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This talk examines Hamiltonians H that are not Hermitian but do exhibit space-time re-
flection (PT ) symmetry. If the (PT ) symmetry of H is not spontaneously broken, then
the spectrum of H is entirely real and positive. Examples of PT -symmetric non-Hermitian
Hamiltonians are H = p2 + ix3 and H = p2 − x4. The apparent shortcoming of quantum
theories arising from PT -symmetric Hamiltonians is that the PT norm is not positive defi-
nite. This suggests that it may be difficult to develop a quantum theory based on such
Hamiltonians. In this talk it is shown that these difficulties can be overcome by introducing
a previously unnoticed underlying physical symmetry C of Hamiltonians having an unbroken
PT symmetry. Using C, it is shown how to construct an inner product whose associated
norm is positive definite. The result is a new class of fully consistent complex quantum
theories. Observables in these theories exhibit CPT symmetry, probabilities are positive,
and the dynamics is governed by unitary time evolution.

1 Introduction

In this talk we discuss an alternative to a standard axiom of quantum mechanics; namely, that
the Hamiltonian H, which incorporates the symmetries and specifies the dynamics of a quantum
theory, must be Hermitian: H = H†. It is commonly believed thatH must be Hermitian in order
to ensure that the energy spectrum (the eigenvalues of H) is real and that the time evolution
is unitary (probability is conserved in time). Although this axiom is sufficient to guarantee
these desired properties, it is not necessary. We believe that the condition of Hermiticity is
a mathematical requirement whose physical basis is obscure. We demonstrate here that there
is a more physical alternative axiom, which we refer to as space-time reflection symmetry (PT
symmetry): H = HPT . This symmetry allows for the possibility of non-Hermitian and complex
Hamiltonians but still leads to a consistent theory of quantum mechanics.

We also show that because PT symmetry is an alternative condition to Hermiticity, it is now
possible to construct infinitely many new Hamiltonians that would have been rejected in the
past because they are not Hermitian. An example of such a Hamiltonian is H = p2 + ix3. It
should be emphasized that we do not regard the condition of Hermiticity as wrong. Rather, the
condition of PT symmetry offers the possibility of studying new quantum theories.

Let us recall the properties of the space reflection (parity) operator P and the time-reflection
operator T : P is linear and has the effect p→ −p and x→ −x; T is antilinear and has the effect
p→ −p, x→ x, and i→ −i. Note that T changes the sign of i because, like P, it preserves the
fundamental commutation relation of quantum mechanics, [x, p] = i.

It is easy to construct Hamiltonians that are not Hermitian but do possess PT symmetry.
For example, consider the one-parameter family of Hamiltonians

H = p2 + x2(ix)ε (ε real). (1)

While H in (1) is not symmetric under P or T separately, it is invariant under their com-
bined operation. We say that such Hamiltonians possess space-time reflection symmetry. Other
complex Hamiltonians having PT symmetry are H = p2 + x4(ix)ε and H = p2 + x6(ix)ε [1]1.

1These classes of Hamiltonians are all different. For example, the Hamiltonian obtained by continuing H
in (1) along the path ε : 0 → 8 has a different spectrum from the Hamiltonian that is obtained by continuing
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Figure 1. Energy levels of the Hamiltonian H = p2 +x2(ix)ε as a function of the parameter ε. There are
three regions: When ε ≥ 0, the spectrum is real and positive and the energy levels rise with increasing ε.
The lower bound of this region, ε = 0, corresponds to the harmonic oscillator, whose energy levels are
En = 2n + 1. When −1 < ε < 0, there is a finite number of real positive eigenvalues and an infinite
number of complex conjugate pairs of eigenvalues. As ε decreases from 0 to −1, the number of real
eigenvalues decreases; when ε ≤ −0.57793, the only real eigenvalue is the ground-state energy. As ε
approaches −1+, the ground-state energy becomes infinite. When ε ≤ −1 there are no real eigenvalues.

The class of PT -symmetric Hamiltonians is larger than and includes real symmetric Hermi-
tians because any real symmetric Hamiltonian is automatically PT -symmetric. For example,
consider the real symmetric Hamiltonian H = p2 + x2 + 2x. This Hamiltonian is time-reversal
symmetric, but according to the usual definition of space reflection for which x → −x, this
Hamiltonian appears not to have PT symmetry. However, recall that the parity operator is
defined only up to unitary equivalence. In this example, if we express the Hamiltonian in the
form H = p2 +(x+1)2 − 1, then it is evident that H is PT symmetric, provided that the parity
operator performs a space reflection about the point x = −1 rather than x = 0. See Ref. [2] for
the construction of the relevant parity operator.

