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Abstract

In statistical relational learning, the link predic-

tion problem is key to automatically understand

the structure of large knowledge bases. As in pre-

vious studies, we propose to solve this problem

through latent factorization. However, here we

make use of complex valued embeddings. The

composition of complex embeddings can handle

a large variety of binary relations, among them

symmetric and antisymmetric relations. Com-

pared to state-of-the-art models such as Neural

Tensor Network and Holographic Embeddings,

our approach based on complex embeddings is

arguably simpler, as it only uses the Hermitian

dot product, the complex counterpart of the stan-

dard dot product between real vectors. Our ap-

proach is scalable to large datasets as it remains

linear in both space and time, while consistently

outperforming alternative approaches on stan-

dard link prediction benchmarks.1

1. Introduction

Web-scale knowledge bases (KBs) provide a structured

representation of world knowledge, with projects such as

DBPedia (Auer et al., 2007), Freebase (Bollacker et al.,

2008) or the Google Knowledge Vault (Dong et al., 2014).

They enable a wide range of applications such as recom-

mender systems, question answering or automated personal

agents. The incompleteness of these KBs has stimulated

1Code is currently under clearance review and will be avail-
able at: https://github.com/ttrouill/complex
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research into predicting missing entries, a task known as

link prediction that is one of the main problems in Statisti-

cal Relational Learning (SRL, Getoor & Taskar, 2007).

KBs express data as a directed graph with labeled edges

(relations) between nodes (entities). Natural redundan-

cies among the recorded relations often make it possi-

ble to fill in the missing entries of a KB. As an exam-

ple, the relation CountryOfBirth is not recorded for

all entities, but it can easily be inferred if the relation

CityOfBirth is known. The goal of link prediction

is the automatic discovery of such regularities. How-

ever, many relations are non-deterministic: the combina-

tion of the two facts IsBornIn(John,Athens) and

IsLocatedIn(Athens,Greece) does not always

imply the fact HasNationality(John,Greece).

Hence, it is required to handle other facts involving these

relations or entities in a probabilistic fashion.

To do so, an increasingly popular method is to state the

link prediction task as a 3D binary tensor completion prob-

lem, where each slice is the adjacency matrix of one re-

lation type in the knowledge graph. Completion based on

low-rank factorization or embeddings has been popularized

with the Netflix challenge (Koren et al., 2009). A partially

observed matrix or tensor is decomposed into a product

of embedding matrices with much smaller rank, resulting

in fixed-dimensional vector representations for each entity

and relation in the database. For a given fact r(s,o) in which

subject s is linked to object o through relation r, the score

can then be recovered as a multi-linear product between the

embedding vectors of s, r and o (Nickel et al., 2016a).

Binary relations in KBs exhibit various types of pat-

terns: hierarchies and compositions like FatherOf,

OlderThan or IsPartOf—with partial/total,

strict/non-strict orders—and equivalence relations

like IsSimilarTo. As described in Bordes et al.

(2013a), a relational model should (a) be able to learn
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all combinations of these properties, namely reflexiv-

ity/irreflexivity, symmetry/antisymmetry and transitivity,

and (b) be linear in both time and memory in order to scale

to the size of present day KBs, and keep up with their

growth.

Dot products of embeddings scale well and can naturally

handle both symmetry and (ir-)reflexivity of relations; us-

ing an appropriate loss function even enables transitiv-

ity (Bouchard et al., 2015). However, dealing with anti-

symmetric relations has so far almost always implied an

explosion of the number of parameters (Nickel et al., 2011;

Socher et al., 2013) (see Table 1), making models prone

to overfitting. Finding the best ratio between expressive-

ness and parameter space size is the keystone of embedding

models.

In this work we argue that the standard dot product between

embeddings can be a very effective composition function,

provided that one uses the right representation. Instead

of using embeddings containing real numbers we discuss

and demonstrate the capabilities of complex embeddings.

When using complex vectors, i.e. vectors with entries in C,

the dot product is often called the Hermitian (or sesquilin-

ear) dot product, as it involves the conjugate-transpose of

one of the two vectors. As a consequence, the dot product

is not symmetric any more, and facts about antisymmetric

relations can receive different scores depending on the or-

dering of the entities involved. Thus complex vectors can

effectively capture antisymmetric relations while retaining

the efficiency benefits of the dot product, that is linearity in

both space and time complexity.

The remainder of the paper is organized as follows. We

first justify the intuition of using complex embeddings in

the square matrix case in which there is only a single rela-

tion between entities. The formulation is then extended to

a stacked set of square matrices in a third-order tensor to

represent multiple relations. We then describe experiments

on large scale public benchmark KBs in which we empiri-

cally show that this representation leads not only to simpler

and faster algorithms, but also gives a systematic accuracy

improvement over current state-of-the-art alternatives.

