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ABSTRACT

Du, Juan PhD, Purdue University, December 2016. Complex Formation by Alpha-
Lactalbumin and Polysaccharide Copolymers. Major Professor: Owen Jones.

Colloidal delivery systems, such as surfactant micelles, emulsions, liposomes, and

nanoparticles, are widely used in food and pharmaceuticals to improve the disper-

sion of poorly-soluble ingredients or modify their bioaccessibility within the body. As

a delivery system for medical- and health-relevant bioactive components, surfactant

micelles are used for delivery of poorly water-soluble compounds. Many commercial

surfactants are block copolymer assemblies of hydrophilic and hydrophobic polymeric

blocks, or polymer segments, where the hydrophobic segments form the internal core

of the micelle. However, studies show that surfactant micelles have potential tox-

icity due to the disruption of cell membranes and interference with cell membrane

transporters. 1

Complexes formed among proteins and polysaccharides, as renewable biopolymers,

are drawing attention for their potential application in the food, pharmaceutical, and

cosmetic industries due to their non-toxicity and higher potential for rapid biodegra-

dation. Complex coacervate core micelles (C3M) are nano-assemblies of interacting

polyelectrolytes and copolymers with a physical structure resembling surfactant mi-

celles, which are increasingly disfavored because of their potential irritation of bio-

logical tissues.

In our studies, carboxymethyl-dextran-block-poly(ethylene glycol) (CMD-b-PEG)

and chitosan-graft-poly(ethylene glycol) (CH-PEG) were successfully prepared from

dextran or chitosan (CH) by covalently attaching a poly(ethylene glycol) chain, which

was confirmed by nuclear magnetic resonance spectroscopy and chromatography.

1taken with permission from [62].
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Complex formation between polysaccharides and the globular dairy protein alpha-

lactalbumin was investigated following acid or base titration, where complexes with

unmodified chitosan (CH) or carboxymethyl-dextran (CMD) were used as controls.

The successful assembling of complexes between alpha-lactalbumin and polysaccha-

rides at different mixing ratios was confirmed through turbidity, light scattering,

colloidal charge, and electron microscopy. Covalent attachment of the PEG chains to

either polysaccharide was found to decrease the turbidity of complexes, while size of

the formed complexes was reduced only in specific protein-to-polysaccharide ratios or

polysaccharides of certain molecular weights. Diameter of spherical complexes formed

with CMD-b-PEG and CH-g-PEG was found to be less than 100 nm, and assemblies

of 200-500 nm were formed from apparent bridging interactions between spherical

complexes. Heat treatment of the complexes, shown in prior studies with unmodified

polysaccharides to lead to the formation of protein-rich spherical aggregates, was also

studied to determine the influence of the attached PEG chain on the structure of heat-

induced aggregates. Similar to the unheated complexes, the covalently-attached PEG

chain had minimal influence on the size of formed spherical aggregates, yet the turbid-

ity of the suspensions was reduced. These results demonstrate that non-interactive

components of ionic polysaccharides have a significant impact on the formation of

complexes with alpha-lactalbumin, which could translate to novel designs of vehicles

for the controlled-delivery of active molecules.
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1. LITERATURE REVIEW

1.1 Introduction

Colloidal delivery systems, such as surfactant micelles, emulsions, liposomes, and

nanoparticles, are widely used in food and pharmaceuticals to improve the disper-

sion of poorly-soluble ingredients or modify their bioaccessibility within the body. As

a delivery system for medical- and health-relevant bioactive components, surfactant

micelles are used for delivery of poorly water-soluble compounds. Many commercial

surfactants are block copolymer assemblies of hydrophilic and hydrophobic polymeric

blocks, or polymer segments, where the hydrophobic segments form the internal core

of the micelle. However, studies show that surfactant micelles have potential tox-

icity due to the disruption of cell membranes and interference with cell membrane

transporters. 1

Complexes formed among proteins and polysaccharides, as renewable biopolymers,

are drawing attention for their potential application in the food, pharmaceutical, and

cosmetic industries due to their non-toxicity and higher potential for rapid biodegra-

dation. Complex coacervate core micelles (C3M) are nano-assemblies of interacting

polyelectrolytes and copolymers with a physical structure resembling surfactant mi-

celles, which are increasingly disfavored because of their potential irritation of bio-

logical tissues.

1.2 Complex Coacervation

The potential applications for complexes formed by proteins and polysaccharides,

as renewable biopolymers, are drawing attention in the food, pharmaceutical, and cos-

1taken with permission from [62].
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metic industries due to their properties such as non-toxicity and being environment

friendly (Jones & McClements, 2011). Complex coacervation between proteins and

polysaccharides was first discovered by Tiebackx (1911). By definition, coacervation

means the separation of one homogeneous liquid solution into two liquid phases in

the colloidal system where the portion with more concentrated solution is defined as

coacervates (IUPAC, 1997; de Kruif et al., 2004). To distinguish from single polymer

coacervation, Bungenberg de Jong and Krupt (1926) came up with the term complex

coacervation which was caused by interaction of two oppositely charged colloids. By

Bohidar (2008), coacervation is further defined as a phenomenon that a homogenous

aqueous solution with charged macromolecules goes through liquid-liquid phase sep-

aration due to the associative interactions of charged macromolecules, resulting in

one phase more concentrated in polyelectrolyte. The other phase, which appeared as

supernatant is still in equilibrium with the coacervates phase rich in polyeleytrolytes,

but it is immiscible and therefore incompatible to the other phase (Bungenberg de

Jong and Krupt, 1935; Bohidar, 2008). In comparison to precipitation, which also has

the phenomenon of phase separation, complex coacervation is a liquid-liquid phase

separation, which means that in both phases polyelectrolytes remain soluble. Pre-

cipitation is a separation process caused by the insolubility of solutes, and it is a

liquid-solid phase separation.

From a thermodynamic aspect of phase separation, it was stated that tThe driving

forces for complex coacervates to form are the electrostatic solute-solvent interactions

that causes the decreases of Gibbs free energy, which results can be further differ-

entiated by in the increase of configurational entropythe driving force of either at-

tractive (associate) or repulsive (segregative) interactions between biopolymers, and

the dense coacervate phase has randomly arranged mixture of polyelectrolytes (de

Kruif & Tuinier, 2001 and Jones & McClements, 2010): the segregative interaction

is thermodynamic incompatible event, and in this system phasing separation will not

happen unless concentrations of biopolymers reach to certain point with decreases

of Gibbs free energy. Thermodynamic incompatible systems, which can be formed
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by electrostatic interactions, hydrophobic interactions, single biopolymer association,

hydrogen bonds and et al.

During the last century, the studies of complex coacervation was much expended.

The study of complex coacervates formation by biopolymers have been increased dra-

matically due to many benefits of natural sourced biopolymers, such as biodegrad-

able, low cost, renewable and non-toxicity compared to the synthesized polymers.

As a review study, de Kruif and et al. (2004) investigated a long list of previous

studies on complex coacervation of protein and polysaccharide, and summarized a

few characteristics of protein and polysaccharides formed complexes (Table 1). These

characteristic features include: 1. The mobility of both protein and polysaccharide is

observed in the coacervates phase. 2. At the maximal coacervation formation ratio

of protein to polysaccharides, the charges carried by complexes are neutral. 3. If one

of the polyelectrolytes is too strong, such as sulfated carrageenan, precipitation will

happen instead of forming complex coacervates, while the physiochemical condition

for forming complexes is narrowed 4. The concentration of salts in both supernatant

and coacervates phases are almost the same. While the addition of salt is increasing

the dissociating the complexes. 5. The complexes remain modestly charged, even

with excess amount of one of the polyelectrolytes. Other reviews also The details of

the mechanism of these characteristics will be explained in 1.2.2.

The preparation of forming complex coacervates is typically achieved by mixing

two solutions in a certain ratio (volumetric mass, or molar). Then titrate the mixture

with base or acid standard solutions while stirring. The changes The turbidity and

scattering intensity of the solution is monitored at the same time to determine the

critical pH values at which complex formation and phase separation take place. A

few important pH regions were well illustrated by Jones & McClements (2010) as is

follows:

Suppose we are conducting an acid titration of a protein and polysaccharide so-

lution starting from high pH of the solution of mixture, in the initial stage, when

both polyelectrolytes were carrying strong negative charges, that the pH is far above
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pI, no complexation happens, once the pH is reduced enough that even though the

charges of both biopolymers are negative, but a weak association happened due to

the electrostatic interactions between the anionic polysaccharide and some locations

of the positively charged protein portion. In the pH region, soluble complexes can be

detected by light scattering and the pH that scattering intensity started to rise up is

defined as the complexation pH (pHC). Coacervates will not be formed until a further

reduction of pH, which leads to stronger electrostatic interactions, that complexes in-

crease in size largely, that the intensity from light scattering largely increased, even

an increase of turbidity in solution, with a peaking up of the signals detected by a

visual light spectrometer. The formation of coacervates is accompanied with phase

separation, and the pH is defined as the critical pH value that coacervation starts

to happen. If the electrostatic interaction between two highly oppositely charged

biopolymers are too strong, then precipitation will happen rather than coacervation

since the the polymers are binding closely, that they became insoluble in the solu-

tion. Once the pH was reduced too low, far below the pKa of anionic polysaccharide,

that no further interaction between biopolymers will happen, that there might be no

complexation. Some other literature also defined the coacervation pH as pHφ1, while

pHφ2 as the critical value that the solution starts to exhibit a loss in turbidity, and

phase due to the suppressed phase separation separation (Weinbreck et al., 2002).