With properly defined boundary conditions the spectrum of the Hamiltonian H in (1) is real
and positive when ε ≥ 0 [3] and the spectrum is partly real and partly complex when ε < 0. The
eigenvalues have been computed numerically to very high precision, and the real eigenvalues are
plotted as functions of ε in Fig. 1.

We say that the PT symmetry of a Hamiltonian H is unbroken if all of the eigenfunctions
of H are simultaneously eigenfunctions of PT 2. Here is a proof that if the PT symmetry of
a Hamiltonian H is unbroken, then the spectrum of H is real: Assume that H possesses PT
symmetry (that is, that H commutes with the PT operator), and that if φ is an eigenstate of H
with eigenvalue E, then it is simultaneously an eigenstate of PT with eigenvalue λ:

Hφ = Eφ and PT φ = λφ. (2)

H = p2 + x6(ix)ε along the path ε : 0 → 4. This is because the boundary conditions on the eigenfunctions are
different.

2If a system is defined by an equation that possesses a discrete symmetry, the solution to this equation need not
exhibit that symmetry. For example, the differential equation ÿ(t) = y(t) is symmetric under time reversal t → −t.
The solutions y(t) = et and y(t) = e−t do not exhibit time-reversal symmetry while the solution y(t) = cosh(t)
is time-reversal symmetric. The same is true with a system whose Hamiltonian is PT symmetric. Even if the
Schrödinger equation and the corresponding boundary conditions are PT symmetric, the wave function that solves
the Schrödinger equation boundary value problem may not be symmetric under space-time reflection. When the
solution exhibits PT symmetry, we say that the PT symmetry is unbroken. Conversely, if the solution does not
possess PT symmetry, we say that the PT symmetry is broken.
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We begin by showing that the eigenvalue λ is a pure phase. Multiply PT φ = λφ on the left by
PT and use the fact that P and T commute and that P2 = T 2 = 1 to conclude that φ = λ∗λφ
and thus λ = eiα for some real α. Next, introduce a convention that we use throughout this
talk. Without loss of generality we replace the eigenstate φ by e−iα/2φ so that its eigenvalue
under the operator PT is unity: PT φ = φ. Next, multiply the eigenvalue equation Hφ = Eφ
on the left by PT and use [PT , H] = 0 to obtain Eφ = E∗φ. Hence, E = E∗ and E is real.

The crucial assumption in this argument is that φ is simultaneously an eigenstate of H and
PT . In quantum mechanics if a linear operator X commutes with H, then the eigenstates of H
are also eigenstates of X. However, the operator PT is not linear (it is antilinear) and thus we
must make the extra assumption that the PT symmetry of H is unbroken; that is, that φ is
simultaneously an eigenstate of H and PT . This extra assumption is nontrivial because it is
hard to determine a priori whether the PT symmetry of a given H is broken or unbroken. For
the Hamiltonian H in (1) the PT symmetry is unbroken when ε ≥ 0 and broken when ε < 0. The
conventional Hermitian Hamiltonian for the quantum mechanical harmonic oscillator lies at the
boundary of the unbroken and the broken regimes. Recently, Dorey et al. proved rigorously that
the spectrum of H in (1) is real and positive [4] in the region ε ≥ 0. Many other PT -symmetric
Hamiltonians for which space-time reflection symmetry is not broken have been investigated,
and the spectra of these Hamiltonians have also been shown to be real and positive [5].

While it is useful to show that a given non-Hermitian PT -symmetric Hamiltonian operator
has a positive real spectrum, the urgent question is whether such a Hamiltonian defines a physical
theory of quantum mechanics. By a physical theory we mean that there is a Hilbert space of
state vectors and that this Hilbert space has an inner product with a positive norm. In quantum
mechanics we interpret the norm of a state as a probability and this probability must be positive.
Furthermore, we must show that the time evolution of the theory is unitary. This means that
as a state vector evolves in time the probability does not leak away.

It is not obvious whether a Hamiltonian such as H in (1) gives a consistent quantum theory.
Indeed, past investigations of this Hamiltonian have shown that while the spectrum is entirely
real and positive when ε ≥ 0, one inevitably encountered the severe problem of Hilbert spaces
endowed with indefinite metrics [6]. We will identify a new symmetry that all PT -symmetric
Hamiltonians having an unbroken PT -symmetry possess. We denote the operator representing
this symmetry by C because the properties of this operator resemble those of the charge conju-
gation operator in particle physics. This will allow us to introduce an inner product structure
associated with CPT conjugation for which the norms of quantum states are positive definite.
We will see that CPT symmetry is an alternative to Hermiticity; it introduces the new concept
of a dynamically determined inner product (one that is defined by the Hamiltonian itself). As
a consequence, we will extend the Hamiltonian and its eigenstates into the complex domain so
that the associated eigenvalues are real and the underlying dynamics is unitary.