To give a clear comparison with respect to existing ap-

proaches using only real numbers, we also present an

equivalent reformulation of our model that involves only

real embeddings. This should help practitioners when im-

plementing our method, without requiring the use of com-

plex numbers in their software implementation.

2. Relations as Real Part of Low-Rank

Normal Matrices

In this section we discuss the use of complex embed-

dings for low-rank matrix factorization and illustrate this

by considering a simplified link prediction task with merely

a single relation type.

Understanding the factorization in complex space leads to a

better theoretical understanding of the class of matrices that

can actually be approximated by dot products of embed-

dings. These are the so-called normal matrices for which

the left and right embeddings share the same unitary basis.

2.1. Modelling Relations

Let E be a set of entities with |E| = n. A relation between

two entities is represented as a binary value Yso ∈ {−1, 1},

where s ∈ E is the subject of the relation and o ∈ E its

object. Its probability is given by the logistic inverse link

function:

P (Yso = 1) = σ(Xso) (1)

where X ∈ R
n×n is a latent matrix of scores, and Y the

partially observed sign matrix.

Our goal is to find a generic structure for X that leads to a

flexible approximation of common relations in real world

KBs. Standard matrix factorization approximates X by a

matrix product UV T , where U and V are two functionally

independent n ×K matrices, K being the rank of the ma-

trix. Within this formulation it is assumed that entities ap-

pearing as subjects are different from entities appearing as

objects. This means that the same entity will have two dif-

ferent embedding vectors, depending on whether it appears

as the subject or the object of a relation. This extensively

studied type of model is closely related to the singular value

decomposition (SVD) and fits well to the case where the

matrix X is rectangular. However, in many link prediction

problems, the same entity can appear as both subject and

object. It then seems natural to learn joint embeddings of

the entities, which entails sharing the embeddings of the

left and right factors, as proposed by several authors to

solve the link prediction problem (Nickel et al., 2011; Bor-

des et al., 2013b; Yang et al., 2015).

In order to use the same embedding for subjects and ob-

jects, researchers have generalised the notion of dot prod-

ucts to scoring functions, also known as composition func-

tions, that combine embeddings in specific ways. We

briefly recall several examples of scoring functions in Ta-

ble 1, as well as the extension proposed in this paper.

Using the same embeddings for right and left factors boils

down to Eigenvalue decomposition:

X = EWE−1 . (2)

It is often used to approximate real symmetric matrices

such as covariance matrices, kernel functions and distance

or similarity matrices. In these cases all eigenvalues and

eigenvectors live in the real space and E is orthogonal:
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Model Scoring Function Relation parameters Otime Ospace

RESCAL (Nickel et al., 2011) eTs Wreo Wr ∈ R
K2

O(K2) O(K2)
TransE (Bordes et al., 2013b) ||(es + wr)− eo||p wr ∈ R

K O(K) O(K)

NTN (Socher et al., 2013) uT
r f(esW

[1..D]
r eo + Vr

[

es
eo

]

+ br)
Wr ∈ R

K2D, br ∈ R
K

Vr ∈ R
2KD, ur ∈ R

K
O(K2D) O(K2D)

DistMult (Yang et al., 2015) < wr, es, eo > wr ∈ R
K O(K) O(K)

HolE (Nickel et al., 2016b) wT
r (F

−1[F [es]⊙F [eo]])) wr ∈ R
K O(K logK) O(K)

ComplEx Re(< wr, es, ēo >) wr ∈ C
K O(K) O(K)

Table 1. Scoring functions of state-of-the-art latent factor models for a given fact r(s, o), along with their relation parameters, time

and space (memory) complexity. The embeddings es and eo of subject s and object o are in R
K for each model, except for our model

(ComplEx) where es, eo ∈ C
K . D is an additional latent dimension of the NTN model. F and F

−1 denote respectively the Fourier

transform and its inverse, and ⊙ is the element-wise product between two vectors.

ET = E−1. We are in this work however explicitly inter-

ested in problems where matrices — and thus the relations

they represent — can also be antisymmetric. In that case

eigenvalue decomposition is not possible in the real space;

there only exists a decomposition in the complex space

where embeddings x ∈ C
K are composed of a real vec-

tor component Re(x) and an imaginary vector component

Im(x). With complex numbers, the dot product, also called

the Hermitian product, or sesquilinear form, is defined as:

〈u, v〉 := ūT v (3)

where u and v are complex-valued vectors, i.e. u =
Re(u) + iIm(u) with Re(u) ∈ R

K and Im(u) ∈ R
K cor-

responding to the real and imaginary parts of the vector

u ∈ C
K , and i denoting the square root of −1. We see here

that one crucial operation is to take the conjugate of the first

vector: ū = Re(u) − iIm(u). A simple way to justify the

Hermitian product for composing complex vectors is that it

provides a valid topological norm in the induced vectorial

space. For example, x̄Tx = 0 implies x = 0 while this

is not the case for the bilinear form xTx as there are many

complex vectors for which xTx = 0.

