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ABSTRACT

We present a detailed study of the Faraday depth structure of four bright (>1 Jy), strongly

polarized, unresolved radio-loud quasars. The Australia Telescope Compact Array (ATCA)

was used to observe these sources with 2 GHz of instantaneous bandwidth from 1.1 to

3.1 GHz. This allowed us to spectrally resolve the polarization structure of spatially unresolved

radio sources, and by fitting various Faraday rotation models to the data, we conclusively

demonstrate that two of the sources cannot be described by a simple rotation measure (RM)

component modified by depolarization from a foreground Faraday screen. Our results have

important implications for using background extragalactic radio sources as probes of the

Galactic and intergalactic magneto-ionic media as we show how RM estimations from narrow-

bandwidth observations can give erroneous results in the presence of multiple interfering

Faraday components. We postulate that the additional RM components arise from polarized

structure in the compact inner regions of the radio source itself and not from polarized emission

from galactic or intergalactic foreground regions. We further suggest that this may contribute

significantly to any RM time variability seen in RM studies on these angular scales. Follow-up,

high-sensitivity very long baseline interferometry (VLBI) observations of these sources will

directly test our predictions.

Key words: techniques: polarimetric – galaxies: magnetic fields – radio continuum: galaxies.

1 IN T RO D U C T I O N

Radio-loud active galactic nuclei (AGN) eject powerful jets of rela-

tivistic plasma whose polarized, non-thermal synchrotron radiation

can be used as a probe of the magneto-ionic material along the

entire line of sight between us and the source of emission. Many

studies have used these extragalactic background sources to study

the strength and structure of magnetic fields in our Galaxy (e.g.

Brown et al. 2007; Taylor, Stil & Sunstrum 2009; Mao et al. 2010;

Harvey-Smith, Madsen & Gaensler 2011; Van Eck et al. 2011),

other galaxies (e.g. Gaensler et al. 2005; Mao et al. 2008; Feain

et al. 2009) and in galaxy clusters (e.g. Laing et al. 2008; Bonafede

et al. 2010; Pizzo et al. 2011). Future studies on new revolution-

ary instruments such as the Australian Square Kilometre Array

Pathfinder (ASKAP) and the Square Kilometre Array (SKA) will

rely on these background sources to probe the strength, structure

⋆E-mail: Shane.O’Sullivan@csiro.au

and evolution of cosmic magnetism in unprecedented detail (e.g.

Beck & Gaensler 2004; Gaensler 2009).

In this paper, we present a detailed study of the polarization

and rotation measure (RM) properties of four bright, unresolved,

strongly polarized, radio-loud AGN. Using the new Compact Ar-

ray Broad-band Backend (CABB) system (Wilson et al. 2011) on

the Australia Telescope Compact Array (ATCA), spectropolarimet-

ric studies of these AGN were performed using 2 GHz of instan-

taneous bandwidth on the upgraded receiver system from 1.1 to

3.1 GHz.1 All-sky RM surveys such as the planned Polarization

Sky Survey of the Universe’s Magnetism (POSSUM) on ASKAP

will measure the RMs of ∼3 million extragalactic radio sources

over 30 000 deg2 (Gaensler et al. 2010). POSSUM will likely have

300 MHz of instantaneous bandwidth covering the frequency range

from 1130 to 1430 MHz. Proper interpretation of the results from

this huge data set will require extensive testing of the algorithms

1 http://www.atnf.csiro.au/observers/memos/AT39.3_128.pdf
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Complex RM structure 3301

used to accurately extract the polarization and RM properties of

individual sources. The ATCA is an ideal instrument for this pro-

cess, whilst also providing new and unique insights into the Faraday

depth structure of extragalactic sources due to its wide bandwidth

and high spectral resolution.

Following Sokoloff et al. (1998) and references therein, we define

the complex linear polarization as

P = Q + iU = pIe2i� , (1)

where I, Q and U are the measured Stokes parameters and � is

the observed polarization angle. We use the notation of Farnsworth,

Rudnick & Brown (2011) in defining q = Q/I and u = U/I, so that

the measured magnitude of the degree of linear polarization is

p =
√

q2 + u2 (2)

and the polarization angle is

� =
1

2
arctan

u

q
. (3)

Taking the fractional values decouples depolarization effects from

simple spectral index effects in analysing the dependence of polar-

ization with wavelength. It also minimizes errors in the estimate of

the RM using the RM synthesis technique (Brentjens & de Bruyn

2005).

The observed polarization angle � is modified from its intrinsic

value (�0) by the effect of Faraday rotation, caused by magneto-

ionic material between the source of polarized emission and the

telescope. If there are different regions of polarized emission sam-

pled within a single resolution element then each of these regions

will likely experience different amounts of Faraday rotation. Hence,

to describe the Faraday rotation of a particular region of polarized

emission we use the Faraday depth (Burn 1966)

φ = 0.81

∫ telescope

emission

nB · d l rad m−2, (4)

where n is the free electron density (in units of cm−3), B is the

magnetic field (in µG) and l is the distance along the line of sight

(in parsec). Brentjens & de Bruyn (2005) define a ‘Faraday thin’

source as one in which λ2�φ ≪ 1, and a ‘Faraday thick’ source in

cases where λ2�φ ≫ 1 (where �φ is the extent of the source in

Faraday depth and λ is the wavelength).

In the simplest possible scenario, in which there is a background

source of emission and only pure rotation due to a foreground

magneto-ionic medium, then the Faraday depth is equal to the RM

and we get

� = �0 + RM λ2. (5)

Depolarization from radio sources, where the degree of polar-

ization decreases with increasing wavelength, is typically modelled

as a single RM component with external Faraday dispersion (e.g.

Tribble 1991; Rossetti et al. 2008). Our new wide-bandwidth data

allow a detailed investigation of the case of multiple interfering

RM components either along the line of sight or intrinsic to the

source itself. Multiple RM components can cause both increases

and/or decreases in p(λ2) with λ2 as well as, but not always, devi-

ations from a linear �(λ2) behaviour. Slysh (1965) first employed

a two-component model to explain polarization measurements of

Cygnus A while Goldstein & Reed (1984) applied a similar model

to 3C 27. A more recent study by Law et al. (2011) showed that

multiple RM components could be identified in extragalactic point

sources using the RM synthesis technique on wide-band data from

1.0 to 2.0 GHz. Farnsworth et al. (2011) highlighted the impor-

tance of describing both �(λ2) and p(λ2) in determining the correct

Faraday depth structure of extragalactic sources using a combina-

tion of data at 350 MHz and 1.4 GHz. Following on from this

work, we conclusively show the effect of multiple RM compo-

nents in two extragalactic sources by considering several different

Faraday rotation models to simultaneously describe both �(λ2)

and p(λ2).

In Section 2, we describe the observations, source selection and

calibration process. Section 3 outlines the RM synthesis technique

while Section 4 describes the various polarization models employed

as well as our method for discriminating between models. Section 5

presents our results for each source in order of increasing RM

complexity. Section 6 discusses the implications of this work and

we list our conclusions in Section 7. Throughout this paper, we

assume a cosmology with H0 = 71 km s−1 Mpc−1, �M = 0.27 and

�� = 0.73, and define the spectral index, α, such that the observed

flux density (I) at frequency ν follows the relation Iν ∝ ν+α .