2 Construction of the C operator

We begin by summarizing the mathematical properties of the solution to the Sturm–Liouville
differential equation eigenvalue problem

−φ′′n(x) + x2(ix)εφn(x) = Enφn(x) (3)

associated with the Hamiltonian H in (1). This differential equation must be imposed on an
infinite contour in the complex-x plane. For large |x| this contour lies in wedges placed symmet-
rically with respect to the imaginary-x axis [3]. The boundary conditions on the eigenfunctions
are that φ(x) → 0 exponentially rapidly as |x| → ∞ on the contour. For 0 ≤ ε < 2, the contour
may lie on the real axis.
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When ε ≥ 0, the Hamiltonian has an unbroken PT symmetry. Thus, the eigenfunctions φn(x)
are simultaneously eigenstates of the PT operator: PT φn(x) = λnφn(x). As we argued above,
λn is a pure phase and, without loss of generality, for each n this phase can be absorbed into φn(x)
by a multiplicative rescaling so that the new eigenvalue is unity:

PT φn(x) = φ∗n(−x) = φn(x). (4)

There is strong evidence that, when properly normalized, the eigenfunctions φn(x) are com-
plete. The coordinate-space statement of completeness reads∑

n

(−1)nφn(x)φn(y) = δ(x− y) (x, y real). (5)

This nontrivial result has been verified numerically to extremely high accuracy (twenty decimal
places) [7, 8]. There is a factor of (−1)n in the sum. This unusual factor does not appear
in conventional quantum mechanics. The presence of this factor is explained in the following
discussion of orthonormality [see (7)].

Here is where we encounter the problem associated with non-Hermitian PT -symmetric Hamil-
tonians. The obvious choice for the inner product of two functions f(x) and g(x) is

(f, g) ≡
∫
dx [PT f(x)]g(x), (6)

where PT f(x) = [f(−x)]∗ and the integral path is the above contour in the complex-x plane.
The apparent advantage of this inner product is that the associated norm (f, f) is independent
of the overall phase of f(x) and is conserved in time. Phase independence is desired because in
quantum mechanics the objective is to construct a space of rays to represent quantum mechanical
states. With respect to this inner product the eigenfunctions φm(x) and φn(x) of H in (1) are
orthogonal for n �= m. However, when m = n the norm is evidently not positive:

(φm, φn) = (−1)nδmn. (7)

This result is apparently true for all values of ε in (3) and it has been verified numerically to
extremely high precision. Because the norms of the eigenfunctions alternate in sign, the metric
associated with the PT inner product (·, ·) is indefinite. This split signature (sign alternation)
is a generic feature of the PT inner product. Extensive numerical calculations verify that the
formula in (7) holds for all ε ≥ 0.

Despite the lack of positivity of the inner product, we proceed with the usual analysis that
one would perform for any Sturm–Liouville problem of the form Hφn = Enφn. First, we use the
inner product formula (7) to verify that (5) is the representation of the unity operator. That is,
we verify that

∫
dy δ(x− y)δ(y − z) = δ(x− z).

Second, we reconstruct the parity operator P in terms of the eigenstates. The parity operator
in position space is P(x, y) = δ(x+ y), so from (5) we get

P(x, y) =
∑

n

(−1)nφn(x)φn(−y). (8)

By virtue of (7) the square of the parity operator is unity: P2 = 1.
Third, we construct H in coordinate space: H(x, y) =

∑
n

(−1)nEnφn(x)φn(y). Using (5)–(7)

we can see that this Hamiltonian satisfies Hφn(x) = Enφn(x).
Fourth, we construct the Green’s function G(x, y) =

∑
n

(−1)n 1
En
φn(x)φn(y) in coordinate

space. The Green’s function is the functional inverse of H; that is, G satisfies∫
dy H(x, y)G(y, z) =

[
− d2

dx2
+ x2(ix)ε

]
G(x, z) = δ(x− z). (9)
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While the time-independent Schrödinger equation (3) cannot be solved analytically, the differ-
ential equation for G(x, z) in (9) can be solved in closed form [8]. The technique is to consider
the case 0 < ε < 2 so that we may treat x as real and then to decompose the x axis into two
regions, x > z and x < z. We can solve the differential equation in each region in terms of Bessel
functions. From this representation of the Green’s function we construct an exact closed-form
expression for the spectral zeta function (sum of the inverses of the energy eigenvalues). To do
so we set y = x in G(x, y) and use (7) to integrate over x. For all ε > 0 we obtain [8]

∑
n

1
En

=


1 +

cos
(

3επ
2ε+8

)
sin

(
π

4+ε

)

cos
(

επ
4+2ε

)
sin

(
3π
4+ε

)

 Γ

(
1

4+ε

)
Γ

(
2

4+ε

)
Γ

(
ε

4+ε

)

(4 + ε)
4+2ε
4+ε Γ

(
1+ε
4+ε

)
Γ

(
2+ε
4+ε

) . (10)

Having presented these general Sturm–Liouville constructions, we now address the crucial
question of whether a PT -symmetric Hamiltonian defines a physically viable quantum mechanics
or whether it merely provides an intriguing Sturm–Liouville eigenvalue problem. The apparent
difficulty with formulating a quantum theory is that the vector space of quantum states is
spanned by energy eigenstates, of which half have norm +1 and half have norm −1. Because
the norm of the states carries a probabilistic interpretation in standard quantum theory, the
existence of an indefinite metric in (7) seems to be a serious obstacle.

