
Mobile Netw Appl (2011) 16:194–213
DOI 10.1007/s11036-010-0268-0

Complex Event Detection in Extremely
Resource-Constrained Wireless Sensor Networks

Michael Zoumboulakis · George Roussos

Published online: 9 October 2010
© Springer Science+Business Media, LLC 2010

Abstract Complex Events are sequences of sensor
measurements indicating interesting or unusual activ-
ity in the monitored process. Such events are ubiq-
uitous in a wide range of Wireless Sensor Network
(WSN) applications, yet there does not exist a common
mechanism that addresses both the considerable con-
straints of WSNs and the specific properties of Com-
plex Events. We argue that Complex Events cannot be
described using standard threshold-based or composite
logic approaches and attempting to represent them as
such can lead to unpredictable execution cost while
detection accuracy suffers from erroneous recording of
observations which are common in WSNs. To address
this, we develop a family of Complex Event Detection
(CED) algorithms based on online symbolic conver-
sion of sensor readings. With fixed execution cost and
modest resource requirements, the CED algorithms
cater for exact, approximate, non-parametric, multiple
and probabilistic detection that is neither application
nor data dependent. Overall, full implementation and
simulations provide experimental evidence of the ad-
vantages of the proposed approach. We find that the
proposed algorithms minimise configuration, promote

M. Zoumboulakis (B)
Birkbeck College, University of London,
23-29 Emerald Street, London WC1N 3QS, UK
e-mail: mz@dcs.bbk.ac.uk

G. Roussos
Birkbeck College, University of London,
Malet Street, London WC1E 7HX, UK
e-mail: gr@dcs.bbk.ac.uk

unattended operation and complement the goal of
prolonged lifetime—factors that satisfy the long-term
research vision predicting Internet-scale WSNs com-
prising billions of devices.

Keywords wireless sensor networks ·
complex event detection · integer techniques

1 Introduction

Complex Events are sequences of sensor measurements
indicating interesting or unusual activity in the process
monitored by the Wireless Sensor Network (WSN).
Detecting such events with thresholds is problematic
for several reasons including sensitivity to faulty read-
ings, unnecessary complexity of performing similarity
searches and inability of specifying unknown events.
Furthermore, threshold-based detection has a variable
execution cost that depends on the complexity of the
event expression and cannot be determined at compile-
time. To address these drawbacks we develop a data-
mining inspired solution in the form of a family of
Complex Event Detection (CED) algorithms based on
online symbolic conversion of sensor readings. With
fixed execution cost and modest resource requirements,
the CED algorithms cater for exact, approximate, non-
parametric, multiple and probabilistic detection that is
neither application nor data dependent.

The target platform for the proposed solution is
the lower end of the WSN spectrum that comprises
inexpensive devices with severe resource constraints—
RAM and program flash in the order of tens of
Kilobytes (KB), embedded ultra low-power Microcon-
troller and power harvested from strong electromag-

Mobile Netw Appl (2011) 16:194–213 195

netic emissions such as the WISP platform [3, 55].
Failures are frequent in this type of WSN and runtime
behaviour is somewhat unreliable and usually com-
pensated by high network density and local coordina-
tion. The CED algorithms operate efficiently within
the resource envelope by requiring under 20 ms of
active CPU time with less than 1KB RAM footprint.
Moreover, the algorithms fit well with existing WSN
protocols without incurring a communication overhead
in comparison with threshold techniques or requiring
modifications in the standard programming interface
for reactive applications.

We begin the discussion in Section 1.1 with a detailed
treatment of the problem and an outline of the con-
tributions. The ubiquity of Complex Events in WSNs
is illustrated by reviewing related work and alterna-
tive solutions in Section 1.2 while Section 2 delves
deeper into the characteristics of Complex Events.
Section 3 presents the family of algorithms for CED
and Section 5 discusses experimental evaluation over
four real-world sensor data sets. Finally, Section 4 de-
scribes the techniques that make the implementation
efficient and suitable for severely resource-constrained
WSN nodes.

1.1 Problem statement & contributions

Typical WSN applications users frequently wish to be
informed of interesting changes but may be able to
describe what constitutes interesting using only gen-
eral constructs or a high-level language. Converting an
event description from such a high-level language to a
set of programming instructions can be challenging and
costly. The option of using composite event calculus
for the lower level representation, implies a lack of a
compile-time guarantee regarding the processing cost
of event interests submitted at run-time. Furthermore,
this approach can exclude events that are similar to the
one specified while it may include events that spuri-
ously match the specification, for example, when faulty
readings cause a false positive. In other situations a user
cannot provide specific information about the event,
but can only describe it as a pattern that deviates from
normalcy. This is problematic since it usually requires
rich state for detection which can be costly in terms of
memory and power resources.

Moreover, event detection should be performed in-
the-network since local computation can be orders
of magnitude cheaper than radio communication [30].
Therefore the central problem tackled in this article
is the provision of algorithms for efficient, in-network
Complex Event Detection (CED). Before we discuss
further the properties of Complex Events and the pro-

posed solution, let us examine three such event exam-
ples shown in Fig. 1.

Figure 1a shows a seismic event from a real-world
deployment in an active volcano in Ecuador [50].
This event comprises approximately 1,100 data points.
Figure 1b shows a chemical dispersion event that spans
the 2-dimensional space and comprises approximately
10,000 points. It is constructed by the model proposed
by Ishida et al. [22] and is similar to target events
considered by applications such as Gunatilaka et al. [16]
and Chin et al. [9]. Finally, Fig. 1c shows a gesture
event from robot data sensed by a 3-axis accelerometer
[24] and comprises approximately 1,000 data points.
Gesture detection and classification [46] can be used to
determine the context or activity of a user.

These three examples share a common characteris-
tic: they reveal interesting activity that would be cum-
bersome to describe and inefficient to capture using
traditional techniques such as thresholds and composite
event calculus. The alternative calls for distance-based
detection that is efficient, scalable and fault-tolerant.
We therefore consider the following problem:

Problem statement The provision of a family of al-
gorithms that address efficient Complex Event Detec-
tion (CED) in extremely resource-constrained WSNs.
The investigation of the aforementioned problem
from a performance, scalability and fault-tolerance
perspective.

The motivating factor for this work is that Com-
plex Events are ubiquitous across a number of WSN
applications—a selection of which is presented in
Section 1.2—yet there does not exist a mechanism that
addresses both the specific constraints of WSNs and the
peculiar properties of Complex Events. To this end, we
make the following contributions:

(i.) Determine that traditional threshold-based and
composite event approaches are not a good f it
for the resource-constrained WSN environment.
Factors such as outliers, missing sensor values
and performance considerations make detection
using composite event techniques problematic
(explored further in Section 2).

(ii.) Propose a family of algorithms for Complex
Event Detection (CED) in Wireless Sensor Net-
works (WSNs) that is suitable for extremely
resource-constrained nodes. The suitability is
based on the fact that they can be used to suc-
cessfully detect Complex Events across a num-
ber of applications, evaluated in Section 5, in
an efficient manner with a fixed execution cost
known at compile-time. The algorithms, fully

196 Mobile Netw Appl (2011) 16:194–213

Fig. 1 Complex event
examples from different
applications

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 1000 2000 3000 4000 5000 6000

(a) Example of a seismic event

(b) Example of a chemical dispersion event

-2

-1.5

-1

-0.5

 0

 0.5

 1

 39 40 41 42 43 44 45 46

(c) Example of a gesture event

implemented in TinyOS and made available to
the WSN community, include:

(a.) Exact or Approximate CED: where the
pattern is known beforehand to the user of
the system.

(b.) Non-parametric CED: where the pattern
does not need to be specified in advance.
Instead, sensor nodes learn from a training
portion of the data known to be normal.

(c.) Multiple CED: this makes detection scal-
able as event subscriptions increase by

using an efficient data structure to store
subscriptions.

(d.) Probabilistic CED: this can enhance de-
tection by adding probabilities to both ob-
served and unobserved Complex Events.

(iii.) Propose a Dynamic Sampling Frequency Man-
agement (DSFM) algorithm. Similar to Non-
parametric CED, this algorithm employs a
training phase to learn the sensed process dy-
namics, and use it to make autonomous local
decisions to dynamically increase or decrease the

Mobile Netw Appl (2011) 16:194–213 197

sampling frequency within application-defined
bounds. Dynamically adjusting the frequency en-
ables WSN nodes to conserve energy in periods
of relative inactivity for times when interesting
changes occur.

(iv.) Introduce Integer Techniques for efficient WSN
programming (Section 4). We adapt [56] an es-
tablished timing model that can guide develop-
ment and highlight tradeoffs. In addition, we
propose a collection of integer optimisations and
illustrate their applicability to WSNs by present-
ing their impact to the efficiency of the CED
algorithm.

(v.) Integrate CED with a Publish/Subscribe Inter-
face. As well as providing a familiar interface
for users, we show this can be done efficiently
without requiring modifications to the underly-
ing communication protocols.