These critical pH values are determined in the figures as is follows:
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Fig. 1.1. (a) Scattering intensity as a function pH of mixture of whey pro-
tein/gum arabic for pHC determination (b) Turbidity as a function of pH
for pHφ1and pHφ2 determination. (Figures adopted with permisson from
Weinbreck et al., 2003) Copyright (2003), American Chemical Society.
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Table 1.1.
Overview of the biopolymer complexes according to the nature of the polysaccharide (Tables adopted with
permission from de Kruif and et al., (2004)) Copyright (2004) Elsevier

Strong/weak polyelectrolytes Polysaccharide/protein References Coacervation or precipitation

Weak (carboxylated) PE/gelatin Gum arabic/gelatin Burgess & Carless, 1984 Coacervation

Weak (carboxylated) PE/globular protein Gum arabic/albumin Burgess et al., 1991; 1993 Coacervation

Weak (carboxylated) PE/gelatin Carbopol/gelatin Elgindy & Elegakey, 1981 Coacervation

Weak (carboxylated) PE/gelatin Low methoxy pectin/gelatin Gilsenan et al., 2003 Coacervation

Weak (carboxylated) PE/gelatin Xanthan gum/gelatin Lii et al., 2002 Coacervation

Weak (carboxylated) PE/gelatin Gum arabic/gelatin Peters et al., 1992 Coacervation

Weak (carboxylated) PE/gelatin Sodium carboxymethyl guar gum/gelatin Thimma & Tammishetti, 2003 Coacervation

Weak (carboxylated) PE/globular protein Low and high methylated pectin/h-lactoglobulin Girard et al., 2002-2004 Coacervation

Weak (carboxylated) PE/globular protein High-methoxyl pectin/-lactoglobulin Kazmiersi et al., 2003 Precipitation

Weak (carboxylated) PE/globular protein Xanthan gum/whey protein Laneuville et al., 2000 Coacervation

Weak (carboxylated) PE/globular protein Gum arabic/h-lactoglobulin Sanchez et al., 2001;2002 Coacervation

Weak (carboxylated) PE/globular protein Gum arabic/h-lactoglobulin Schmitt et al., 1999; 2000; 2001 Coacervation

Weak (carboxylated) PE/plant protein Carboxy methyl cellulose/potato proteins Vikelouda & Kiosseoglou, 2004 Precipitation

Weak (carboxylated) PE/globular protein Gum arabic/whey proteins Weinbreck et al., 2003-2004 Coacervation

Cationic polysaccharide/plant protein Chitosan/faba bean legumin Plashchina et al., 2001 Precipitation

Two polysaccharides (weak PE/chitosan) Alginate/chitosan Yan et al. 2000; 2001 Coacervation

Two polysaccharides (strong PE/chitosan) Carrageenan/chitosan Shumilina & Shchipunov, 2002 Precipitation

Strong (sulfated) PE/gelatin n-carrageenan/gelatin Antonov and Gonc, 1999 Precipitation

Strong (sulfated) PE/globular protein L- or n-carrageenan or dextran sulfate/bovine serum albumin Galazka et al., 1999 Precipitation

Strong (sulfated) PE/globular protein L-carrageenan/poly(l-lysine) Girod et al., 2004 Coacervation

Strong (sulfated) PE/globular protein Dextran sulfate/sodium caseinate or soybean protein Gurov et al., 1988 Precipitation

Strong (sulfated) PE/gelatin n-carrageenan/gelatin Haug et al., 2003 Coacervation

Strong (sulfated) PE/globular protein Carrageenan/whey protein Weinbreck et al., 2004 Precipitation

Strong (phosphated) PE/gelatin Sodium hexametaphosphate/gelatin Fogle & Hfrger, 1972 Coacervation

Strong (phosphated) PE/globular protein Exopolysaccharide B40/whey proteins Weinbreck et al., 2003 Precipitation



7

1.2.1 Factors Influencing the Formation of Complex Coacervatesn

Since complex coacervates are formed by electrostatic interactions, their formation

may be influenced by many factors, such as pH, ionic strength, polymer concentration,

or polycation to polyion ratios.

Changes of pH are typically used to promote the association between proteins and

polyscahharides, since the pH can alter the charges of polymers and therefore favors

the electrostatic interactions between biopolymers (Jones and McClements, 2010).

Since complex coacervate formation is driven by the electrostatic interaction be-

tween polymers, ionic strength of the polymer surrounding environment will also

influence the surface charge density of the complexes, thereby affecting complex for-

mation. The addition of high concentration of salts has screening effects on the surface

charges of polyelectrolytes, since the ions in solution can neutralize the charges car-

ried by polyelectrolytes, as a result, preventing the association (Schmitt et al., 1998).

With very ow concentration of salts added into the solution, the influence of salt might

increase the tendency for association when compared to nearly ion-free solutions since

it reduces longer-range repulsions among charged bodies.

Ratio between different polymers can also influence the complex coacervation.

Since complex coacervation is formed by electrostatic interaction, an optimal ratio

with neutral charges of the system can create a maximum coacervation with con-

trolled concentration of total polymers. In a system that does not have optimal ratio,

the extra polyion will form non-neutral charged complexes, their extra charges will

function as repulsive force that prevent the coacervates to form, as well as a reduction

in turbidity of the sample. Due to these reasons, the optimal ratio between polyions

is an important factor that has been studied by many researchers. For example,

Schmitt et al., (1998) reported that at total solid concentration of 1%, the optimal

beta-lactoglobulin and acacia gum ratio was determined to be 4:1.

Molecular conformations of biopolymers can also influence the shape, size, and

physicochemical properties of complexes. Polysaccharide typically have structures of
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random coil or helix. The random coil polysaccharide favors the linear structure due to

the glycosidic bond rotation and limited chain flexibility, while helical polysaccharides,

such as carrageenan and agar, are structured with inter-polymeric hydrogen bonds

that are reversible upon heating (Jones and McClements 2010).

Charge density of polyelectrolytes, as an important physicochemical parameter

of biopolymers, is another important factor influencing the complex coacervation.

Weak polyelectrolyte charge is mainly determined by the solution pH. By definition,

charge density is the number of charges that presented on a certain biopolymer length.

An example of the influence of charge density was that during acid titration complex

preparation, pHC is above the pI of both biopolymers when both of the polymers were

both negatively charged, weak complex start to form, which is due to the increase of

positive charge density of the higher pI biopolymer (Schmitt et al., 1998)

1.2.2 Complex Coacervate Core Micelle

2Complex coacervate core micelles (C3M), a type of block ionomer complex or

interpolyelectrolyte complex, are novel nano-assemblies formed by electrostatic inter-

actions between ionic segments of hydrophilic block copolymers (i.e. block ionomers)

and oppositely charged polyelectrolytes (Pergushov, Mller, & Schacher, 2012; Voets,

de Keizer, & Cohen Stuart, 2009). In such complexes the ionic segments of both the

block copolymer and the polyelectrolyte form a neutralized complex that separates

from bulk solution to form a core region, whereas the hydrophilic segments of the

block copolymer remain as a solubilized outer shell (Pergushov, Mller, & Schacher,

2012) . The chief difference between C3Ms and surfactant micelles is that hydrophobic

interactions do not drive C3M assembly, and, therefore, the C3Ms are not potentially

toxic to cellular life, in vivo. The length of the nonionic block on copolymers has

been found to have a significant influence on the physical stability of formed C3Ms,

with a minimum nonionic block length required to interact with the aqueous sol-

2Section 1.2.2 is taken with permission from [62].
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vent (Novoa-Carballal, Pergushov, & Mller, 2013; Novoa-Carballal, Pfaff, & Mller,

2013). Length of the nonionic block has also been correlated with the size of resulting

C3Ms, as demonstrated for C3Ms formed between polystyrene and dextran/poly(2-

(dimethylamino)ethyl methacrylate) with increasing dextran size (Novoa-Carballal,

Pfaff, & Mller, 2013).

Although C3M formation has been well established for synthetic polyelectrolytes

and corresponding block-copolymers, there is a need to develop delivery systems us-

ing biologically-derived polymers, such as proteins and polysaccharides. Food-grade

proteins and polysaccharides are biodegradable and have low toxicity concerns. Many

proteins and polysaccharides possess dominant positive or negative charges and are

capable of interacting to form the core of a C3M structure. Such electrostatic inter-

actions between proteins and oppositely-charged polyelectrolytes are well studied in

the literature (Schmitt & Turgeon, 2011). Initial electrostatic interactions between

proteins and charged polysaccharides leads to the formation of soluble complexes,

which can be recognized by an increase in the scattering of incident light (Hirt &

Jones, 2014). Further electrostatic interactions eventually leads to the neutralization

of the complexes, where the quantity of positive and negative-charges are approxi-

mately equivalent, and the resultant complexes separate from the aqueous phase to

form a hydrated complex coacervate that is recognized by a significant increase in

solution turbidity (Hirt & Jones, 2014).

C3Ms have been formed among numerous block-copolymers and polyelectrolytes

of synthetic origin, but very few studies have investigated the formation of C3Ms

among modified polyelectrolytes of biological origin, such as proteins and polysac-

charides. An early study demonstrated the formation of C3Ms with diameter 50

nm by the interaction of hen egg white lysozyme with a PEG-block-poly(aspartic

acid) copolymer (Harada & Kataoka, 1998). More recently, C3Ms were assembled

from synthetic polyelectrolytes and block copolymers containing either dextran or

hyaluronic acid, demonstrating the feasibility of including a polysaccharide within

the C3M structure (Novoa-Carballal, Pergushov, & Mller, 2013; Novoa-Carballal,
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Pfaff, & Mller, 2013). Charged polysaccharide-containing copolymers may also be

formed by Maillard reactions, with the resulting charged copolymers possessing affin-

ity for oppositely-charged bioactive molecules (Zhou, Sun, Zhang, Zhang, Li, & Liu,

2012). Maillard conjugates of whey protein and dextran were recently assembled into

C3M-like structures with chondroitin sulfate, yet only the heat-treated aggregates

were characterized (Dai, Zhu, Abbas, Karangwa, Zhang, Xia, et al., 2015).

1.3 Biopolymer structures

Polysaccharides are polymeric carbohydrates that formed by repeating units joined

by glycoside linkage with various degrees of branching. They have common properties

such as non-toxic, biocompatible, low cost, and available from renewable resources

with diverse applications (Kalia et al., 2013). Since C3M is formed by electrostatic in-

teraction between biopolymers, the biopolymers properties, such as molecular weight,

composition, surface charge density, and structural characteristics, can largely influ-

ence the coacervates complex shape, particle size, and internal structures. Besides,

biopolymer type, concentration, and the location of functional groups within the

biopolymer will also influence the physicochemical properties of complex, including

reflective index, density, complex integrity, and enzyme digestibility (Jones & Mc-

Clements, 2010). Therefore, the properties of biopolymers will further influence the

functionality of the complex, such as the stability overtime, optical properties, and

in vivo digestibility.

1.3.1 Chitosan

Chitosan has been widely studied and used as a polymer due to its low toxic,

biodegradable, antibacterial property on a range of bacteria, and many other charac-

teristics (Park and et al., 2002). As a natural cationic polymer derived from chitin,

which is abundant in crab and shrimp cells, chitosan is much cheaper than synthesized

polymers (Dutta, et al., 2004). The properties of chitosan, such as positive charge at
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lower pH, gel-forming ability, and ability to form complexes with many low molecular

weight compounds (Ilium, 1998). However, due to the rigid crystalline structure and

hydrogen bonding partly taken by primary amino groups of chitosan, the insolubility

of chitosan limits its application (Nishimura et al., 1991). There are many publica-

tions concerning grafting poly(ethylene glycol) (PEG) onto chitosan through the use

of amination, since hydrophilic PEG can be used as solubilizing aids and surface con-

ditioners (Janciauskaite et al., 2008). By utilizing the functional groups of C2-amino,

synthesis of chitosan-grafted-poly(ethylene glycol) can be achieved through covalent

binding to monocarboxyl-poly(ethylene glycol) molecules with coupling agents, and

is can form hydrogels with α-cyclodextrin (Huh, 2004).