Even with complex eigenvectors E ∈ C
n×n, the inversion

of E in the eigendecomposition of Equation (2) leads to

computational issues. Fortunately, mathematicians defined

an appropriate class of matrices that prevents us from in-

verting the eigenvector matrix: we consider the space of

normal matrices, i.e. the complex n × n matrices X , such

that XX̄T = X̄TX . The spectral theorem for normal ma-

trices states that a matrix X is normal if and only if it is

unitarily diagonalizable:

X = EWĒT (4)

where W ∈ C
n×n is the diagonal matrix of eigenvalues

(with decreasing modulus) and E ∈ C
n×n is a unitary ma-

trix of eigenvectors, with Ē representing its complex con-

jugate.

The set of purely real normal matrices includes all sym-

metric and antisymmetric sign matrices (useful to model

hierarchical relations such as IsOlder), as well as all

orthogonal matrices (including permutation matrices), and

many other matrices that are useful to represent binary rela-

tions, such as assignment matrices which represent bipar-

tite graphs. However, far from all matrices expressed as

EWĒT are purely real, and equation 1 requires the scores

X to be purely real. So we simply keep only the real part

of the decomposition:

X = Re(EWĒT ) . (5)

In fact, performing this projection on the real subspace al-

lows the exact decomposition of any real square matrix X
and not only normal ones, as shown by Trouillon et al.

(2016).

Compared to the singular value decomposition, the eigen-

value decomposition has two key differences:

• The eigenvalues are not necessarily positive or real;

• The factorization (5) is useful as the rows of E can be

used as vectorial representations of the entities corre-

sponding to rows and columns of the relation matrix

X. Indeed, for a given entity, its subject embedding

vector is the complex conjugate of its object embed-

ding vector.

2.2. Low-Rank Decomposition

In a link prediction problem, the relation matrix is unknown

and the goal is to recover it entirely from noisy observa-

tions. To enable the model to be learnable, i.e. to gener-

alize to unobserved links, some regularity assumptions are

needed. Since we deal with binary relations, we assume

that they have low sign-rank. The sign-rank of a sign ma-

trix is the smallest rank of a real matrix that has the same

sign-pattern as Y :

rank±(Y ) = min
A∈Rm×n

{rank(A)|sign(A) = Y } . (6)
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This is theoretically justified by the fact that the sign-

rank is a natural complexity measure of sign matrices

(Linial et al., 2007) and is linked to learnability (Alon et al.,

2015), and empirically confirmed by the wide success of

factorization models (Nickel et al., 2016a).

If the observation matrix Y is low-sign-rank, then our

model can decompose it with a rank at most the double of

the sign-rank of Y . That is, for any Y ∈ {−1, 1}n×n, there

always exists a matrix X = Re(EWĒT ) with the same

sign pattern sign(X) = Y , where the rank of EWĒT is at

most twice the sign-rank of Y (Trouillon et al., 2016).

Although twice sounds bad, this is actually a good upper

bound. Indeed, the sign-rank is often much lower than the

rank of Y . For example, the rank of the n × n identity

matrix I is n, but rank±(I) = 3 (Alon et al., 2015). By

permutation of the columns 2j and 2j + 1, the I matrix

corresponds to the relation marriedTo, a relation known

to be hard to factorize (Nickel et al., 2014). Yet our model

can express it in rank 6, for any n.

By imposing a low-rank K ≪ n on EWĒT , only the first

K values of diag(W ) are non-zero. So we can directly have

E ∈ C
n×K and W ∈ C

K×K . Individual relation scores

Xso between entities s and o can be predicted through the

following product of their embeddings es, eo ∈ C
K :

Xso = Re(eTs Wēo) . (7)

We summarize the above discussion in three points:

1. Our factorization encompasses all possible binary re-

lations.

2. By construction, it accurately describes both symmet-

ric and antisymmetric relations.

3. Learnable relations can be efficiently approximated by

a simple low-rank factorization, using complex num-

bers to represent the latent factors.

3. Application to Binary Multi-Relational

Data

The previous section focused on modeling a single type of

relation; we now extend this model to multiple types of

relations. We do so by allocating an embedding wr to each

relation r, and by sharing the entity embeddings across all

relations.