2 O B S E RVAT I O N S A N D DATA R E D U C T I O N

The sources presented in this paper (Table 1) were observed on

2011 January 9 and 20 with the ATCA from 1.1 to 3.1 GHz (with

1-MHz spectral resolution) in the 6A array configuration as part

of a larger project to find suitable polarization calibrator sources

for the ASKAP telescope. Fig. 1 shows the typical uv coverage for

sources in our experiment. The ATCA has six 22-m antennas with

linear feeds and a maximum baseline of 6 km providing an angular

resolution of ∼10 arcsec at 1.4 GHz. It has recently undergone

a major upgrade with the capabilities of the new CABB system

described in detail by Wilson et al. (2011).

Table 1. Observed sources (listed in order of increasing RM complexity).

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

Source RA Dec. l b Beam PA z Date tobs λ0 Iλ0
α

name (J2000) (J2000) (◦) (◦) (arcsec2) (◦) (min) (m) (mJy)

PKS B1903−802 19:12:40.0 −80:10:05.9 314.0 −27.6 11 × 9 −10 0.50 2011-01-20 23 0.141 1104 −0.04

PKS B0454−810 04:50:05.4 −81:01:02.2 293.9 −31.4 12 × 9 +60 0.44 2011-01-20 16 0.108 1009 +0.46

PKS B1610−771 16:17:49.2 −77:17:18.5 313.4 −18.9 10 × 9 +30 1.71 2011-01-20 12 0.137 3022 −0.36

PKS B1039−47 10:41:44.6 −47:40:00.1 281.4 +9.7 12 × 9 0 2.59 2011-01-09 22 0.164 1699 −0.38

Note. Column 1: source name (IAU B1950.0); column 2: right ascension in J2000 coordinates; column 3: declination in J2000 coordinates; column 4: Galactic

longitude in degrees; column 5: Galactic latitude in degrees; column 6: synthesized beam in arcsec; column 7: synthesized beam position angle in degrees;

column 8: redshift, taken from Stickel, Meisenheimer & Kuehr (1994) and references therein, except for PKS B1039−47 (O. Titov, private communication);

column 9: date of observations; column 10: total integration time in minutes; column 11: weighted mean λ; column 12: total intensity at λ0; column 13: spectral

index (α), defined as Iλ ∝ λ−α , calculated from our observations.
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3302 S. P. O’Sullivan et al.

Figure 1. Plot showing the typical uv coverage for the sources presented in

this paper (PKS B1039−47 shown).

Since there are no 1.4-GHz polarization surveys of the southern

sky at a resolution better than 36 arcmin (Testori, Reich & Reich

2008), we compiled a list of sources suitable for ASKAP polar-

ization calibration from archival observations. Candidate sources

were selected by searching the ATCA online archive2 for sources

that had Stokes I flux densities greater than 1 Jy at 843 MHz in

the SUMSS catalogue (Mauch et al. 2003). The extracted sources,

which had been observed using the old narrow-band 128-MHz sys-

tem, were then calibrated and imaged in MIRIAD using standard

techniques (Sault, Teuben & Wright 1995). Eight of the brightest

sources found in polarized intensity were selected along with two

unpolarized sources (fractional polarization of <0.1 per cent) for

high-precision polarization observations with the new wide-band

CABB system on the ATCA. We selected four sources for detailed

analysis in this paper that had reliable calibration across the full

2-GHz band and displayed a range of RM complexity from single

to multiple RM components.

In order to avoid any frequency-dependent calibration effects,

the data for each source were split up at 128-MHz intervals and

calibrated using the MIRIAD software package. For the absolute flux

density scale correction and bandpass calibration, we used a single

observation of the ATCA primary flux calibrator PKS B1934−638

on each day. Flagging was done in an automated fashion (after

bandpass calibration) using MIRFLAG (Middelberg 2006). Some mi-

nor manual flagging was sometimes required afterwards. In total,

∼10–30 per cent of the 2-GHz band was lost due to radio-frequency

interference (RFI), mainly between 1.1 and 1.7 GHz. The leakage

and complex gain solutions were determined for each individual

128-MHz sub-band before recombining the entire band.

One of our targets, PKS B1903−802, was used on 2011 Jan-

uary 20 as the secondary calibrator to correct for any atmospheric

phase variations as well as the polarization leakages (21 × 1 min

cuts, with one cut approximately once every hour, covering 340◦ of

the parallactic angle). Because PKS B1903−802 is strongly polar-

ized across the entire 2-GHz band, the XY phase variations on the

reference antenna could be determined and we were able to cali-

brate the absolute polarization position angle to within ±1◦. These

solutions were then copied to the other sources and amplitude and

phase self-calibration was performed on PKS B0454−801 and PKS

B1610−771. Our other target, PKS B1039−47, was used for polar-

2 http://atoa.atnf.csiro.au/

ization calibration on 2011 January 9 (11 × 2 min cuts every hour,

with a parallactic angle coverage of 210◦).

Our calibration strategy allowed us to calculate the on-axis leak-

ages in 128-MHz intervals. The results show that the real part of

the leakage solution, which gives information about how the lin-

ear feeds deviate from perfect orthogonality (feed misalignment),

is constant to better than 0.5 per cent across the entire band. The

imaginary part, which probes the feed ellipticity (i.e. how the feeds

differ from perfectly linear feeds), has maximum deviations of up

to ∼2 per cent between 1.2 and 1.8 GHz. We find little variation

between the leakage solutions on different days, suggesting that the

polarization performance of the wide bandwidth system is stable on

time-scales of at least a few weeks.

3 E X T R AC T I N G T H E P O L A R I Z E D S I G NA L

We first created uniformly weighted I, Q and U images for each

source in 10-MHz intervals and then deconvolved these maps using

the Högbom CLEAN algorithm (Högbom 1974). In order to avoid any

resolution-dependent effects across the 2-GHz band, we smoothed

each image to the resolution at the lowest frequency (see Table 1).

Since all sources were spatially unresolved, we took the emission at

the position of the source in the Stokes I image and created a table

of q and u as a function of λ2, at intervals in λ2 corresponding to

10-MHz steps. Errors in each channel measurement were assigned

using the rms noise from a small area around the source position in

the CLEAN residual images.

We then used the RM synthesis technique (Brentjens & de Bruyn

2005) to extract the polarized signal over a wide range of possible

Faraday depths. RM synthesis is a powerful analysis tool for po-

larimetry data since it helps overcome problems such as bandwidth

depolarization and nπ polarization angle ambiguities. A spectrum

of complex polarization versus Faraday depth was created from

these data using the equation

F (φ) =
N

∑

j=1

wjPj e
−2iφ(λ2

j
−λ2

0
)

/ N
∑

j=1

wj , (6)

where N is the number of input maps, Pj is the complex polarization

at channel j and wj are the weights (inverse square of the rms noise).