Each of the above contributions is addressing a
specific problem: for instance approximate matching
enables users to search for events that are similar to
other events. This cannot be easily achieved using the
composite event alternative. Non-parametric detection
enables users to search for interesting changes without
supplying any event specification or other prior infor-
mation. The efficiency of the Suffix Array structure
makes CED scalable, by allowing nodes to store and
search multiple patterns simultaneously. Probabilistic
detection makes the system usable by applications
with a need to attach probabilities to patterns. Integer
techniques make the implementation computationally
efficient. Finally, the CED functionality benefits from
features of Publish/Subscribe without adding over-
head to communication or requiring modification to
protocols.

1.2 Related work

The main limitation of the majority of the research
efforts described below is that they are tightly coupled
to the specific application scenario considered making
them data dependent. In contrast, our approach re-
quires minimal or no configuration and has been shown
to work efficiently and accurately in a number of real-
world data sets.

Complex Events are evident in the Ecuador
deployment that monitored the active volcano of
Reventador [50], collecting data with microphones
and seismic sensors to detect earthquakes, eruptions
and seismo-acoustic events. The authors describe long-
period events such as tremors or earthquakes that are
present in the publicly available data. The application

employs a custom event detection algorithm, based
on two exponentially-weighted moving averages
(EWMA) over the input signal with different gain
settings. When the ratio between the two EWMAs
exceeds a threshold, the node transmits an event report
to the base station. If the base station receives events
from 30% of the active nodes within a 10sec window, it
considers the event to be well-correlated and initiates
data collection. A limitation of the EWMA approach
[51] is that often small tremors were detected but
subsequent large earthquakes were missed. This is due
to high sampling frequency that restricted nodes from
sensing and sending simultaneously: on events nodes
stopped sensing and started pushing data to the base
station.

The approach described in Basha et al. [2] presents
a model-based predictive system that aims to detect
and predict river flood events in developing countries
by deploying sensor networks around the basin area of
rivers. The simplest model is based on statistical meth-
ods such as linear regression using a portion of data
known to be normal. The project aims to cover vast
geographical regions of approximately 10,000 km2 and
predict a Complex Event of interest using a distributed
model driven by the collected data. The main drawback
of this approach is that it assumes a tiered architecture
where resource-constrained sensor nodes transmit sum-
maries and statistics of raw data to a set of computation
nodes. The latter determine the correctness of the data,
feeds it to the model for prediction and may request
additional data from sensors to reduce uncertainty. A
somewhat similar tiered system is PRESTO [10] which
employs ARIMA (Auto Regressive Integrated Moving
Average) time series forecasting models and performs
anomaly detection by comparing predicted values to
sensor observations.

The work in Xue et al. [52] agrees with our as-
sessment regarding the unsuitability of thresholds for
WSN event detection and, similar to our approach,
converts detection to a pattern matching problem. The
authors suggest the use of contour maps to display
the distribution of attribute values in the network and
employ contour map matching to determine whether
a user-supplied pattern matches the one produced by
the nodes. The application scenario is event detection
in coal mines, monitoring for the occurrence of gas,
dust and water leakage as well as high/low oxygen
density regions. A limitation of this approach is that it
assumes users capable of perfectly describing the Com-
plex Event of interest as distributions of an attribute
over space and variations of this distribution over time
incurred by the event. As we will see in Section 3, we
offer Non-parametric CED that caters for unknown

198 Mobile Netw Appl (2011) 16:194–213

thresholds and does not burden the user with providing
Complex Event specifications.

The approach described in Huang et al. [20], pro-
poses a Principal Component Analysis (PCA) method
for detecting anomalies with complex thresholds in a
distributed manner. Nodes send their readings to a
coordinator node that is responsible for firing a trigger
based on the aggregate behaviour of a subset of nodes.
The individual nodes perform filtering such that they
send readings only when measurements deviate sig-
nificantly from the last transmitted data. With respect
to detection, they propose two window triggers that
capture anomalous behaviour over fixed and varying
time series windows. Although the approach is aimed
at detecting unusual network traffic patterns, it could
apply to certain WSN applications. The main criticism
is that it creates single points of failure by assigning the
coordinator role to nodes.

Another application area where Complex Events are
observed is in wearable computing and Body Sensor
Networks (BSN). The work in Stiefmeier et al. [46]
targets the recognition of users’ context by online de-
tection and classification of gestures: the movement
of limbs in space. Accelerometer data is converted
to strings and, similar to our approach, detection is
performed using string matching. However, contrary to
the family of CED algorithms we propose, the detec-
tion is performed by a desktop-class computer using
techniques such as Hidden Markov Models and k-
Nearest Neighbour. A related system is described in
Katsiri et al. [23] where ECG data collected by low-end
sensor nodes is used for real-time heart rate variability
analysis.

Other application areas with Complex Event are:
Soil Moisture Monitoring [5, 37, 48], Precision Agri-
culture ([4, 12], Structural Health Monitoring [7, 27,
29, 33, 40, 47], Oceanographic Monitoring [18]), Per-
vasive Healthcare [15, 28, 34] and Disaster Detection
and Response [1, 6, 11, 35, 45]. Complex events in
such applications are usually detected by custom-made
approaches that provide unique functionality for their
requirements and no common representation or ap-
proach exists to address the problem of data and appli-
cation independent Complex Event Detection (CED).
This forms the motivation for our work, described in
the following sections.

2 Characteristics of complex events

Composite event calculus, as defined in Chakravarthy
et al. [8], is fit for numerous distributed database sys-
tems but it severely limits the detection capabilities

for real-world WSN applications. In this context, a
composite event is constructed from other primitive
events. In contrast, a Complex Event is an interesting
or unusual pattern in the data sensed and processed by
WSN nodes. This pattern describes a real-world state
and usually it cannot be decomposed to constituent
primitive events.

The use of composite event calculus tends to lead
to expressions that grow in proportion to the length of
the sequence and the complexity of the event interest.
This problem has been identified by others arguing for
composite event approaches in WSNs: for instance [44]
states that “some Boolean expressions may convert to
an exponentially long Conjunctive Normal Form [...]
a longer expression is undesirable because it requires
more computation”. We concur with this evaluation and
argue that although such expressions are linear in na-
ture, they scale poorly as the number and complexity of
user interests grow. Furthermore, they suffer from the
following weaknesses:

– Sensitivity to outliers and missing values which are
very common in sensor data sets due to inexpensive
sensors,

22

24

26

28

30

32

 0 1 2 3 4 5 6 7 8 9

(a) Temperature pattern on a Celsius scale

-2

-1

 0

 1

 2

 0 1 2 3 4 5 6 7 8 9

(b) Identical pattern z-standardised

Fig. 2 Illustration of scale differences among two identical
patterns

Mobile Netw Appl (2011) 16:194–213 199

Fig. 3 An illustration of two
time series sequences: a
reference pattern that
represents an event interest
by a user and a sensor
produced sequence, such as
temperature readings

22

24

26

28

30

32

 0 1 2 3 4 5 6 7 8 9

Reference pattern
Sensor-produced pattern

– Difficulty of performing similarity searches in a
straightforward manner. We will illustrate this
shortly with a specific example,

– Inability of coping with unknown thresholds, for
instance the case where an event is not describable.
This is a common issue in WSNs especially in new
deployments: it is sometimes difficult for users to
describe numerically or programmatically a pattern
of interest.

– Inability of handling differences in scale in an
efficient manner. The example shown in Fig. 2
illustrates this: the two patterns are identical but
one of them is z-standardised. The use of thresholds
necessitates two event expressions with different
threshold values.

In addition, composite event approaches suffer from
an inherent complexity of dealing with similarity
searches that translate to long expressions of disjunc-
tive or conjunctive form. Consider the two time series
shown in Fig. 3, where the solid line represents an inter-
est by a user and the dotted line represents a sequence
of sensor readings. For this example we assume that the
latter approximately matches the reference pattern. We
further assume that a user is interested in a similarity
match and describes it as a composite event expression
where each data point in the sensor sequence is at most
three units away from the corresponding data point in
the reference pattern.

But such a composite expression does not cater for
the case where the fourth data point differs by five
units while the rest are all equal. Or the case where the
last data point is missing altogether from the sequence.
This reveals a need to define similarity as a form of
distance of each data point in the interest from the
corresponding point in the sensor-produced sequence.
Since we are dealing with streaming time series data
we argue that describing event matching as a similarity

problem is more suitable than arbitrary long expres-
sions combining clauses by disjunction or conjunction.
Therefore by enforcing a similarity measure to event
matching we effectively bound the cost of evaluating
event occurrences.

Composite event specifications can expand to ex-
pressions of arbitrary length and complexity, but the
similarity measure of our approach has a fixed execu-
tion cost, linear with respect to the size of the time se-
ries. Conversely, a composite event expression depends
not only on the length of the time series but also on the
complexity of the event interest. We therefore conclude
that our approach does not suffer from the code com-
plexity and state persistence necessary in composite
event calculus. As we will see in the sections to follow
our approach is efficient, accurate and scalable without
penalising the user with the task of designing arduous
composite event specifications.

