are perturbed at
time scales slow compared to those of the chaotic fluctuations, they showed
that it is possible to maintain synchrony between the systems. In the process of
doing so, it is also possible to estimate and track the time-varying perturbations
of the coupling strengths. In the illustrative case of two coupled systems, we
have recently shown (Ravoori et al. 2009) that this scheme can be implemented
experimentally. In §6, we describe the scheme as implemented in the DSP-based
system described in §3, and we examine its effectiveness in maintaining synchrony
and tracking the time-dependent perturbations of the coupling channel.

2. Chaotic opto-electronic oscillator

Figure 1a shows a diagram of the chaotic opto-electronic oscillator considered
here, composed of a laser, electro-optic intensity modulator, photoreceiver and
electrical filter, all connected together in a time-delayed feedback loop. This
system was originally considered by Neyer & Voges (1986), who recognized its
potential for bistability and chaos. The system was later adapted for use as a
high-quality microwave oscillator by incorporating a narrow electrical band-pass
filter (Yao & Maleki 1996). More recently, there has been renewed interest in using
this architecture as a means for generating high-dimensional chaotic waveforms
(Kouomou et al. 2005).

The electro-optic modulator is a commercially available lithium niobate
Mach–Zehnder modulator, identical to those commonly used in optical
telecommunication systems. The input is a continuous-wave optical signal from
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a distributed-feedback laser, which is split into two separate waveguide paths
and then recombined, forming an interferometer. A voltage applied to the
modulator induces an optical phase shift between two arms of the interferometer
through the linear electro-optic effect. When the optical signals recombine,
the degree to which they interfere constructively depends on the applied
voltage. The optical power emerging from the modulator is then described by
(Heismann et al. 1997)

P(t) = P0 cos2
(

π

2
v(t)
Vπ

+ φ0

)
, (2.1)

where P0 is the continuous-wave optical power entering the modulator, v(t) is
the voltage applied to the modulator electrodes, Vπ is the ‘half-wave voltage’,
or the voltage required to produce a relative phase shift of π between the
arms of the interferometer, and φ0 is an angle describing the bias point of the
modulator. The bias point is controlled either by intentionally making one arm
of the interferometer longer or by adding a DC offset to the applied voltage v(t).
The modulators described in this work had a half-wave voltage of Vπ = 5.7 V and
were operated at a bias point of φ0 = −π/4.

The modulator converts the applied voltage v(t) into an optical intensity
modulation P(t), through the nonlinear modulation function given in
equation (2.1). We note that this cos2(•) modulation function applies to several
other optical modulator structures, including liquid-crystal modulators, Pockels
cells (Hopf et al. 1982) and acousto-optic modulators (Vallée & Delisle 1985). The
same nonlinearity can also be achieved by transmitting an electrically tunable
laser through an optical filter that has periodic spectral transmission, such as a
single-stage birefringent filter (Goedgebuer et al. 1998) or any other single-pass
interferometric filter (Blakely et al. 2004).

The photoreceiver and transimpedance amplifier produce an output voltage
vout(t) that is proportional to the optical power P(t),

vout(t) = RGP(t), (2.2)

where R is the responsivity of the photodiode (with units of A W−1) and G is the
net transimpedance gain of the system (with units of V A−1).

The accompanying block diagram in figure 1b shows an equivalent
mathematical diagram of the system, including the modulator, photoreceiver,
amplifiers, filter and time-delayed feedback. To simplify the analysis, the voltage
applied to the modulator is expressed in normalized units as

x(t) ≡ π

2
v(t)
Vπ

, (2.3)

and we collect all of the remaining proportionality constants into a single
dimensionless factor that describes the round-trip gain of the loop,

β ≡ π

2
RGP0

Vπ

. (2.4)
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In terms of these dimensionless variables, the feedback loop relates the filter
input r(t) to the filter output x(t) by the following nonlinear transformation and
time delay:

r(t) = β cos2[x(t − τ) + φ0]. (2.5)

For the measurements reported here, the electrical filter is a two-pole band-pass
filter characterized by the linear transfer function

H (s) = sτH

(1 + sτL)(1 + sτH)
, (2.6)

where τL and τH are the time constants describing the low-pass and high-pass
filters, respectively. In the time domain, a linear filter can be represented by
state-space differential equations of the form

du
dt

= Au(t) + Br(t) (2.7)

and

x(t) = Cu(t) + Dr(t), (2.8)

where r(t) is the input to the filter, x(t) is the output, u(t) is a state vector of
the filter system and A, B, C and D are matrices that describe the band-pass
filter. For the two-pole band-pass filter described by equation (2.6), u(t) is a
two-dimensional vector and the state-space matrices can be expressed as

A =
⎡
⎢⎣

−
(

1
τL

+ 1
τH

)
− 1

τL
1
τH

0

⎤
⎥⎦, B =

⎡
⎣

1
τL

0

⎤
⎦, C = [1 0] and D = 0. (2.9)

Combining equations (2.7)–(2.9) and (2.5), the system can be described by the
following state-space delay differential equation:

du
dt

= Au(t) + Bβ cos2[Cu(t − τ) + φ0]. (2.10)

We note that if the band-pass filter is replaced by a simple low-pass filter, then
equation (2.10) simplifies to a scalar delay differential equation that is equivalent
to the classic Ikeda system, originally introduced to describe bistability in optical
cavities (Ikeda & Matsumoto 1987).

Table 1 lists all of the parameter values used in the experiments and
simulations. To simplify the experimental implementation, we consider here a
low-frequency system that operates at audio frequencies, but this system can also
be scaled to radio or microwave frequencies (Goedgebuer et al. 2002; Kouomou
et al. 2005; Cohen et al. 2008). In practice, the round-trip gain (β) and time delay
(τ ) were measured experimentally by interrupting the feedback loop at the input
to the modulator and measuring the round-trip small signal gain and group delay
using a vector network analyser. The gain was controlled by varying the optical
power P0 entering the modulator.

In figure 2, we show calculated and measured time traces of this system, for
three different values of the feedback strength β, with the time delay and filter
parameters given in table 1. The system exhibits periodic behaviour for small
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Figure 2. Typical measured and calculated time traces for the nonlinear opto-electronic oscillator
system, for feedback strengths of (a) β = 1.5, (b) 3.0 and (c) 4.5.