Our reference wavelength (λ0) is defined as

λ2
0 =

N
∑

j=1

wjλ
2
j

/ N
∑

j=1

wj . (7)

Essentially this de-rotates the q and u data for a particular assumed

RM value and then sums the signal across the band; at the correct

RM, the channels add coherently giving the maximum polarized

intensity and the sensitivity of the full bandwidth.

Fig. 2 shows the rotation measure spread function (RMSF) for the

observations on both days. The RMSF is the normalized response

function in Faraday depth space to the incomplete λ2 sampling (i.e.

with perfect λ2 coverage this would be a delta function). More data

were flagged on 2011 January 9 than on January 20, so that the

RMSF for January 9 has slightly stronger sidelobes than on January

20. Table 2 lists, for our observations, the Faraday depth resolution

[δφ ≈ 2
√

3/�(λ2), i.e. the full width at half-maximum (FWHM)

of the RMSF], the largest detectable scale in Faraday depth space

(max-scale ≈ πλ−2
min) and the maximum observable Faraday depth

(φmax ≈
√

3/δλ2), where �(λ2) is the total bandwidth in λ2-space

[i.e. �(λ2) = λ2
max − λ2

min] and δλ2 is the channel width.

For each source, we initially searched for polarized power

from ±φmax at Faraday depth intervals of 10 rad m−2, which

C© 2012 CSIRO, MNRAS 421, 3300–3315
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Figure 2. Plots of the RMSF. Solid line: RMSF from January 20; dash-

dotted line: RMSF from January 9.

Table 2. RM synthesis capabilities of the 1.1–3.1 GHz ATCA band.

(1) (2) (3) (4) (5)

Frequency Resolution δφ Max. scale |φmax|
(GHz) (MHz) (rad m−2) (rad m−2) (rad m−2)

1.1–3.1 1.0 60 340 13000

Note. Column 1: instantaneous frequency coverage in GHz; column

2: spectral resolution in MHz; column 3: resolution in Faraday depth

space; column 4: maximum detectable Faraday thickness; column

5: maximum detectable Faraday depth.

corresponds to ∼6 Faraday depth intervals per δφ (see Table 2). No

significant power was found at large values of |φ|. For the rest of

our analysis we restricted our range to ±1000 rad m−2 at 1 rad m−2

intervals (∼60 Faraday depth intervals per δφ). We use RMCLEAN, as

described by Heald, Braun & Edmonds (2009), to deconvolve the

‘dirty’ RM spectrum in an attempt to recover information lost due

to the incomplete frequency coverage. For each source, we CLEANed

down to the rms noise level (σ q,u) listed in Table 3. In principle,

the RM synthesis technique should be able to detect regions that

are extended in Faraday depth space as long as the region extends

beyond the FWHM of the RMSF.

4 M O D E L L I N G P RO C E D U R E

To model the polarized signal in the presence of Faraday rotation

in the simplest case, we use the equation

P = p0e2i(�0+RMλ2), (8)

where p0 is the intrinsic degree of polarization of the synchrotron

emission, �0 is the intrinsic polarization angle at the source of the

emission and the RM describes the Faraday rotation caused by the

foreground magneto-ionic material with the sign indicating whether

the line-of-sight magnetic field is pointing towards us (positive

RM) or away from us (negative RM). The data for all our sources

show changes in the degree of polarization across the observed

wavelength range, so we now consider the possible mechanisms

behind this effect.

Depolarization towards longer wavelengths can occur due to mix-

ing of the emitting and rotating media, as well as from the finite

spatial resolution of our observations. There are three commonly

listed depolarization mechanisms (see Sokoloff et al. 1998 for more

detailed discussion of each case).

(1) Differential Faraday rotation (DFR). This occurs when the

emitting and rotating regions are co-spatial and are in the presence

of a regular magnetic field. The polarization plane of the emission T
a
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at the far side of the region undergoes a different amount of Faraday

rotation compared to the polarized emission coming from the near

side, causing depolarization when summed over the entire region.

For the particular case of a uniform slab, we have

P = p0

sin Rλ2

Rλ2
e

2i
(

�0+ 1
2
Rλ2

)

, (9)

where R is the Faraday depth through the region.

(2) Internal Faraday dispersion (IFD). This occurs when the

emitting and rotating regions also contain a turbulent magnetic

field. In this case, depolarization occurs because the plane of polar-

ization experiences a random walk through the region. For identical

distributions of all the constituents of the magneto-ionic medium

along the line of sight, it can be described by

P = p0e2i�0

(

1 − e2iRλ2−2ς2
RM

λ4

2ς2
RMλ4 − 2iRλ2

)

, (10)

where, in this case, �0 = π/2 for a purely random anisotropic

magnetic field and ςRM is the internal Faraday dispersion of the

random field.

(3) External Faraday dispersion/beam depolarization. This oc-

curs in a purely external non-emitting Faraday screen. In the case of

turbulent magnetic fields, depolarization occurs when many turbu-

lent cells are within the synthesized telescope beam.3 On the other

hand, for a regular magnetic field, any variation in the strength or

direction of the field within the observing beam will lead to depo-

larization. Both effects can be described by

P = p0e−2σ 2
RM

λ4

e2i(�0+RMλ2), (11)

where σ RM is the dispersion about the mean RM across the source

on the sky.

A fourth possibility is a changing degree of polarization due to

multiple interfering RM components, either along the line of sight or

on the plane of the sky on scales smaller than our spatial resolution.

To model our data, we simultaneously fit both the q(λ2) and u(λ2)

data to the different polarization models listed above. We first tried

a simple one-component RM model, which cannot describe any

variation in the degree of polarization. We then tried to account for

changes in p(λ2) by fitting a single RM component plus depolariza-

tion model, and in cases where this could not adequately describe

the data, we then tried multiple RM-component models. In order

to limit the number of models to investigate, we mainly considered

either models of solely Faraday thin components (e.g. emission

from the radio galaxy only) or models of one Faraday thick com-

ponent (e.g. Galactic slab or mixed emitting and rotating region in

the source) plus Faraday thin component(s). We believe that these

models are the most physically reasonable cases for spatially un-

resolved extragalactic radio sources. However, we do not consider

differing spectral indices of individual components. Hence, multi-

ple component models are simply constructed as P = P1 + P2 +
· · · + PN .

4.1 Model-fit evaluation

We utilized the maximum likelihood method to find the best-fitting

model parameters. The results from RM synthesis were used as a

guide to our initial guesses for the RM and fractional polarization

3 However, see Tribble (1991) for a detailed description of what happens

when this assumption does not hold.

values. Each data point in the fit was weighted by the inverse square

of the rms noise from the CLEAN residual image.