3 A family of algorithms for CED

The basis for the family of CED algorithms is on-
line Symbolic Conversion: the conversion of streaming
sensor measurements to strings of characters. Event
detection becomes an instance of the pattern matching
problem using a distance metric that signifies a depar-
ture from Boolean semantics and allows for similarity
searches between user-supplied and sensor-produced
patterns. Furthermore, the distance metric facilitates
the identification of interesting or unusual Complex
Events without requiring any prior information or
threshold values from the user.

Equating the detection problem to pattern matching
simplifies the development of reactive WSN applica-
tions by minimising the amount of data analysis effort
required at pre-deployment. For instance, by offering
a selection of CED algorithms users can decide which

200 Mobile Netw Appl (2011) 16:194–213

algorithm to employ at runtime lifting the require-
ment for pre-deployment data acquisition. The choice
of CED algorithm depends on the usage scenario
rather than the underlying data characteristics: a user
searching for a previously observed event can supply it
as a template for the exact or approximate CED algo-
rithm while another user can choose to let nodes deter-
mine which Complex Events are sufficiently unusual,
given a training window. It is possible to mix CED al-
gorithms on the same WSN or even run different CED
algorithms in parallel at the node level. This provides
a degree of data and application independence and
preliminary confirmation is provided by the evaluation
results of Section 5 that applied the CED algorithms to
data sets of varying characteristics. In addition, work-
ing with string representation of sensor measurements
enables the use of a large collection of string algo-
rithms [17] primarily inherited from the bioinformatics
research community. This means the core functionality
of CED is easily extensible, if deemed necessary by
applications with specific requirements. For example a
user can select an alternative string distance function
if that provides better detection performance for the
nature of sensor data.

With respect to the conversion of the sensor
measurements to strings, we employ the established
Symbolic Aggregate Approximation (SAX) [32] data
mining algorithm. We treat SAX as a black box to
which we pass a numeric sensor sequence and it returns
a reduced string representation. We then employ the
SAX string distance metric to determine equality or
similarity between patterns—henceforth the term pat-
tern will be used interchangeably with Complex Event.
Due to space limitations, we will not review SAX in
more detail here and refer interested readers to the
available literature on SAX [25, 26, 32] and our WSN-
specific implementation [53].

The suite of Complex Event Detection (CED) al-
gorithms to follow, is fully integrated with a flexible
content-based Publish/Subscribe (Pub/Sub) system for
TinyOS [19]. This offers a familiar interface to users
of a reactive system while employing standard fault-
tolerant TinyOS protocols such as Trickle [31]. Pub/
Sub is an attractive communication mechanism since
it caters for asynchronous and anonymous commu-
nication accommodating disconnected nodes and the
address-free nature common in a number of WSN
applications. The integration of CED with Pub/Sub
shows that our approach to event detection does not
require changes to the communication mechanism of a
reactive WSN, in terms of programming and use of a

standard interface. Furthermore, there is no additional
communication overhead in comparison with a com-
posite event calculus threshold-based technique.

3.1 Exact and approximate CED

Exact and approximate CED represent the case where
a user knows and is able to describe the pattern of
interest. Application such as the one described in
Stiefmeier et al. [46] are prime candidates for this func-
tionality. Furthermore, any application where detection
depends on classifying a sensor signal segment to a
predetermined category can benefit from Exact and
Approximate CED. The main difference between the
two algorithms is that with approximate CED users
can perform similarity searches in a straightforward
manner. Consider the example of Fig. 4a that shows
an exact match. Note that although the two patterns
are of different magnitude they still match exactly, for
instance the string distance between them is zero. The
second example (Fig. 4b) shows an approximate match

55

60

65

70

75

80

85

90

 50 100 150 200 250

(a) Exact CED

45

50

55

60

65

70

75

80

85

90

 50 100 150 200 250

(b) Approximate CED

Fig. 4 Examples of exact and approximate CED—the dotted line
represents the pattern

Mobile Netw Appl (2011) 16:194–213 201

with the two patterns having a non-zero distance that
satisfies a threshold.

Algorithm 1 Exact Complex Event Detection (ECED)
Algorithm
Require: user-pattern �= ε

1: if user-pattern is numeric then
2: r̄ ← call SAX(user-pattern)
3: else
4: r̄ ← user-pattern
5: end if
6: repeat
7: ū ← call SAX(sensor-values[])
8: δ ← ‖ū − r̄‖S

9: until δ == 0
10: call Notify and goto line 6

The procedural steps for exact and approximate
CED are listed in Algorithms 1 and 2 respectively.
The function call to SAX (line 6) performs the sym-
bolic conversion according to the Symbolic Aggregate
Approximation (SAX) [32] algorithm. The ‖ū − r̄‖S

notation (line 8) represents the string distance between
ū and r̄, which stand for the string representation of the
sensor-produced values and the string representation of
the reference pattern supplied by the user respectively.
This string distance metric lower-bounds the Euclid-
ean distance and is calculated by a lookup on a static
breakpoints table. The lower-bounding property refers
to a guarantee that the string distance will always be
less (or equal) than the Euclidean distance between the
sensor measurements and the user-supplied pattern.
The importance of lower bounding is that it guarantees
no false dismissals; the proof is beyond the scope of this
article, but the interested reader can refer to Faloutsos

Algorithm 2 Approximate Complex Event Detection
(ACED) Algorithm
Require: user-pattern �= ε

Require: theta �= ε

1: if user-pattern is numeric then
2: r̄ ← call SAX(user-pattern)
3: else
4: r̄ ← user-pattern
5: end if
6: repeat
7: ū ← call SAX(sensor-values[])
8: δ ← ‖ū − r̄‖S

9: until δ ≤ θ

10: call Notify and goto line 6

et al. [14]. The formula employed to obtain the string
distance is formally given by Keogh et al. [25]:

‖ū − r̄‖S =
√

n
w

√√√√ w∑
i=1

(dist(ūi, r̄i))2 (1)

The dist() function refers to a lookup to the break-
points table B (a sample is presented in Table 1),
ū, r̄ denote the string representations of sensor mea-
surement segments u and r respectively, and n and
w represent the length of data points in u, r and ū, r̄
respectively. These breakpoints divide the area under a
Gaussian curve into a number of equiprobable regions
and the table is the same one used to obtain the string
(stored in local memory of each node). Although other
distance metrics can be used, we have found through
empirical evaluation the SAX distance metric suits well
the task of CED.

3.2 Non-parametric CED

The Non-parametric CED (NPCED) algorithm ad-
dresses the requirement of capturing interesting or
unusual patterns without having to supply any prior
information. This is a distinguishing advantage of CED
over composite event techniques which were not de-
signed to cater for unknown thresholds. The procedural
steps for NPCED are shown in Algorithm 3.

The basis of NPCED is the ability to train one or
more nodes on data known to be normal. This step can
take place either online or offline. During the learning
phase (lines 2–10), the algorithm determines the rate of
change of the monitored process by continuously com-
paring the string distance of temporally adjacent sym-
bolic representations of sensor values. If the process
never changes, the distance between temporally adja-
cent strings is zero. With a sufficiently long training pe-
riod, a node can compute the maximum normal change
of the process and encode it in a string distance (line 7).
Once the learning period is complete, the node makes
use of the maximum learnt distance (lines 15–17) to
determine whether the process is changing in a manner
that differs from expectations, given the training data.

Care must be taken to select a sufficiently long
training sample comprised of data corresponding to
normal behaviour. For a wide variety of environmental
monitoring applications dictated by diurnal cycles, we
have found a minimum training period of 24 h to be
sufficient. However, in the case where offline data is
available a longer training period can be selected as
long as the data features in the training set describe nor-
mal behaviour. To an extent, the length of the training
period is application dependent but through empirical

202 Mobile Netw Appl (2011) 16:194–213

Table 1 Sample distance lookup table for 10-letter alphabet

a b c d e f g h i k

a 0 0 0.1936 0.5776 1.0609 1.6384 2.3409 3.24 4.4944 6.5536
b 0 0 0 0.1024 0.3481 0.7056 1.1881 1.8496 2.8224 4.4944
c 0.1936 0 0 0 0.0729 0.2704 0.5929 1.0816 1.8496 3.24
d 0.5776 0.1024 0 0 0 0.0625 0.25 0.5929 1.1881 2.3409
e 1.0609 0.3481 0.0729 0 0 0 0.0625 0.2704 0.7056 1.6384
f 1.6384 0.7056 0.2704 0.0625 0 0 0 0.0729 0.3481 1.0609
g 2.3409 1.1881 0.5929 0.25 0.0625 0 0 0 0.1024 0.5776
h 3.24 1.8496 1.0816 0.5929 0.2704 0.0729 0 0 0 0.1936
i 4.4944 2.8224 1.8496 1.1881 0.7056 0.3481 0.1024 0 0 0
k 6.5536 4.4944 3.24 2.3409 1.6384 1.0609 0.5776 0.1936 0 0

evaluation we have found that for the majority of appli-
cations a 24 h period is sufficient. Some expert knowl-
edge can be useful in determining appropriate training
set length for applications with varying characteristics.