Table 1. Experimental parameters of the system. Parameters used in the experiments and
measurements of the nonlinear chaotic oscillator. Here, we give representative values for P0, G, R
and Vπ , but in practice the factor β (cf. equation (2.4)) was measured directly by breaking the
loop and measuring the small signal, round-trip AC gain.

parameter value unit

P0 0–50 μW
R 1 A W−1

G 800 V mA−1

Vπ 5.7 V
β 0–10 —
τH 1.59 ms
τL 15.9 μs
(2πτH)−1 100 Hz
(2πτL)−1 10 kHz
τ 230 μs
φ0 −π/4 rad

values of β, but the dynamics become more complex as the feedback strength is
increased. Figure 3 plots the measured and simulated bifurcation diagrams with
β as an adjustable parameter, showing the evolution from periodic to chaotic
dynamics. Peil et al. (2009) reported a detailed experimental and theoretical
study of the various regimes of operation of this system. In figure 4, we plot
the calculated Kaplan–Yorke dimension versus β and versus τ , showing the
progression from simple to high-dimensional chaotic dynamics. The Kaplan–
Yorke dimension (Kaplan & Yorke 1979) was calculated from the spectrum of
Lyapunov exponents, which were numerically computed by solving a linearized
version of equation (2.10) (Farmer 1982).
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Figure 3. Measured and numerically simulated bifurcation diagram, with β as an adjustable
parameter, for the system parameters given in table 1. (a) Experiment and (b) simulation.
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Figure 4. Calculated Kaplan–Yorke (Lyapunov) dimension: (a) as a function of the feedback
strength β, for fixed feedback delay τ = 230 μs and (b) as a function of the feedback delay τ ,
for fixed β = 4.5. The remaining system parameters are given in table 1.

3. Discrete-time implementation

The opto-electronic oscillator described in §2 was introduced using a continuous-
time-delay differential equation, but in practice, we implemented the system
using discrete-time DSP technology. DSP provides a flexible platform for
programmable filtering and delay operations, and offers a number of advantages
over conventional analogue filters, especially when high-speed performance is
not required. For example, it is easy to program two digital filters to have
identical characteristics, whereas matching of analogue filters relies on finding
identical components such as resistors, capacitors and amplifiers. DSP systems
are especially advantageous in synchronization experiments, where mismatched
parameters between nominally identical systems can otherwise impair the
synchrony between the two systems.
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Figure 5. (a) Experimental setup showing the use of DSP hardware to implement a band-pass filter
and delay. (b) Equivalent discrete-time mathematical block diagram of a dynamical system.

Analogue delay lines typically use either optical fibre or coaxial cables to
achieve a time delay of L/v, where L is the length of the transmission medium and
v is the propagation speed. Such systems cannot be scaled to large time delays
because the required delay lines are either impractically long or prohibitively
lossy. DSP systems, by contrast, can produce a lossless time delay that is limited
only by the available memory and sampling rate. The use of digital processing
in nonlinear dynamical systems dates to 1982, when Hopf et al. (1982) used a
computer and ADC/digital-to-analogue converter (DAC) to achieve long delay
times for a similar opto-electronic oscillator. Since then, DSP systems have
dramatically improved in performance and cost, and are now commonplace in
consumer electronics.

Perhaps, the most compelling argument in favour of DSP is that it allows real-
time adjustment of the gain, delay and filter coefficients—parameters that are
typically static in analogue filter systems. In §6, we describe an adaptive control
scheme that takes advantage of this flexibility provided by digital processing.

Figure 5a shows how the original experimental apparatus (figure 1a) was
adapted to incorporate DSP. The system uses the same laser, electro-optic
modulator and photoreceiver as its continuous-time counterpart, but the filtering
and delay are performed using a DSP board. The DSP board uses an ADC to
sample and digitize the input signal r(t), forming a discrete-time input sequence

p[n] ≡ p(nTs), (3.1)

where n is an integer and Ts denotes the sampling period. The discrete-time
signal p[n] is stored in a memory buffer to produce the desired delay and is then
digitally filtered. The output signal x[n] is then routed through a complementary
DAC to yield the analogue output signal x(t) that drives the electro-optic
modulator. The complete system is therefore a hybrid discrete/continuous-time
system that retains the advantages of optical signal transmission, while exploiting
the flexibility of discrete-time signal processing.
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The DSP board used in these experiments contains a 225 MHz floating-point
DSP processor, 16 MB RAM and a 16-bit ADC/DAC. The maximum sampling
frequency was limited by the ADC/DAC chip, which was designed for audio
signals. Except where noted, we used a sampling rate of 1/Ts = 96 × 103 samples
per second (S s−1) in these experiments, although the system could be scaled to
higher frequencies by replacing the ADC/DAC hardware. The low-pass filter in
the feedback loop restricts dynamical behaviour to frequencies well below the
Nyquist frequency, ensuring that the sampling does not contribute signficantly to
the filtering. Higher-performance field-programmable gate array (FPGA) boards
could perform the same operations at sampling rates as high as 1 GS s−1.

Figure 5b shows a mathematical block diagram of the discrete-time system.
In this system, k denotes the feedback delay, which we take to be an integer
number of time steps, and the dynamical filter is described by discrete difference
equations rather than differential equations. The digital filter was designed to act
as a two-pole band-pass filter that approximates the response of the continuous-
time filter described in equations (2.6)–(2.8). The discrete-time transfer function
H (z) is obtained from the continuous-time transfer function H (s) by applying
a bilinear transform with frequency pre-warping (Oppenheim et al. 1999). This
process yields the following equivalent discrete-time transfer function:

H (z) = 1
4
(1 − zL)(1 + zH)

(1 − z−2)

(1 − zLz−1)(1 − zHz−1)
, (3.2)

where zL and zH are the poles of the discrete-time filter, which are related to the
time constants τL and τH and sampling period Ts by

zH =
1 − tan

(
Ts

2τH

)

1 + tan
(

T
2τH

) and zL =
1 − tan

(
Ts

2τL

)

1 + tan
(

T
2τL

) . (3.3)

The discrete-time filter can be represented by state-space evolution equations
analogous to equations (2.7) and (2.8),

u[n + 1] = Au[n] + Br[n] (3.4)

and

x[n] = Cu[n] + Dr[n], (3.5)

where r[n] is the filter input, x[n] is the output and u[n] is a two-dimensional
state vector. For the filter described in equation (3.2), the state-space matrices
can be expressed as

A =
[−(zL + zH) −zL

zH 0

]
, B =

[
zL
0

]
, (3.6)

C =
[
0 −(1 − zL)(1 + zH)(1 + zLzH)

4zLzH

]
and D = 1

4
(1 − zL)(1 + zH). (3.7)
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Figure 6. (a) Block diagram of two linearly coupled opto-electronic chaotic oscillators, where the
coupling and delays are taken to be in the optical path connecting the two systems. (b) Equivalent
system, obtained by commuting the coupling and delay with the band-pass filter. In practice, the
coupling is implemented optically as in (a), but for convenience, we analyse the equivalent scenario
depicted in (b).

The filter input is related to the filter output through a nonlinearity and delay

r[n] = β cos2(x[n − k] + φ0), (3.8)

where β is the round-trip gain defined in equation (2.4) and the delay is chosen
to be k = 22, which, at a sampling rate of 96 kS s−1, corresponds to a feedback
delay of 230 μs.