The situation here in which half of the energy eigenstates have positive norm and half have
negative norm is analogous to the problem that Dirac encountered in formulating the spinor
wave equation in relativistic quantum theory [9]. Following Dirac’s approach, we attack the
problem of an indefinite norm by finding a physical interpretation for the negative norm states.
We claim that in any theory having an unbroken PT symmetry there exists a symmetry of
the Hamiltonian connected with the fact that there are equal numbers of positive-norm and
negative-norm states. To describe this symmetry we construct a linear operator denoted by C
and represented in position space as a sum over the energy eigenstates of the Hamiltonian [10]:

C(x, y) =
∑

n

φn(x)φn(y). (11)

As stated earlier, the properties of this new operator C resemble those of the charge conjuga-
tion operator in quantum field theory. For example, we can use (5)–(7) to verify that the square
of C is unity (C2 = 1):

∫
dy C(x, y)C(y, z) = δ(x − z). Thus, the eigenvalues of C are ±1. Also,

C commutes with the Hamiltonian H. Therefore, since C is linear, the eigenstates of H have def-
inite values of C. Specifically, if the energy eigenstates satisfy (7), then we have Cφn = (−1)nφn

because

Cφn(x) =
∫
dy C(x, y)φn(y) =

∑
m

φm(x)
∫
dy φm(y)φn(y).

We then use
∫
dy φm(y)φn(y) = (φm, φn) according to our convention. Thus, C is the operator

observable that represents the measurement of the signature of the PT norm of a state3.
The operators P and C are distinct square roots of the unity operator δ(x − y). That is,

P2 = C2 = 1, but P �= C. Indeed, P is real, while C is complex4. Furthermore, these two
operators do not commute; in the position representation

(CP)(x, y) =
∑

n

φn(x)φn(−y) but (PC)(x, y) =
∑

n

φn(−x)φn(y), (12)

which shows that CP = (PC)∗. However, C does commute with PT .
3The PT norm of a state determines its parity type. We can regard C as representing the operator that

determines the C charge of the state. Quantum states having opposite C charge possess opposite parity type.
4The parity operator in coordinate space is explicitly real P(x, y) = δ(x + y); the operator C(x, y) is complex

because it is a sum of products of complex functions, as we see in (11). The complexity of the C operator can be
seen explicitly in perturbative calculations of C(x, y) [11].
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Finally, having obtained the operator C we define a new inner product structure having
positive definite signature by

〈f |g〉 ≡
∫

C
dx [CPT f(x)]g(x). (13)

Like the PT inner product (6), this inner product is phase independent and conserved in time.
This is because the time evolution operator, just as in ordinary quantum mechanics, is eiHt. The
fact that H commutes with the PT and the CPT operators implies that both inner products,
(6) and (13), remain time independent as the states evolve in time. However, unlike (6), the
inner product (13) is positive definite because C contributes −1 when it acts on states with
negative PT norm. In terms of the CPT conjugate, the completeness condition (5) reads

∑
n

φn(x)[CPT φn(y)] = δ(x− y). (14)

Unlike the inner product of conventional quantum mechanics, the CPT inner product (14) is
dynamically determined; it depends implicitly on the Hamiltonian.

The operator C does not exist as a distinct entity in conventional quantum mechanics. Indeed,
if we allow the parameter ε in (1) to tend to zero, the operator C in this limit becomes identical
to P. Thus, in this limit the CPT operator becomes T , which is just complex conjugation. As
a consequence, the inner product (13) defined with respect to the CPT conjugation reduces to
the complex conjugate inner product of conventional quantum mechanics when ε→ 0. Similarly,
in this limit (14) reduces to the usual statement of completeness

∑
n
φn(x)φ∗n(y) = δ(x− y).

The CPT inner-product (13) is independent of the choice of integration contour C so long
as C lies inside the asymptotic wedges associated with the boundary conditions for the Sturm–
Liouville problem (2). Path independence follows from Cauchy’s theorem and the analyticity of
the integrand. In ordinary quantum mechanics, where the positive-definite inner product has the
form

∫
dx f∗(x)g(x), the integral must be taken along the real axis and the path of the integration

cannot be deformed into the complex plane because the integrand is not analytic5. The PT inner
product (6) shares with (13) the advantage of analyticity and path independence, but suffers
from nonpositivity. We find it surprising that a positive-definite metric can be constructed using
CPT conjugation without disturbing the path independence of the inner-product integral.