The likelihood is the probability of obtaining the data, d, given

a model of the source and some characterization of the noise. Our

data in this context are q(λ2) and u(λ2). For example, in the one-

component model, we adopt qmodel,i = p0 cos(2�0 + 2RMλ2
i ) and

umodel,i = p0 sin(2�0 +2RMλ2
i ), and we assume that qi = qmodel,i +

ni, where ni is Gaussian noise for channel i. The prior likelihood of

a particular RM value for an observation of a single channel i under

the assumption of Gaussian noise is

Pi(di |RM) =
1

πσqi
σui

exp

(

−
(qi − qmodel,i)

2

2σ 2
qi

−
(ui − umodel,i)

2

2σ 2
ui

)

,

(12)

where σ q,u is the single channel rms. If we have a total of N channels,

the prior likelihood is now

P (d|RM) =
N

∏

i=1

Pi(di |RM). (13)

We used the MATHEMATICA
4 function NONLINEARMODELFIT to find

the maximum of equation (13), L ≡ max(P (d|RM)). In the case

of multiple models giving good fits to the data, we then used the

Bayesian information criterion (BIC) to distinguish the goodness

of fit between different models with different degrees of freedom

(Schwarz 1978; Trotta 2008):

BIC ≡ −2 log P (d|k) ≈ −2 log L + k log N, (14)

where k is the number of free parameters in the model. Hence,

models with more parameters are heavily penalized given the large

number of data points. We consider BICmodel1 − BICmodel2 > 100

to significantly favour model 2 (at the 99 per cent level) across the

measured parameter space. Bayesian model comparisons require

an alternative model against which the comparison is made (i.e. a

model cannot be rejected unless an alternative explanation is avail-

able that better fits the observations). In order to give a quantitative

measure of how each individual model fits the data, we also calcu-

late the reduced chi-square (χ2
ν ) goodness-of-fit values, where χ2

ν

is obtained by dividing the sum of squared residuals by σ 2
q,u and the

number of degrees of freedom.

5 R ESULTS

We present the sources in order of RM complexity (as listed in

Table 1) with PKS B1903−802 having the simplest RM structure

and PKS B1039−47 having the most complex. All models with their

best-fitting parameters for each source are listed in Table 3 (with

the most likely model highlighted in bold). The associated errors of

each parameter are formal fitting errors which are calculated from

the square root of the estimated error variance of each parameter.

These errors have little meaning when the incorrect model is ap-

plied. Note that all polarized components listed are found with high

significance. For example, the weakest polarized model component

of 0.6 per cent listed in Table 3 has a signal-to-noise ratio (S/N) of

∼100.

In Fig. 3, we show the results of RM synthesis and RMCLEAN for

all four sources. For each source, we list the RM at the peak degree

of polarization with its associated error. The uncertainty in the peak

RM is calculated as the FWHM of the RMSF divided by twice the

4 Wolfram Research, Inc., Mathematica, Version 7.0, Champaign, IL (2008).
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Complex RM structure 3305

Figure 3. Plots of the RM spectra for all four sources. Dashed line: RM synthesis spectrum; solid line: RMCLEAN spectrum with the locations of the CLEAN

components also shown as vertical lines. The text in the top-left corner of each panel lists the parameters extracted from the peak in the RMCLEAN spectrum as

well as the value of the reference wavelength, λ0. The asterisks connected to the Faraday depth axis by the solid line denote the locations of the best-fitting

model RM.

S/N (Brentjens & de Bruyn 2005). So for example, if we have an

S/N of 600 and an RM resolution of 66 rad m−2, then the quoted

uncertainty in the peak RM is 0.06 rad m−2. However, as described

by Law et al. (2011), the accuracy of any individual RM-component

value cannot be specified to better than the RM resolution due to

the uncertainty in the distribution of components within the RM

beam. The mean-weighted reference wavelength (λ0) changes from

source to source mainly due to different amounts of flagged data

across the band for each source.

Faraday depth spectra for both PKS B1903−802 (Fig. 3a) and

PKS B0454−810 (Fig. 3b) appear to be broadly consistent with

a single RM component. The asymmetric distribution about the

peak for PKS B1610−771, as well as the distribution of CLEAN

components, indicates the presence of more than one RM com-

ponent (Fig. 3c). PKS B1039−47 has a distinct secondary peak

at ∼100 rad m−2 and the CLEAN component locations suggest the

presence of three or more RM components (Fig. 3d). We now dis-

cuss the Faraday rotation model fits to the q(λ2) and u(λ2) data

for each source which are completely independent of the RMCLEAN

results.

5.1 PKS B1903−802

A simple RM fit (equation 8), as shown in Fig. 4, provides a reason-

able description of the �(λ2) data but the p versus λ2 data clearly

deviate from a constant degree of polarization. An external Faraday

dispersion model (equation 11) provides an excellent fit to data,

with our best-fitting model, shown in Fig. 5, giving a polarized in-

tensity of 5.14 ± 0.04 per cent, with a foreground RM of +18.1 ±

0.1 rad m−2 and an external dispersion in RM across the source

of 4.7 ± 0.1 rad m−2. However, in Fig. 6 we can see that a two

RM-component model also provides a very good description of the

data with an RM of +16.1 ± 0.3 rad m−2 for the stronger polar-

ized component (∼4.5 per cent) and an RM of 39.3±2.0 rad m−2

for the second polarized component (∼0.6 per cent). This supports

the conclusion of Farnsworth et al. (2011) that modelling of both

polarization amplitude and polarization angle is required in studies

of Faraday rotation.

In this case, neither the BIC nor the χ2
ν help us to clearly discrim-

inate between models. The two models do not differ significantly

over the measured parameter space so we cannot state with confi-

dence which one is correct, although we favour the simpler external

Faraday dispersion model. Lower frequency observations, from 700

MHz to 1 GHz on ASKAP for example, would clearly discriminate

between the two models since for the two RM-component model

there is a departure from a linear � versus λ2 relationship over this

range. The difference can be seen most clearly in the q(λ2) versus

u(λ2) plots (i.e. compare Figs 5 and 6).

5.2 PKS B0454−810

As can be seen in Figs 7 and 8, both single-component RM models

(with and without a depolarizing screen) provide poor fits to the

data. They both determine approximately the same RM (+37.8 ±
0.2 rad m−2) but cannot explain the observed decrease in the de-

gree of polarization towards the shortest wavelengths. The two-

component model, shown in Fig. 9, does much better at describing

the p(λ2) data while also providing a good description of �(λ2).
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Figure 4. Polarization data for PKS B1903−802, and the corresponding best-fitting single RM-component model (equation 8). Top left: q (open circles) and

u (full circles) data versus λ2, fitted with the model q (dot–dashed line) and u (dashed line). Top right: p versus λ2 data overplotted by the model (solid line).

Bottom left: � versus λ2 data overplotted by the model (solid line). Bottom right: u versus q data overplotted by the model (solid line).
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Figure 5. Same as Fig. 4 for PKS B1903−802, but now modelled by a single RM-component model with depolarization from external Faraday dispersion

(equation 11).

We note that the RM of the strongest polarized component is now

significantly different (+29.2 ± 1.1 rad m−2) from that found in the

one-component models or from the peak in Faraday depth inferred

from RM synthesis in Fig. 3(b).