4. Coupled systems and synchronization

An interesting property of chaotic systems is that two systems, when properly
coupled together, can synchronize with one another and evolve along the same
chaotic orbit (Fujisaka & Yamada 1983; Pecora & Carroll 1990; Pikovsky et al.
2001; Boccaletti 2008). Many proposed applications of chaos, including secure
communication systems, sensor networks and data assimilation and prediction,
rely on this phenomenon of synchronization between chaotic oscillators (Argyris
et al. 2005; Golubitsky et al. 2005; Boccaletti et al. 2006; Arenas et al. 2008;
Kanter et al. 2008). There have been some analytical studies of the coupling
threshold required for synchronization in delayed-feedback systems (Bünner &
Just 1998; Pyragas 1998). Peil et al. (2007) reported some experimental
measurements and theoretical models of synchronization between time-delayed
opto-electronic oscillators such as those discussed here. We seek, in this section,
to more thoroughly investigate how two such systems can be coupled together,
and the conditions under which they can synchronize.

The block diagram in figure 6a shows the most general type of linear optical
coupling between two systems. In this case, we imagine that the optical signal
emerging from the modulator in system 1 is split and fed back into both systems.
The constants β11 and τ11 denote the self-feedback gain and delay for system 1,
and β12 and τ12 describe the coupling from system 1 → 2. Similarly, β22, and τ22

Phil. Trans. R. Soc. A (2010)
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are the self-feedback parameters of system 2, and β21 and τ21 describe the coupling
from 2 → 1. We assume that the band-pass filters between the two systems
are identical.

The filter (H (s)), gain (βij) and delay (τij) are all linear, time-invariant
operations, and they can therefore be freely permuted without changing the
dynamics of the system. Using these arguments, one can transform the optically
coupled system shown in figure 6a to the equivalent system shown in figure 6b,
where the coupling instead applies to the electrical signals xj(t) emerging from the
band-pass filters. This coupling configuration can be described by the following
coupled delay differential equations:

du1

dt
= Au1(t) + B cos2[β11Cu1(t − τ11) + β21Cu2(t − τ21) + φ1] (4.1)

and

du2

dt
= Au2(t) + B cos2[β22Cu2(t − τ22) + β12Cu1(t − τ12) + φ2], (4.2)

where u1 and u2 are the state vectors for the band-pass filters in oscillators 1
and 2, respectively.

To understand the conditions under which synchrony can occur, we begin by
assuming that a synchronous solution exists

u1(t) = u2(t − τ0) ≡ u(t), (4.3)

where we have allowed for lag synchrony with a time delay τ0. Upon substituting
this assumption into equations (4.1) and (4.2), we obtain self-consistent
dynamical equations for u(t) only under the following conditions:

φ1 = φ2, β11 = β22, β12 = β21, τ11 = τ22 and τ0 = 1
2
(τ21 − τ12). (4.4)

While these conditions are necessary for a synchronous solution to exist, they do
not guarantee the stability of this solution.

We now further restrict our attention to cases in which the systems synchronize
in a state that obeys the same dynamical equation as that of an uncoupled,
isolated system described by parameters β, τ and φ0. This lifts the constraint
that β11 = β22 and β12 = β21, but imposes the following additional conditions for
synchrony:

β11 + β21 = β22 + β12 ≡ β, (4.5)

τ11 = τ21 = τ22 = τ12 ≡ τ , (4.6)

φ1 = φ2 ≡ φ0 (4.7)

and τ0 = 0. (4.8)
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Figure 7. Block diagram of two diffusively coupled oscillators. The coupling is constructed in a
way that guarantees that the resulting system admits a synchronous solution of the form x1(t) =
x2(t) ≡ x(t), where x(t) exhibits the same dynamical behaviour as that of an isolated system.

In this scenario, which is termed ‘diffusive coupling’, the constraint on the
coupling conditions (equation (4.5)) can be cast in terms of two dimensionless
parameters κ1 and κ2, defined through the relations

β21 = κ1β, β11 = (1 − κ1)β (4.9)

and

β12 = κ2β, β22 = (1 − κ2)β. (4.10)

With this definition, (1 − κ1) and κ1 describe relative proportions of self-feedback
versus cross-coupled feedback, respectively, entering system 1, and κ2 has a similar
interpretation for system 2.

Figure 7 presents the block diagram of two diffusively coupled oscillators. In
order to make the equations comparable in form to the single-oscillator system
described in §2, we have factored out a common scale factor β from all four of the
coupling terms and commuted this scale factor with the band-pass filter H (s).

The diffusively coupled oscillator system shown in figure 7 is described by the
following coupled equations:

du1

dt
= Au1(t) + Bβ cos2(C[(1 − κ1)u1(t − τ) + κ1u2(t − τ)] + φ0) (4.11)

and

du2

dt
= Au2(t) + Bβ cos2(C[(1 − κ2)u2(t − τ) + κ2u1(t − τ)] + φ0). (4.12)

These equations can be seen to admit an isochronally synchronized solution
that, when synchronized, satisfies the same equation (2.10) given earlier for an
isolated system.

To investigate the stability of the synchronized solution, we perform the
following change of variables:

u+(t) = 1
2
[u1(t) + u2(t)] and u−(t) = 1

2
[u1(t) − u2(t)], (4.13)
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Figure 8. Measured and simulated normalized synchronization error as a function of κ for β = 6
(grey lines) and 8 (black lines). The measurements (solid lines) and simulations (dotted lines) were
conducted using symmetric bidirectional coupling, (κ1 = κ2 ≡ κ).

where the difference u−(t) is expected to converge to zero for a stable synchronous
solution. Expressing equations (4.11) and (4.12) in terms of u±, and linearizing
about the synchronous state, we find

du+
dt

= Au+(t) + Bβ cos2(Cu+(t − τ) + φ0) (4.14)

and
du−
dt

= Au−(t) + Bβ sin
(
2Cu+(t − τ) + 2φ0

)
(κ1 + κ2 − 1)u−(t − τ). (4.15)

Comparing equations (4.14) and (2.10), we see that u+(t) satisfies the same
dynamical equation as the isolated system, as expected. The two coupling
parameters appear in the second equation only in the combination (κ1 + κ2). We
therefore conclude that, for a given β, τ and φ0, the stability of the synchronous
solution depends only on the sum (κ1 + κ2), but not on the values of κ1 and κ2
individually.

Furthermore, in the special case that κ1 + κ2 = 1, equation (4.15) simplifies to

du−
dt

= Au−(t). (4.16)

Because the linear band-pass filter is stable (i.e. A has negative eigenvalues), the
difference vector u−(t) will always converge to zero according to the filter time
constants τL and τH whenever κ1 + κ2 = 1.

Figure 8 plots the measured and simulated normalized root mean square
(r.m.s.) synchronization error as a function of the coupling strength κ for the
case of bidirectional symmetric coupling, i.e. κ1 = κ2 ≡ κ, showing the regimes in
which the two systems synchronize. We define the normalized synchronization
error as
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σx ≡
(〈(x1(t) − x2(t))2〉

〈x2
1 (t) + x2

2 (t)〉
)1/2

, (4.17)

where 〈•〉 indicates a time average. The normalized error σx is zero in the case
of a synchronized solution, but approaches 1 in the limit that the two signals are
identically distributed, but uncorrelated. While the experimental measurements
and simulations were performed by taking κ1 = κ2, the results can be generalized
to other combinations of κ1 and κ2 because the synchronization condition depends
only on the sum κ1 + κ2.