Finally, we explain why PT -symmetric theories are unitary. Time evolution is determined by
the operator e−iHt, whether the theory is expressed in terms of a PT -symmetric Hamiltonian or
just an ordinary Hermitian Hamiltonian. To establish the global unitarity of a theory we must
show that as a state vector evolves its norm does not change in time. If ψ0(x) is a prescribed
initial wave function belonging to the Hilbert space spanned by the energy eigenstates, then
it evolves into the state ψt(x) at time t according to ψt(x) = e−iHtψ0(x). With respect to
the CPT inner product defined in (13), the norm of the vector ψt(x) does not change in time,
〈ψt|ψt〉 = 〈ψ0|ψ0〉, because the Hamiltonian H commutes with the CPT operator.

Establishing unitarity at a local level is harder. Here, we must show that in coordinate
space there exists a local probability density that satisfies a continuity equation so that the
probability does not leak away. This is a subtle result because the probability current flows in the
complex plane rather than along the real axis as in conventional Hermitian quantum mechanics.
Preliminary numerical studies indeed indicate that the continuity equation is fulfilled [12].

5If a function satisfies a linear ordinary differential equation, then the function is analytic wherever the coeffi-
cient functions of the differential equation are analytic. The Schrödinger equation (3) is linear and its coefficients
are analytic except for a branch cut at the origin; this branch cut can be taken to run up the imaginary axis.
We choose the integration contour for the inner product (7) so that it does not cross the positive imaginary axis.
Path independence occurs because the integrand of the inner product (7) is a product of analytic functions.
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3 Illustrative example: A 2 × 2 matrix Hamiltonian

We illustrate the above results concerning PT -symmetric quantum mechanics using the finite-
dimensional 2 × 2 matrix Hamiltonian

H =
(
reiθ s
s re−iθ

)
, (15)

where the three parameters r, s, and θ are real. This Hamiltonian is not Hermitian in the usual
sense, but it is PT symmetric, where the parity operator is [13]

P =
(

0 1
1 0

)
(16)

and T performs complex conjugation.
There are two parametric regions for this Hamiltonian. When s2 < r2 sin2 θ, the energy

eigenvalues form a complex conjugate pair. This is the region of broken PT symmetry. On the
other hand, if s2 ≥ r2 sin2 θ, then the eigenvalues ε± = r cos θ±

√
s2 − r2 sin2 θ are real. This is

the region of unbroken PT symmetry. In the unbroken region the simultaneous eigenstates of
the operators H and PT are

|ε+〉 =
1√

2 cosα

(
eiα/2

e−iα/2

)
and |ε−〉 =

i√
2 cosα

(
e−iα/2

−eiα/2

)
, (17)

where we set sinα = (r/s) sin θ. It is easily verified that (ε±, ε±) = ±1 and that (ε±, ε∓) = 0,
recalling that (u, v) = (PT u) ·v. Therefore, with respect to the PT inner product, the resulting
vector space spanned by energy eigenstates has a metric of signature (+,−). The condition
s2 > r2 sin2 θ ensures that PT symmetry is not broken. If this condition is violated, the
states (17) are no longer eigenstates of PT because α becomes imaginary6.

Next, we construct the operator C:

C =
1

cosα

(
i sinα 1

1 −i sinα

)
. (18)

Note that C is distinct from H and P and has the key property that C|ε±〉 = ±|ε±〉. The
operator C commutes with H and satisfies C2 = 1. The eigenvalues of C are precisely the signs
of the PT norms of the corresponding eigenstates. Using the operator C we construct the new
inner product structure 〈u|v〉 = (CPT u) · v. This inner product is positive definite because
〈ε±|ε±〉 = 1. Thus, the two-dimensional Hilbert space spanned by |ε±〉, with inner product 〈·|·〉,
has a Hermitian structure with signature (+,+).

Let us demonstrate explicitly that the CPT norm of any vector is positive. For the arbitrary
vector ψ =

(
a
b

)
, where a and b are any complex numbers, we see that T ψ =

(
a∗
b∗

)
, that

PT ψ =
(

b∗
a∗

)
, and that CPT ψ = 1

cos α

(
a∗+ib∗ sin α
b∗−ia∗ sin α

)
. Thus, 〈ψ|ψ〉 = (CPT ψ) · ψ = 1

cos α [a∗a +
b∗b+ i(b∗b− a∗a) sinα]. Now let a = x+ iy and b = u+ iv, where x, y, u, and v are real. Then

〈ψ|ψ〉 =
(
x2 + v2 + 2xv sinα+ y2 + u2 − 2yu sinα

)
/ cos(α), (19)

which is explicitly positive and vanishes only if x = y = u = v = 0.
Since 〈u| denotes the CPT -conjugate of |u〉, the completeness condition reads

|ε+〉〈ε+| + |ε−〉〈ε−| =
(

1 0
0 1

)
. (20)

6When PT symmetry is broken, we find that the PT norm of the energy eigenstate vanishes.
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Furthermore, using the CPT conjugate 〈ε±|, we have C as C = |ε+〉〈ε+| − |ε−〉〈ε−|, instead of
the representation in (11), which uses the PT conjugate.