1.3.2 Dextran

Similar to the concept of chitosan-graft-PEG, dextran as a natural hydrophilic

polysaccharide also can be used as grafting material onto chitosan with ability to

enhance solubility of chitosan (Janciauskaite et al., 2008). Dextran is a non-ionic

bacterial homo-polysaccharide composed of 1,6-linked -D-glucopyranosyl units that

is frequently used in food and pharmaceutical systems due to its excellent solubility

and simple structure (Waldherr & Vogel, 2009). Synthesis of carboxymethyl-dextran-

block-poly(ethylene glycol) (CMD-b-PEG) from dextran has been established in re-

cent literature (Hernandez et al., 2007 and Zhang & Marchant, 1994), which modi-

fied dextran polymers with ionic charges that may interact with polyelectrolyte like

α-lac protein and tehrefore to form complex coacervates. Due to the charges of car-

boxymethyl groups, CMD is able to form complexes as nanoparticles with proteins

and then to form hydrogels that can be alternated through ionic strength (Zhang et

al., 2005).3

3taken with permission from [62].
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1.3.3 α-Lactalbumin

As one of the major whey protein, α-lactalbumin (a-lac) is a globular protein with

molecular weight of about 14.2 kDa and an isoelectric point of 4.2-4.8 (Bramaud et

al., 1995 and Hernndez-Hernndez et al., 2008). The structure of small globular -lac

protein contains 4 disulfide bridges, and it is a regulating protein of lactose synthesis in

mammary grind (Fox & McSweeney, 2003). Previous studies by researches indicates

that the removal of calcium can cause conformational changes of α-lac, causes α-lac

to be able to of bind retinol and palmitic acid hydrophobic molecules (Barbana et

al, 2006), which shows the potential of using α-lac for encapsulation of hydrophobic

compounds. Complex formation between chitosan and α-lac was previous studies by

Lee and Hong (2009), with strong prove of complex coacervates formation at pH 5.0

at concentrations of 0.1% chitosan and 0.5% α-lac and scanning electron microscopy

images indicating unevenly associated clusters. However, complex coacervates formed

by α-lac and CH-PEG, which will be a main portion of our study.

1.3.4 Poly(ethylene glycol)

Poly(ethylene glycol) (PEG) is an FDA-approved hydrophilic polymer with partial

solubility in organic solvents, and it is frequently attached covalently to polymers or

colloids to increase dispersibility in water (Harris & Chess, 2003; Otsuka, Nagasaki, &

Kataoka, 2012). Attachment of PEG blocks onto the terminal end of a hydrophobic

polymer creates block-copolymer surfactants, such as Tweens and Pluronics, that

are extensively utilized as emulsion stabilizers or as components of micellar delivery

vehicles (Tadros, 2005). Due to excellent hydrophilicity, low toxicity, rapid clearance

in vivo, and potential to reduce allergenicity of peptides, PEG groups have been

utilized in protein-based pharmaceuticals and delivery vehicles (Roberts, Bentley, &

Harris, 2012). PEG has been popularly used also for its long-circulating properties due
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to its shielding effect that prevents uptake of nano-particles from reticuloendothelium

system (RES) (Abgoustakis, 2004; Lin & Hsu, 2014).4

1.4 Micelle Structure as Delivery Vehicles

Colloidal delivery systems, such as surfactant micelles, emulsions, liposomes, and

nanoparticles, are widely used in food and pharmaceuticals to improve the dispersion

of poorly-soluble ingredients or modify their bioaccessibility within the body (Patel &

Velikov, 2011). As a delivery system for medical- and health-relevant bioactive com-

ponents, surfactant micelles are used for delivery of poorly water-soluble compounds.

Many commercial surfactants are block copolymer assemblies of hydrophilic and hy-

drophobic polymeric blocks, or polymer segments, where the hydrophobic segments

form the internal core of the micelle. However, studies show that surfactant micelles

have potential toxicity due to the disruption of cell membranes and interference with

cell membrane transporters (Rege, Kao, & Polli, 2002; Swenson & Curatolo, 1992). 5

4taken with permission from [62].
5taken with permission from [62].
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2. INFLUENCE OF PEGYLATION ON THE ABILITY OF

CARBOXYMETHYL-DEXTRAN TO FORM

COMPLEXES WITH α-LACTALBUMIN

1

2.1 Abstract

Electrostatic interactions between α-lactalbumin (α-lac) and carboxymethyldex-

tran (CMD) in acidic solutions lead to phase-separated complexes. By adding a

non-ionic poly(ethylene glycol) (PEG) chain onto the reducing end of CMD, forming

carboxymethyl-dextran-block-poly(ethylene glycol) (CMD-b-PEG), the PEG block

was hypothesized to reduce interactions with α-lac and promote formation of a

micelle-like complex structure. Formation of complexes between α-lac and CMD-

b-PEG or α-lac and CMD was determined following acidification by light scattering

and electrophoretic mobility. Phase separation, size, and structure of α-lac/CMD-

b-PEG complexes were characterized by turbidimetry, dynamic light scattering, and

electron microscopy, respectively. Complexes of α-lac/CMD-b-PEG formed at pH

values near pH 6, while α-lac/CMD complexes formed at pH 5.5. Both CMD and

CMD-b-PEG decreased the charge of α-lac below pH 5.5 and led to phase separation

below pH 5. Shift in charge and the critical pH of phase separation were both sen-

sitive to the α-lac to CMD ratio, while the relative amount of CMD-b-PEG did not

significantly influence either. Hydrodynamic radii of α-lac/CMD-b-PEG complexes

was between 11 and 20 nm, which increased with increasing α-lac to CMD-b-PEG

ratio and with decreasing pH. Spheroidal structures of 10 nm were also observed in

micrographs that were attributed to α-lac/CMD-b-PEG complexes.

1This chapter is taken with permission from [62].
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2.2 Objectives

The objective of this research was to determine the influence of covalently-attached

PEG on (i) the ability of CMD to form complexes with α-lactalbumin (α-lac) and

(ii) the colloidal properties of the resulting complexes. α-Lac is a globular protein

obtained from dairy whey, a byproduct of cheese manufacturing, with an approx-

imate molecular weight of 14.2 kDa and an isoelectric point of ∼4.24.8 (Bramaud

et al., 1995 and Hernndez-Hernndez et al., 2008). Dextran is a non-ionic bacterial

homo-polysaccharide composed of 1,6-linked α-D-glucopyranosyl units that is fre-

quently used in food and pharmaceutical systems due to its excellent solubility and

simple structure (Waldherr & Vogel, 2009). Synthesis of carboxymethyl-dextran-

block-poly(ethylene glycol) (CMD-b-PEG) from dextran has been established in re-

cent literature ( Hernandez et al., 2007 and Zhang and Marchant, 1994). To the

authors’ knowledge, no studies have yet investigated the pH conditions and polymer

ratios necessary for the formation of complexes between a polysaccharide-containing

copolymer and a protein.

2.3 Materials

Dextran with a reported average molecular weight (MW) of 20 kDa was purchased

from Alfa Aesar Specialty & Intermediates (Ward Hill, MA). O-(2-aminoethyl)-PEG

(MW= 5 kDa), 3-ethylcarbodiimide hydrochloride, N-hydroxysuccinimide, and mono-

chloroacetic acid were purchased from SigmaAldrich (St. Louis, MO). α-Lactalbumin

(α-lac) was kindly donated by Davisco Food International (Le Sueur, MN). Protein

was further purified to remove minerals by dialysis (molecular weight cutoff of 3.5

kDa) against ultrapure water (σ ≥18 mΩ-cm; Barnstead E-pure, Thermo Scientific,

Waltham, MA). Protein was then lyophilized and kept at 4 ◦C as a dry solid until

use. Deuterium oxide (D2O), sodium hydroxide, and hydrochloric acid were purchased

from SigmaAldrich (St. Louis, MO).
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2.3.1 CMD and CMD-b-PEG synthesis and characterization

Dextran was oxidized by iodine in basic solution and purified in a cation exchange

resin to obtain dextran aldonic acid (Zhang & Marchant, 1994). O-(2-Aminoethyl)-

PEG was then coupled to the terminal aldonate/lactone, as described in literature

(Hernandez et al., 2007). Samples were dialyzed (MWCO = 1214 kDa) to remove

non-bonded O-(2-aminoethyl)-PEG, and then lyophilized to obtain dextran-block-

PEG. Formation of dextran-lactone and dextran-block-PEG was verified by 1H NMR

spectroscopy (Fig. 2.1).

Fig. 2.1. 1H NMR spectra of dextran-block-PEG, Dextran, and Dextran-
lactone in D2O at room temperature
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Fig. 2.2. 1H NMR spectra of CMD, and CMD-b-PEG in D2O at room
temperature

Both carboxymethyl-dextran (CMD) and CMD-b-PEG were prepared by dissolv-

ing dextran and dextran-block-PEG, respectively, in 85/15 v/v isopropanol/water

mixture and treated with aqueous NaOH (9.0 M) at 60 ◦C with monochloroacetic

acid to produce CMD-b-PEG. The final product was washed by methanol and puri-

fied by ultrafiltration (Huynh, Chaubet, & Jozefonvicz, 1998). Retentate was then

lyophilized to obtain a dry powder, which was stored at 20 ◦C until further use.

Successful incorporation of carboxylate groups onto dextran or dextran-block-PEG,

forming CMD and CMD-b-PEG, respectively, was verified by 1H NMR spectroscopy

(Fig. 2.2).

The 1D proton Nuclear Magnetic Resonance (NMR) spectra of dextran-lactone,

dextran-PEG, CMD, and CMD-b-PEG samples dissolved in D2O were acquired in

order to characterize the successful incorporation of carboxylate groups and PEG

groups onto the dextran block. All the samples were prepared for NMR by three cycles
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of dispersion within D2O and lyophilization to a solid in order to reduce interference

from water. Samples were diluted in D2O before measurements to a concentration of

1.0 mg/mL. 64 scans of each sample were performed using an INOVA 300 MHz NMR

with a 5mm quadrupole-nucleus probe.

2.3.2 Solution Preparation

Solutions of protein (purified α-lac) and polysaccharide (CMD or CMD-b-PEG)

were prepared by dissolving lyophilized powders in 3 mM acetate buffer for a minimum

of 2 h. Solutions were mixed for at least 30 min at pH 6.5 at different volumetric

ratios to obtain mixtures with α-lac to CMD or α-lac to CMD-b-PEG ratios (r) of

between 2 and 8. The total biopolymer concentration, including both α-lac and CMD

or CMD-b-PEG, in each mixture was fixed at a constant of 0.032% (w/w). Mixtures

were then acidified using 0.1 N HCl solution. Aliquots were collected every 0.1 pH

units for light scattering and turbidity measurements and every 0.5 pH units for ζ-

potential measurement. All samples were vortexed prior to colloidal characterization

to ensure even dispersion.