As indicated in figure 8, the two systems synchronize unconditionally for the
special case that κ1 + κ2 = 1, and they synchronize for a range of (κ1 + κ2) centred
symmetrically about this point. The range of values over which the systems
synchronize is found to depend on the feedback gain β. In general, we observed
that the higher values of β (and higher Lyapunov dimension) yield a narrower
synchronization regime.

5. Synchronization—transient dynamics

In addition to knowing whether two systems synchronize, it is also important
to understand the rate at which they converge to a synchronous state, which is
quantified by the transverse Lyapunov exponent (TLE) (Fujisaka & Yamada 1983;
Pecora & Carroll 1998). The TLE, denoted λT, defines the average exponential
rate at which a pair of coupled identical oscillators converge or diverge in phase
space. A negative TLE corresponds to converging trajectories, indicating stable
synchronization, while a positive exponent indicates diverging trajectories that
do not synchronize.

The TLE defines an important time scale in applications such as chaotic
communication and sensor networks that rely on synchronization. In chaotic
sensor networks with time-varying coupling, the TLE limits the speed of
perturbations that the system can track. In a chaotic communication system,
the TLE limits the attainable bit rate that can be successfully decoded.

Equally important is the (positive) maximal Lyapunov exponent, which
describes the rate at which initially synchronous solutions diverge from one
another when they are decoupled. This divergence rate is important in data
assimilation and prediction applications, which use synchronization to predict
the future behaviour of a dynamical system. Here, we present a numerical
and experimental study of the transient synchronization and desynchronization
dynamics of two coupled chaotic opto-electronic oscillators.

One method to determine the TLE is to suddenly couple two independent
and identical chaotic oscillators. By analysing the transition from the initially
uncorrelated dynamics to a synchronous state, we can determine the (finite-time)
TLE of the system. Conversely, if the two systems are initially synchronized, the
coupling can be suddenly turned off, allowing the trajectories to exponentially
diverge. By measuring the rate of exponential divergence, we find the maximal
Lyapunov exponent of the system (Cohen et al. 2008). Unlike conventional
methods, which require numerical solution of a linearized system of equations,
this approach can be applied even in cases when an exact model of the
physical system is unavailable or impractical. As long as two experimental
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Figure 9. (a) Experimentally measured time series showing synchronization of two coupled chaotic
oscillators. The two systems were uncoupled for t < 0 and symmetric bidirection coupling was
abruptly enabled at t = 0. (b) Measured absolute difference |x1(t) − x2(t)| plotted on a logarithmic
scale and smoothed to show exponential convergence of trajectories. By fitting a line to this slope,
one can estimate the finite-time transverse Lyapunov exponent λT that characterizes the time scale
over which synchronization occurs. (c) Experimentally measured time series showing divergence
of two initially synchronized systems, when the coupling is disabled at t = 0. (d) The finite-time
maximal Lyapunov exponent λ1 is estimated by measuring the average exponential divergence rate.
(a,c) Black line, x1(t); grey line, x2(t).

systems can be made to synchronize, the Lyapunov exponents describing
synchronization and desynchronization can be determined from transient
time-series analysis.

This method of determining the Lyapunov exponent is illustrated in figure 9,
which shows the exponential convergence and divergence of two coupled chaotic
opto-electronic oscillators. In figure 9a,b, the two oscillators were initially
uncoupled for t < 0, but the coupling was suddenly enabled at t = 0. Specifically,
for t > 0, the systems were bidirectionally coupled as shown in figure 7 with
κ1 = κ2 ≡ κ = 0.44. Figure 9a plots the measured outputs x1(t) and x2(t) for one
representative case, showing the transition from uncorrelated to synchronized
dynamics. Figure 9b shows the absolute difference |x1(t) − x2(t)|, smoothed with
a 100 μs sliding-window average, and plotted on semilogarithmic axes to clearly
show the exponential convergence. By fitting an exponential relation to this
curve, we determine the (negative) TLE. Figure 9c,d shows similar data obtained
when two initially synchronized systems are decoupled at t = 0, allowing them to
exponentially diverge. In this case, the (positive) maximum Lyapunov exponent
λ1 is similarly determined by finding the best-fit slope to the smoothed logarithmic
difference between the two traces.
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Figure 10. Histogram showing the distribution of finite-time transverse Lyapunov exponents,
measured over time intervals of 2, 4 and 8 ms. The transverse and maximal Lyapunov exponents
were determined by numerically simulating the coupled system and fitting the convergence or
diverence to an exponential relation, as depicted in figure 9b,d. (a) Converging time series and
(b) diverging time series. T0 = 0.4 ms, κ1 = κ2 = 0.4. Light grey line, T = 2 ms; dark grey line,
T = 4 ms; black line, T = 8 ms.

When determining the Lyapunov exponent using this method, the exponential
convergence or divergence is estimated only over a finite fitting interval T .
In practice, the allowable fitting interval is restricted by the synchronization
error floor, which is caused by noise and mismatches between the two systems
(Shahverdiev et al. 2005). In numerical simulations, the convergence/divergence
can be observed over many orders of magnitude, and we can therefore fit the
exponential relation over a larger time window T . If the fitting window is long
enough to span the entire chaotic attractor, this calculation reveals the ‘global’
or ‘asymptotic’ Lyapunov exponent. For a short fitting interval, the trajectory
remains only in a localized portion of the chaotic attractor, and thus we obtain
only a ‘local’ Lyaponov exponent. The local Lyapunov exponents vary about an
attractor, and their statistical distribution depends upon the dynamical nature
of the coupled system.

In figure 10, we show distributions of local Lyapunov exponents for
three choices of fitting time T for 105 simulated time series. The
histograms labelled (a) show the distribution of transverse local Lyapunov
exponents, obtained by simulating two initially independent systems that
are suddenly coupled together with κ1 = κ2 = 0.4 at t = 0. The histograms
labelled (b) show the distribution of maximum Lyapunov exponents, obtained
by simulating two initially synchronized systems that are suddenly released
at t = 0. In all cases, the histogram is Gaussian near its peak and
has non-Gaussian tails. The mean of each distribution converges to the
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the linearized transverse equations of the coupled system. (c) Comparison of calculated global
transverse Lyapunov exponents and the measured finite-time transverse Lyapunov exponents,
determined by measuring the transient convergence. The data points and error bars indicate the
average and standard deviation of the measured statistical distribution of λT, using a finite fitting
time of 4 ms. Black line, λ̄T simulation; black dots on a line, λ̄T experiment.

global or average (transverse) Lyapunov exponent λ̄, and the standard
deviation narrows in proportion to T−1/2, as expected (Ott 2002; Prasad &
Ramaswamy 1999).