Let R and E be the set of relations and entities present in

the KB. We want to recover the matrices of scores Xr for

all the relations r ∈ R. Given two entities s and o ∈ E , the

log-odd of the probability that the fact r(s,o) is true is:

P (Yrso = 1) = σ(φ(r, s, o; Θ)) (8)

where φ is a scoring function that is typically based on a

factorization of the observed relations and Θ denotes the

parameters of the corresponding model. While X as a

whole is unknown, we assume that we observe a set of

true and false facts {Yrso}r(s,o)∈Ω ∈ {−1, 1}|Ω|, corre-

sponding to the partially observed adjacency matrices of

different relations, where Ω ⊂ R⊗ E ⊗ E is the set of ob-

served triples. The goal is to find the probabilities of entries

Yr′s′o′ being true or false for a set of targeted unobserved

triples r′(s′, o′) /∈ Ω.

Depending on the scoring function φ(s, r, o; Θ) used to

predict the entries of the tensor X, we obtain different mod-

els. Examples of scoring functions are given in Table 1.

Our model scoring function is:

φ(r, s, o; Θ) = Re(< wr, es, ēo >) (9)

= Re(
K
∑

k=1

wrkeskēok) (10)

= 〈Re(wr),Re(es),Re(eo)〉

+ 〈Re(wr), Im(es), Im(eo)〉

+ 〈Im(wr),Re(es), Im(eo)〉

− 〈Im(wr), Im(es),Re(eo)〉 (11)

where wr ∈ C
K is a complex vector . These equations

provide two interesting views of the model:

• Changing the representation: Equation (10) would

correspond to DistMult with real embeddings, but

handles asymmetry thanks to the complex conjugate

of one of the embeddings2.

• Changing the scoring function: Equation (11) only in-

volves real vectors corresponding to the real and imag-

inary parts of the embeddings and relations.

One can easily check that this function is antisymmetric

when wr is purely imaginary (i.e. its real part is zero), and

symmetric when wr is real. Interestingly, by separating the

real and imaginary part of the relation embedding wr, we

obtain a decomposition of the relation matrix Xr as the

sum of a symmetric matrix Re(E diag(Re(wr))Ē
T ) and

a antisymmetric matrix Im(E diag(−Im(wr))Ē
T ). Re-

lation embeddings naturally act as weights on each la-

tent dimension: Re(wr) over the symmetric, real part of

〈eo, es〉, and Im(w) over the antisymmetric, imaginary part

of 〈eo, es〉. Indeed, one has 〈eo, es〉 = 〈es, eo〉, meaning

that Re(〈eo, es〉) is symmetric, while Im(〈eo, es〉) is an-

tisymmetric. This enables us to accurately describe both

2Note that in Equation (10) we used the standard componen-
twise multi-linear dot product < a, b, c >:=

∑
k
akbkck. This

is not the Hermitian extension as it is not properly defined in the
linear algebra literature.
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symmetric and antisymmetric relations between pairs of

entities, while still using joint representations of entities,

whether they appear as subject or object of relations.

Geometrically, each relation embedding wr is an

anisotropic scaling of the basis defined by the entity embed-

dings E, followed by a projection onto the real subspace.

4. Experiments

In order to evaluate our proposal, we conducted experi-

ments on both synthetic and real datasets. The synthetic

dataset is based on relations that are either symmetric or

antisymmetric, whereas the real datasets comprise differ-

ent types of relations found in different, standard KBs. We

refer to our model as ComplEx, for Complex Embeddings.

4.1. Synthetic Task

To assess the ability of our proposal to accurately model

symmetry and antisymmetry, we randomly generated a KB

of two relations and 30 entities. One relation is entirely

symmetric, while the other is completely antisymmetric.

This dataset corresponds to a 2 × 30 × 30 tensor. Figure

2 shows a part of this randomly generated tensor, with a

symmetric slice and an antisymmetric slice, decomposed

into training, validation and test sets. The diagonal is un-

observed as it is not relevant in this experiment.

The train set contains 1392 observed triples, whereas the

validation and test sets contain 174 triples each. Figure

1 shows the best cross-validated Average Precision (area

under Precision-Recall curve) for different factorization

models of ranks ranging up to 50. Models were trained

using Stochastic Gradient Descent with mini-batches and

AdaGrad for tuning the learning rate (Duchi et al., 2011),

by minimizing the negative log-likelihood of the logistic

model with L2 regularization on the parameters Θ of the

considered model:

min
Θ

∑

r(s,o)∈Ω

log(1+exp(−Yrsoφ(s, r, o; Θ)))+λ||Θ||22 .

(12)

In our model, Θ corresponds to the embeddings

es, wr, eo ∈ C
K . We describe the full algorithm in Ap-

pendix A.