2.3.3 Colloidal Sample Characterization

ζ-Potential of α-lac, CMD, CMD-b-PEG, and mixtures were determined at dif-

ferent pH values by electrophoretic mobility measurements (Malvern Zetasizer Nano

ZS, Malvern Instruments, Worcestershire, UK) at a scattering angle of 173◦.

Turbidity of pure solutions and mixtures as a function of pH was measured in

polystyrene cuvettes using a PerkinElmer UV/vis Spectrometer Lambda 25 at a

wavelength of 450 nm, as previously described for proteinpolysaccharide complex

formation (Hirt & Jones, 2014). Turbidity was presented as 100 %T, where T is the

light transmitted through the sample and cuvette, in order to accentuate the increase

in light scattering during colloidal interactions within dilute solution. Pure acetate

buffer was utilized as a reference blank.
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Critical pH values for the formation of soluble complexes (pHc) and phase sepa-

rated structures (pHφ) between α-lac and dextran derivatives were determined based

on the method described by Mattison et al. (1995). Briefly, turbidity and light scat-

tering intensity values from aliquots of mixtures at different pH values were utilized

to create pH-dependent plots. Critical pH values pHc and pHφ were then determined

from significant increases in the slope of scattering intensity or turbidity, respectively,

as a function of pH. An example of these procedures was mentioned in Chapter 1.2.

Hydrodynamic radii of constituents present in the mixtures were determined by

dynamic light scattering using an ALV-CGS3 light scattering goniometer (ALV, Lan-

gen, Germany). Scattered light from a HeNe laser with a wavelength of 632.8 nm was

detected by ALV High Q.E. avalanche photodiode (APD) dual detectors in pseudo

cross correlation mode.Z-average diffusion coefficients (Dz) of dextran, CMD, and

CMD-b-PEG samples were obtained from measurements of the first cumulant (Γ )

at scattering vectors (q) between 0.008 and 0.017 nm−1, which were extrapolated to

zero-q based on Expression (2.1):

lim
q2→0

Γ/q2 = Dz (2.1)

This expression accounts for angle-dependent scattering effects on the apparent

diffusion coefficient with the condition that the radius of gyration is significantly less

than the inverse of q, which was adequately satisfied for all samples tested (Burchard,

1983). Hydrodynamic radii reported in the figures were calculated from the z-average

diffusion coefficients using the StokesEinstein equation. Hydrodynamic radii of mixed

α-lac/CMD-b-PEG solutions were determined using the CONTIN algorithm within

the instrument software (ALV, Langen, Germany). All samples were diluted in buffer

until concentration dependence was no longer observed in order to eliminate multiple

scattering effects.

Transmission electron microscopy (TEM) images of dried samples (α-lac, CMD-

b-PEG, and representative α-lac CMD-b-PEG complexes) were obtained using a

FEI/Philips CM-100 TEM (FEI Company, Hillsboro, Oregon, USA). Selected sam-
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ple mixtures were placed on a copper grid coated with a continuous carbon support

film, then being stained with 0.5% uranyl acetate in distilled water and air-dried

at room temperature. Representative images shown were selected from approximate

1015 images from each sample.

2.3.4 Statistical Treatment

All samples were prepared in at least triplicate, unless otherwise specified. Statis-

tical significance between determined critical pH values was established by means of

the student’s t-test. Significance of linear relation between r value and both turbidity

and hydrodynamic size was established by means of linear regression analysis. In

all figures, displayed error bars represent the standard deviation from independent

sample measurements.

2.4 Results and Discussion

2.4.1 Influence of pH on protein polysaccharide complex formation

Fig. 2.3 demonstrates the influence of pH during acid titration from pH 5.5 to 3.5

on the surface charge (ζ-potential) of α-lac, CMD, CMD-b-PEG, or mixtures of α-

lac with either CMD or CMD-b-PEG. Fig. 2.3a showed the charge of the individual

polymers as a function of pH, indicating their potential for complex formation at

different pH values. In Fig. 2.3b and c, the shift in surface charge among mixtures

showed the interactivity between the components at different pH values.
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Fig. 2.3. ζ-potential as a function of solution pH of (a) α-lac (0.028 wt%),
CMD (0.012 wt%), or CMD-b-PEG (0.012 wt%) alone, (b) complexes
formed by α-lac and CMD of different r values (shown in legend), or (c)
complexes formed by α-lac and CMD-b-PEG of different r values (shown
in legend)
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The ζ-potential of α-lac was negative at neutral pH values then became positive

between pH 4.5 and 5.2 (Fig. 2.3a), implying an isoelectric point of α-lac within this

pH range. An isoelectric point between pH 4.5 and 5.2 is in agreement with literature

values that have indicated experimentally determined isoelectric points up to pH 4.6

(Bramaud et al., 1995). ζ-Potential values of CMD and CMD-b-PEG were both neg-

ative at all studied pH values, with CMD-b-PEG less negatively charged than CMD.

Since PEG is present as a terminal-block on the CMD-b-PEG polymer, PEGylation

would not have reduced the number of potential charges on the CMD block. Rather,

the reduced electrophoretic mobility of CMD-b-PEG relative to CMD could have been

due to an increase in hydrodynamic size following covalent attachment of PEG or to a

shielding of the CMD charge if the PEG-block had folded back upon the CMD-block.

ζ-Potential values of mixtures between α-lac and CMD (Fig.2.3b) were reduced

compared to pure α-lac and greater than pure CMD at the same pH values (ex-

cept at pH 4.5 for r = 2 and 3.5), which indicated the formation of complexes. At

r = 8, ζ-potential values of the mixtures were less than that of pure α-lac, partic-

ularly at pH values near α-lac’s isoelectric point. As r decreased, the ζ-potential

of α-lac/CMD complexes further decreased at pH values of 5 and below, indicating

greater interaction between the positively-charged sites on the protein and negatively-

charged CMD when more CMD was present. This concentration-dependent correla-

tion between the molar ratio of anionic polysaccharide and decrease in ζ-potential was

indicative of complex formation, as has been observed for -lactoglobulin/pectin or -

lactoglobulin/carrageenan complexes (Jones, Lesmes, Dubin, & McClements, 2010).

For α-lac/CMD-b-PEG mixtures, the ζ-potential values were again decreased com-

pared to that of pure protein at pH 5 (Fig. 2.3c). Only one peak was observed in

the ζ-potential distribution of the mixtures, implying that α-lac and CMD-b-PEG

were electrostatically interacting rather than present as two separate entities. Ob-

served ζ-potential values were insensitive to r for all studied pH values. These results

suggested that CMD-b-PEG interacted electrostatically with α-lac in solution, while

the uncharged PEG chains may have remained exposed to the aqueous environment
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on the outer portions of the complex and led to a generally observed reduced surface

charge relative to the α-lac/CMD complexes (Fig. 2.3b). Alternatively, the struc-

ture of the resultant complex or the presence of PEG on the exterior regions of the

complex may have limited the number of CMD-b-PEG chains interacting with α-lac.

Although there were no additional peaks in the ζ-potential distribution that would

indicate the presence of excess, non-interacting CMD-b-PEG chains, the scattering

signal from these individual chains would be relatively weak compared to the larger

complexes and thus it is plausible that they were not observed within the distribution.

Critical pH values of α-lac/CMD or α-lac/CMD-b-PEG complexes, describing the

relative tendency of the components to electrostatically interact and form separate

phases using light scattering and turbidity measurements, are shown in Table 2.1.

Comparable concentrations of pure α-lac, CMD, and CMD-b-PEG contributed neg-

ligibly to light scattering and turbidity over the same pH ranges, verifying that the

critical pH values were indicative of inter-polymer interactions (not shown). Critical

pH values for complex formation (pHc) between α-lac and CMD were significantly

lower than pHc values of α-lac and CMD-b-PEG for all r values. For both α-lac/CMD

and α-lac/CMD-b-PEG, the value ofr had no influence on pHc, which is in agreement

with previous findings for proteinpolyelectrolyte complexes (Hirt and Jones, 2014

and Mattison et al., 1995). The critical pH values for phase separation (pHφ) of

complexes between α-lac and CMD were between pH 4.3 and 5, while those for α-lac

and CMD-b-PEG were at pH 5 for all r.



24

Table 2.1.
pHc and pHφ values for mixed solutions of α-lac and CMD or α-lac and
CMD-b-PEG of different r values

r value3
pHc

1 pHφ2

α-lac and CMD α-lac and CMD-b-PEG α-lac and CMD α-lac and CMD-b-PEG

8 5.47±0.03 5.84±0.12 4.97±0.07 5.03±0.03

5 5.54±0.13 5.94±0.13 4.91±0.07 5.03±0.12

3.5 5.56±0.05 5.79±0.16 4.79±0.03 4.98±0.05

2 5.46±0.05 5.95±0.11 4.30±0.01 4.95±0.04

1: pHc is the critical pH of complex formation, as determined by light scattering measurements as a function of pH

2: pHφ is the critical pH of phase separation, as determined by turbidimetry measurements as a function of pH

3: r is the protein-to-polysaccharide (or modified polysaccharide) ratio on a weight basis

As expected, pHφ values of α-lac/CMD complexes decreased with decreasing r,

which is in agreement with trends observed for other polyelectrolyte complexes (Mat-

tison et al., 1998 and Mattison et al., 1995). This responsiveness of pHφ to r has been

attributed to the re-balancing of total charges in the proteinpolyelectrolyte system,

so that a relative increase in the polyelectrolyte concentration necessitates an increase

in the protein charge to reach zero net-charge, which is facilitated by further reduc-

tion of solution pH. Interestingly, pHφ values of α-lac/CMD-b-PEG complexes did

not decrease with decreasing r. Normally, a decrease in r would increase the number

of negatively-charged components in the complex and shift pHφ to lower values, as

observed for the complex with CMD. The lack of reduction in pHφ with CMD-b-PEG

implied that the covalently attached PEG chain reduced the contribution of negative

charges to the protein complex, possibly by limiting the number of protein molecules

that could interact with CMD-b-PEG. This was supported by ζ-potential measure-

ments, which showed that increasing relative quantities of CMD-b-PEG (lower r) had

little effect on reducing the net-charge of the complex (Fig. 2.3).

As the pHc for α-lac and CMD mixtures were significantly lower than those for

α-lac and CMD-b-PEG and pHφ values were either the same or lower, it was proved

that the PEGylation of CMD favored both complex formation with α-lac and the
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subsequent phase separation of complexes. This was not expected, as PEG in iso-

lation has been utilized as a means to obtain isolated α-lac from solution because

it is incompatible with α-lac at neutral pH values (Rodrigues, Venncio, & Teixeira,

2001). PEG has also been shown to reduce protein adhesion to nanoparticle sur-

faces by increasing the hydrophilicity (Zhang, Desai, & Ferrari, 1998). Thus, it was

expected that addition of PEG to CMD would have decreased both pHc and pHφ,

with the PEG group reducing the ability of α-lac to associate with the charged CMD.