When a mathematical model of the system is available, the TLEs can also
be calculated using the master stability function technique (Fujisaka & Yamada
1983; Pecora & Carroll 1998), i.e. by linearization about the synchronized chaotic
solution. Figure 11 compares the distribution of local TLEs obtained using both
methods. In figure 11a, we plot (in grey scale) the distribution of local TLEs
as a function of the coupling strength κ(= κ1 = κ2). These histograms were
obtained using time-series analysis to estimate the exponential convergence, as
illustrated in figure 9b. Because the time traces were initially uncorrelated, this
method only applies when the TLE is negative, corresponding to convergent time
series. As anticipated from equation (4.15), the systems converge unconditionally
when κ1 = κ2 = 0.5. Figure 11b plots the same distribution of TLEs, obtained
by numerically solving the linearized system of equations. Here, the linearized
equations are sensitive to both positive and negative phase-space growth, so
the distributions can go above zero. Apart from this expected difference, the
correspondence between these two methods is remarkably good.

In figure 11c, we plot the TLEs obtained from experimentally measured
converging time series of coupled systems. At each value of κ, we measured
the convergence rates λT for 100 pairs of time series. The mean λ̄T and
standard deviation obtained by fitting the data to a Gaussian distribution
are shown as the dots and bars in the figure, respectively. For comparison,
the line indicates the ‘global’ TLE computed using the linearized system of
equations. The experimental data agree well with the numerical simulations,
which demonstrates that time-series analysis of converging experimental signals
is a powerful technique for quantifying the TLEs of a system, even if a numerical
model is unavailable.

Phil. Trans. R. Soc. A (2010)

 on May 23, 2014rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


360 T. E. Murphy et al.

6. Adaptive synchronization

As shown in §5, synchronization can depend on the coupling between
oscillators. In a practical network consisting of spatially separated chaotic
oscillators, time-varying environmental conditions can cause the coupling to
vary unpredictably. Then, in order to maintain synchronization, it is essential
to dynamically compensate for these variations. Recently, several algorithms
have been developed to maintain or produce synchrony in a network of chaotic
oscillators (Ito & Kaneko 2001; Feki 2003; Zhou & Kurths 2006; de Lellis
et al. 2008). Sorrentino & Ott (2008, 2009a,b) proposed and simulated an
adaptive algorithm to estimate and track a priori unknown coupling changes
in a network of chaotic oscillators. The estimate is then used to compensate for
the environmental perturbations, thereby ensuring synchrony. In this section, we
present an experimental demonstration of this scheme using a pair of nonlinear
time-delayed opto-electronic feedback loops described in §2. A DSP board,
incorporated as part of the feedback loop (see figure 5), enables us to perform
real-time computations allowing the implementation of the adaptive tracking
algorithm.

In our experimental setup, shown in figure 12a, we consider two opto-
electronic feedback loops that are unidirectionally coupled through a time-varying
communication channel, which is described by a coupling factor κ(t). An adaptive
control scheme is implemented in the receiver in order to maintain synchrony
between the two systems and, in the process, determine an estimate of the channel
condition.

Figure 12b shows an equivalent discrete-time mathematical block diagram of
the two unidirectionally coupled systems with a time-varying channel. Here,
we denote the channel coupling by κ[n]. The receiving system has no a priori
knowledge of κ[n] and must therefore form an estimate, denoted κ̄[n], in order
to maintain isochronal synchrony. As before, the discrete-time band-pass filters
H (z) are governed by the state-space equations

ui[n + 1] = Aui[n] + Bri[n] (i = 1, 2) (6.1)

and

xi[n] = Cui[n] + Dri[n] (i = 1, 2), (6.2)

where ri[n], (i = 1, 2) are the filter inputs, xi[n] are the corresponding filter
outputs and A, B, C and D describe the band-pass filter. The filter outputs
are fed back to the inputs through a nonlinearity and time delay according to

r1[n] = β cos2(x1[n − k] + φ0) (6.3)

and

r2[n] = β cos2[(1 − κ̄[n − k])x2[n − k] + κ[n − k]x1[n − k] + φ0], (6.4)

where κ̄[n] is the local estimate of the channel coupling.
One can clearly see that these equations admit a synchronous solution in the

case that κ̄[n] = κ[n], i.e. provided the receiver tracks the coupling strength
κ[n]. The analysis presented in §4 showed that, for static coupling, i.e. when
κ[n] = κ̄[n] ≡ κ, the synchronous solution is stable over a continuous range of
values of κ. This result suggests that if κ[n] varies slowly, while remaining within
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Figure 12. (a) Experimental setup of unidirectionally coupled feedback loops, in which the coupling
factor κ is allowed to vary slowly, to simulate the effect of an atmospheric perturbation or
environmental disturbance: (i) transmitter and (ii) receiver. (b) Equivalent discrete-time block
diagram of two oscillators, unidirectionally coupled over a time-varying channel. The receiver has
no prior knowledge of κ[n], and must therefore form an estimate, denoted κ̄[n], in order to keep
the two systems sychronized.

the bounds required for synchrony stability, the systems could stay synchronized
as long as the receiver is able to track the variation with sufficient accuracy. We
emphasize that the receiver does not have a direct knowledge of κ[n], but only
receives the product κ[n]x1[n], as shown in figure 12b.
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Sorrentino & Ott (2008, 2009a,b) prescribed a strategy in which the local factor
κ̄[n] is adjusted in a way that minimizes the average synchronization error. This
yields the following estimate κ̄[n]:

κ̄[n] = 〈κx1x2〉LPF

〈x2
2 〉LPF

≡ N [n]
D[n] , (6.5)

where 〈•〉LPF denotes an exponentially weighted moving average, which is
equivalent to a discrete-time low-pass filter. This averaging process can be
implemented with the following discrete-time iterative equations:

N [n] = z0N [n − 1] + (1 − z0)κ[n]x1[n]x2[n] (6.6)

and

D[n] = z0D[n − 1] + (1 − z0)x2
2 [n], (6.7)

where the forgetting factor z0 is the pole of the discrete-time low-pass filter. The
time window over which the averaging is performed is approximately Ts(1 − z0)

−1,
where Ts is the sampling period. We note that, as required, the adaptive scheme
described by equation (6.5) relies only on the product κ[n]x1[n] and x2[n] to
form the estimate κ̄[n]. In a high-speed application, the low-pass filter could
easily be implemented using an electrical mixer in place of the discrete-time
averaging filter.

We experimentally demonstrated the adaptive synchronization scheme using a
pair of coupled nonlinear opto-electronic oscillators, as shown in figure 12a. For
these experiments, the band-pass filters were adjusted to have a pass band of
100 Hz to 2.5 kHz, the DSP sampling frequency was reduced to 24 kS s−1 and the
time delay was measured to be k = 36 time steps, or 1.5 ms. We chose a feedback
strength of β = 3.58, which, under these conditions, was found to yield robust
chaotic behaviour. The low-pass filter used in the adaptive synchronization rule
was implemented with a forgetting factor of z0 = 0.95, which corresponds to a
filter response time of 208 μs.