While both the reduced chi-squared and BIC values strongly

favour the two RM-component model over the single-component

models (Table 3), on closer inspection it is clear that the p(λ2) data

at the shortest wavelengths observed are not very well fitted by the
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Figure 6. Same as Fig. 4 for PKS B1903−802, but fitted with a two RM-component model.
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Figure 7. Polarization data for PKS B0454−810, and the corresponding best-fitting single RM-component model (equation 8). Layout is as described in

Fig. 4.

two RM-component model either (Fig. 9). Hence, we conclude that

the data are not well fitted by any of the three models listed in

Table 3.

We consider a possible alternative explanation for this source in

terms of polarization propagation effects as a function of optical

depth within the source, specifically, the case of one optically thick

and one optically thin component. The optically thin and strongly

polarized component would dominate the emission at the longer

wavelengths (λ2 > 0.025 m2) while the observed depolarization

could be explained by external Faraday dispersion. At the shorter
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Figure 8. Same as Fig. 7 for PKS B0454−810, but fitted by a single RM-component model with depolarization from external Faraday dispersion (equation 11).

0.01 0.02 0.03 0.04 0.05 0.06 0.07
0.04

0.02

0.00

0.02

0.04

2 m 2

q
,
u

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0.00

0.01

0.02

0.03

0.04

0.05

2 m 2

p

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

50

0

50

2 m 2

d
eg

0.04 0.02 0.00 0.02 0.04

0.04

0.02

0.00

0.02

0.04

q

u

Figure 9. Same as Fig. 7 for PKS B0454−810, but fitted with a two RM-component model. The kink in the q(λ2) versus u(λ2) plot is a unique signature of

this particular model.

wavelengths (λ2 < 0.025 m2), the optically thick and weakly po-

larized component would become more dominant coupled with the

optically thin component becoming fainter, leading to a decrease of

the observed degree of polarization in a non-trivial manner. This idea

is supported by the inverted spectrum indicative of a synchrotron

self-absorbed region caused by either multiple, discrete spectral

components or a smooth distribution of magnetic field and electron

density along the jet. If this model were correct, then we would

expect at even shorter wavelengths, as the emission spectrum turns

over, the degree of polarization should increase again. However,
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detailed modelling of the polarized radiative transfer from such a

region is required for a quantitative analysis and we defer such a

study for a later paper.

5.3 PKS B1610−771

Fig. 10 shows how a simple one-component model provides a very

poor fit to the complex polarization data for this source. A depolar-

izing screen model, shown in Fig. 11, gives a good fit at the short

wavelengths but fails to adequately fit the long-wavelength data.

These plots further highlight two interesting features of the data.

First, it is clear that the slope of the �(λ2) relationship gets steeper

towards longer wavelengths and, secondly, while the p(λ2) plot

shows that emission is strongly depolarized it also shows evidence

for a reversed trend of increasing polarization with λ2 at longer

wavelengths. Any simple depolarization model cannot explain both

these effects.
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Figure 10. Polarization data for PKS B1610−771, and the corresponding best-fitting single RM-component model (equation 8). Layout is as described in

Fig. 4.
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Figure 11. Same as Fig. 10 for PKS B160−771, but fitted by a single RM-component model with depolarization from external Faraday dispersion (equation 11).
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Figure 12. Same as Fig. 10 for PKS B160−771, but fitted with a two RM-component model.

A two RM-component model, shown in Fig. 12, provides a much

better description of the data as demonstrated by the corresponding

χ2
ν value of 1.04. The fit accounts for both the changing slope of

�(λ2) and the increasing p(λ2) for λ2 > 0.05 m2. The best-fitting

RMs are +107.1 ± 0.2 rad m−2 and +78.7 ± 0.4 rad m−2 for the

first and second components, respectively. The BIC strongly favours

the two RM-component model over the depolarizing screen model

(see Table 3 for values).

5.4 PKS B1039−47

This is the most striking source in terms of complex polarization

structure. Fig. 13 shows how both �(λ2) and p(λ2) display non-

linear, oscillatory behaviour indicative of multiple RM components.

The RMCLEAN spectrum also indicates the presence of multiple RM

components (Fig. 3d).

We list a single RM-component model in Table 3 for complete-

ness but do not show the fit. A two RM-component model (both

components Faraday thin) also provides a poor description of the

data (Fig. 13) with a reduced χ2 value of 14, and this can be seen

quite clearly in the p(λ2) distribution. We then tried models with one

Faraday thin and one Faraday thick component where the Faraday

thick component was described by either equation (9) or equa-

tion (10). In both cases, neither model converged to an acceptable

solution and they are not shown here.

Our next approach was to fit models with three RM components,

which in the case of all Faraday thin components have a total of

nine parameters (i.e. p0, RM and �0 for each component). In order

to find a good model, we first fixed the parameters of the dominant

RM component taken from RMCLEAN and let the other six model

parameters vary. We then used these results as input guesses for

the final nine parameter model fit. This returned best-fitting RMs

of −13.1 ± 1.5 rad m−2, −29.8 ± 2.4 rad m−2 and +68.4 ± 1.6

rad m−2, listed in order of highest to lowest polarized fractions

for the individual components. This provides a good fit, shown in

Figure 14, with a χ2
ν value of 1.2 (Table 3).

We also tried different combinations of Faraday thin and thick

components within a three RM-component model with the best

model shown in Fig. 15. Both the BIC and χ2
ν values are al-

most identical for both types of three-component models listed in

Table 3, so they do not help us to clearly discriminate between

models in this case. More data, at longer wavelengths, are required

to determine which three-component model provides a better fit. A

four-component model (all Faraday thin) was also tried but did not

improve the fit.

6 D I SCUSSI ON

6.1 Physical origin of the RM components

We have conclusively shown in the previous section that for two

sources (PKS B1610−771 and PKS B1039−47) we can spec-

trally resolve multiple polarized components of spatially unresolved

AGN. We now discuss the likelihood of these additional RM com-

ponents coming from regions of polarized emission along the line

of sight or from multiple polarized regions on the plane of the

sky but within our synthesized beam. Polarized diffuse Galactic

emission (Testori et al. 2008) and polarized emission from radio

haloes/relics in galaxy clusters (e.g. Ferrari et al. 2008) are the most

likely candidates for any additional polarized emission components

along the line of sight. However, both these possibilities are highly

unlikely for our particular observations since first, we do not have

the sufficient short uv spacings to detect the smooth Galactic emis-

sion and, secondly, none of the sources studied here has any diffuse

X-ray emission associated with it in the ROSAT All Sky Survey

(RASS; Voges et al. 1999), which effectively rules out the presence
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Figure 13. Polarization data for PKS B1039−47, and the corresponding best-fitting two RM-component model. Layout as described in Fig. 4.

0.01 0.02 0.03 0.04 0.05 0.06 0.07
0.02

0.01

0.00

0.01

0.02

0.03

0.04

0.05

2 m 2

q
,

u

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0.00

0.01

0.02

0.03

0.04

0.05

0.06

2 m 2

p

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
30

20

10

0

10

20

30

2 m 2

d
eg

0.04 0.02 0.00 0.02 0.04
0.04

0.02

0.00

0.02

0.04

q

u

Figure 14. As for Fig. 13 for PKS B1039−47, but fitted by a three RM-component model (all Faraday thin).

of any significant emission from galaxy clusters along the line of

sight.