However, observance of higher or equal pHc and pHφ values for α-lac/CMD-b-PEG

indicated that PEG increased the favorability of polymeric interactions. Significant

interactivity between α-lac and the PEG chain was not considered likely. Thus, it is

proposed that α-lac and CMD-b-PEG formed a C3M with a coreshell structure, and

the formation of such a coreshell structure was energetically favorable in a manner

akin to the formation of surfactant micelles, driving interactions between α-lac and

CMD-b-PEG at higher pH values. Such a model could also be utilized to explain

the insensitivity of pHφ values for α-lac/CMD-b-PEG complexes with changing r, as

formation of a coreshell C3M structure has a limited dimension that may not be able

to accommodate additional CMD-b-PEG chains. This hypothetical energetic expla-

nation of C3M formation causing increased pHc and pHφ values could be resolved by

detailed isothermal titration calorimetry experiments in future studies.

2.4.2 Effect of PEG on Complex Stability

Turbidity of α-lac/CMD or α-lac/CMD-b-PEG suspensions was measured at pH

3.8 (below pHφ) in order to distinguish the relative size and quantity of the phase-

separated structures in suspensions (Fig. 2.4). In general, the turbidity values of α-

lac/CMD complexes were significantly higher than those of α-lac/CMD-b-PEG. For

both complexes, there was a significantly negative linear relation between turbidity

at pH 3.8 and r value.
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Fig. 2.4. Turbidity of α-lac with CMD or CMD-b-PEG at pH 3.8 as a
function of r

Based upon colloidal charge measurements and critical pH values with decreasing

pH and r (Fig. 2.3 and Fig. 2.4), it was proposed that α-lac/CMD complexes formed

coacervate structures. Thus, at these acidic pH values the turbidity of α-lac/CMD

suspensions was due to a large and gradually separating coacervate phase dispersed

within a α-lac- and CMD-depleted aqueous phase. Increased turbidity in samples

with smaller r was attributed to the increased relative quantity of CMD that became

available for interaction with the positively-charged α-lac, forming more of the turbid

coacervate phase. Suspensions of α-lac/CMD-b-PEG, however, were much less turbid

at the same concentrations and r-values. Low turbidity values even at pH values well

below the pHφ indicated that α-lac/CMD-b-PEG formed a phase-separated structure

with a smaller size, reduced quantity, or both. The difference in turbidity values

between the two mixtures of similar composition suggested that the structure formed

in mixtures with CMD-b-PEG were of a different nature than the typical complex

coacervate structures that were formed in mixtures with CMD.

At higher pH, dynamic light scattering was utilized to investigate the hydrody-

namic size of soluble complexes formed between α-lac and CMD-b-PEG near their
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critical pH values of interaction. The experimentally determined hydrodynamic radii

of α-lac/CMD-b-PEG mixtures within the pH range of 6.55 are shown in Fig. 2.5.

Two major diffusive colloidal modes were identified in this pH range: one that was

relatively fast-moving and one slower-moving. The fast-moving mode was detected

at all tested pH values, possessing an average hydrodynamic radius of 15 nm that

was consistent for all r and pH values (Fig. 2.5a). This average hydrodynamic radius

could be attributed to individual α-lac molecules, which is in agreement with liter-

ature values for α-lac (2.0 and 2.2 nm for native and denatured α-lac, respectively)

(Redfield, Schulman, Milhollen, Kim, & Dobson, 1999). Larger components within

this population distribution could have also included individual CMD-b-PEG chains,

as well as small fractions of unconverted CMD and dextran precursors. CMD-b-PEG,

CMD, and dextran chains were independently characterized at pH 6 to have hydro-

dynamic radii of 11.5, 8.0, and 6.3 nm, respectively, which is in line with the size of

a similarly structured CMD-b-PEG of relatively smaller molecular weight (MW 16.7

kDa; RH = 35 nm) (Hernandez et al., 2007). This same group had found a second,

larger population of aggregates with hydrodynamic radius of 50 nm at pH 3 and 6

that was not observed in our samples.
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Fig. 2.5. Hydrodynamic radii (RH) of α-lac/CMD-b-PEG complexes (r =
2 or 8) as a function of pH and r-value between pHc and pHφ for (a) the
fast mode and (b) the slow mode.

When the mixtures were acidified to pH 6 and below, particles with a slower

diffusive profile were detected by dynamic light scattering. Fig. 2.5b shows the

size of these slower detected particles in suspension for samples containing the most

and the least α-lac (r = 8 and 2, respectively). These slower particles possessed

average hydrodynamic radii of 1120 nm at pH 6, which generally increased to 2042

nm at pH 5. The pH at which these slower particles appear was the same as the

experimentally determined pHc of α-lac/CMD-b-PEG (Table 1), and these detected

particles were attributed to soluble complexes. The comparable size of the smaller

complexes to the determined hydrodynamic radius of CMD-b-PEG by itself at pH
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6 (11.5 nm) implied that the relatively smaller α-lac molecules interacted along the

length of chain, increasing the density of the complex but not its hydrodynamic size,

as previously found for whey protein/gum Arabic complexes (Weinbreck, de Vries,

Schrooyen, & de Kruif, 2003). At greater r, the average hydrodynamic radius of the

complex was significantly larger than that of CMD-b-PEG, so the greater amount of

interacting α-lac must have been sufficient to increase the hydrodynamic size of the

chain. Further information on the complex structure can be resolved using X-ray or

neutron scattering in future studies.

Average hydrodynamic radii of the complexes (slower diffusive mode) were typi-

cally larger for α-lac/CMD-b-PEG complexes as r increased and pH decreased. Fig.

2.6 demonstrates the effect of increasing r on average hydrodynamic radius of α-

lac/CMD-b-PEG complexes at pH values of 5.8, 5.5, and 5.0. As in Fig. 2.5, the size

of the complexes were larger at the more acidic pH values. For each tested pH value,

the increase in complex size with increasing r was similar, indicating that the rela-

tive quantity of α-lac in the mixture consistently controlled the size of the complex

structure. As α-lac was the sole source of positively-charged sites for interaction with

the CMD-b-PEG, the relative quantity of α-lac (r) and ionization of α-lac (pH) were

critical in the size of formed complexes. Thus, the largest complexes were formed at

r = 8 and at lower pH values.
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Fig. 2.6. Hydrodynamic radii (RH) of α-lac/CMD-b-PEG complexes (slow
diffusive mode from dynamic light scattering) as a function of r-value at
select pH values.

Below pH 5, the complexes underwent phase separation (Table 2.1), and the re-

sulting particle diffusion at these low pH values, as determined by dynamic light

scattering, significantly decreased for all samples (not shown). This implied that

α-lac/CMD-b-PEG complexes were not stable to colloidal aggregation and formed

large phase-separated domains. Reduced turbidity of α-lac/CMD-b-PEG complexes

at low pH (Fig. 2.4) then indicated that the domains were of smaller number or of

reduced scattering contrast when compared to the complex coacervate domains of

α-lac/CMD. It was hypothesized that the PEG chains were not of sufficient length to

prevent flocculation of the α-lac/CMD-b-PEG complexes. Based upon Table 2.1 and

Fig. 2.3, both phase separation (pHφ) and ζ-potential values were not significantly

influenced by r. In light of these facts, the larger size of complexes with increasing r

(Fig. 2.6) indicated that the balance between protein and CMD-b-PEG in the com-

plexes only changed the relative amount of components within the structure but not

the surface charge of the complexes or the phase stability.
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2.4.3 Visual Characterization of Complexes

In order to identify whether a C3M structure formed at pH values between the

pHc and pHφ, pure α-lac and mixed α-lac/CMD-b-PEG samples at pH 5.2 were

characterized by transmission electron microscopy (Fig. 2.7). Pure α-lac at pH 5.2

was found as a spherical agglomerate of 1020 nm in diameter (Fig. 2.7a). There

was no evidence of these spherical agglomerates in light scattering measurements of

pure α-lac at pH 5.2, and the observed agglomerates were attributed to aggregated

protein that resulted from drying when samples were prepared for imaging. Electron

micrographs of pure CMD-b-PEG at pH 5.2 showed spherical structures with diameter

of 60 nm against a rough background (Fig. 2.7b). Since the 60 nm agglomerates were

not evidenced by dilute-solution scattering measurements, these spherical structures

were attributed to the agglomeration of CMD-b-PEG that formed during sample

drying prior to imaging, which agrees with previous reports of 50 nm CMD-b-PEG

aggregates in neutral pH solutions (Hernandez et al., 2007). Images taken of mixed

α-lac and CMD-b-PEG (r = 3.5) at pH 5.2 show both larger spherical structures

and smaller, irregularly-shaped aggregates with diameters of approximately 60 and

10 nm, respectively (Fig. 2.7c). The smaller aggregates could be attributed either to

aggregates of pure α-lac that formed during drying (Fig. 2.7a) or to smaller complexes

of α-lac and CMD-b-PEG, which possessed average diameters as low as 30 nm in these

conditions (Fig. 2.7b). A case for the latter scenario is strengthened by the fact that

the small aggregates in Fig. 2.7c were not as spherical in shape when compared to

the pure α-lac aggregates (Fig. 2.7a). The larger spherical aggregates in Fig. 2.7c

could either be attributed to the formation of larger agglomerates of α-lac/CMD-b-

PEG complexes or to CMD-b-PEG, itself, during the drying step. There were no ropy

structures evident in mixed α-lac/CMD-b-PEG solution, indicating that the presence

of α-lac prevented their formation during drying. Structural formations of CMD-b-

PEG at higher concentrations, as experienced during drying, needs to be investigated

in future studies in order to verify these suppositions.
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Fig. 2.7. Transmission electron micrographs of (a) α-lac at pH 5.2, (b)
CMD-b-PEG at pH 5.2, (c) α-lac/CMD-b-PEG mixtures with r = 3.5 at
pH 5.2, and higher-magnification image of sample in (c). scale bars = 100
nm, (d) cryo-TEM images of α-lac/CMD-b-PEG mixtures with r = 3.5
at pH 5.2

2.5 Conclusions

Interactions between α-lac and CMD-b-PEG were verified by a negative-shift in

the electrophoretic mobility when compared to pure α-lac, as well as significant in-

creases in light scattering and turbidity at pH 5.9 and 5, respectively. Neither com-

plex formation at pH 5.9 nor phase separation at pH 5 was influenced by the α-lac

to CMD-b-PEG ratio (r). Complex formation also occurred at a higher pH value be-
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tween α-lac/CMD-b-PEG when compared to α-lac/CMD. This insensitivity of phase

separation to r and the increased pH of complex formation implied that addition of

the PEG chain to CMD increased the favorability of forming complexes with α-lac in

a manner that was insensitive to the quantity of added CMD-b-PEG, at least in the

concentration regimes tested here. It was proposed that α-lac/CMD-b-PEG formed

a C3M structure that was energetically favored at pH 5.9, and that at pH 5 the

C3M, surrounded by the non-ionic PEG chains, flocculated and separated from the

continuous phase. However, the internal structure of the complex needs to be further

characterized to verify this hypothesis, which may be done by small angle scatter-

ing in future studies. Also, further studies are also needed to understand if greater

lengths of the PEG chain will confer increased stability of the complexes to lower pH

values.
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3. INTERACTION AND STRUCTURE FORMATION

BETWEEN α-LACTALBUMIN AND CHITOSAN

GRAFTED WITH POLY (ETHYLENE GLYCOL) CHAINS

3.1 Abstract

Hypothesis

Assemblies are formed in solution between chitosan (CH), a polysaccharide com-

posed of D-glucosamine residues, and the whey protein α-lactalbumin (α-lac) above

pH 5 due to strong electrostatic interactions, yet the process is poorly controlled and

large phase-separated domains result. The incorporation of a non-ionic poly(ethylene

glycol) (PEG) chain will encourage the formation of a micelle-like structure with α-

lac, which will limit the phase-separation process. The micelle like structure formed

with α-lac will also be affected by the sizes of CH, including high, medium, and low

molecular weight CH (HMWCH, MMWCH, LMWCH, respectively) after PEGyla-

tion.