Figure 13 presents experimental measurements and numerical simulations
showing how both the synchronization error and tracking signal κ̄[n] respond to
an abrupt change in the coupling from κ = 0.8 to κ = 1.13. For t < 0, the coupling
strength κ was held constant at κ = 0.80. Under these conditions, the receiver
forms the correct estimate κ̄ = 0.8, which gives a small synchronization error. At
t = 0, the coupling strength was switched abruptly to κ = 1.13, which causes the
two loops to briefly lose synchrony. However, the receiver adaptively readjusts
the parameter κ̄ to track κ[n] and the synchrony is regained. The numerical
simulations shown in figure 13c,d exhibit similar behaviour. The response time
of the adaptive synchronization method was found to be limited primarily by
the exponentially weighted moving-average filter. In separate work, we studied
the ability of this adaptive scheme to track sinusoidal variations in coupling, and
we quantified the limitations on the magnitude and frequency of the perturbation
that can be tracked (Ravoori et al. 2009).
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Figure 13. (a,b) Measured and (c,d) simulated response of the adaptive coupling system to a sudden
change in κ. In these plots, the coupling strength κ was changed abruptly from 0.80 to 1.13 at
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In (a) and (c), we plot the tracking signal κ̄(t) (grey line) in comparison to the coupling signal
κ(t) (black line). In (b) and (d), we plot the difference x1(t) − x2(t), showing the initial loss of
synchrony followed by recovery.

7. Conclusion

Many potential applications, such as secure communication, sensor networks,
spread-spectrum communication, chaotic radars and random number generators
could benefit from a nonlinear dynamical system that is simple to model,
easy to implement and capable of generating robust, high-dimensional, chaotic
waveforms. This paper presents a comprehensive analysis and characterization of
a nonlinear opto-electronic feedback system that meets these criteria. The system
uses electro-optic modulation and optical transmission, and it can therefore take
advantage of the vast array of low-cost, high-speed, widely available components
originally developed for fibre-optic communication networks. We describe a new
approach in which the delayed electrical feedback and filtering is implemented
using real-time DSP. This greatly facilitates matching of filter characteristics
between systems, and also allows for real-time control and adjustment of the
feedback parameters—something that could not be easily accomplished with
traditional analogue signal processing.

Because most of the aforementioned applications of chaotic signals require
synchronization between two or more systems, we explore the conditions under
which the coupled system will synchronize. We present a new technique to
experimentally quantify the rate of convergence when two systems are coupled
and the rate of divergence when they are released. Finally, we demonstrate
an adaptive technique that automatically maintains synchronization between
coupled systems, in the presence of an unknown and time-varying coupling
between the two.

This work was supported by DOD MURI grant (ONR N000140710734) and the US–Israel
Binational Science Foundation.

Phil. Trans. R. Soc. A (2010)

 on May 23, 2014rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


364 T. E. Murphy et al.

References

Arenas, A., Díaz-Guilera, A., Kurths, J., Moreno, Y. & Zhou, C. 2008 Synchronization in complex
networks. Phys. Rep. 469, 93–153. (doi:10.1016/j.physrep.2008.09.002)

Argyris, A. et al. 2005 Chaos-based communications at high bit rates using commercial fibre-optic
links. Nature 438, 343–346. (doi:10.1038/nature04275)

Argyris, A., Hamacher, M., Chlouverakis, K. E., Bogris, A. & Syvridis, D. 2008 Photonic integrated
device for chaos applications in communications. Phys. Rev. Lett. 100, 194 101. (doi:10.1103/
PhysRevLett.100.194101)

Blakely, J. N., Illing, L. & Gauthier, D. J. 2004 High-speed chaos in an optical feedback system with
flexible timescales. IEEE J. Quantum Electron. 40, 299–305. (doi:10.1109/JQE.2003.823021)

Boccaletti, S. 2008 The synchronized dynamics of complex systems (eds A. C. J. Luo & G.
Zaslavsky). Monograph Series on Nonlinear Science and Complexity, vol. 6. Amsterdam, The
Netherlands: Elsevier.

Boccaletti, S., Latora, V., Moreno, Y., Chavez, M. & Hwang, D.-U. 2006 Complex networks:
structure and dynamics. Phys. Rep. 424, 175–308. (doi:10.1016/j.physrep.2005.10.009)

Bünner, M. J. & Just, W. 1998 Synchronization of time-delay systems. Phys. Rev. E 58,
R4072–R4075. (doi:10.1103/PhysRevE.58.R4072)

Cohen, A. B., Ravoori, B., Murphy, T. E. & Roy, R. 2008 Using synchronization for prediction of
high-dimensional chaotic dynamics. Phys. Rev. Lett. 59, 117–128.

de Lellis, P., Di Bernardo, M. & Garofalo, F. 2008 Synchronization of complex networks through
local adaptive coupling. Chaos 18, 037 110. (doi:10.1063/1.2944236)

Farmer, J. D. 1982 Chaotic attractors of an infinite-dimensional dynamical system. Physica D 4,
366–393. (doi:10.1016/0167-2789(82)90042-2)

Feki, M. 2003 An adaptive chaos synchronization scheme applied to secure communication. Chaos
Solitons Fract. 18, 141–148. (doi:10.1016/S0960-0779(02)00585-4)

Fischer, I., Vicente, R., Buldú, J. M., Peil, M., Mirasso, C. R., Torrent, M. C. & García-Ojalvo, J.
2006 Zero-lag long-range synchronization via dynamical relaying. Phys. Rev. Lett. 97, 123 902.
(doi:10.1103/PhysRevLett.97.123902)

Franz, A. L., Roy, R., Shaw, L. B. & Schwartz, I. B. 2008 Effect of multiple time delays on
intensity fluctuation dynamics in fiber ring lasers. Phys. Rev. E 78, 016 208. (doi:10.1103/
PhysRevE.78.016208)

Fujisaka, H. & Yamada, T. 1983 Stability theory of synchronized motion in coupled-oscillator
systems. Prog. Theor. Phys. 69, 32–47. (doi:10.1143/PTP.69.32)

Goedgebuer, J. P., Larger, L. & Porte, H. 1998 Optical cryptosystem based on synchronization of
hyperchaos generated by a delayed feedback tunable laser diode. Phys. Rev. Lett. 80, 2249–2252.
(doi:10.1103/PhysRevLett.80.2249)

Goedgebuer, J.-P., Levy, P., Larger, L., Chen, C.-C. & Rhodes, W. T. 2002 Optical communication
with synchronized hyperchaos generated electrooptically. IEEE. J. Quantum Electron. 38,
1178–1183. (doi:10.1109/JQE.2002.802025)

Golubitsky, M., Stewart, I. & Torok, A. 2005 Patterns of synchrony in coupled cell networks with
multiple arrows. SIAM J. Appl. Dyn. Syst. 4, 78–100. (doi:10.1137/040612634)

Heismann, F., Korotky, S. K. & Veselka, J. J. 1997 Lithium niobate integrated optics: selected
contemporary devices and system applications. In Optical fiber telecommunications III B (eds
I. P. Kaminow & T. L. Koch), pp. 377–462. New York, NY: Academic.