λ is validated in {0.1, 0.03, 0.01, 0.003, 0.001, 0.0003,
0.00001, 0.0}. As expected, DistMult (Yang et al., 2015)

is not able to model antisymmetry and only predicts the

symmetric relations correctly. Although TransE (Bor-

des et al., 2013b) is not a symmetric model, it performs

poorly in practice, particularly on the antisymmetric rela-

tion. RESCAL (Nickel et al., 2011), with its large number

of parameters, quickly overfits as the rank grows. Canon-

ical Polyadic (CP) decomposition (Hitchcock, 1927) fails

Figure 2. Parts of the training, validation and test sets of the gener-

ated experiment with one symmetric and one antisymmetric rela-

tion. Red pixels are positive triples, blue are negatives, and green

missing ones. Top: Plots of the symmetric slice (relation) for the

10 first entities. Bottom: Plots of the antisymmetric slice for the

10 first entities.

on both relations as it has to push symmetric and antisym-

metric patterns through the entity embeddings. Surpris-

ingly, only our model succeeds on such simple data.

4.2. Datasets: FB15K and WN18

Dataset |E| |R| #triples in Train/Valid/Test

WN18 40,943 18 141,442 / 5,000 / 5,000

FB15K 14,951 1,345 483,142 / 50,000 / 59,071

Table 3. Number of entities, relations, and observed triples in each

split for the FB15K and WN18 datasets.

We next evaluate the performance of our model on the

FB15K and WN18 datasets. FB15K is a subset of Free-

base, a curated KB of general facts, whereas WN18 is a

subset of Wordnet, a database featuring lexical relations be-

tween words. We use original training, validation and test

set splits as provided by Bordes et al. (2013b). Table 3

summarizes the metadata of the two datasets.

Both datasets contain only positive triples. As in Bor-

des et al. (2013b), we generated negatives using the local

closed world assumption. That is, for a triple, we randomly

change either the subject or the object at random, to form a

negative example. This negative sampling is performed at

runtime for each batch of training positive examples.

For evaluation, we measure the quality of the ranking of

each test triple among all possible subject and object sub-

stitutions : r(s′, o) and r(s, o′), ∀s′, ∀o′ ∈ E . Mean Recip-

rocal Rank (MRR) and Hits at m are the standard evalua-

tion measures for these datasets and come in two flavours:

raw and filtered (Bordes et al., 2013b). The filtered metrics
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Figure 1. Average Precision (AP) for each factorization rank ranging from 1 to 50 for different state of the art models on the combined

symmetry and antisymmetry experiment. Top-left: AP for the symmetric relation only. Top-right: AP for the antisymmetric relation

only. Bottom: Overall AP.

are computed after removing all the other positive observed

triples that appear in either training, validation or test set

from the ranking, whereas the raw metrics do not remove

these.

Since ranking measures are used, previous studies gener-

ally preferred a pairwise ranking loss for the task (Bordes

et al., 2013b; Nickel et al., 2016b). We chose to use the neg-

ative log-likelihood of the logistic model, as it is a continu-

ous surrogate of the sign-rank, and has been shown to learn

compact representations for several important relations, es-

pecially for transitive relations (Bouchard et al., 2015). In

preliminary work, we tried both losses, and indeed the log-

likelihood yielded better results than the ranking loss (ex-

cept with TransE), especially on FB15K.

We report both filtered and raw MRR, and filtered Hits at 1,

3 and 10 in Table 2 for the evaluated models. Furthermore,

we chose TransE, DistMult and HolE as baselines since

they are the best performing models on those datasets to

the best of our knowledge (Nickel et al., 2016b; Yang et al.,

2015). We also compare with the CP model to emphasize

empirically the importance of learning unique embeddings

for entities. For experimental fairness, we reimplemented

these methods within the same framework as the ComplEx

model, using theano (Bergstra et al., 2010). However, due

to time constraints and the complexity of an efficient imple-

mentation of HolE, we record the original results for HolE

as reported in Nickel et al. (2016b).

4.3. Results

WN18 describes lexical and semantic hierarchies between

concepts and contains many antisymmetric relations such

as hypernymy, hyponymy, or being ”part of”. Indeed, the

DistMult and TransE models are outperformed here by

ComplEx and HolE, which are on par with respective fil-

tered MRR scores of 0.941 and 0.938. Table 4 shows the

filtered test set MRR for the models considered and each

relation of WN18, confirming the advantage of our model

on antisymmetric relations while losing nothing on the oth-

ers. 2D projections of the relation embeddings provided in

Appendix B visually corroborate the results.

On FB15K, the gap is much more pronounced and the

ComplEx model largely outperforms HolE, with a filtered

MRR of 0.692 and 59.9% of Hits at 1, compared to 0.524

and 40.2% for HolE. We attribute this to the simplicity of

our model and the different loss function. This is supported

by the relatively small gap in MRR compared to DistMult

(0.654); our model can in fact be interpreted as a complex

number version of DistMult. On both datasets, TransE
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WN18 FB15K

MRR Hits at MRR Hits at

Model Filter Raw 1 3 10 Filter Raw 1 3 10

CP 0.075 0.058 0.049 0.080 0.125 0.326 0.152 0.219 0.376 0.532

TransE 0.454 0.335 0.089 0.823 0.934 0.380 0.221 0.231 0.472 0.641

DistMult 0.822 0.532 0.728 0.914 0.936 0.654 0.242 0.546 0.733 0.824

HolE* 0.938 0.616 0.93 0.945 0.949 0.524 0.232 0.402 0.613 0.739

ComplEx 0.941 0.587 0.936 0.945 0.947 0.692 0.242 0.599 0.759 0.840

Table 2. Filtered and Raw Mean Reciprocal Rank (MRR) for the models tested on the FB15K and WN18 datasets. Hits@m metrics are

filtered. *Results reported from (Nickel et al., 2016b) for HolE model.