Experiments

SEC chromatography determined the peak molecular weight distribution of CH

samples. NMR analysis verified successful grafting of PEG onto HMWCH, MMWCH,

and LMWCH. NMR was also used to estimate the degree of deacetylation (DDA),

degree of substitution (DS) of PEG onto each chitosan sample. Formation and struc-

ture of α-lac/CH-PEG or α-lac/CH complexes was determined as the solution pH

was increased from pH 3 to 7 at varied ratios using light scattering, electrophoretic

mobility, turbidimetry, and cryo-electron microscopy.

Findings
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Complex formation for α-lac/CH and α-lac/LMWCH-PEG occurred at pH values

of 4.1-4.2, while α-lac/HMWCH-PEG and α-lac/MMWCH-PEG occurs at approxi-

mately pH 3.8. Above pH 5.0, turbidity significantly increased for both complexes,

indicating a phase-separation at a similar pH range. Turbidity values of α-lac/CH-

PEG samples above pH 5 were significantly less than α-lac/CH samples, although

the determined hydrodynamic radii of the different complexes was not significantly

different, possessing small complexes and larger assemblies with diameter of 20-80

nanometers and 200-400 nanometers, respectively. The critical pH value of phase

separation was significantly influenced by the molar ratios of lac to CH but not by

the molar ratios between α-lac and CH-PEG.

3.2 Introduction

Polysaccharides are polymeric carbohydrates that are formed by repeating units

joined by glycoside linkage with various degrees of branching. Most polysaccharides

possess desirable properties for commercial application, such as minimal toxicity, high

biocompatibility, low cost, and sourcing from renewable materials (Kalia et al., 2013).

Chitosan has been widely studied and used in the production of biopolymer-based

copolymers because of its positive charge at acidic pH, gel-forming ability, and capac-

ity to form complexes with many low molecular weight compounds (Ilium, 1998).

However, due to the rigid crystalline structure and tendency for inter-polymeric

hydrogen-bonding between primary amino groups of chitosan, the insolubility of chi-

tosan limits its application (Nishimura et al., 1991). Previous research has demon-

strated that grafting hydrophilic poly(ethylene glycol) (PEG) onto chitosan through

amination increases its solubility and provides functionality as a surface conditioner

(Janciauskaite et al., 2008).
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3.3 Materials and Methods

3.3.1 Materials

High purity chitosan with molecular weight ranges from 60,000 to 120,000 Da,

which was directly used as high molecular weight chitosan (HMWCH), Monocarboxy-

lated poly(ethylene glycol) (MPEG) with molecular weight of 5000 Da, 1-ethyl-3-(3-

dimethylaminopropyl)carbodiimide (EDC), and N-Hydroxysuccinimide (NHS) were

purchased from Sigma-Aldrich (St. Louis, MO). α-Lactobumin (α-lac) was kindly

donated by Davisco Food International from Le Sueur, MN. α-Lac was further puri-

fied by dialysis against ultrapure water (σ ≥18mΩ-cm, Thermo Scientific, Waltham,

MA) for removal of minerals. The dialysis membrane has molecular weight cut off

of 3500 Da. After dialysis, protein solution was lyophilized and kept at 4 ◦C as dry

power before use. Chemicals including acetic acid, sodium hydroxide, sodium ni-

trite, sodium chloride, sodium acetate, imidazole, hydrochloride acid, and deuterium

chloride were purchased from Sigma-Aldrich (St. Louis, MO). Deuterium oxide were

purchased from Cambridge Isotope Laboratories, INC. (Andover, MA).

3.3.2 Different Molecular Weight of Chitosan Preparation and Charac-

terization

Part of the chitosan purchased from Sigma-Aldrich (St. Louis, MO) was depoly-

merized to achieve medium molecular weight chitosan (MMWCH), and low molecular

weight chitosan (LMWCH), by oxidative degradation with 0.1 M sodium nitrite. Chi-

tosan depolymerization method was adopted from Mao et al. (2004). In brief, 1%

(w/w) chitosan was dissolved in 1% acetic acid with stirring on for overnight, then a

predestinated amount of 0.1N NaNO2 was added by droplet for 30 mins at ambient

temperature. The reaction continued to another 30min before neutralization with

1N NaOH. The precipitated chitosan was collected by centrifugation, and washing by

deionized water, and finally lyophilization. Characterization of the molecular weight
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of chitosan samples before and after oxidative degradation was performed through Size

Exclusion Chromatography (SEC). The measurement was done on an Agilent 1260

high performance liquid chromatography system equipped with a Sephadex 200/30

combination column, an Agilent 1260 ISO pump, and an Agilent 1260 Refractive

Index Detector (Agilent Co., USA). Chitosan samples were dissolved at 1mg/mL

overnight in a pH 4.5 solution of 100mM NaCl and 20mM acetate and passed through

a 0.45 m pore size syringe filter (Berth & Dautzenberg, 2002).

3.3.3 Chitosan-graft-Poly(ethylene glycol) Synthesis and Characteriza-

tion

The synthesis of chitosan-graft-poly(ethylene glycol) (CH-PEG) was performed

with chitosan of different molecular weight (HMWCH, MMWCH, and LMWCH)

based on the method of Huh et al. (2004). Briefly, chitosan samples with different

size were dissolved at a concentration of 10mg/mL in 1% acetic acid solution and

then diluted with the same volume of methanol. The coupling reactions between

chitosan and MPEG were achieved by using EDC and NHS as coupling agents with

predetermined amount: for each 1g chitosan powder, 0.5 g of MPEG, 0.096 g of EDC

and 0.05g of NHS were added. After adding each reagent, solution was allowed to react

at ambient temperature for 24 hours, and terminated by dialysis against ultrapure

water for 3 days to remove coupling agents and unreacted MPEG. The successful

grafting of PEG onto chitosan were verified by 1 D proton Proton Nuclear Magnetic

Resonance (NMR), as indicated in Fig. 3.1. The PEGylated chitosan samples were

lyophilized and labeled as high molecular weight, medium molecular weight, and low

molecular weight CH-PEG (HMWCH-PEG, MMWCH-PEG, LMWCH-PEG) based

on the starting molecular weight of each sample.
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Fig. 3.1. 1H NMR spectra of HMWCH and HMWCH-PEG in 2% DCl in
D2O at 45 ◦C

The degree of deacetylation (DDA) of chitosan and the degree of substitution (DS)

of PEG (HMWCH, MMWCH, and LMWCH) were determined through 1D Proton

Nuclear Magnetic Resonance (NMR) spectra by using a 300MHz NMR (Varian, Inova

300) with a 5mm quadrupole-nucleus probe. All samples were dissolved by using

2% wt DCl/D2O and then heated to 70o C and cooled to room temperature right

before the measurement. An example of the spectra for each molecular weight of

chitosan is provided for non-PEGylated and PEGylated samples in Figures 3.2 and

3.3, respectively. Calculation of DDA was adopted from Hirai et al. (1991) and
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Lavertu et al. (2003), that the sum of integral intensity, H26(chemical shifted at

4.87, 3.18, 3.0, 3.81, 3.78, 3.74 ppm), and integral of peak of acetyl group (Hac) (5.4

ppm) were used for DDA calculation, based on equation 3.1:

DDA(%) = (1− (
1

3
Hac

1

6
H26))100 (3.1)

The determination method of DS of PEG grafted onto chitosan was adopted from

Huh et al. (2004), by comparing the integral of peak of the methylene units of PEG

(3.19ppm), and the H1 of chitosan monosaccharides residues (2.92ppm) in NMR

spectrum.

Table 3.1.
Physical data of chitosan and PEGylated-chitosan samples in this study

Average

Molecular

Weight (Da)

Degree of

Deacytyla-

tion DDA ±

Stdev (%)

Degree of

PEG sub-

stitution DS

±Stdev (%)

Average

Molecular

Weight after

PEGylation

(Da)

HMWCH 113K 77.46±0.59 6.78±0.94 337K

MMWCH 76K 83.37±0.44 8.14±1.41 259K

LMWCH 8.9K 77.20±2.54 9.94±1.58 26K
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Fig. 3.2. 1H NMR spectra of (a)HMWCH, (b)MMWCH, and (c)LMWCH
after heating to 70◦C then cooled to room temperature
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Fig. 3.3. 1H NMR spectra of HMWCH-PEG, MMWCH-PEG, LMWCH-
PEG after heating to 70◦C then cooled to room temperature

3.3.4 Solution Preparation

Solution of α-lac was prepared by dissolving lyophilized protein powder in 6mM

acetate, 3mM imidazole buffer at pH 3.5 for 4 hours at ambient temperature. Solu-

tions of chitosan or CH-PEG samples were prepared by dissolving lyophilized powder
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in 6mM acetate, 3mM imidazole buffer at pH 3.5 for 12 hours at ambient temperature

before use. Solutions of protein and chitosan/CH-PEG were prepared from the stock

protein and polysaccharide solutions by mixing at the desired proportions with 6mM

acetate 3mM imidazole buffer (pH 3.5) for 2 hours. The total solid concentration

of α-lac and chitosan (HMWCH, MMWCH, or LMWCH) in the final solutions was

0.036% (w/w). As addition of PEG to chitosan samples approximately tripled the

molecular weight of HMWCH, MMWCH, and LMWCH (Table 3.1), mixed solutions

were prepared with the same concentrations of α-lac but triple the concentration of

polysaccharide. While this increased the total biopolymer concentration in solution,

this maintained a consistent quantity of protein and chitosan in solution while si-

multaneously maintaining a consistent molar ratio between protein and the chitosan

component, as it is indicated in Table 3.2. Final ratios, by weight-basis, between

α-lac and the chitosan component (r value) were 10, 5, and 2.