Hopf, F. A., Kaplan, D. L., Gibbs, H. M. & Shoemaker, R. L. 1982 Bifurcations to chaos in optical
bistability. Phys. Rev. A 25, 2172–2183. (doi:10.1103/PhysRevA.25.2172)

Ikeda, K. & Matsumoto, K. 1987 High-dimensional chaotic behavior in systems with time-delayed
feedback. Physica D 29, 223–235. (doi:10.1016/0167-2789(87)90058-3)

Illing, L., Gauthier, D. J. & Roy, R. 2007 Controlling optical chaos, spatiotemporal dynamics,
and patterns. In Advances in atomic, molecular, and optical physics, vol. 53 (eds G. Rempe &
M. O. Scully), pp. 615–697. New York, NY: Academic.

Ito, J. & Kaneko, K. 2001 Spontaneous structure formation in a network of chaotic units
with variable connection strengths. Phys. Rev. Lett. 88, 028 701–028 704. (doi:10.1103/
PhysRevLett.88.028701)

Phil. Trans. R. Soc. A (2010)

 on May 23, 2014rsta.royalsocietypublishing.orgDownloaded from 

http://dx.doi.org/doi:10.1016/j.physrep.2008.09.002
http://dx.doi.org/doi:10.1038/nature04275
http://dx.doi.org/doi:10.1103/PhysRevLett.100.194101
http://dx.doi.org/doi:10.1103/PhysRevLett.100.194101
http://dx.doi.org/doi:10.1109/JQE.2003.823021
http://dx.doi.org/doi:10.1016/j.physrep.2005.10.009
http://dx.doi.org/doi:10.1103/PhysRevE.58.R4072
http://dx.doi.org/doi:10.1063/1.2944236
http://dx.doi.org/doi:10.1016/0167-2789(82)90042-2
http://dx.doi.org/doi:10.1016/S0960-0779(02)00585-4
http://dx.doi.org/doi:10.1103/PhysRevLett.97.123902
http://dx.doi.org/doi:10.1103/PhysRevE.78.016208
http://dx.doi.org/doi:10.1103/PhysRevE.78.016208
http://dx.doi.org/doi:10.1143/PTP.69.32
http://dx.doi.org/doi:10.1103/PhysRevLett.80.2249
http://dx.doi.org/doi:10.1109/JQE.2002.802025
http://dx.doi.org/doi:10.1137/040612634
http://dx.doi.org/doi:10.1103/PhysRevA.25.2172
http://dx.doi.org/doi:10.1016/0167-2789(87)90058-3
http://dx.doi.org/doi:10.1103/PhysRevLett.88.028701
http://dx.doi.org/doi:10.1103/PhysRevLett.88.028701
http://rsta.royalsocietypublishing.org/


Delayed-feedback nonlinear oscillators 365

Kanter, I., Kopelowitz, E. & Kinzel, W. 2008 Public channel cryptography: chaos synchronization
and Hilbert’s tenth problem. Phys. Rev. Lett. 101, 084 102. (doi:10.1103/PhysRevLett.
101.084102)

Kaplan, J. L. & Yorke, J. A. 1979 Chaotic behavior of multidimensional difference equations. In
Functional differential equations and approximations of fixed points (eds H.-O. Peitgen & H.-O.
Walther), p. 204. Berlin, Germany: Springer.

Klein, E., Gross, N., Rosenbluh, M., Kinzel, W., Khaykovich, L. & Kanter, I. 2006 Stable isochronal
synchronization of mutually coupled chaotic lasers. Phys. Rev. E 73, 066 214. (doi:10.1103/
PhysRevE.73.066214)

Kouomou, Y. C., Colet, P., Larger, L. & Gastaud, N. 2005 Chaotic breathers in delayed
electro-optical systems. Phys. Rev. Lett. 95, 203 903. (doi:10.1103/PhysRevLett.95.203903)

Mariño, I. P., Míguez, J. & Meucci, R. 2009 Monte Carlo method for adaptively estimating the
unknown parameters and the dynamic state of chaotic systems. Phys. Rev. E 79, 056 218.
(doi:10.1103/PhysRevE.79.056218)

Neyer, A. & Voges, E. 1986 Dynamics of electrooptic bistable devices with delayed feedback. IEEE
J. Quantum Electron. 18, 2009–2015. (doi:10.1109/JQE.1982.1071487)

Oppenheim, A. V., Schafer, R. W. & Buck, J. R. 1999 Discrete-time signal processing, 2nd edn.
New Jersey, NJ: Prentice Hall.

Ott, E. 2002 Chaos in dynamical systems, ch. 9, pp. 363–367, 2nd edn. Cambridge, UK: Cambridge
University Press.

Pecora, L. M. & Carroll, T. L. 1990 Synchronization in chaotic systems. Phys. Rev. Lett. 64,
821–824. (doi:10.1103/PhysRevLett.64.821)

Pecora, L. M. & Carroll, T. L. 1998 Master stability functions for synchronized chaotic systems.
Phys. Rev. Lett. 80, 2109–2112. (doi:10.1103/PhysRevLett.80.2109)

Peil, M., Larger, L. & Fischer, I. 2007 Versatile and robust chaos synchronization phenomena
imposed by delayed shared feedback coupling. Phys. Rev. E 76, 045 201. (doi:10.1103/
PhysRevE.76.045201)

Peil, M., Jacquot, M., Chembo, Y. K., Larger, L. & Erneux, T. 2009 Routes to chaos and
multiple time scale dynamics in broadband bandpass nonlinear delay electro-optic oscillators.
Phys. Rev. E 79, 026 208. (doi:10.1103/PhysRevE.79.026208)

Pikovsky, A., Rosenblum, M. & Kurths, J. 2001 Synchronization—a universal concept in nonlinear
sciences. Cambridge, UK: Cambridge University Press.

Prasad, A. & Ramaswamy, R. 1999 Characteristic distributions of finite-time Lyapunov exponents.
Phys. Rev. E 60, 2761–2766. (doi:10.1103/PhysRevE.60.2761)

Pyragas, K. 1998 Synchronization of coupled time-delay systems: analytical estimations.
Phys. Rev. E 58, 3067–3071. (doi:10.1103/PhysRevE.58.3067)

Quinn, J. C., Bryant, P. H., Creveling, D. R., Klein, S. R. & Abarbanel, H. D. I. 2009 Parameter
and state estimation of experimental chaotic systems using synchronization. Phys. Rev. E 80,
016 201. (doi:10.1103/PhysRevE.80.016201)

Ravoori, B., Cohen, A. B., Setty, A. V., Sorrentino, F., Murphy, T. E., Ott, E. & Roy, R.
2009 Adaptive synchronization of coupled chaotic oscillators. Phys. Rev. E 80, 056 205.
(doi:10.1103/PhysRevE.80.056205)