We represent an observable in this theory by a CPT -invariant operator; that is, one that
commutes with CPT . Thus, if CPT symmetry is not broken, the eigenvalues of the observable
are real. The operator C satisfies this requirement, so it is an observable. For the two-state
system, if we set θ = 0, then the Hamiltonian (15) becomes Hermitian. However, C then reduces
to the parity operator P. As a consequence, the requirement of CPT invariance reduces to
the standard condition of Hermiticity for a symmetric matrix, namely, that H = H∗. This is
why the hidden symmetry C was not noticed previously. The operator C emerges only when we
extend a real symmetric Hamiltonian into the complex domain.

We have also calculated the C operator in infinite-dimensional quantum mechanical models.
For an x2 + ix3 potential C can be obtained from the summation in (11) using perturbative
methods and for an x2 − x4 potential C can be calculated using nonperturbative methods [11].

4 Applications and possible observable consequences

Could non-Hermitian, PT -symmetric Hamiltonians be used to describe experimentally observ-
able phenomena? Non-Hermitian Hamiltonians have already been used to describe interacting
systems. Wu showed that the ground state of a Bose system of hard spheres is described by
a non-Hermitian Hamiltonian [14]. Wu found that the ground-state energy of this system is real
and conjectured that all energy levels were real. Hollowood showed that even though the Hamil-
tonian of a complex Toda lattice is non-Hermitian, the energy levels are real [15]. Non-Hermitian
Hamiltonians of the form H = p2 + ix3 also arise in various Reggeon field theory models that
exhibit real positive spectra [16]. In these examples the fact that a non-Hermitian Hamiltonian
had a real spectrum appeared mysterious at the time, but now we know why: In each case the
non-Hermitian Hamiltonian is PT -symmetric. In each case the Hamiltonian constructed so that
the position operator x or the field operator φ is always multiplied by i.

An experimental signal of a complex Hamiltonian might be found in the context of condensed
matter physics. Consider the complex crystal lattice whose potential is V (x) = i sin x. While
the Hamiltonian H = p2 + i sin x is not Hermitian, it is PT -symmetric, and all of the energy
bands are real. However, at the edge of the bands the wave function of a particle in such a lattice
is always bosonic (2π-periodic) and, unlike the case of ordinary crystal lattices, the wave function
is never fermionic (4π-periodic) [17]. Direct observation of such a band structure would give
unambiguous evidence of a PT -symmetric Hamiltonian.

There are many opportunities for the use of non-Hermitian Hamiltonians in the study of
quantum field theory. For example, a scalar quantum field theory with a cubic self-interaction
described by the Lagrangian L = 1

2(∇ϕ)2 + 1
2m

2ϕ2 + gϕ3 is physically unacceptable because the
energy spectrum is not bounded below. However, the cubic scalar quantum field theory that
corresponds to H in (1) with ε = 1 is given by the Lagrangian density L = 1

2(∇ϕ)2 + 1
2m

2ϕ2 +
igϕ3. This is a new, physically acceptable quantum field theory. Moreover, the theory that
corresponds to H in (1) with ε = 2 is described by the Lagrangian density

L =
1
2
(∇ϕ)2 +

1
2
m2ϕ2 − 1

4
gϕ4. (21)

This “wrong-sign” field theory is remarkable because, in addition to the energy spectrum being
real and positive, the one-point Green’s function (the vacuum expectation value of the field ϕ)
is nonzero [18]. Also, the field theory is renormalizable, and in four dimensions is asymptotically
free (and thus nontrivial) [19]. Based on these features, we believe that the theory may provide
a setting to describe the dynamics of the Higgs sector in the standard model.
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Other field theory models whose Hamiltonians are non-Hermitian and PT -symmetric have
also been studied. For example, PT -symmetric electrodynamics is particularly interesting be-
cause it is asymptotically free (unlike ordinary electrodynamics) and because the direction of the
Casimir force is the negative of that in ordinary electrodynamics [20]. This theory is remarkable
because it can determine its own coupling constant. Supersymmetric PT -symmetric quantum
field theories have also been studied [21].