The advantage of NPCED is that it offers flexibility
to users of a WSN application, in that it does not require
prior configuration. In addition, it can potentially lower
the energy usage if spatial correlations are exploited
in such a way where one node per region takes the
responsibility of learning and then communicates the
maximum learnt distance to its neighbours.

Algorithm 3 Non-Parametric Complex Event Detec-
tion (NPCED) Algorithm
Require: learnPeriod �= ε

1: maxδ, learnCounter← 0
2: while learnCounter ≤ learnPeriod do
3: ā ← call SAX(sensor-valuest[])

{sensor-valuest is a window with the most
recent readings}

4: b̄ ← call SAX(sensor-valuest−1[])
{sensor-valuest−1 is a window temporally
shifted by one time unit}

5: δ ← ‖ā − b̄‖S

6: if δ > maxδ then
7: maxδ ← δ

8: end if
9: Increment learnCounter by 1

10: end while
11: loop
12: ā ← call SAX(sensor-valuest[])
13: b̄ ← call SAX(sensor-valuest−1[])
14: δ ← ‖ā − b̄‖S

15: if δ > maxδ then
16: call Notify {Current distance is greater than max

distance learnt}
17: end if
18: end loop

3.3 Multiple CED

One of the requirements for the CED approach is a
provision that makes the method scalable as the num-
ber of event subscriptions increase. The advantage of
a string representation is that efficient data structures
and algorithms from the data mining community can
be adapted for the task of Multiple CED (MCED). A
common way to achieve this is through Suf f ix Trees
[49]: a structure that stores the suffixes of a string in a
way that facilitates fast substring searches in O(m) time,
where m is the length of the sensor-generated string ū.
However, the Suffix Tree is not appropriate for WSNs
because the memory requirements for its construction
are not predictable at compile-time. Consequently, we
selected an equivalent data structure called the Suf f ix
Array which is defined as an array of integers in the
range 0 to n − 1, specifying the lexicographic order of
the n suffixes of the reference pattern r̄ [17].

The reasons we selected the Suffix Array are: first,
unlike Suffix Trees, the construction of the array can be
performed in a predictable manner known at compile
time. This is a desirable property that fits well the
extremely resource-constrained WSN execution envi-
ronment. Second, the Suffix Array is space and time
efficient and requires O(n) space where n is the length
of the reference pattern and O(m log n) time [36],
where m is the length of the sensor-produced pattern.

The usage scenario for Multiple CED is either the
case where the user submits a long reference pattern
but is interested in occurrences of smaller subsections
of it, or where there are a number of users interested in
patterns of arbitrary length. An example of the former
can be a user who possesses a week’s temperature data
and submits it asking to be informed when any sensor-
produced pattern matches any subsequence of length
greater than N. An application context for this could
be a data centre air-conditioning unit that operated ir-
regularly before it finally broke at the end of the week.
By submitting the week-long pattern and tasking nodes

Mobile Netw Appl (2011) 16:194–213 203

Algorithm 4 Multiple Complex Event Detection
(MCED) Algorithm
Require: user-patterns[] �= ε

1: for i = 0 to Length(user-patterns[]) do
2: Construct Array for Suffixes of

user-patterns[i] with suffix length ≥
min length of user-patterns[]

3: end for
4: Suf f ixArray ← merge Arrays dropping duplicate

Suffixes
5: loop
6: ā ← call SAX(sensor-values[])
7: Index ← call BinarySearch(Suf f ixArray, ā)
8: if Index ≥ 0 then
9: call Notify

10: end if
11: end loop

to compare their sensed patterns against it, the user
can proactively maintain this and other air-conditioning
units in the future.

The Suffix Array enables sensor nodes to efficiently
determine whether their produced strings match a
stored pattern, maintaining the search efficiency as the
volume of stored patterns grows. The procedural steps
for MCED are outlined in Algorithm 4. Although the
algorithm does not show how the Suffix Array can be
updated—for instance, if a user submits a new pattern
at runtime—this can be achieved using the procedure
described in Salson et al. [43]. Finally, the WSN imple-
mentation of the Suffix Array relies on insertion sort
for the construction and on binary search for the search.
In Section 5 we show empirical results that confirm
the efficient operation of the Suffix Array for Multiple
CED.

3.4 Probabilistic CED

With symbolic conversion, there is a process that con-
tinuously produces characters from a finite alphabet.
We can view this process as a Markov chain where the
set of states equals the size of the alphabet.

If the process outputs xi at time t and then moves
to x j at time t + 1, the probability for this move is
represented by pij and a state transition from state i to j
was observed. The process can also remain in the state
it is in with a probability pii, that is when the current
character in the string is the same as the previous.

To encode the character transitions, we create and
populate a square matrix called the transition matrix.
For simplicity, we assume a Markov chain of order one

however this is not a strict requirement; higher order
(memory) Markov chains can be used depending on the
type of data and application at hand.

We then use the Markov model built during the
learning phase to predict path probabilities. As with
NPCED, the length of the training period must be
selected with care; although a 24 h training period
will suffice for application with characteristics dictated
by diurnal cycles, other applications can benefit from
expert knowledge in training period selection. A path
probability can be thought of as a realisation of a
Markov chain as a path in time through its state space
[38]. So a path probability for path (x1, x2 . . . xt) is
given by:

P(X1, X2 . . . Xt) = (x1, x2 . . . xt)

= P(X1 = x1)px1x2 px2x3 . . . pxt−1xt

Probabilities for strings that are very close to 0 can
be flagged as events, as the individual transitions in the
string are highly unlikely, given the data segment used
to build the transition matrix.

The procedure for Probabilistic CED is listed in Al-
gorithm 5 and is somewhat similar to Non-Parametric
CED in that it involves a learning phase. But in con-
trast to NPCED, the learning phase is used to update
the transition matrix according to the character transi-
tions of the current string. Furthermore, a probability
threshold is required for detection and is application-
dependent. For example, a user may wish to be no-
tified if strings with zero probability are witnessed, that
is, strings that were not observed during learning. By

Algorithm 5 Probabilistic Complex Event Detection
(PCED) Algorithm
Require: learnPeriod, θ �= ε

1: learnCounter← 0
2: TransitionMatrix[][]← 0
3: while learnCounter ≤ learnPeriod do
4: ā ← call SAX(sensor-values[])
5: for i = 0 to Length(ā) do
6: Update TransitionMatrix[][] {Update

state transition probabilities}
7: end for
8: Increment learnCounter by 1
9: end while

10: loop
11: b̄ ← call SAX(sensor-values[])
12: if P(b̄) ≤ θ then
13: call Notify
14: end if
15: end loop

204 Mobile Netw Appl (2011) 16:194–213

default, we set the threshold to zero in order to dis-
cover previously unseen—during the learning phase—
events. Some work will be required for applications to
determine an appropriate non-zero value for threshold.
One valid method involves introducing a Suffix Tree
data structure and annotating paths with probabilities
during training, somewhat similar to the technique de-
scribed in Papadogkonas et al. [41]. The Suffix Tree
data structure can be used to obtain the x-minimum
probability strings observed during training and max-
imum of those probabilities can be set as the thresh-
old. Since the determination of the threshold is largely
application-dependent, we have left the selection of a
non-zero threshold to the application user. Line 12 of
the algorithm shows the computation of the probabil-
ity for the current string given the transition matrix
populated in training. Similar to Non-parametric CED,
Probabilistic CED can also exploit spatial correlations
in WSN deployments. For instance a node that has
finished learning can share its transition matrix with
its neighbours. Since this exchange will only involve a
one-off message transmission once the learning phase
completes, the communication cost is negligible.

3.5 Dynamic sampling frequency management

Dynamic Sampling Frequency Management (DSFM)
refers to the ability of WSN nodes in making au-
tonomous decisions about when to increase or re-
duce their sampling frequency according to the rate of
change of the underlying process. The importance of
this to a WSN is that it enables nodes to expend less
resources during periods of inactivity saving for times of
interesting changes. Although it is straightforward for a
user to inject a new sampling frequency this assumes
undertaking the cost of network communication. The
advantage of DSFM is that frequency adjustment deci-
sions can be made locally, involving only computation.

The algorithm for dynamic sampling frequency ad-
justments is very similar to that of Non-Parametric
CED and has been developed for use alongside it, in-
volving an identical training phase. Some care must be
taken in the selection of an appropriately long training
period—through empirical evaluation we have found
that 24 h is sufficient for the majority of applications
with characteristics dictated by diurnal cycles. How-
ever, expert knowledge can be applied to applications
with different requirements. Once learning is com-
plete, the algorithm gradually reduces the sampling fre-
quency until the minimum allowed sampling frequency
is achieved. If a distance greater than the maximum dis-
tance learnt is witnessed then the sampling frequency is
set to the maximum allowed.