Relation name ComplEx DistMult TransE

hypernym 0.953 0.791 0.446

hyponym 0.946 0.710 0.361

member meronym 0.921 0.704 0.418

member holonym 0.946 0.740 0.465

instance hypernym 0.965 0.943 0.961

instance hyponym 0.945 0.940 0.745

has part 0.933 0.753 0.426

part of 0.940 0.867 0.455

member of domain topic 0.924 0.914 0.861

synset domain topic of 0.930 0.919 0.917

member of domain usage 0.917 0.917 0.875

synset domain usage of 1.000 1.000 1.000

member of domain region 0.865 0.635 0.865

synset domain region of 0.919 0.888 0.986

derivationally related form 0.946 0.940 0.384

similar to 1.000 1.000 0.244

verb group 0.936 0.897 0.323

also see 0.603 0.607 0.279

Table 4. Filtered Mean Reciprocal Rank (MRR) for the models

tested on each relation of the Wordnet dataset (WN18).

and CP are largely left behind. This illustrates the power

of the simple dot product in the first case, and the impor-

tance of learning unique entity embeddings in the second.

CP performs poorly on WN18 due to the small number of

relations, which magnifies this subject/object difference.

Reported results are given for the best set of

hyper-parameters evaluated on the validation set

for each model, after grid search on the fol-

lowing values: K ∈ {10, 20, 50, 100, 150, 200},

λ ∈ {0.1, 0.03, 0.01, 0.003, 0.001, 0.0003, 0.0},

α0 ∈ {1.0, 0.5, 0.2, 0.1, 0.05, 0.02, 0.01}, η ∈ {1, 2, 5, 10}
with λ the L2 regularization parameter, α0 the initial

learning rate (then tuned at runtime with AdaGrad), and

η the number of negatives generated per positive training

triple. We also tried varying the batch size but this had no

impact and we settled with 100 batches per epoch. Best

ranks were generally 150 or 200, in both cases scores were

always very close for all models. The number of negative

samples per positive sample also had a large influence on

the filtered MRR on FB15K (up to +0.08 improvement

from 1 to 10 negatives), but not much on WN18. On

both datasets regularization was important (up to +0.05 on

filtered MRR between λ = 0 and optimal one). We found

the initial learning rate to be very important on FB15K,

while not so much on WN18. We think this may also

explain the large gap of improvement our model provides

on this dataset compared to previously published results

– as DistMult results are also better than those previously

reported (Yang et al., 2015) – along with the use of the

log-likelihood objective. It seems that in general AdaGrad

is relatively insensitive to the initial learning rate, perhaps

causing some overconfidence in its ability to tune the step

size online and consequently leading to less efforts when

selecting the initial step size.

Training was stopped using early stopping on the valida-

tion set filtered MRR, computed every 50 epochs with a

maximum of 1000 epochs.

4.4. Influence of Negative Samples

We further investigated the influence of the number of neg-

atives generated per positive training sample. In the pre-

vious experiment, due to computational limitations, the

number of negatives per training sample, η, was validated

among the possible numbers {1, 2, 5, 10}. We want to ex-

plore here whether increasing these numbers could lead to

better results. To do so, we focused on FB15K, with the

best validated λ,K, α0, obtained from the previous experi-

ment. We then let η vary in {1, 2, 5, 10, 20, 50, 100, 200}.

Figure 3 shows the influence of the number of generated

negatives per positive training triple on the performance of

our model on FB15K. Generating more negatives clearly

improves the results, with a filtered MRR of 0.737 with 100

negative triples (and 64.8% of Hits@1), before decreas-

ing again with 200 negatives. The model also converges

with fewer epochs, which compensates partially for the ad-

ditional training time per epoch, up to 50 negatives. It then

grows linearly as the number of negatives increases, mak-

ing 50 a good trade-off between accuracy and training time.
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Figure 3. Influence of the number of negative triples generated per

positive training example on the filtered test MRR and on train-

ing time to convergence on FB15K for the ComplEx model with

K = 200, λ = 0.01 and α0 = 0.5. Times are given relative to

the training time with one negative triple generated per positive

training sample (= 1 on time scale).