We have found that PT -symmetric quantum theories exhibit surprising and new phenomena.
For example, for g sufficiently small the −gϕ4 theory described by the Lagrangian (21) possesses
bound states (the conventional gϕ4 theory does not because the potential is repulsive). The
bound states occur for all dimensions 0 ≤ D < 3 [22], but for purposes of illustration we
describe the bound states in the context of one-dimensional quantum field theory (quantum
mechanics). For the conventional anharmonic oscillator, which is described by the Hamiltonian

H =
1
2
p2 +

1
2
m2x2 +

1
4
gx4 (g > 0), (22)

the small-g Rayleigh-Schrödinger perturbation series for the kth energy level Ek is

Ek ∼ m

[
k +

1
2

+
3
4
(2k2 + 2k + 1)ν + O

(
ν2

)]
(ν → 0+), (23)

where ν = g/(4m3). The renormalized massM is defined as the first excitation above the ground
state: M ≡ E1 − E0 ∼ m

[
1 + 3ν + O

(
ν2

)]
as ν → 0+.

To determine if the two-particle state is bound, we examine the second excitation above the
ground state using (23). We define

B2 ≡ E2 − E0 ∼ m
[
2 + 9ν + O

(
ν2

)]
(ν → 0+). (24)

If B2 < 2M , then a two-particle bound state exists and the (negative) binding energy is B2−2M .
If B2 > 2M , then the second excitation above the vacuum is interpreted as an unbound two-
particle state. From (24) we see that in the small-coupling region, where perturbation theory
is valid, the conventional anharmonic oscillator does not possess a bound state. Indeed, using
WKB, variational methods, or numerical calculations, one can show that there is no two-particle
bound state for any value of g > 0. Because there is no bound state the gx4 interaction may be
considered to represent a repulsive force7.

The perturbation series for the non-Hermitian, PT -symmetric Hamiltonian

H =
1
2
p2 +

1
2
m2x2 − 1

4
gx4 (g > 0), (25)

is obtained from the perturbation series for the conventional anharmonic oscillator by replacing
ν → −ν. Thus, while the conventional anharmonic oscillator does not possess a two-particle
bound state, the PT -symmetric oscillator does indeed possess such a state. We measure the
binding energy of this state in units of the renormalized mass M and we define the dimensionless
binding energy ∆2 by

∆2 ≡ (B2 − 2M)/M ∼ −3ν + O
(
ν2

)
(ν → 0+). (26)

This bound state disappears when ν increases beyond ν = 0.0465. As ν continues to increase,
∆2 reaches a maximum value of 0.427 at ν = 0.13 and then approaches 0.28 as ν → ∞.

7In general, a repulsive force in a quantum field theory is represented by an energy dependence in which the
energy of a two-particle state decreases with separation. The conventional anharmonic oscillator Hamiltonian
corresponds to a field theory in one space-time dimension, where there cannot be any spatial dependence. In this
case the repulsive nature of the force is understood to mean that the energy B2 needed to create two particles at
a given time is more than twice the energy M needed to create one particle.
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In the PT -symmetric anharmonic oscillator, there are not only two-particle bound states but
also k-particle bound states for all k ≥ 2. The dimensionless binding energies are

∆k ≡ (Bk − kM)/M ∼ −3k(k − 1)ν/2 + O
(
ν2

)
(ν → 0+). (27)

The coefficient of ν is negative. Since the dimensionless binding energy becomes negative as ν
increases from 0, there is a k-particle bound state. The higher multiparticle bound states cease
to be bound for smaller values of ν; starting with the three-particle bound state, the binding
energy of these states becomes positive as ν increases past 0.039, 0.034, 0.030, and 0.027.

Thus, for any value of ν there are always a finite number of bound states and an infinite
number of unbound states. The number of bound states decreases with increasing ν until there
are no bound states at all. There is a range of ν for which there are only two- and three-particle
bound states, just like the physical world in which one observes only states of two and three
bound quarks. In this range of ν if one has an initial state containing a number of particles
(renormalized masses), these particles will clump together into bound states, releasing energy
in the process. Depending on the value of ν, the final state will consist either of two- or of
three-particle bound states, whichever is energetically favored. There is a special value of ν for
which two- and three-particle bound states can exist in thermodynamic equilibrium.

How does a gϕ3 theory compare with a gϕ4 theory? A gϕ3 theory has an attractive force.
Bound states arising as a consequence of this force can be found by using the Bethe–Salpeter
equation. However, the gϕ3 field theory is unacceptable because the spectrum is not bounded
below. If we replace g by ig, the spectrum becomes real and positive, but now the force becomes
repulsive and there are no bound states. The same is true for a two-scalar theory with interaction
of the form igϕ2χ, which is a model of scalar electrodynamics that has no analog of positronium.