The selection of lower and upper bounds for the
sampling frequency interval is largely application de-
pendent and should be selected with care, as a naive
lower bound selection can increase the number of false
negatives (undetected events). In lack of expert knowl-
edge, we have found that setting the lower bound to the
sampling frequency value during training phase is ap-
propriate for the applications considered in Section 5.
We then set the upper bound to twice the value of the
lower bound, select the middle value as the sampling
frequency and let the algorithm make appropriate ad-
justments. Local coordination can greatly help achieve
a significantly more appropriate temporal and spatial
coverage of a region, effectively minimising the risk
of missed events. This can be achieved through coor-
dinated sampling frequency scheduling and time syn-
chronisation. We intend to explore the impact of local
coordination further (discussed in Section 6).

Finally, we recognise that some WSN applications
can have specific sampling frequency requirements de-
pending of the periodicity of the signal. If these require-
ments can be specified as a sampling frequency interval,
then DSFM can be useful in selecting an appropriate
frequency within the interval, relaxing the need for
complex pre-deployment signal analysis.

4 Integer techniques for efficient implementation

In order to cater for efficient CED we examined the
part of the algorithms requiring numeric calculations
with floating point types. The lack of Floating Point
Unit (FPU) means that all floating point operations
are performed in software and therefore are inherently
time-consuming.

Using profiling techniques and a custom WSN-
specific timing model [56], we refactored the imple-
mentation of the CED algorithms in a manner suitable
for the constraints of the WSN. Targeting specifically
the symbolic conversion routine that consumed the
majority of time, we refactored it in an efficient integer-
only implementation that reduced the active processing
time by more than a factor of 10. This was achieved by
a combination of the following actions, listed in order
of importance:

– Integer Programming. Floating point variables
were replaced by their integer equivalents. Func-
tions such as the calculation of standard deviation
(cf. [32] for a detailed description of the steps in-
volved in symbolic conversion) were re-written in
integer forms.

Mobile Netw Appl (2011) 16:194–213 205

– Bitwise Techniques. Functions such as the square
root were replaced by fast integer implementations
coded in a manner that utilised bit-level operations.
This gave an additional performance boost to the
code.

– General Optimisations. Unrolling and consolidat-
ing loops together with the choice of appropriate
variables trimmed off excess milliseconds from the
final implementation.

The first target of the CED algorithms was an ex-
pensive standardisation operation that was taking an
input of numeric sensor values and standardising them
by deducting the mean of the sequence and dividing
by the standard deviation. Applying standardisation to
numeric sensor values accounted for nearly 70% of the
algorithm’s time—analytic time measurements are pre-
sented in Section 5.1. In order to mitigate the high cost
of division, we replaced it by a static vector of break-
points scaled by the standard deviation. The break-
points are used for the symbolic conversion as a lookup
and they are equal to the size of the alphabet. The latter
is always smaller than the size of the numeric sensor-
produced sequence, therefore scaling the breakpoints
involves 10 multiplication operations compared to
40−120 divisions needed in order to standardise the se-
quence of sensor measurements.

To map the floating point breakpoints to integers we
applied binary scaling as an one-off multiplication by a
power of 2. In order to operate at numbers of the same
scale, we multiplied the intermediate Piecewise Aggre-
gate Approximation (PAA) representation by the same
scaling factor—the PAA represents an approximation
of the sensor-produced values obtained by dividing the
sequence to frames and computing the mean of each
frame (cf. [32]). This operation involves a number of
multiplications equal to the size of the resulting string.

Bitwise techniques were applied to the calculation
of the integer square root, required for computation of
standard deviation. Although the integer square root
is not strictly required, we found it allows the use of
smaller types—a trade off between the square root cost
and the use of 64-bit types. From empirical evaluation,
we found the cost of using 64-bit types higher com-
pared to 32-bit square root. In addition, we provide an
alternative integer square root that does not rely on
bitwise operations. It is slightly less efficient but can be
used in heterogeneous networks comprising nodes with
different byte endianness.

Loop unrolling was applied in a release of the code
that accepts fixed number of inputs, for instance a
sequence of sensor-produced readings of fixed length.
We accept this represents a sacrifice in flexibility and

to address it, conditional compilation was provisioned
to offer users a selection between variable and fixed se-
quence length.

5 Evaluation

The performance of the algorithms proposed in this
paper has been evaluated against real Wireless Sen-
sor Network data. Whenever possible we have con-
ducted experiments through full implementation on
operational WSN systems. In this case, we have em-
ployed the Intel WISP platform but results pertaining
to performance were collected on TelosB/TMote Sky
[42] nodes due to the restricted facilities of WISPs
for experimentation. In order to refine the granularity
of measurements, we have also opted to simulate the
operation of a WSN system by replaying data sets
collected in-situ and emulating the operations of a WSN
node in software using MATLAB. The latter approach
was used with three data sets of special interest which
we describe next, and the former to investigate the per-
formance and scalability of the algorithms (Section 5.1).

The data sets represent three distinct case stud-
ies. First, a volcano-monitoring application with nor-
malised seismometer and acoustic data. This data set
contains a large number of organic events and is used
for quantitative evaluation of Non-Parametric CED.
Second, an experimental indoor network that collected
humidity, temperature, light and voltage data. This data
set contains a large number of imperfections such as
outliers and missing values, making it an ideal can-
didate for evaluation of all CED algorithms in the
presence of faulty observations. Third, ECG and ac-
celerometer data obtained from the UCR Data Mining
Archive [24] employed to evaluate the performance
against hypothetical pervasive healthcare and context-
aware applications.

The objective of all three case studies was to evaluate
the accuracy of the CED algorithm across data of vary-
ing characteristics. In each case events were identified
and their instance of detection was confirmed visually
by plotting the detection point against the stream of
sensor observations.

Case study 1: seismic and acoustic data This series of
experiments were carried out on data from the volcanic
monitoring deployment of Werner-Allen et al. [50] at
Reventador, an active volcano in Ecuador. The de-
ployment comprised 16 sensor nodes that continuously
sampled seismic and acoustic data at the relatively high
frequency of 100 Hz, for a 19-day period in 2005. The
acoustic data was recorded by microphones capturing

206 Mobile Netw Appl (2011) 16:194–213

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0 1000 2000 3000 4000 5000 6000 7000 8000

Event

(a) Seismic event at node 207 (16/08/2005, 18.30)

-0.04

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 1000 2000 3000 4000 5000 6000 7000 8000

Event

(b) Seismic event at node 208 (16/08/2005, 18.30)

Fig. 5 Examples of non-parametric detection—the dotted verti-
cal lines represent the top distances, the shaded areas represent
the complex event

the infrasonic waves that propagate out of the volcano
vent through the atmosphere. The seismic data was
recorded by seismometers and captures the waves that
may originate from a diffuse zone and may be filtered
(scattered and attenuated) within the volcanic edifice.

One of the application goals was to automatically
determine when an interesting pattern is sensed. If such
a pattern is sensed by a number of nodes, then a base
station begins the acquisition of a 60 s segment of data
from the network. This mode of operation illustrates
the impact of resource constraints to application design:
ideally the users need data sensed continuously but the
network does not have the resources, in terms of power
and bandwidth, to satisfy this need.

For the evaluation of Non-Parametric CED, we ex-
haustively searched through the entire data set for
interesting patterns using compression ratios of 4:1 and
2:1, a ten letter alphabet, and windows of size 32, 64,

and 128. The window refers to the subsequence of
numeric sensor data passed to the symbolic conversion

Table 2 Summary of quantitative detection accuracy results with
one and two compression settings

Compression setting Detection accuracy

Single compression Detected: 733 out of 947 77.4%
(4 : 1)

Double compression Detected: 878 out of 947 92.7%
(2 : 1 and 4 : 1)

routine and returned as a string. The algorithm was
trained on a subsequence of 1,024 data points that
did not contain any events. The computation of dis-
tances was calculated by comparing temporally adja-
cent strings, spaced by four timer ticks. The highest
distances were recorded and these represent the onset
of an interesting pattern. Figure 5 shows an example of
detection, with the dotted vertical lines representing the
patterns of interest.

In general, the Non-parametric CED algorithm per-
formed well in the task of identifying interesting pat-
terns and the results are summarised in Table 2. Out
of 1, 209 downloaded files, 947 contained clear events
while the rest were data containing no interesting pat-
terns. Out of these 947 events, the Non-parametric
CED algorithm successfully detected 733 or 77.4%. To
further improve detection accuracy, we utilised two
different compression ratio settings running in paral-
lel. With this technique, detection accuracy improved
to 92.7%.

