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Summary 
The application of exponential weighting to homomorphic deconvolution 
has been treated extensively by Schafer. This paper considers complex 
exponential weighting, i.e. multiplication by a" ei6n. At first glance it 
appears that the phase factor will have no significant effect (just a phase 
shift) on the complex cepstrum. However, it is shown that a slight modi- 
fication of the weighting procedure yields a useful technique for the 
determination of delay times in the cepstrum. 

1. Introduction 

The real cepstrum (Bogart, Healy & Turkey 1963) and more recently the complex 
cepstrum (Oppenheim 1965; Schafer 1969) have been presented as a means of 
detecting echo delay times and deconvolving signals. The usefulness of such pro- 
cedures in seismology is attested in several other papers (Ulrych 1971; Ulrych 
et al., 1972; Bakun & Johnson 1973; Stoffa, Buhl & Bryan 1974). In order to avoid 
stringent restrictions on the signal (that it be minimum phase), Schafer (1969) intro- 
duced the concept of exponential weighting. 

Essentially, the method is multiplication of the input signal f (n)  by a real number 
u", a transformation which does not destroy the echo. As well as insuring that the 
multipath operator be minimum phase, exponential weighting offers a too1 for 
detecting delays in the cepstrum. It often drastically alters the cepstrum of the 
signal, while having only marginal effects on the periodic spikes representing the 
delay times. 

A complex exponential weight, as proposed in this paper, represents an extension 
of the above. In place of un, a factor a" e'4" is introduced. Of course, merely a phase 
factor will have no significant effect (just a phase shift) on the complex cepstrum. 
However, we show that complex weighting followed by a symmetrization procedure 
yields a useful technique for the determination of delay times in the cepstrum. 

As the basic theory of the complex cepstrum has been covered extensively in the 
literature, we shall limit ourselves to providing only the necessary definitions. For 
background material the reader is referred to the references. 

2. Theory 
For convenience of notation, we will assume that the absolute value of the complex 
* Received in original form 1975 August 2. 
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380 M. J. Shew 

exponential weight is unity; i.e. c1 = 1. Let s(n) be a time series and S(z) be its z- 
transform. Consider the result of multiplying s(n) by a time-dependent phase factor, 

g(n) = s(n)e'+". (1) 
The z-transform of g becomes 

G(z) = 5 g(n)z-" 
n = - m  

= S(e-'+z). 

The complex cepstrum of g(n) is then given by 

where C is the circle described by z = e'", - n < w < n; the logarithm is suitably 
defined (Schafer 1969), and b denotes the complex cepstrum. A change of variables, 
z e- '4 z, yields 

b(n) = f? 2ni f [logS(z)]z"-'dz 

= ei+"S(n). (4) 

We note two things. Firstly, the cepstrum, 8, is a complex function. Secondly, 
its absolute value, I$/, is the same as the absolute value of the original complex 
cepstrum, 131. Thus, a simple complex weighting such as this has not gained anything. 
In order to produce a useful result, we modify the above procedure as follows: 

Assume that s(n) is the sum of a wave and an attenuated echo (magnitude a) 

s(n) = f (n) * (b(n) + a6(n-d)). 

logS(2) = log F(z)+log (1 +az-d). 

logS(e'") = logF(e'@)+log (1 +ae-'"'). 

(5)  

(6) 

(7) 

The logarithm of its z-transform is 

Replacing z by its value, e'", on the unit circle, one obtains from equation (6) 

Since the z-transform of a real function is Hermitian, and since Schafer's definition 
of the compIex logarithm insures that l o g 2  = log A,  one has, for a real signal s(n) 

- 
log S(e-'") = log s(e*@). (8) 

(A complex function, F(x)  is considered Hermitian provided F( - x )  = F(x), where 
the bar indicates complex conjugation.) On the other hand, note that the function 
g(n) is not real and G(e'") is not Hermitian. 

We now make log G Hermitian by reflecting about w = 0. Define 

w = o  

log G(e'") 

Real (log G(1)) 
H(e'") = log G(e-'@) (9) 
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Homomorphic deconvolution 381 

It is easy to see that H(ei") is Hermitian for Iwl c n. Finally, consider the transformed 
complex cepstrum defined by 

g y n )  = - $ H(z)z"-'dz. 
2ni 

The superscript ' c ' stands for complex exponential weight. 
$(n) bears an important relationship to the original cepstrum 3(n). Although, 

in passing from 3 to gC the part of the cepstrum due to the source signal f (n) has been 
completely transfigured, the delay, d, is still present. More specifically, from equa- 
tions (2) and (7) 

log G(e'") = log S(z e- '+) 

= logF(z e-'+)+log(l +a(ze-'+)-d) 

= log F(e'("-+))+log ( I  + a  e-iOd ei+g. (11) 

The second term, representing the delay, will be Hermitian provided $d is an 
integral multiple of n; i.e. 

when 
log (1 + a  e- '"' ei+7 = log (I  + a  eiod ei@d) (12) 

4d = nl. 