Another feature of PT -symmetric quantum field theory that distinguishes it from conven-
tional quantum field theory is the commutation relation between the P and C operators. If we
write C = CR + iCI, where CR and CI are real, then CRP = PCR and CIP = −PCI. These com-
mutation and anticommutation relations suggest the possibility of interpreting PT -symmetric
quantum field theory as describing both bosonic and fermionic degrees of freedom, an idea
analogous to the supersymmetric quantum theories. The distinction here, however, is that the
supersymmetry can be broken; that is, bosonic and fermionic counterparts can have different
masses without breaking the PT symmetry. Therefore, another possible observable experimental
consequence might be the breaking of the supersymmetry.

5 Concluding remarks

We have described an alternative to the axiom of standard quantum mechanics that the Hamil-
tonian must be Hermitian. We have shown that Hermiticity may be replaced by the more
physical condition of PT (space-time reflection) symmetry. Space-time reflection symmetry is
distinct from the condition of Hermiticity, so it is possible to consider new quantum theories,
such as quantum field theories whose self-interaction potentials are igϕ3 or −gϕ4. Such theories
have previously been thought to be mathematically and physically unacceptable because the
spectrum might not be real and because the time evolution might not be unitary.

These new theories are complex extensions of ordinary quantum mechanics; they are con-
tinuations of real symmetric Hamiltonians to complex Hamiltonians. The idea of analytically
continuing a Hamiltonian was first discussed by Dyson, who argued heuristically that pertur-
bation theory for quantum electrodynamics diverges [23]. Dyson’s argument involves rotating
the electric charge e into the complex plane e→ ie. Applied to the anharmonic oscillator (22),
Dyson’s argument goes: If the coupling constant g is continued in the complex-g plane to −g,
then the potential is no longer bounded below, so the resulting theory has no ground state.
Thus, the ground-state energy E0(g) has an abrupt transition at g = 0. As a series in powers
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of g, E0(g) must have a zero radius of convergence because E0(g) is singular at g = 0. Hence,
the perturbation series must diverge for all g �= 0. The perturbation series does indeed diverge,
but this argument is flawed because the spectrum of the Hamiltonian (25) remains ambiguous
until the boundary conditions that the wave functions must satisfy are specified. The spectrum
depends crucially on how this Hamiltonian with a negative coupling constant is obtained.

There are two ways to obtain H in (25). First, one can substitute g = |g|eiθ into (22)
and rotate from θ = 0 to θ = π. Under this rotation, the ground-state energy E0(g) becomes
complex. Evidently, E0(g) is real and positive when g > 0 and complex when g < 08. Second,
one can obtain (25) as a limit of the Hamiltonian

H =
1
2
p2 +

1
2
m2x2 +

1
4
gx2(ix)ε (g > 0) (28)

as ε : 0 → 2. The spectrum of this Hamiltonian is real, positive, and discrete. The spectrum of
the limiting H in (25) obtained in this manner is similar in structure to that of H in (22).

How can H in (25) possess two such astonishingly different spectra? The answer lies in the
boundary conditions on the wave functions φn(x). In the first case, in which θ = arg g is rotated
in the complex-g plane from 0 to π, ψn(x) vanishes in the complex-x plane as |x| → ∞ inside
the wedges −π/3 < arg x < 0 and −4π/3 < arg x < −π. In the second case, in which the
exponent ε ranges from 0 to 2, φn(x) vanishes in the complex-x plane as |x| → ∞ inside the
wedges −π/3 < arg x < 0 and −π < arg x < −2π/3. In this second case the boundary conditions
hold in wedges that are symmetric with respect to the imaginary axis; these boundary conditions
enforce the PT symmetry of H and are responsible for the reality of the energy spectrum.

Apart from the spectra, there is another striking difference between the two theories corre-
sponding to H in (25). The one-point Green’s function G1(g) is defined as the expectation value
of the operator x in the ground-state wave function φ0(x),

G1(g) = 〈0|x|0〉/〈0|0〉 ≡
∫

C
dxxψ2

0(x)
/ ∫

C
dxψ2

0(x), (29)

where C is a contour that lies in the asymptotic wedges described above. The value of G1(g)
for H in (25) depends on the limiting process by which we obtain H. If we substitute g = g0e

iθ

into the Hamiltonian (22) and rotate from θ = 0 to θ = π, we find that G1(g) = 0 for all g on the
semicircle in the complex-g plane. Thus, this rotation in the g plane preserves parity symmetry
(x→ −x). However, if we define H in (25) by using the Hamiltonian in (28) and by allowing ε
to range from 0 to 2, we find that G1(g) �= 0. Indeed, G1(g) �= 0 for all values of ε > 0. Thus,
in this theory PT symmetry (reflection about the imaginary axis, x → −x∗) is preserved, but
parity symmetry is permanently broken. Hence, one might be able to describe the dynamics of
the Higgs sector by using a −gϕ4 quantum field theory.
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