Case study 2: indoor deployment This data set is from
an indoor deployment [21] of 54 nodes at the Intel
Lab, Berkeley and contains approximately 2.3 million
readings of temperature, humidity, light. and voltage
sampled at a frequency of 2 Hz. The data contained a
small number of real events: an example is the morning
spike of 5◦ in temperature observed by the majority of
nodes between 7 and 7.20 am or the sudden decrease
of luminosity at midnight. These are potentially at-
tributed to the automated heating system and the night-
time shutdown of the lab, respectively. Synthetic events
were manufactured by removing a time series segment
and either corrupting by random noise or by selecting
values from a uniform distribution in the interval of
[vmin, vmax] where vmin and vmax refer to the minimum
and maximum values of the entire sensor data set re-
spectively.

A useful finding from this series of experiments was
a set of initialisation parameter values that can be used
safely for the task of CED. For instance we found that
patterns with fewer than 18 data points are difficult
to detect consistently. Having tested variations of the
input window size ranging from 16 to 836 points, we
settle on the value of 40 although larger values can be

Mobile Netw Appl (2011) 16:194–213 207

used without hindering detection accuracy. Again, the
window size refers to the length of the numeric sensor
data that is passed to the symbolic conversion routine.
Furthermore, we found that when the pattern is entirely
contained in the input size window the accuracy of
detection is 100%.

Exact and Approximate CED were evaluated by
selecting a data segment, converting it to a string and
searching for its occurrence. As an example, a seg-
ment of 12 h temperature data was taken, converted
to a string and passed to the Exact CED algorithm
as a reference pattern to search in a month’s data
containing the original segment. MATLAB’s Timer
object was employed to emulate the streaming nature
of sensor data, generating a single sensor reading every
500 ms.

Examples of Approximate CED are shown in
Fig. 6a–b, where a search for a specific pattern is per-
formed. Specifically, we are searching in a week’s seg-
ment of data for a pattern that is not included but the
most similar pattern is identified.

Case study 3: ECG and accelerometer data This exper-
iment evaluates the Non-Parametric CED algorithm
on ECG and accelerometer data obtained from the
UCR Data Mining archive [24]. For the former, we
tested two cases: the first is a normal ECG that turns
to Super Ventricular and the second is normal turning
to Malignant Ventricular. The detection was accurate in
both cases and the algorithm managed to pinpoint the
change with reasonable latency. An example is shown
in Fig. 7 with the detected points of change identified
and marked as appropriate.

In addition, an experiment of Non-parametric CED
was conducted on 3-axis accelerometer data obtained
from a Sony ERS-210 Aibo Robot. In this case, the
accelerometer data was sampled at a rate of 125 Hz.
In terms of coordinate frames of the robot, the positive
X axis points towards the front of the robot, positive
Y points out of the left side of the robot, and positive
Z points straight up. The subset of the data tested is
a segment sampled when the robot was playing. We
used a quarter of the data to train the algorithm and

Fig. 6 Examples of
approximate matching

 16

 18

 20

 22

 24

 26

 28

 30

 0 2000 4000 6000 8000 10000 12000 14000

T
em

pe
ra

tu
re

Time

01/03-07/03
Pattern

 18

 19

 20

 21

 22

 23

 24

 25

 26

 27

 28

 0 2000 4000 6000 8000 10000

T
em

pe
ra

tu
re

Time

01/03-07/03
Pattern

(a) The pattern is temperature data for the dates 19/03-20/03 (Node1). The algorithm identifies
the closest match to the pattern

(b) Searching for a pattern (18/03-19/03) in the week 01/03-07/03 (Node4). The closest match
is identified at point 7,017

208 Mobile Netw Appl (2011) 16:194–213

Fig. 7 ECG—two different
datasets that start normal but
change at 4 s

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 1 2 3 4 5 6 7 8
E

C
G

 S
ig

na
l O

ut
pu

ts
 (

m
V

)

Time

Signal 1
Signal 2

Event

(a) ECG−normal turning to Supra-Ventricular. The exact change happens at precisely

4 seconds. The event is identified at 4.38

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 1 2 3 4 5 6 7 8

E
C

G
 S

ig
na

l O
ut

pu
t (

m
V

)

Time

Signal 1
Signal 2

Event

(b) ECG−normal turning to Malignant Ventricular. The exact change happens at precisely

4 seconds. The event is identified a t4.18

Fig. 8 CED in 3-axis
accelerometer readings from
a robot playing. The most
unusual point is identified by
the algorithm at time 42.38

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 38 39 40 41 42 43 44 45 46

X-axis
Y-axis
Z-axis
Event

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 38 39 40 41 42 43 44 45 46

X-axis
Y-axis
Z-axis
Event

Mobile Netw Appl (2011) 16:194–213 209

Fig. 9 Comparison of
running times for two
alternative implementations
of the CED algorithm on a
TMote Sky/TelosB. CED
refers to an implementation
that relies heavily on a
number of floating point
operations. Int-Only CED
refers to an optimised
implementation that has been
refactored using integer
programming

 0

 50

 100

 150

 200

 250

 300

 350

 40 50 60 70 80 90 100 110 120

T
im

e
(m

s)

Window Size

11

113

19.5

226

30

336Int-Only CED
CED

subsequently identified point 536 (Fig. 8) as the point
of highest distance.

We intentionally selected data from sensors of eight
different modalities to empirically evaluate the per-
formance of our suggested approach against a num-
ber of hypothetical application domains. Further to
that, a WSN-implemented demonstration testbed was
designed and presented where one or more sensor
nodes train using light readings in a room. Complex
events are induced using variations of the brightness
caused by a flash light over the light sensor. We were
able to demonstrate successful real-time CED run-
ning on WSN nodes. Further experiments to the same
effect with different sensor data such as accelerometer,
acoustic and so on were performed using a multi-sensor
[13] plug in.

5.1 Experiments and performance analysis

We now focus on the performance of the CED algo-
rithms which establishes the suitability for the target
platform. First, we consider the impact of the Integer
optimisations of Section 4: to evaluate the performance

of the integer-only CED algorithm, we measured its
execution using the Timer component of TinyOS and
specifically the startOneShot and stop commands,
at the beginning and end of the function call to CED
respectively. The times reported were collected on a
TMote Sky/TelosB [42] node. The results of integer-
only compared to classic CED, are shown in Fig. 9.
To highlight the energy saving potential, assuming a
1Hz sampling frequency, the current consumption for
a typical sensor-produced sequence of length 40 is
73.7 mA for the integer implementation compared to
251.74 mA for the implementation involving floating
point numbers.

Results for individual operations are shown in
Table 3, and although RAM usage is slightly higher for
the integer-only implementation it still leaves plenty of
RAM for other WSN-specific tasks (the total RAM is
10 Kb). The 10-fold reduction in time needed for CED
represents a significant gain and is further proof that
CED algorithms are not only accurate and feasible but
also very efficient.

Second, we evaluated the scalability aspect of the
Multiple CED algorithm that utilises the Suffix Array

Table 3 Comparison of CED
to integer-only
implementation

Operation CED Int-Only CED

S2. Standardise
a. Mean 12 ms (10.62%)
b. Std dev 42 ms (37.17%) 5,958 μs (54.17%)
c. Subtract & divide 25 ms (22.12%)

S3. Get PAA 24 ms (21.24%) 4,125 μs (37.5%)
S4. Get Symbols 10 ms (8.85%) 916 μs (8.33%)
Total time 113 ms 11 ms
RAM image size (bytes) 766 1,180

210 Mobile Netw Appl (2011) 16:194–213

 2

 4

 6

 8

 10

 12

 14

 100 150 200 250

T
IM

E
 (

m
s)

SIZE

Suffix
Linear

Fig. 10 Comparison of suffix array binary search against lin-
ear search. The SIZE attribute refers to the cumulative size of
the concatenated patterns (each pattern representing a complex
event)

data structure on real WSN nodes. This series of exper-
iments profiles the behaviour of the algorithm as the
number of user-submitted events increase. In order to
provide a basis for evaluation, we implemented a Lin-
ear Search algorithm as an alternative that determines
whether a sensor-produced pattern exists in a collection
of user-submitted reference patterns. Multiple user pat-
terns were concatenated with each pattern terminated
by appending $ in order to avoid spurious matches. In
this manner, Linear Search was used as the benchmark
for comparison to Suffix Array and Binary Search.

The results of a comparison between binary search-
ing the Suffix Array and performing a linear search
are shown in Fig. 10. The Size attribute refers to the
cumulative size of the concatenated user-submitted pat-
terns, and the Time attribute refers to the time it took a
WSN node to perform each type of search. For instance
a node needs just 8 ms to simultaneously monitor 16
distinct event occurrences each with a string length of
16 characters. These results are also shown in Table 4:
as the size grows, linear search becomes increasingly
slower. None of the test cases represent a worst-case

for the linear search. The worst-case is when the pat-
tern is not found at all in the user-submitted reference
pattern. Further to our WSN-specific search results,
there are plenty more performance statistics comparing
searches using alternative data structures, for example
[36] presents a comprehensive comparison of suffix
trees and Suffix Arrays.