Under these conditions, equations (9), (lo), (11) and (12) imply 

If we denote the operation of forming the complex cepstrum by D 

and define 

then 6" is merely the complex cepstrum of 

f C ( n )  * (S(n) + ( - 1)' a8(n - 6)). (16) 

(Since the cepstrum of a convolution is the sum of the cepstra.) In other words, gC 
is still the cepstrum of a signal with an echo of delay d (with additional phase shift 
if 1 is odd), but the signal, f ', is different. 

The effect of the factor et@ on the spectrum of s(n) is simply a frequency shift of 
~$427~ (rotation by 4) followed by truncation and reflection (the symmetrization 
detailed in equation (9)). In terms of an actual program implemented via the Fast 
Fourier Transform (FFT), the procedure is: 

(I) Multiply the signal by a complex weight a ei 4. 
(2) Take the FFT of the result to obtain the spectrum. 

(3) Retain the spectrum from 0 to the folding frequency, and determine the 
remainder of the spectrum by taking its complex conjugate and reflecting about the 
folding frequency. 

(4) Take the complex logarithm and inverse FFT to obtain the cepstrum. (Note: 
the logarithm may be taken before (3) since it commutes with complex conjugation.) 
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3. Application 

Examples of the treatment of a synthetic signal are given in Fig. 1. The delay is 
10 samples and the echo is attenuated by 2dB. From equation (13), it should be 
clear that, provided dd is an even multiple of n, the cepstrum of the multipath 
operator will remain unaltered (compare Fig. 1 (b) and (c)). For $d an odd multiple 
of n, the echo will still appear, but with opposite phase (see Fig. 1 (d)). As 4d varies 
between these values, the cepstraI peaks representing the delay (points w = kd) will 
vary between the two extremes (see appendix and Fig. l(e)). 

The usefulness of complex exponential weighting may be seen in the following: 
Firstly, the cepstrum of the transformed signal, as well as its phase relation to that 
of the multipath operator (delay peaks), is completely altered. In many cases this 
enhances the appearance of the delay in the cepstrum. Secondly, once a trial delay 
has been chosen, it can be tested by setting d, = n/d and checking to see if the first 
peak has changed sign. Finally, even if it is not possible to pick out a delay in the 
original cepstrum, a trial sweep of the complex weight over various angles 4 may be 
attempted. Often the delay will now show up in the cepstrum of one of the complex 
exponentially weighted signals. 

These techniques are illustrated in Fig. 2, which contains an analysis of a synthetic 
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FIG. 2. Synthetic signal with noise (signallnoise ratio - 6 dB) with complex 
exponential weights ue'' where u = 0.90 and (b) no shift, 4 = 0; (c) 4d = 2n, 
and d = 14 units; (d) 4d = 3a, and d = 14 units; (e) 4 = 3a, and d = 10 

units. 

signal with noise (signal/noise ratio of -6.0 dB and true delay of 10 sample units). 
The original cepstrum, Fig. 2(a), presents several possible choices for the peak; in 
particular, points 10 and 14. First assuming a true delay of 14 units, we introduce 
phase shifts of $d = 2n and $d = 371 (Figs 2(c) and (d)). There is no significant 
enhancement or reversal of the peak. On the other hand, in Fig. 2(e), where 
d = 10 units and $d = 371, there is a clear phase reversal. In fact even a second peak 
at 20 units is visible. Thus, the procedure has clearly distinguished the true peak at 
10 from the noise spike at 14. 

We conclude with a real example. Let us preface the results by the following 
remarks: Complex exponential weighting is still valid if the complex logarithm is 
replaced by its real part. This will simply result in the cepstrum of Bogart et al. 
(1963) which for convenience we will refer to as the real cepstrum. It has been the 
experience of the author that the real cepstrum is superior to the complex cepstrum 
for spotting delays, since even with the removal of the linear phase component 
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Fro. 3. Actual seismic event (a) and its real cepstra with complex exponential 
weights u ere where u = 0.89, and (b) no shift, 4 = 0; (c) Qd = - 2n; (d) dd = 7r; 

(e) Qd = n/2.  