If the sources were spatially unresolved, double-lobed radio

galaxies such that our line of sight to one of the lobes trav-

elled through a different magneto-ionic medium, then the polarized

emission from each lobe would experience different amounts of

Faraday rotation and could show up in our data as two distinct RM

components (e.g. Slysh 1965; Goldstein & Reed 1984). For blazar-

type sources we require variation in the magneto-ionic medium

along the jet because we only detect the Doppler-boosted emission

from the jet orientated toward us. Many high-resolution studies of

such objects have shown substantial variations in both RM and

polarized intensity on parsec scales (e.g. Zavala & Taylor 2003,

2004; O’Sullivan & Gabuzda 2009; Hovatta et al. 2012). Below we
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Figure 15. Same as Fig. 13 for PKS B1039−47, but fitted by a three RM-component model (two Faraday thin, one Faraday thick; equation 9).

discuss what is already known for each source and why the mostly

likely origin of the additional RM components is from the compact

inner regions of the radio source.

PKS B1903−802 is a flat-spectrum radio quasar which, from 1.4

to 20 GHz, maintains a total flux density of ∼1 Jy while remaining

polarized at ∼3 per cent (Murphy et al. 2010). From 43-GHz obser-

vations with the ATCA, we know that this source is unresolved down

to at least 0.15 arcsec (R. Chhetri, private communication) which

corresponds to a linear scale of ∼0.9 kpc for the quoted redshift of

this source (Table 1). The source is resolved into two total intensity

components on scales less than 5 mas (30 pc) from observations at

8.4 GHz with the Australian Long Baseline Array (LBA; Ojha et al.

2005). No spectral index or polarization information is available on

these scales but at least one of these components must be the origin

of the strong polarized emission we see in our data. Hence, it is

likely that there is a significant contribution to the observed RM

from the immediate environment of the source and its host galaxy

as well as the Faraday rotation caused by our own Galaxy.

PKS B0454−810 is a well-studied flat-spectrum radio quasar

(e.g. Ricci et al. 2004) and has an inverted radio light curve which

begins to turn over above 100 GHz (Bennett et al. 2003). Ricci et al.

(2004) detected polarized emission of ∼2.6 per cent at 18.5 GHz,

while Murphy et al. (2010) quote an upper limit of 1.5 per cent

from 20-GHz ATCA observations. While it has been detected in

X-rays (Voges et al. 1999), it does not have a γ -ray detection from

Fermi (Abdo et al. 2009, 2012). It is spatially unresolved down

to at least 5 arcsec (∼30 kpc) from inspection of the visibilities on

the longest baselines in our observations. It has also been imaged

on milliarcsecond scales with both the VLBI (very long baseline

interferometry) Space Observatory Programme (Dodson et al. 2008)

and the LBA (Ojha et al. 2005), showing that it is resolved on scales

less than 5 mas. Rayner, Norris & Sault (2000) found the source

to be circularly polarized, with a >10σ detection at both 1.4 and 5

GHz, which is indicative of a core-dominated AGN. Therefore, all

these data support our assertion that the linearly polarized emission

we detect is coming from the compact inner regions of the AGN

jet and provides some weight to our explanation for the observed

variation in p(λ2) being due to the combination of a weakly polarized

optically thick region and a strongly polarized optically thin region.

PKS B1610−771 has been extensively studied across a wide

range of wavelengths. It is classified as a flat-spectrum radio quasar

(e.g. Healey et al. 2007), is significantly polarized (1–2 per cent

level) at 5, 8 and 20 GHz (Massardi et al. 2008) and is highly polar-

ized (>3 per cent) in the optical (Véron-Cetty & Véron 2006). It is

coincident with an unresolved X-ray source (Voges et al. 1999) and

has a GeV γ -ray detection in both the first and second Fermi-LAT

catalogues (Abdo et al. 2009, 2012). No source structure is detected

on scales greater than 0.15 arcsec (R. Chhetri, private communica-

tion), which corresponds to a linear scale of ∼1.3 kpc at its redshift

of 1.71 (Hunstead & Murdoch 1980). PKS B1610−771 is also seen

to exhibit interstellar scintillation at low radio frequencies, with a

characteristic time-scale of 400 d (Gaensler & Hunstead 2000). This

further supports the conclusion that its flux is dominated by com-

pact rather than extended components. On milliarcsecond scales

at 8.4 GHz, the jet extends in a north-west direction with several

bright jet knots in total intensity seen out to a projected distance of

∼130 pc (Ojha et al. 2010). From our analysis of this source, we pre-

dict that two of these knots are strongly polarized and have different

RMs.

PKS B1039−47 is classified as a flat-spectrum radio quasar that is

located along a sightline ∼10◦ from the Galactic plane, and has been

measured to be ∼4 per cent polarized at 20 GHz (Massardi et al.

2008). The host galaxy has a measured redshift of 2.59 (O. Titov,

private communication) and there is no X-ray or γ -ray detection

for this source. The emission structure remains unresolved down to

0.15 arcsec (1.2 kpc), and an LBA image from Ojha et al. (2004)

shows a jet extending to the north-west out to ∼20 mas (160 pc),

composed of three bright total intensity regions. Our analysis in

this paper, which finds a best-fitting three RM-component model

for this source, suggests that each of these regions is polarized.
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Therefore, in the cases of PKS B1610−771 and PKS B1039−47,

we claim to have detected separate polarized components in

the compact inner regions of the jet on parsec scales that are

illuminating an inhomogeneous magneto-ionic medium in the im-

mediate vicinity of the jet. The largest RM difference between

different components that we have found from our model fits is

∼100 rad m−2 (between the second and third components in PKS

B1039−47). This is not inconsistent with recent measurements on

milliarcsecond scales at 1.4 GHz, where variations of tens to hun-

dreds of rad m−2 have been measured in several blazars (Coughlan

et al. 2011). We can test our predictions for these sources through

multifrequency polarization sensitive observations with the LBA,

which will allow us to spatially probe their milliarcsecond-scale

polarized structure for the first time.

6.2 RM time variability

If we attribute the RM difference between components to the

magneto-ionic material in the immediate vicinity of the parsec-

scale jet, then there are obvious implications for any observed time

variability from RM measurements on arcsecond scales and greater.

The polarized and RM structure of VLBI jets has been observed to

vary on time-scales as short as months (e.g. Zavala & Taylor 2001;

Gómez et al. 2011), so the relative polarized flux of the individual

components detected in our ATCA observations may also vary on

similar time-scales. Therefore, the relative difference between the

individual component RM values may also vary if the polarized

components are moving along the jet and illuminating different

parts of an inhomogeneous Faraday screen close to the AGN. This

means that RM time variability for observations on similar angu-

lar scales to those presented in this paper may be simply due to

the observations sampling different dominant RM components as

they move along the jet or, if the observations do not have suf-

ficient frequency coverage and spectral resolution, a complicated

combination of multiple RM components that does not accurately

represent any of the components.