These results confirm empirically that the algorithms
proposed are both feasible for execution in the WSN
platform and scalable as the number and size of user-
submitted reference patterns grow. Last, the robust-
ness of the algorithms has been verified by executing
continuously on an indoor testbed of four unattended
nodes deployed in one of our laboratory buildings for
the period of one month during which they processed
over one million temperature readings. The nodes were
running the Non-Parametric CED algorithm and used
the first day of deployment as training period. The max-
imum distance learnt during training was used to de-
termine occurrence of unusual patterns and the nodes
converted numeric sequences of 40 readings to strings
using a 4:1 compression ratio and a ten letter alphabet.
As expected, no Complex Events were detected and
the maximum distance observed during training was
not exceeded by the comparison of temporally adjacent
sequences. There were no abnormal events such as
heating failures during the month of operation, so the
algorithm operated correctly without falsely notifying.
Finally, outlier readings observed during the month
did not affect the performance or the accuracy of the
algorithm.

6 Future work

We recognise that certain research questions posed in
this article are only partially addressed. To this end, we
intend to further investigate work in the following three
directions:

– In Section 3.2, it was mentioned that Non-
parametric CED can incorporate local coordina-
tion to balance energy requirements across a local
group of nodes, for instance by sharing the maxi-
mum learnt distance with neighbours or by alternat-
ing learning between nodes. The potential benefit

Table 4 Performance times (in ms) for suffix search compared to linear search

Size of concatenated patterns

64 96 128 160 192 224 256

Times (ms)—suffix array 2 4 5 6 6 8 8
Times (ms)—linear search 4 6 8 9 11 13 14

Mobile Netw Appl (2011) 16:194–213 211

of coordination to Non-parametric and Probabilis-
tic CED can be investigated further. Partitioning
a WSN into groups or cells with each group re-
sponsible for a geographic region or a spatial entity
can provide some insight and quantification on the
trade offs between communication overhead and
distribution of computation.

– Given the wide uses of WSNs and the varying
characteristics of the collected data, we recognise
that in certain cases the CED algorithms can be
augmented if running in parallel with other detec-
tion techniques. Similar to Ensemble methods [39]
where multiple models are employed to improve
predictive performance, we believe that multiple
detection algorithms can also improve accuracy.
The counter-argument is that a collection of detec-
tors will inevitably require more resources and in
the future we intend to investigate this trade off
further.

– A deliverable with practical importance to WSN
researchers, is a collection of integer-only imple-
mentations of a family of functions, such as sqrt,
sin, cos, tan involving floating point num-
bers. A software library with fixed-point imple-
mentation of varying precision for these functions
can be a valuable tool to applications that perform
target tracking or data analysis. As discussed in
Section 4, CED relies only on square root and an in-
teger version has already been implemented, how-
ever extending the implementation to functions
outside the scope of CED can benefit the wider
WSN programming community.

Addressing the above directions through evaluation
on real WSNs will extend the work on CED and
benefit users of reactive applications across a number of
domains.

7 Discussion & conclusions

We have presented a comprehensive family of algo-
rithms for Complex Event Detection (CED) as a valid
alternative to the composite event model. The CED
algorithms offer several advantages including the abil-
ity to search for patterns difficult or even impossi-
ble to capture using traditional composite techniques
and thresholds. The lightweight nature of the algo-
rithms make them suitable for a number of extremely
resource-constrained platforms without compromising
detection accuracy or incurring radio communication
costs. With respect to the latter, the CED algorithms
contribute to energy savings by promoting reliable re-

active alerting—a superior solution to costly passive
monitoring and out-of-network processing.

The evaluation findings contribute towards WSN-
related research in the field of reactive systems. As
far as we were able to confirm from literature, this is
the first work addressing the complex nature of WSN
events that are common across a number of applica-
tions. WSN applications usually implement custom so-
lutions fit for a specific data or deployment but lacking
a generic event model, similar to that found in conven-
tional database systems. Our algorithms, methods and
techniques deliver a mechanism where Complex Events
can be defined and submitted to the WSN easily while
detection can be performed according to a selection of
methods to suit different application needs. The nature
of CED guarantees a fixed, efficient execution cost and
does not restrict users in expressing interests in events
as the composite event model, where valid expres-
sions can have arbitrary length and therefore become
unsuitable for execution. The efficient nature of the
algorithms requiring very few resources, complements
the generic goal of prolonged lifetime and makes them
fit for extremely resource-constrained devices. More-
over, the spatial aspect of Complex Events needs to be
considered and we have started work [54] towards this
direction that addresses location estimation of events
with position and direction in physical space.

Finally, we show that there exist a solution to the
Complex Event Detection problem in WSNs that is
both efficient and appropriate for the data character-
istics of WSNs. This solution does not require provi-
sion of new communication paradigms and has been
shown to be compatible with existing state-of-the-art
Pub/Sub, without adding a communication overhead or
modifications to underlying protocols. The efficiency
of the solution has the consequence of low resource
and power requirements, making it a superior alterna-
tive to threshold-based and composite event detection
techniques.

References

1. Arzen KE, Bicchi A, Dini G, Hailes S, Johansson KH,
Lygeros J, Tzes A (2007) A component-based approach to
the design of networked control systems. Eur J Control 13(2–
3):261–279

2. Basha EA, Ravela S, Rus D (2008) Model-based monitoring
for early warning flood detection. In: SenSys ’08: proceedings
of the 6th ACM conference on embedded network sensor
systems, pp 295–308

3. Buettner M, Prasad R, Sample A, Yeager D, Greenstein B,
Smith J, Wetherall D (2008) RFID sensor networks with the
intel WISP. In: SenSys. ACM, pp 393–394

212 Mobile Netw Appl (2011) 16:194–213

4. Burrell J, Brooke T, Beckwith R (2004) Vineyard Comput-
ing: Sensor Networks in Agricultural Production. IEEE Per-
vasive Computing 3(1):38–45

5. Cardell-Oliver R, Kranz M, Smettem K, Mayer K (2005) A
reactivetion soil moisture sensor network: design and field
evaluation. IJDSN 1(2):149–162

6. Casey K, Lim A, Dozier G (2008) A Sensor Network Ar-
chitecture for Tsunami Detection and Response. IJDSN
4(1):28–43

7. Ceriotti M, Mottola L, Picco GP, Murphy A, Stefan G,
Corrà M, Pozzi M, Zonta D, Zanon P (2009) Monitor-
ing heritage buuldings with wireless sensor networks: the
Torre Aquila deployment. In: IPSN ’09: proceedings of
the 2009 international conference on information processing
in sensor networks. IEEE Computer Society, Washington,
pp 277–288

8. Chakravarthy S, Krishnaprasad V, Anwar E, Kim SK (1994)
Composite events for active databases: Semantics, contexts
and detection. In: Proceedings of the international confer-
ence on very large data bases, pp 606–606

9. Chin JC, Yau DKY, Rao NSV, Yang Y, Ma CYT, Shankar M
(2008) Accurate localization of low-level radioactive source
under noise and measurement errors. In: SenSys ’08: pro-
ceedings of the 6th ACM conference on embedded network
sensor systems, pp 183–196

10. Desnoyers P, Ganesan D, Li H, Li M, Shenoy P (2005)
PRESTO: A predictive storage architecture for sensor net-
works. In: Tenth workshop on hot topics in operating systems
(HotOS X)

11. Doolina D, Sitar N (2004) Wireless sensors for wildfire mon-
itoring. In: SPIE symposium on smart structures & materials

12. Doraiswamy PC, Moulin S, Cook PW, Stern A (2003) Crop
yield assessment from remote sensing. Photogramm Eng Re-
mote Sensing 69(6):665–674

13. EasySen C (2008) SBT80—multi modality sensor board. http://
www.easysen.com/SBT80.htm. Accessed 1 August 2009

14. Faloutsos C, Ranganathan M, Manolopoulos Y (1994) Fast
subsequence matching in time-series databases. SIGMOD
Rec 23(2):419–429. doi:10.1145/191843.191925

15. Gao T, Greenspan D, Welsh M, Juang R, Alm A (2005)
Vital signs monitoring and patient tracking over a wireless
network. In: Proceedings of the 27th annual international
conference of the IEEE EMBS, pp 102–105

16. Gunatilaka A, Ristic B, Gailis R (1988) Radiological source
localisation. DSTO-TR-1988. http://hdl.handle.net/1947/8682.
Accessed July 2007

17. Gusfield D (1997) Algorithms on strings, trees and se-
quences: computer science and computational biology. Cam-
bridge University Press

18. Han Q, Jayasumana AP, Illangaskare TH, Sakaki T (2008)
A wireless sensor network based closed-loop system for sub-
surface contaminant plume monitoring. In: Proceedings of
24th IEEE international parallel and distributed processing
symposium. IEEE, pp 1–5

19. Hauer JH, Handziski V, Köpke A, Willig A, Wolisz A (2008)
A component framework for content-based publish/subscribe
in sensor networks. In: EWSN. Springer, pp 369–385