Table 3.2.
Total solids content ratios in α-lac and copolymer mixtures in comparison
of chitosan and PEGylated-chitosan with varying MW in this study

sample r value Total Solid Content w/w sample r value Total Solid Content w/w

α-lac and HMWCH

10 0.036%

α-lac and HMWCH-PEG

10 0.042%

5 0.036% 5 0.043%

2 0.036% 2 0.056%

α-lac and MMWCH

10 0.036%

α-lac and MMWCH-PEG

10 0.044%

5 0.036% 5 0.045%

2 0.036% 2 0.061%

α-lac and LMWCH

10 0.036%

α-lac and LMWCH-PEG

10 0.042%

5 0.036% 5 0.043%

2 0.036% 2 0.055%

3.3.5 Colloidal Sample Characterization

ζ-Potential of α-lac, CH (HMWCH, MMWCH, LMWCH), CH-PEG (HMWCH-

PEG, MMWCH-PEG, LMWCH-PEG), or solutions of protein and polysaccharide
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complexes were determined from their electrophoretic mobility at ambient tempera-

ture (Malvern Zetasizer Nano ZS, Malvern Instruments, Worcestershire, U.K.).

Turbidity of α-lac and mixtures as a function of pH was also measured by a UV-Vis

spectrophotometer (DU 730 Beckman Coulter, CA) at wavelength of 450 nm (Hirt et

al., 2014; Du et al., 2016). The results of turbidity were presented as 100-T%, where

T is the light transmitted through the sample in cuvette. Buffer of 6mM acetate,

3mM imidazole was used as blank reference.

Complex formation pH (pHc) of mixtures were used to detect the pH that soluble

complexes started to form based on the method used by Mattison et al., 1995. These

critical pH values were determined by the significant increase in the slope of light

scattering intensity as a function of pH (ALV, Langen, Germany) as a functions of

pH. The details of the methods are illustrated by Du et al., 2016.

Hydrodynamic radii of complexes formed by protein and polysaccharide mixture

were determined by dynamic light scattering with a ALV-CGS3 goniometer (ALV,

Langen, Germany) at an angle of 90 degrees. Hydrodynamic radii reported in the fig-

ures were calculated from the z-average diffusion coefficients using the StokesEinstein

equation. Hydrodynamic radii of mixed α-lac/CH-PEG solutions were determined

using the CONTIN algorithm within the instrument software (ALV, Langen, Ger-

many). All samples were diluted in buffer until concentration dependence was no

longer observed in order to eliminate multiple scattering effects. The details of this

method was published by our previous study (Burchard, 1983; Du et al., 2016).

Cryo-Transmission electron microscopy (TEM) experiments were conducted to

study the morphology of complexes formed by α-lac and MMWCH-PEG. The complex

samples were diluted 1:1 by volume with buffer (6mM acetate, 3mM imidazole).

About 3-4 L of diluted sample was deposed onto copper grids (400 mesh, Electron

Microscopy Sciences). Then the sample was vitrified with liquid ethane. A Titan

Krios cryo-electron microscope (FEI, Eindhoven, The Netherlands) was used with

operation at 300 kV. A K2 Summit camera (Gatan) was installed with the microscope.

Additional information can be found by Badwalk et al. (2016) and Gary et al. (2011).
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Representative images shown were selected from approximate 1015 images from each

sample.

3.3.6 Statistical Treatment

The results were presented as the average of duplicate or triplicate. Statistical

significance was conducted by means of the students t-test. Displayed error bars

represent the standard deviation from independent sample measurements.

3.4 Results and Discussion

3.4.1 Influence of pH on protein polysaccharide complex formation

Fig. 3.4 demonstrates pHc as a function of r of complexes formed with different

MW of co-polymer before and after PEGylation. For co-polymers with higher MW

(HMWCH-PEG and MMWCH-PEG), pHc values were significantly lower than the

non-PEGylated complexes, which indicated that PEGylation favored complex for-

mation at lower, less favorable pH values. This result is also in agreement with our

previous study of complexes formed by α-lac and CMD-b-PEG, where the covalently-

attached PEG induced complex formation at less favorable (i.e., higher) pH values

(Du et al., 2016). However, for lower MW copolymer, the difference before and after

PEGylation was not significant, which might due to the smaller size of co-polymer

reducing the favorability of interaction prompted by the addition of PEG.
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Fig. 3.4. pHc of complexes formed by α-lac and (a) HMWCH/HMWCH-
PEG (b) MMWCH/MMWCH-PEG (c) LMWCH/LMWCH-PEG as a
function of r
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Fig 3.4 (a) shows the differences of the detected colloidal charges among α-lac and

CH or CH-PEG of different molecular weight. With increasing pH, the α-lac charge

became less positive and eventually net-negative at pH values above 4.5, consistent

with previous findings of the proteins isoelectric pH (REF). This demonstrated the

increasing quantity of exposed anionic residues on α-lac with increased pH, facilitating

the possibility of electrostatic interaction with the positively-charged CH or CH-PEG

samples.

Figures 3.4(b) and (c) describe the colloidal charge of mixtures of α-lac and

HMWCH/HMWCH-PEG. Detected colloidal charge was less in magnitude than the

polysaccharides, alone (Fig. 3.5a), but PEGylation did not significantly reduce the

surface charge. For HMWCH-PEG at r = 10, sample surface charge was significantly

diminished at higher pH, which might due to the saturation of protein to interact

with CH-PEG. Mixtures of α-lac and MMWCH/MMWCH-PEG (Figure 3.5d, e)

were insensitive to r with the exception of r = 20 for MMWCH-PEG in the re-

gion of pH 3.5-4.5. At this low pH range at r = 20, the colloidal charge resembled

that of the original protein, likely reflecting that the high r allowed the charged

of un-complexed protein to dominate the electrophoretic mobility signal during the

measurement. With increasing pH, the colloidal charge of the mixture in Figure 3.5e

became similar to MMWCH-PEG as the α-lac became associated within the copoly-

mer complex. Reduced colloidal charge was also noted for LMWCH samples at r = 10

(Figure 3.5f) although this was not observed at the same ratio among mixtures with

LMWCH-PEG (Figure 3.5g). In all cases, the significant positive charge of mixtures

up to pH 7 (or pH 6 for HMWCH-PEG at r = 10) was a strong indication that

complex formation indeed took place, as the interacting chitosan or chitosan-PEG

chains would provide the necessary charges to not only interact with α-lac but also

provide additional charges on the exterior of the colloidal assembly.
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Fig. 3.5. ζ-potential as a function of solution pH of (a) individual poly-
mers, complexes formed at different R-values by (b) α-lac and HMW-
CH (c) α-lac and HMW-CH-PEG(d) α-lac and MMW-CH (e) α-lac and
MMW-CH-PEG (f) α-lac and LMW-CH (g) α-lac and LMW-CH-PEG in
6mM Imidazole 3mM acetate buffer
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3.4.2 Influence of Protein-Polysaccharide ratio on complex coacervation

Fig. 3.6 shows turbidity of complexes formed by different copolymer at different r,

Turbidity of complexes formed by either HMWCH or HMWCH-PEG are not different

from each other (Figure 3.6a), while the turbidity of complexes involving MMWCH

and LMWCH was significantly reduced following PEGylation (Figure 3.6b,c). This

showed that with the attached PEG, the chitosan-protein complexes are either smaller

in diameter, reduced in number, or significantly less dense (reduced average refractive

index). Smaller diameter in the samples which were PEGylated could be due to

smaller complexes, or less clustering/aggregation of the complexes in suspension.

Fig. 3.6. Turbidity as a function of r value of complexes formed by (a)
α-lac and HMWCH/HMWCH-PEG, (b) α-lac and MMWCH/MMWCH-
PEG, (c) LMWCH/HMWCH-PEG of different r values at pH of 5.8

3.4.3 Complex hydrodynamic radius

Similar to the complexes formed by α-lac and CMD/CMD-b-PEG, there are three

peaks detected by dynamic light scattering: the fast mode with size under 10nm, slow

mode with size between 10-100nm, and slower mode with size higher than 100nm,

and these peaks are presented in Fig. 3.7. The smallest peaks is smaller probably

unreacted protein or polysaccharide that did not contribute to the formation of com-
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plex, while the large dominating peak, even though it occupies a large percentage in

the figure, but it is not the majority of the particle since these figures are unweighted.

Also, if the large peak is the major particles, we should not be able to detect any

slow and fast mode particles. In Fig. 3.7 (b) we did find the particles larger than

100nm, but their structure is more similar to the aggregate of copolymer rather than

complexes. For these reasons, we are focused more on the middle peak, which is the

formation of complexes by α-lac and MMWCH/MMWCH-PEG.

Fig. 3.7. Particle Size Distribution on hydrodynamic radius of complexes
involving (a) MMWCH and (b) MMWCH-PEG at r=2, pH 4.3, 4.8
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Figure 3.7 describes the determined influence of pH and rs on slow mode hydrody-

namic radius (RH) of the complexes formed by α-lac and MMWCH/MMWCH-PEG.

From pH 3.8 to pH 5.8, there was no significant linear relationship of RH with pH. For

α-lac complexes with MMWCH at r = 10, RH is significantly higher than the other

samples (Figure 3.8a), which might due to the higher concentration of protein in the

system. However, complexes of with MMWCH-PEG at r = 10 were not significantly

larger (Figure 3.7b). It is possible that the covalently-attached PEG reduced the size

of complexes at higher r by the PEG chains presenting themselves on the exterior

of the complex, providing repulsive interactions to limit further growth into larger

assemblies. However, more studies would be needed to confirm.
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Fig. 3.8. Effect of pH on radius of complexes involving (a) MMWCH and
(b) MMWCH-PEG with varying r

Figure 3.9 illustrates the effect of MW on the formation of complexes at a fixed

r value of 2. There was a slight tendency for the hydrodynamic complexes with

HMWCH-PEG to increase with increasing pH (Figure 3.9a). However, these values

were not significantly different from determined sizes of complexes with MMWCH-

PEG at pH 5.8 (Figure 3.8b), indicating that there was unexplained variability in the

measurements taken at higher pH. No differences were observed between complexes



52

with MMWCH-PEG or LMWCH-PEG in these conditions. Differences were also

not observed in the determined hydrodynamic radii of any of the complexes with

non-pegylated chitosan of differing molecular weight for r = 2 (Figure 3.9b).