Law et al. (2011) were able to compare four sources from their

low spatial resolution, wide-bandwidth 1–2 GHz observations with

high spatial resolution RM maps from the Very Long Baseline Array

(VLBA). In general, they did not detect the high fractional polar-

ization or high RM values seen from 5 to 22 GHz in the VLBA

images. This is not surprising since the high spatial resolution of

VLBA observations is less affected by beam depolarization and

also because RMs on these scales have been observed to increase

with increasing frequency (O’Sullivan & Gabuzda 2009). Another

possibility is that there may be intermediate-scale polarized struc-

ture that the VLBA is not sensitive to, negating the validity of the

comparison. Therefore, parsec-scale VLBI observations at similar

frequency ranges taken as close in time as possible to the low spa-

tial resolution, wide-bandwidth observations are required for direct

comparison. If the results from both these types of observations can

be linked, then it may be possible with multi-epoch polarization

observations with wide-bandwidth facilities like the ATCA to map

out the parsec-scale evolution of polarized components as well as

the Faraday rotating environment in AGN jets, as suggested by Law

et al. (2011).

Even though the majority of the Faraday rotation occurs as the

polarized radiation passes through our Galaxy, the RM difference

between multiple components as well as any observed variability is

likely due to the magneto-ionic material in the immediate vicinity

of the AGN jet. Hence, the type of sources studied in this paper may

not be suitable as primary polarization calibrators since the values
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Figure 16. Simulated three-component model without noise for PKS

B1039−47 but with identical λ2 coverage as in Fig. 3(d). Stars: input model

components taken from the best fit to PKS B1039−47 data shown in Fig. 14.

Dashed line: dirty RM synthesis spectrum from simulated data. Solid line:

RMCLEAN spectrum from simulated data. CLEAN component positions and

amplitudes are also included in the plot.

for their RMs and degree of polarization are likely to change on

short time-scales. A more stable type of calibrator source would be

one in which the polarized emission comes from extended emission

regions such as the lobes which vary on much longer time-scales.

6.3 Reliability of RMCLEAN

For PKS B1903−802, the peak RM found using RMCLEAN agrees

very well (within ∼0.3 rad m−2) with the mean RM found from

our best-fitting external Faraday dispersion model. In the case of

PKS B0454−810, the RM extracted using RMCLEAN differs by ∼2

rad m−2 from what we consider to be the correct RM for this

source. However, the comparison in this case is somewhat unreliable

since we have not been able to conclusively identify the correct

polarization model for this source.

There have been some questions raised in the literature about the

ability of the RMCLEAN method to accurately recover multiple RM

components for sources with complex Faraday structure (e.g. Frick

et al. 2010; Farnsworth et al. 2011). We find that the RMCLEAN method

performs poorly in recovering the correct RMs for PKS B1610−771

and PKS B1039−47. While it does predict the presence of multi-

ple RM components, the CLEAN component distribution does not

match what is found through model fitting q(λ2) and u(λ2) (Figs 3c

and d). For PKS B1039−47, we investigated whether or not the

three best-fitting model RM components could be recovered with

the same λ2 coverage but with no noise. Fig. 16 shows that again,

after RMCLEAN, the CLEAN component distribution does not associate

polarized power with the correct RM model-component locations.

On reflection, this may not be very surprising given that the RM

resolution of our experiment is ∼60 rad m−2 and is therefore unable

to resolve multiple RM components which differ by less than this

value. Thus, in cases of complex RM structure of extragalactic point

sources, alternative reconstruction algorithms (e.g. Li et al. 2011)

need to be investigated for application in all-sky RM surveys. Cur-

rently, the best approach for sources with complex Faraday depth

structure is model-fitting multiple RM-component models to the

observed q(λ2) and u(λ2) in order to find the most likely physical

model for the source.

6.4 Some implications for RM surveys

Taking the same data but restricting the frequency range to 20 ×
10 MHz channels, centred at 1.4 GHz, allowed us to compare the
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Table 4. Comparison between narrow-band and wide-band RMs.

Source RMwide RMold ATCA RMNVSS

(rad m−2) (rad m−2) (rad m−2)

PKS B1903−802 +18.1 ± 0.1 +18.2 ± 0.4 +21.5 ± 1.3

PKS B0454−810 +37.8 ± 0.2 +39.9 ± 1.2 +38.9 ± 1.5

PKS B1610−771 +107.1 ± 0.2 +134.6 ± 1.0 +128.5 ± 2.7

PKS B1039−47 −13.1 ± 1.5 −13.0 ± 6.7 −8.9 ± 1.2

Note. RMwide: RM of the main component derived from the 1.1–3.1 GHz

data. RMnarrow: RM derived using data from the 1304–1494 MHz data.

RMNVSS: derived using the same frequency coverage as in Taylor et al.

(2009).

RMs derived from the full 2-GHz bandwidth with the previous

narrow-band system on the ATCA (e.g. Feain et al. 2009). Using

the fitting procedure employed throughout this paper, we find that

we get the same RMs (within the errors) using 200 MHz of data

for both PKS B1903−802 and PKS B0454−810. In this case, a

single RM-component model with external Faraday dispersion still

provides a better fit over a model without depolarization. In Table 4,

for each source, we list the RM of the strongest polarized component

derived from the full 1.1–3.1 GHz data to compare with the RM

derived from the restricted range of 1.340–1.494 GHz.

For PKS B1610−771, we obtain a good fit (χ2
ν = 1.2 and BIC =

−475) for a single RM-component with external Faraday dispersion

giving a mean RM of +134.6 ± 1.0 rad m−2 and a dispersion

of 10.9 ± 0.5 rad m−2. A marginally poorer fit is found using

a two RM-component model (χ2
ν = 1.3 and BIC = −452) with

RM1 = +110.1 ± 1.8 rad m−2 and RM2 = +79.7 ± 2.1 rad m−2.

Therefore, in this case we would adopt the single RM-component

model since the evidence does not favour the more complex two

RM-component model. But we already know that the two RM-

component model is preferred using the full 2-GHz bandwidth data.

The difference in RM between the single-component model and the

strongest component in the two RM-component model is ∼25 rad

m−2 (Table 4). This is quite a dramatic example of how wrong

one can be in estimating the RM using narrow-bandwidth data.

This highlights the important role wide-bandwidth data play in

determining the correct Faraday depth structure of AGN on these

angular scales. The best-fitting model for PKS B1039−47 using the

data from 1.340 to 1.494 GHz has two RM components where the

strongest component has an RM equal (within the errors) to that

found from the 1.1–3.1 GHz data.

Due to our small sample size, we are unable to comment on how

often additional RM components may be detected in extragalactic

sources. From a sample of 37 bright, polarized sources, Law et al.