5. Related Work

In the early age of spectral theory in linear algebra, com-

plex numbers were not used for matrix factorization and

mathematicians mostly focused on bi-linear forms (Bel-

trami, 1873). The eigen-decomposition in the complex do-

main as taught today in linear algebra courses came 40

years later (Autonne, 1915). Similarly, most of the exist-

ing approaches for tensor factorization were based on de-

compositions in the real domain, such as the Canonical

Polyadic (CP) decomposition (Hitchcock, 1927). These

methods are very effective in many applications that use

different modes of the tensor for different types of entities.

But in the link prediction problem, antisymmetry of rela-

tions was quickly seen as a problem and asymmetric ex-

tensions of tensors were studied, mostly by either consider-

ing independent embeddings (Sutskever, 2009) or consider-

ing relations as matrices instead of vectors in the RESCAL

model (Nickel et al., 2011). Direct extensions were based

on uni-,bi- and trigram latent factors for triple data, as well

as a low-rank relation matrix (Jenatton et al., 2012).

Pairwise interaction models were also considered to im-

prove prediction performances. For example, the Universal

Schema approach (Riedel et al., 2013) factorizes a 2D un-

folding of the tensor (a matrix of entity pairs vs. relations)

while Welbl et al. (2016) extend this also to other pairs.

In the Neural Tensor Network (NTN) model, Socher et al.

(2013) combine linear transformations and multiple bilin-

ear forms of subject and object embeddings to jointly feed

them into a nonlinear neural layer. Its non-linearity and

multiple ways of including interactions between embed-

dings gives it an advantage in expressiveness over models

with simpler scoring function like DistMult or RESCAL.

As a downside, its very large number of parameters can

make the NTN model harder to train and overfit more eas-

ily.

The original multi-linear DistMult model is symmetric in

subject and object for every relation (Yang et al., 2015) and

achieves good performance, presumably due to its simplic-

ity. The TransE model from Bordes et al. (2013b) also em-

beds entities and relations in the same space and imposes a

geometrical structural bias into the model: the subject en-

tity vector should be close to the object entity vector once

translated by the relation vector.

A recent novel way to handle antisymmetry is via the

Holographic Embeddings (HolE) model by (Nickel et al.,

2016b). In HolE the circular correlation is used for combin-

ing entity embeddings, measuring the covariance between

embeddings at different dimension shifts. This generally

suggests that other composition functions than the classi-

cal tensor product can be helpful as they allow for a richer

interaction of embeddings. However, the asymmetry in the

composition function in HolE stems from the asymmetry

of circular correlation, an O(nlog(n)) operation, whereas

ours is inherited from the complex inner product, in O(n).

6. Conclusion

We described a simple approach to matrix and tensor fac-

torization for link prediction data that uses vectors with

complex values and retains the mathematical definition of

the dot product. The class of normal matrices is a natural

fit for binary relations, and using the real part allows for ef-

ficient approximation of any learnable relation. Results on

standard benchmarks show that no more modifications are

needed to improve over the state-of-the-art.

There are several directions in which this work can be ex-

tended. An obvious one is to merge our approach with

known extensions to tensor factorization in order to fur-

ther improve predictive performance. For example, the use

of pairwise embeddings together with complex numbers

might lead to improved results in many situations that in-

volve non-compositionality. Another direction would be

to develop a more intelligent negative sampling procedure,

to generate more informative negatives with respect to the

positive sample from which they have been sampled. It

would reduce the number of negatives required to reach

good performance, thus accelerating training time.

Also, if we were to use complex embeddings every time a

model includes a dot product, e.g. in deep neural networks,

would it lead to a similar systematic improvement?



Complex Embeddings for Simple Link Prediction

Acknowledgements

This work was supported in part by the Paul Allen Founda-

tion through an Allen Distinguished Investigator grant and

in part by a Google Focused Research Award.

References

Alon, Noga, Moran, Shay, and Yehudayoff, Amir.

Sign rank versus vc dimension. arXiv preprint

arXiv:1503.07648, 2015.

Auer, Sren, Bizer, Christian, Kobilarov, Georgi, Lehmann,

Jens, and Ives, Zachary. Dbpedia: A nucleus for a web

of open data. In In 6th Intl Semantic Web Conference,

Busan, Korea, pp. 11–15. Springer, 2007.

Autonne, L. Sur les matrices hypohermitiennes et sur les

matrices unitaires. Ann. Univ. Lyons, Nouvelle Srie I, 38:

1–77, 1915.

Beltrami, Eugenio. Sulle funzioni bilineari. Giornale di

Matematiche ad Uso degli Studenti Delle Universita, 11

(2):98–106, 1873.