(Schafer 1969) the contribution of the imaginary part of the logarithm tends to over- 
shadow the delay. 

Part of a seismic event (Fig. 3(a)) is analysed in Fig. 3. All the cepstra are ' real 
cepstra ' and in addition to possible complex exponential weighting, include a real 
weight of 0.89 (a = 0.89). The delay time was initially estimated from Fig. 3(b) to 
be 9 units. The frequency shifts chosen for the complex exponential e'$ are given by 
A f = 4/2n where +d = - 2n, n and 742. They are thus the analogs of Fig. 1. 

A comparison of Fig. 3(c) (Af = - (l/d) = - 1.1) and Fig. 3(b), the unshifted 
real cepstrum, exhibits no change in the multipath operator, but because of the 
transformed signal, the peak is enhanced. In Fig. 3(d), A f = 1/2d = 0.56, and 
the phase reversal is clearly visible. In Fig. 3(e), A f = 1/4d = 0.28, an intermediate 
phase shift (4 = 42) .  Here the peak has become obscured. These results all support 
the choice of 9 units for the delay. A further confirmation is evident in Fig. 4 which 
contains the output of a short pass filter (Schafer 1969) of the complex cepstrum (at 
point 9) and the difference between the signal and short pass output. 

(It is very important to note that all filtering must be done on the real-exponen- 
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FIG. 4. (a) The output after short pass filtering the complex cepstrum; i.e. the 
presumed source signal. (b) The original signal minus the output pictured in Fig. 

4(a); i.e. the presumed delayed source signal. 

tially weighted signal since the complex exponentiation procedure destroys the signal- 
see equation (9).) 

4. Discussion 

An ability to distinguish the delay time in the cepstrum (as well as to deconvolve 
the signal) is important for two reasons: 

(1) For a long signal it may not be reasonable to try deconvolution at a large 
number of points. 

(2) Even when the filtering operation bears apparently fruitful results, it is not 
always easy to be certain that the filtered signal and the echo (input minus filtered 
signal) are sufficiently similar to justify the assumption of an echo. There is certainly 
room for more research in order to find suitable criteria for avoiding erroneous 
observations of delays. 

Complex exponential weighting provides one possible means of dealing with the 
above problems. It can be used as both a hypothesis tester and as a tool for extracting 
a delay originally hidden by the cepstrum of the signal. Under the assumption of a 
particular delay, the complex exponential weight transforms the source signal in an 
arbitrary, non-linear manner, but has a predictable effect (a possible phase reversal) 
on the multipath operator, thus, it may confirm or deny the presumed value of the 
delay. In addition, as detailed in the previous section, a trial sweep over various 
phase shifts, e'9, will often result in several cepstra with the delay enhanced. 
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Appendix 

as found in equation (11). Then for lul < 1 

Consider the Hermitian function (cf. equation (9)) associated with log G(ei") 

m 

- c r- 
k=O 

where 
o < m < T L  

- n < m < O  (A41 
cos4kd i n = 0. 

ei+kd e-  iwkd 

Hk(eiw) = e- i+kd e- iwkd 

Let 
1 I m z > O  

W+(z )  = 0 Imz < 0 
3 1 I m z = O  

and 

Then 
W-(Z) = W + (  -2). 

~ , ( ~ f " )  = w+ eiOkd e- lwkd + W- (eiw) e- Wkd e- iwkd 
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The inverse z-transforms of W+ and W- on the unit circle are 

n=O 

w+(n) = d} n in n odd 

0 n even and n # 0 

nin 

0 J n even arid n z 0. 

By the convolution theorem 

hk(n) = w+ (n) * ei4kd 6(n - kd) + w- (n) * e- i4kd 6 ( n - k 4  

= w+ (n - kd) ei@kd + w- (n - kd)  e- i@kd  

cos ( 4 k d ) )  n = kd 

n - kd odd 
- 2 sin (4kd) 

n(n - kd) 
- - 

O J  n-kd even and n # kd. 

Note that the inverse transform of expression (A3), 

m (-u)k - k = d  c,- hk(n)q 

is the cepstrum of the complex exponentially weighted multipath operator. From 
(AIO) it is seen that for 4kd close to a multiple of n, h,(n) will behave as 6(n-kd).  
As cjkd approaches nn+ (n/2), the peak will flatten out (with a dip in the centre), but 
the function will remain localized near n = kd (because of the denominator n-kd) .  
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