(2011) found that ∼25 per cent of sources had an extra RM compo-

nent detected with a significance greater than 7σ (∼40 mJy). They

also found that the polarized flux-weighted mean RM was simi-

lar to the low-resolution RMs quoted by Taylor et al. (2009). This

suggests that sources like PKS B1610−771 may be rare where the

flux-weighted mean RM (∼97 rad m−2) is significantly different

from the RM which is derived from narrow-bandwidth observa-

tions. We also list in Table 4 the RMs calculated from our data

using the same frequency set-up as used by Taylor et al. (2009). For

the simple sources, the RMs agree within 2–3 rad m−2.

Current and upcoming spectropolarimetric all-sky RM surveys

such as GALFACTS (Taylor & Salter 2010) and the POSSUM sur-

vey on ASKAP (Gaensler et al. 2010) plan to extract RMs from ob-

servations with 300 MHz of instantaneous bandwidth near 1.4 GHz.

For sources with a single RM component modified by depolariza-

tion from external Faraday dispersion, observations with 300 MHz

of bandwidth will produce the same results as we have found us-

ing 2 GHz of bandwidth (e.g. PKS B1903−802). In the case of

sources with multiple RM components, it is strongly recommended

that modelling of q(λ2) and u(λ2) be undertaken instead of us-

ing the reconstruction algorithm RMCLEAN. Since ASKAP will have

much better RFI conditions than those at the ATCA, we use sim-

ulated data from the best-fitting models for PKS B1610−771 and

PKS B1039−47 (highlighted in bold in Table 3) instead of the ob-

served data. Using the planned POSSUM frequency coverage of

1130–1430 GHz, we find that our modelling procedure would re-

cover the correct two RM-component model for PKS B1610−771.

For PKS B1039−47, depending on the quality of the data, it may be

difficult to determine whether a two or three RM-component model

provides the best fit. Complementary observations from a 300-MHz

band at lower frequencies (e.g. 0.7–1.0 GHz) would enable us to

recover the correct simulated three RM-component model in this

case.

7 C O N C L U S I O N

Using the new wide-bandwidth receivers on the ATCA, we have

shown that we can spectrally resolve the polarization structure of

spatially unresolved radio sources. We have identified two AGN

(PKS B1610−771 and PKS B1039−47) where more than one

RM component is required to describe the Faraday structure of the

source. We further demonstrate that modelling of both the polariza-

tion angle and degree of polarization dependences with wavelength

squared is essential in determining the true Faraday depth structure

of extragalactic point sources. We also find that the RM synthesis

reconstruction algorithm RMCLEAN does not recover the correct RMs

for sources with multiple RM components in our data.

The most likely origin for the additional RM components in both

PKS B1610−771 and PKS B1039−47 is from the compact inner

jet regions on parsec scales. This leads us to suggest that RM time

variability in extragalactic point sources may be due to the evolving

polarized jet structure on parsec scales which illuminates different

parts of an inhomogeneous magneto-ionic medium in the immedi-

ate vicinity of the jet. Follow-up observations of these particular

sources with parsec-scale spatial resolution using the Australian

LBA will enable us to test our predictions. Hence, with multi-epoch

polarization observations using wide-bandwidth facilities like the

ATCA, it may be possible to map out the parsec-scale evolution of

polarized components as well as the Faraday rotating environment

in AGN jets.

In the near future, combining data from the pristine RFI environ-

ment of ASKAP from 0.7 to 1.8 GHz with data from the ATCA at

higher frequencies can provide an exquisite probe of the polarization

properties of a much larger sample of AGN.

AC K N OW L E D G M E N T S

The Australia Telescope Compact Array is part of the Australian

Telescope, which is funded by the Commonwealth of Australia for

operation as a National Facility managed by CSIRO. We would

like to thank the engineers, technicians and staff at CSIRO’s Mars-

field and Narrabri sites who were involved in the successful up-

grade of the 20-/13-cm receiver systems to take advantage of the

2-GHz correlator bandwidth available in CABB. BMG and TR ac-

knowledge the support of the Australian Research Council through

grants DP0986386 and FS100100033, respectively. SPO would like

to thank David McConnell, Jamie Stevens, Mark Weiringa, Julie

C© 2012 CSIRO, MNRAS 421, 3300–3315

Monthly Notices of the Royal Astronomical Society C© 2012 RAS

 at C
an

ad
a In

stitu
te fo

r S
T

I o
n
 Ju

n
e 6

, 2
0
1
3

h
ttp

://m
n
ras.o

x
fo

rd
jo

u
rn

als.o
rg

/
D

o
w

n
lo

ad
ed

 fro
m

 

http://mnras.oxfordjournals.org/


Complex RM structure 3315

Banfield, Tim Cawthorne, Russell Jurek and Chris Hales for helpful

discussions. This research has made use of NASA’s Astrophysics

Data System Service and the NASA/IPAC Extragalactic Database

(NED), which is operated by the Jet Propulsion Laboratory, Cal-

ifornia Institute of Technology, under contract with the National

Aeronautics and Space Administration.

R E F E R E N C E S

Abdo A. A. et al., 2009, ApJ, 700, 597

Abdo A. A. et al., 2012, ApJS, preprint (arXiv:1108.1420)

Beck R., Gaensler B. M., 2004, New Astron. Rev., 48, 1289

Bennett C. L. et al., 2003, ApJS, 148, 97

Bonafede A., Feretti L., Murgia M., Govoni F., Giovannini G., Dallacasa

D., Dolag K., Taylor G. B., 2010, A&A, 513, A30

Brentjens M. A., de Bruyn A. G., 2005, A&A, 441, 1217

Brown J. C., Haverkorn M., Gaensler B. M., Taylor A. R., Bizunok N. S.,

McClure-Griffiths N. M., Dickey J. M., Green A. J., 2007, ApJ, 663,

258

Burn B. J., 1966, MNRAS, 133, 67

Coughlan C., Murphy R., Mc Enery K., Patrick H., Hallahan R., Gabuzda

D., 2011, 10th EVN Symp., preprint (arXiv:1101.5942) Manchester, UK

Dodson R. et al., 2008, ApJS, 175, 314

Farnsworth D., Rudnick L., Brown S., 2011, AJ, 141, 191

Feain I. J. et al., 2009, ApJ, 707, 114

Ferrari C., Govoni F., Schindler S., Bykov A. M., Rephaeli Y., 2008, Space

Sci. Rev., 134, 93

Frick P., Sokoloff D., Stepanov R., Beck R., 2010, MNRAS, 401, L24

Gaensler B. M., 2009, in Strassmeier K. G., Kosovichev A. G., Beckman J.

E., eds, IAU Symp. Vol. 259, Cosmic Magnetic Fields: From Planets, to

Stars and Galaxies. Cambridge Univ. Press, Cambridge, p. 645

Gaensler B. M., Hunstead R. W., 2000, Publ. Astron. Soc. Aust., 17, 72

Gaensler B. M., Haverkorn M., Staveley-Smith L., Dickey J. M., McClure-

Griffiths N. M., Dickel J. R., Wolleben M., 2005, Sci, 307, 1610

Gaensler B. M., Landecker T. L., Taylor A. R. (POSSUM Collaboration),

2010, BAAS, 42, 470.13

Goldstein S. J., Jr, Reed J. A., 1984, ApJ, 283, 540
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