Bergstra, James, Breuleux, Olivier, Bastien, Frédéric,

Lamblin, Pascal, Pascanu, Razvan, Desjardins, Guil-

laume, Turian, Joseph, Warde-Farley, David, and Ben-

gio, Yoshua. Theano: a CPU and GPU math expression

compiler. In Proceedings of the Python for Scientific

Computing Conference (SciPy), June 2010. Oral Pre-

sentation.

Bollacker, Kurt, Evans, Colin, Paritosh, Praveen, Sturge,

Tim, and Taylor, Jamie. Freebase: a collaboratively cre-

ated graph database for structuring human knowledge.

In SIGMOD 08 Proceedings of the 2008 ACM SIGMOD

international conference on Management of data, pp.

1247–1250, 2008.

Bordes, Antoine, Usunier, Nicolas, Garcia-Duran, Alberto,

Weston, Jason, and Yakhnenko, Oksana. Irreflexive and

Hierarchical Relations as Translations. In CoRR, 2013a.

Bordes, Antoine, Usunier, Nicolas, Garcia-Duran, Alberto,

Weston, Jason, and Yakhnenko, Oksana. Translating

embeddings for modeling multi-relational data. In Ad-

vances in Neural Information Processing Systems, pp.

2787–2795, 2013b.

Bouchard, Guillaume, Singh, Sameer, and Trouillon, Theo.

On approximate reasoning capabilities of low-rank vec-

tor spaces. In AAAI Spring Syposium on Knowledge Rep-

resentation and Reasoning (KRR): Integrating Symbolic

and Neural Approaches, 2015.

Dong, Xin, Gabrilovich, Evgeniy, Heitz, Geremy, Horn,

Wilko, Lao, Ni, Murphy, Kevin, Strohmann, Thomas,

Sun, Shaohua, and Zhang, Wei. Knowledge vault: A

web-scale approach to probabilistic knowledge fusion.

In Proceedings of the 20th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining,

KDD ’14, pp. 601–610, 2014.

Duchi, John, Hazan, Elad, and Singer, Yoram. Adaptive

subgradient methods for online learning and stochastic

optimization. The Journal of Machine Learning Re-

search, 12:2121–2159, 2011.

Getoor, Lise and Taskar, Ben. Introduction to Statis-

tical Relational Learning (Adaptive Computation and

Machine Learning). The MIT Press, 2007. ISBN

0262072882.

Hitchcock, F. L. The expression of a tensor or a polyadic as

a sum of products. J. Math. Phys, 6(1):164–189, 1927.

Jenatton, Rodolphe, Bordes, Antoine, Le Roux, Nicolas,

and Obozinski, Guillaume. A Latent Factor Model for

Highly Multi-relational Data. In Advances in Neural In-

formation Processing Systems 25, pp. 3167–3175, 2012.

Koren, Yehuda, Bell, Robert, and Volinsky, Chris. Ma-

trix factorization techniques for recommender systems.

Computer, 42(8):30–37, 2009.

Linial, Nati, Mendelson, Shahar, Schechtman, Gideon, and

Shraibman, Adi. Complexity measures of sign matrices.

Combinatorica, 27(4):439–463, 2007.

Nickel, Maximilian, Tresp, Volker, and Kriegel, Hans-

Peter. A Three-Way Model for Collective Learning on

Multi-Relational Data. In 28th International Conference

on Machine Learning, pp. 809—-816, 2011.

Nickel, Maximilian, Jiang, Xueyan, and Tresp, Volker. Re-

ducing the rank in relational factorization models by in-

cluding observable patterns. In Advances in Neural In-

formation Processing Systems, pp. 1179–1187, 2014.

Nickel, Maximilian, Murphy, Kevin, Tresp, Volker, and

Gabrilovich, Evgeniy. A review of relational machine

learning for knowledge graphs. Proceedings of the IEEE,

104(1):11–33, 2016a.

Nickel, Maximilian, Rosasco, Lorenzo, and Poggio,

Tomaso A. Holographic embeddings of knowledge

graphs. In Proceedings of the Thirtieth AAAI Conference

on Artificial Intelligence, pp. 1955–1961, 2016b.

Riedel, Sebastian, Yao, Limin, McCallum, Andrew, and

Marlin, Benjamin M. Relation extraction with matrix

factorization and universal schemas. In Human Lan-

guage Technologies: Conference of the North American

Chapter of the Association of Computational Linguis-

tics, Proceedings, pp. 74–84, 2013.



Complex Embeddings for Simple Link Prediction

Socher, Richard, Chen, Danqi, Manning, Christopher D,

and Ng, Andrew. Reasoning with neural tensor networks

for knowledge base completion. In Advances in Neural

Information Processing Systems, pp. 926–934, 2013.

Sutskever, Ilya. Modelling Relational Data using Bayesian

Clustered Tensor Factorization. In Advances in Neural

Information Processing Systems, volume 22, pp. 1–8,

2009.
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