Reidler, I., Aviad, Y., Rosenbluh, M. & Kanter, I. 2009 Ultrahigh-speed random number
generation based on a chaotic semiconductor laser. Phys. Rev. Lett. 103, 024 102. (doi:10.1103/
PhysRevLett.103.024102)

Rogers-Dakin, E. A., García-Ojalvo, J., DeShazer, D. J. & Roy, R. 2006 Synchronization and
symmetry breaking in mutually coupled fiber lasers. Phys. Rev. E 73, 045 201. (doi:10.1103/
PhysRevE.73.045201)

Schwartz, I. B. & Shaw, L. B. 2007 Isochronal synchronization of delay-coupled systems. Phys.
Rev. E 75, 046 207. (doi:10.1103/PhysRevE.75.046207)

Shahverdiev, E. M., Nuriev, R. A., Hashimov, R. H. & Shore, K. A. 2005 Parameter mismatches,
variable delay times and synchronization in time-delayed systems. Chaos Solitons Fract. 25,
325–331. (doi:10.1016/j.chaos.2004.08.009)

Phil. Trans. R. Soc. A (2010)

 on May 23, 2014rsta.royalsocietypublishing.orgDownloaded from 

http://dx.doi.org/doi:10.1103/PhysRevLett.101.084102
http://dx.doi.org/doi:10.1103/PhysRevLett.101.084102
http://dx.doi.org/doi:10.1103/PhysRevE.73.066214
http://dx.doi.org/doi:10.1103/PhysRevE.73.066214
http://dx.doi.org/doi:10.1103/PhysRevLett.95.203903
http://dx.doi.org/doi:10.1103/PhysRevE.79.056218
http://dx.doi.org/doi:10.1109/JQE.1982.1071487
http://dx.doi.org/doi:10.1103/PhysRevLett.64.821
http://dx.doi.org/doi:10.1103/PhysRevLett.80.2109
http://dx.doi.org/doi:10.1103/PhysRevE.76.045201
http://dx.doi.org/doi:10.1103/PhysRevE.76.045201
http://dx.doi.org/doi:10.1103/PhysRevE.79.026208
http://dx.doi.org/doi:10.1103/PhysRevE.60.2761
http://dx.doi.org/doi:10.1103/PhysRevE.58.3067
http://dx.doi.org/doi:10.1103/PhysRevE.80.016201
http://dx.doi.org/doi:10.1103/PhysRevE.80.056205
http://dx.doi.org/doi:10.1103/PhysRevLett.103.024102
http://dx.doi.org/doi:10.1103/PhysRevLett.103.024102
http://dx.doi.org/doi:10.1103/PhysRevE.73.045201
http://dx.doi.org/doi:10.1103/PhysRevE.73.045201
http://dx.doi.org/doi:10.1103/PhysRevE.75.046207
http://dx.doi.org/doi:10.1016/j.chaos.2004.08.009
http://rsta.royalsocietypublishing.org/


366 T. E. Murphy et al.

So, P., Ott, E. & Dayawansa, W. P. 1994 Observing chaos: deducing and tracking the state
of a chaotic system from limited observation. Phys. Rev. E 49, 2650–2660. (doi:10.1103/
PhysRevE.49.2650)

Sorrentino, F. & Ott, E. 2008 Adaptive synchronization of dynamics on evolving complex networks.
Phys. Rev. Lett. 100, 114 101–114 104. (doi:10.1103/PhysRevLett.100.114101)

Sorrentino, F. & Ott, E. 2009a Using synchronism of chaos for adaptive learning of network
topology. Phys. Rev. E 79, 016 201. (doi:10.1103/PhysRevE.79.016201)

Sorrentino, F. & Ott, E. 2009b Using synchronization of chaos to identify the dynamics of unknown
systems. Chaos 19, 033 108. (doi:10.1063/1.3186458)

Toomey, J. P., Kane, D. M., Davidovic, A. & Huntington, E. H. 2009 Hybrid electronic/optical
synchronized chaos communication system. Opt. Express 17, 7556–7561. (doi:10.1364/
OE.17.007556)

Uchida, A., Rogister, F., García-Ojalvo, J. & Roy. R. 2005 Synchronization and communication
with chaotic laser systems. In Progress in optics, vol. 48 (ed. E. Wolf), pp. 203–341. Amsterdam,
The Netherlands: Elsevier.

Uchida, A. et al. 2008 Fast physical random bit generation with chaotic semiconductor lasers.
Nature Photon. 2, 728–732. (doi:10.1038/nphoton.2008.227)

Vallée, R. & Delisle, C. 1985 Route to chaos in an acousto-optic bistable device. Phys. Rev. A 31,
2390–2396. (doi:10.1103/PhysRevA.31.2390)

Yao, X. S. & Maleki, L. 1996 Optoelectronic microwave oscillator. J. Opt. Soc. Am. B. 13,
1725–1735. (doi:10.1364/JOSAB.13.001725)

Yousefi, M., Barbarin, Y., Beri, S., Bente, E. A. J. M., Smit, M. K., Nötzel, R. & Lenstra, D.
2007 New role for nonlinear dynamics and chaos in integrated semiconductor laser technology.
Phys. Rev. Lett. 98, 044 101. (doi:10.1103/PhysRevLett.98.044101)

Zhou, B. B. & Roy, R. 2007 Isochronal synchrony and bidirectional communication with delay-
coupled nonlinear oscillators. Phys. Rev. E 75, 026 205. (doi:10.1103/PhysRevE.75.026205)

Zhou, C. & Kurths, J. 2006 Dynamical weights and enhanced synchronization in adaptive complex
networks. Phys. Rev. Lett. 96, 164 102–164 105. (doi:10.1103/PhysRevLett.96.164102)

Phil. Trans. R. Soc. A (2010)

 on May 23, 2014rsta.royalsocietypublishing.orgDownloaded from 

http://dx.doi.org/doi:10.1103/PhysRevE.49.2650
http://dx.doi.org/doi:10.1103/PhysRevE.49.2650
http://dx.doi.org/doi:10.1103/PhysRevLett.100.114101
http://dx.doi.org/doi:10.1103/PhysRevE.79.016201
http://dx.doi.org/doi:10.1063/1.3186458
http://dx.doi.org/doi:10.1364/OE.17.007556
http://dx.doi.org/doi:10.1364/OE.17.007556
http://dx.doi.org/doi:10.1038/nphoton.2008.227
http://dx.doi.org/doi:10.1103/PhysRevA.31.2390
http://dx.doi.org/doi:10.1364/JOSAB.13.001725
http://dx.doi.org/doi:10.1103/PhysRevLett.98.044101
http://dx.doi.org/doi:10.1103/PhysRevE.75.026205
http://dx.doi.org/doi:10.1103/PhysRevLett.96.164102
http://rsta.royalsocietypublishing.org/

	Complex dynamics and synchronization of delayed-feedback nonlinear oscillators
	Introduction
	Chaotic opto-electronic oscillator
	Discrete-time implementation
	Coupled systems and synchronization
	Synchronization---transient dynamics
	Adaptive synchronization
	Conclusion
	References