20. Huang L, Garofalakis M, Hellerstein J, Joseph A, Taft N
(2006) Toward sophisticated detection with distributed trig-
gers. In: MineNet ’06: proceedings of the 2006 SIGCOMM
workshop on mining network data, pp 311–316

21. Intel (2004) Lab data (Berkeley). http://db.csail.mit.edu/
labdata/labdata.html. Accessed 2 June 2004

22. Ishida H, Nakamoto T, Moriizumi T (1998) Remote sensing
of gas/odor source location and concentration distribution
using mobile system. Sens Actuators, B, Chem 1–2(49):52–57

23. Katsiri E, Ho M, Wang L, Lo B, Toumazou C (2007) Em-
bedded real-time heart variability analysis. In: 4th interna-
tional workshop on wearable and implantable body sensor
networks (BSN 2007), pp 128–132

24. Keogh E (2008) The UCR time series data mining archive.
http://www.cs.ucr.edu/eamonn/TSDMA/. Accessed December
2008

25. Keogh E, Lonardi S, Ratanamahatana CA (2004) Towards
parameter-free data mining. In: KDD ’04: Proceedings of the
tenth ACM SIGKDD international conference on Knowl-
edge discovery and data mining. ACM, New York, pp 206–
215

26. Keogh E, Lin J, Fu A (2005) HOT SAX: efficiently finding
the most unusual time series subsequence. IEEE interna-
tional conference on data mining, pp 226–233

27. Kim S, Pakzad S, Culler D, Demmel J, Fenves G, Glaser
S, Turon M (2007) Health monitoring of civil infrastructures
using wireless sensor networks. In: IPSN ’07: proceedings of
the 6th international conference on information processing in
sensor networks, pp 254–263

28. Kirsch C, Mattingley-Scott M, Muszynski C, Schaefer F,
Weiss C (2007) Monitoring chronically ill patients using mo-
bile technologies. IBM Syst J 46(1):85–93

29. Krishnamurthy L, Adler R, Buonadonna P, Chhabra J,
Flanigan M, Kushalnagar N, Nachman L, Yarvis M
(2005) Design and deployment of industrial sensor net-
works: experiences from a semiconductor plant and the
north sea. In: SenSys ’05: proceedings of the 3rd interna-
tional conference on embedded networked sensor systems,
pp 64–75

30. Levis P, Culler D (2002) Maté: a tiny virtual machine for
sensor networks. In: ASPLOS-X: proceedings of the 10th in-
ternational conference on architectural support for program-
ming languages and operating systems. ACM, New York,
pp 85–95

31. Levis P, Brewer E, Culler D, Gay D, Madden S, Patel N,
Polastre J, Shenker S, Szewczyk R, Woo A (2008) The emer-
gence of a networking primitive in wireless sensor networks.
Commun ACM 51(7):99–106

32. Lin J, Keogh E, Lonardi S, Chiu B (2003a) A symbolic rep-
resentation of time series, with implications for streaming
algorithms. In: DMKD ’03: proceedings of the 8th ACM
SIGMOD workshop on research issues in data mining and
knowledge discovery. ACM, New York, pp 2–11

33. Lin M, Kumar A, Qing X, Beard SJ, Russell SS, Walker
JL, Delay TK (2003b) Monitoring the integrity of filament-
wound structures using built-in sensor networks. In: Society
of photo-optical instrumentation engineers (SPIE) confer-
ence series, vol 5054, pp 222–229

34. Lo BPL, Thiemjarus S, King R, Yang Gz (2005) Body sensor
network—a wireless sensor platform for pervasive health-
care monitoring. In: Adjunct proceedings of the 3rd interna-
tional conference on pervasive computing (PERVASIVE’05,
pp 77–80

35. Malan D, Fulford-jones T, Welsh M, Moulton S (2004) Code-
Blue: an ad hoc sensor network infrastructure for emergency
medical care. In: International workshop on wearable and
implantable body sensor networks

36. Manber U, Myers G (1990) Suffix arrays: a new method for
on-line string searches. In: SODA ’90: proceedings of the
first annual ACM-SIAM symposium on discrete algorithms,
society for industrial and applied mathematics. Philadelphia,
pp 319–327

37. Marshall IW, Price MC, Li H, Boyd N, Boult S (2007) Multi-
sensor cross correlation for alarm generation in a deployed
sensor network. In: EuroSSC. Springer, pp 286–299

http://www.easysen.com/SBT80.htm
http://www.easysen.com/SBT80.htm
http://dx.doi.org/http://doi.acm.org/10.1145/191843.191925
http://hdl.handle.net/1947/8682
http://db.csail.mit.edu/labdata/labdata.html
http://db.csail.mit.edu/labdata/labdata.html
http://www.cs.ucr.edu/eamonn/TSDMA/

Mobile Netw Appl (2011) 16:194–213 213

38. Norris JR (1997) Markov chains. Cambridge University Press
39. Opitz D, Maclin R (1999) Popular ensemble methods: an

empirical study. J Artif Intell Res 11(169–198):12
40. Paek J, Chintalapudi K, Govindan R, Caffrey J, Masri

S (2005) A wireless sensor network for structural health
monitoring: performance and experience. In: EmNets ’05:
proceedings of the 2nd IEEE workshop on embedded
networked sensors. IEEE Computer Society, Washington,
pp 1–9

41. Papadogkonas D, Roussos G, Levene M (2006) Discovery
and ranking of significant trails. In: Second international
workshop on exploiting context histories in smart environ-
ments (ECHISE) at Ubicomp, p 8

42. Polastre J, Szewczyk R, Culler D (2005) Telos: enabling ultra-
low power wireless research, pp 364–369

43. Salson M, Lecroq T, Léonard M, Mouchard L (2009) Dy-
namic extended suffix arrays. J Discret Algorithms

44. Shin M, Tsang P, Kotz D, Cornelius C (2009) DEAMON:
energy-efficient sensor monitoring. In: Sensor, mesh and
ad hoc communications and networks, 2009. SECON ’09.
6th Annual conference on IEEE communications society,
pp 1–9

45. Steere DC, Baptista A, McNamee D, Pu C, Walpole J (2000)
Research challenges in environmental observation and fore-
casting systems. In: MOBICOM, pp 292–299

46. Stiefmeier T, Roggen D, Tröster G (2007) Gestures are
strings: efficient online gesture spotting and classification us-
ing string matching. In: BodyNets ’07: proceedings of the
ICST 2nd international conference on body area networks,
pp 1–8

47. Stoianov I, Nachman L, Madden S, Tokmouline T (2007)
PIPENETa wireless sensor network for pipeline monitoring.

In: IPSN ’07: proceedings of the 6th international conference
on information processing in sensor networks, pp 264–273

48. Talzi I, Hasler A, Gruber S, Tschudin CF (2007) PermaSense:
investigating permafrost with a WSN in the Swiss alps. In:
EmNets. ACM, pp 8–12

49. Ukkonen E (1995) On-line construction of suffix trees.
Algorithmica 14(3):249–260

50. Werner-Allen G, Lorincz K, Johnson J, Lees J, Welsh M
(2006) Fidelity and yield in a volcano monitoring sensor net-
work. In: OSDI, USENIX association, pp 381–396

51. Werner-Allen G, Dawson-Haggerty S, Welsh M (2008)
Lance: optimizing high-resolution signal collection in wireless
sensor networks. In: Proceedings of the 6th ACM conference
on embedded network sensor systems, pp 169–182

52. Xue W, Luo Q, Chen L, Liu Y (2006) Contour map matching
for event detection in sensor networks. In: SIGMOD ’06:
proceedings of the 2006 ACM SIGMOD international con-
ference on management of data, pp 145–156

53. Zoumboulakis M, Roussos G (2009a) Efficient pattern de-
tection in extremely resource-constrained devices. In: Sixth
annual IEEE communications society conference on sensor,
mesh and ad hoc communications and networks

54. Zoumboulakis M, Roussos G (2009b) Estimation of
pollutant-emitting point-sources using resource-constrained
sensor networks. In: GSN ’09: proceedings of the 3rd inter-
national conference on geosensor networks, pp 21–30

55. Zoumboulakis M, Roussos G (2009c) In-network pattern de-
tection on Intel WISPs. (Demo Abstract). In: Proceedings of
wireless sensing showcase

56. Zoumboulakis M, Roussos G (2009d) Integer-based optimi-
sations for resource-constrained sensor platforms. In: First
international ICST conference, S-CUBE 2009, pp 144–157

	Complex Event Detection in Extremely Resource-Constrained Wireless Sensor Networks
	Abstract
	Introduction
	Problem statement & contributions
	Related work

	Characteristics of complex events
	A family of algorithms for CED
	Exact and approximate CED
	Non-parametric CED
	Multiple CED
	Probabilistic CED
	Dynamic sampling frequency management

	Integer techniques for efficient implementation
	Evaluation
	Experiments and performance analysis

	Future work
	Discussion & conclusions
	References