Fig. 3.9. Effect of pH on radius of complexes involving PEGylated chitosan
at different molecular weight (r = 2)
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Fig. 3.10. Cryo-transmission electron micrograph of α-lac and MMW-CH-
PEG(r = 2)pH4.3



54

3.4.4 Visual Characterization of Complexess

The Cryo-TEM images in Fig. 3.10 show the morphology of complexes between

α-lac and MMWCH-PEG at r = 2 and pH 4.3. The apparent diameter of complexes

in the images are around 10-20nm, which is slightly smaller than the hydrodynamic

diameters determined by DLS (Figures 3.8 & 3.9). The differences between Cryo-

TEM and DLS results might due to the scattering of non-spherical structure in DLS

or the inability to resolve individual chains of PEG on the periphery of the complexes

due to inherent limitations of Cryo-TEM. Some big assemblies were also observed

(Figure 3.10b) that appeared to be a clustering of the complexes attached together

by a fibrous substance. It was speculated that the fibrous substance was excess CH-

PEG that was acting to bridge separate complex assemblies together. These large

assemblies were also observed among α-lac complexes with carboxy-methyldextran-

PEG (Chapter 2).

3.4.5 Conclusions

Interactions between α-lac, chitosan and CH-PEG were confirmed by a shift in

the electrophoretic mobility of the protein to less negative values as the pH was

increased above its isoelectric pH. Light scattering intensity verified that complex

formation for α-lac/CH and α-lac/LMWCH-PEG occurred at pH values of 4.1-4.2,

while α-lac/HMWCH-PEG and α-lac/MMWCH-PEG occurs at pH values around

3.8. Above pH 5.0, turbidity significantly increased for both complexes, indicating a

phase-separation at a similar pH range, yet the turbidity of α-lac/CH-PEG samples

were significantly less than α-lac/CH samples. Turbidity of MMW and LMW com-

plexes was significantly reduced by PEGylation at three different r values. Hydrody-

namic radii of α-lac/MMWCH-PEG complexes ranged from 10 to 40 nanometers with

additional peaks demonstrating the presence of larger assemblies of several hundred

nanometers. Despite larger hydrodynamic radii of α-lac/HMWCH-PEG complexes,

there was little indication that ratios of protein-polysaccharide, molecular weight, or
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even presence of PEG has a significant impact on the size of complexes with pro-

tein at the studied pH values. However, the reduced turbidity of complexes with

covalent attachment of the PEG chain implied that there is a reduction in number

or internal density of the complexes. This phenomenon needs to be verified in fur-

ther experiments with these complexes, as well as other similar complex structures.

Furthermore, techniques need to be envisioned to prepare these complexes without

formation of larger clusters, which appear to form due to bridging interactions be-

tween complexes by excess copolymer.

3.5 Appendices



Appendix A Chromatographs of Chitosan with High, Middle and Low Molecular Weights  
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Figure 1. SEC graphs of HMWCH (a1, a2), MMWCH (b1, b2), LMWCH (c1, c2) refractive 

Index as a function of retention time (min) in duplicate 
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Appendix B 1H NMR spectra of (a)HMWCH, (b)MMWCH, and (c)LMWCH after heating to 

70oC then cooled to room temperature in duplicate or triplicates
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Figure 2. 1H NMR spectra of (a1, a2, a3) HMWCH, (b1, b2, b3) MMWCH, and (c1, c2, c3) 

LMWCH after heating to 70 oC then cooled to room temperature. 
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Figure 3. 1H NMR spectra of (a1, a2, a3) HMWCH-PEG, (b1, b2, b3) MMWCH-PEG, and (c1, 

c2, c3) LMWCH-PEG after heating to 70 oC then cooled to room temperature. 
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Appendix C Complex formation pH (pHc) and phasing separation pH (pHφ) determination  

 

(a)  

(b)  

Figure 4. (a) Turbidity (100-T%) vs pH and (b) Light scattering intensity vs pH as example for 

pHc and pHφ determination of complexes formed by α-lac and CMD-b-PEG (r=5) 
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Figure 5. Light scattering intensity as a function of pH of complexes formed by α-lac and 

HMWCH/HMWCH-PEG (r=10) 
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4. PHYSICAL PROPERTIES OF HEAT-INDUCED

AGGREGATES FROM α-LACTALBUMIN WITH

CHITOSAN OR CHITOSAN COPOLYMER

4.1 Abstract

Hypothesis

α-Lactalbumin (α-lac) and polysaccharide chitosan (CH) or chitosan-grafted-poly

(ethylene glycol) (CH-PEG) are able to form complexes at pH above 4.3. Based

upon previous findings, heat treatment of proteins near their isoelectric pH yields

nanometer-scale spherical aggregates if the protein is interacting with a charged

polysaccharide (Jones et al., 2009). It is hypothesized that the presence of a PEG

chain attached to the polysaccharide can stabilize complexes of α-lac/CH-PEG during

heating, influencing the structure of the resulting aggregates. Similarly, CH molecular

weight (MW) is proposed to impact the size and structures of aggregates formed by

α-lac and CH/CH-PEG.

Experiments

Solutions of protein and CH or CH-PEG were mixed with different protein to

polysaccharide ratios (r-value) and polysaccharide molecular weight. Complexes

formed by base titration of mixed solutions and samples were collected at pH 3.8,

4.3, 4.8, 5.3. Complexes were then heated for 20 min at temperature of 70 oC to form

aggregates, referred to as “microgels” based upon earlier findings on the internal

structure of the small spherical aggregates (Murphy et al., 2015). Characterization of

microgel samples using light scattering (DLS), electrophoretic mobility, turbidimetry,

and atomic force morphology (AFM) were included in this study.
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Findings

Microgel formation among α-lac, chitosan or CH-PEG was confirmed by increased

turbidity, AFM morphology, and DLS. Reduction in turbidity of PEGylated samples

was observed among samples with higher r- and pH-values when compared to those

made from non-pegylated samples, indicating these microgels were either smaller in

size, lower in amount, or less in density. However, no significant influence of chitosan

molecular weight or r-value on hydrodynamic radius of microgels was observed, indi-

cating that PEG chains likely impacted only the number of formed microgels. This

result may relate to a stabilizing effect of the PEG chain, preventing some of the

aggregation during formation of microgels.

4.2 Introduction

As mentioned in chapter 3, complexation between biopolymer α-lac and CH or

CH-PEG was verified and characterized as the pH of the solution was increased.

And the physicochemical properties of these complexes can be altered through pH,

molecular weight of CH/CH-PEG, and protein/polysaccharide ratios (r-value). A

previous study proved that complex coacervates formed by α-lac and chitosan has

denaturation temperature higher than α-lac itself, which shows a stabilization effect

of complexation with the polysaccharide (Lee and Hong, 2009). Aggregates formed

by -lactoglobulin and chitosan was also studied by Hong and McClements (2007),

with confirmation that the resulting aggregate particles can be formed by heating

the mixture of -lactoglobulin and chitosan under controlled condition. Based on the

studies in chapter 3 and the distinguished pH regions reviewed by Jones and Mc-

Clements (2010); Weinbreck et al. (2002), when α-lac is mixed with chitosan in low

pH condition (¡3.8), no complex is formed. With slow titration with alkali solution,

the initial formation of soluble complexes will start, followed by coacervation, then

precipitation at high pH as the polysaccharide becomes insoluble. Previous studies

of -lactoglobulin (b-lac) shows that heating treatment above the denaturation tem-
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perature of protein will release the unfolding of proteins in to the surrounding with

exposure of hydrophobic residues, and therefore promote the cross-linking between

particles composed of proteins and polysaccharides through hydrophobic attraction,

(Bellogque and Smith, 1998; Jones and McClements, 2011), resulting in stable com-

plexes. A-lac has similar physicochemical properties as whey protein will promote

formation of stable complexes. The purpose of this study is to understand the in-

fluence of thermal treatment on complexes composed of α-lac with either CH or

CH-PEG as a function of pH, polysaccharide molecular weight, and r-value. Aggre-

gates formed after heat treatment were characterized for their surface charge, particle

size, morphology, and turbidity in aqueous suspensions.

4.3 Materials and Methods

4.3.1 Materials

High purity chitosan which was directly used as high molecular weight chitosan

(HMWCH) with a determined molecular weight of 113 kDa (see Chapter 3). Depoly-

merized chitosan was obtained by nitrite-induced hydrolysis of HMWCH to achieve

a medium (MMWCH) and low (LMWCH) molecular weight chitosan material with

mean molecular weights of 76kDa and 8.9kDa, respectively. Poly(ethylene glycol)

(PEG) was then covalently attached to each chitosan sample in order to obtain

HMWCH-PEG, MMWCH-PEG, and LMWCH-PEG (see Chapter 3). A-lac was

kindly donated by Davisco Food International from Le Sueur, MN. a-Lac was fur-

ther purified for removal of minerals, with details mentioned in chapter 2. Chemicals

including acetic acid, sodium hydroxide, sodium acetate, imidazole, hydrochloride

acid, were purchased from Sigma-Aldrich (St. Louis, MO). Physical data, including

molecular weight of each sample and degree of deacetylation of the chitosan may be

found in Table 3.1 of Chapter 3.
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4.3.2 Solution Preparation

Buffer solution was prepared with 6mM acetate and 3mM imidazole at pH 3.5.

Solution of α-lac was prepared by dissolving lyophilized protein powder in buffer for

4 hours at ambient temperature. Solutions of CH or CH-PEG samples were prepared

by dissolving lyophilized powders in buffer for 12 hours at ambient temperature.

Mixtures of α-lac and either CH or CH-PEG were prepared from stock solutions and

buffer to achieve desired concentrations and r-values, which are outlined in Table 3.2

(see Chapter 3). The complexes were formed by base titration method using 1N and

0.1 N NaOH solutions dropwise by 1-200 L Eppendorf pipette. Solution were collected

at pH 3.8, 4.3, 4.8, 5.3 with 1 mL aliquots taken and placed in a glass culture tube.

Tubes were heated in a circulating water bath (Grant, Cambridge, U.K.) for 20 min

at temperature of 70 oC. After heating, samples were submerged in cold water and

stored under refrigeration until their characterization.

4.3.3 Colloidal Sample Characterization

ζ-Potential of α-lac, CH (HMWCH, MMWCH, LMWCH), CH-PEG (HMWCH-

PEG, MMWCH-PEG, LMWCH-PEG), or solutions of protein and polysaccharide

complexes after heating at pH 4.3, 4.8, 5.3, 5.8 were determined through electrophoretic

mobility at ambient temperature (Malvern Zetasizer Nano ZS, Malvern Instruments,

Worcestershire, U.K.).

Turbidity of α-lac and mixtures as a function of pH was also measured by a UV-Vis

spectrophotometer (DU 730 Beckman Coulter, CA) at wavelength of 450 nm (Hirt et

al., 2014; Du et al., 2016). The results of turbidity were presented as 100-T%, where

T is the light transmitted through the sample in cuvette. Buffer of 6mM acetate,

3mM imidazole was used as blank reference. hydrodynamic radii (RH) of complexes

formed by protein and polysaccharide mixture were determined by dynamic light

scattering with an ALV-CGS3 light-scattering goniometer (ALV, Langen, Germany)

at an angle of 90 degrees. RH reported in the figures were calculated from the z-
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average diffusion coefficients using the StokesEinstein equation. RH of heated α-lac

and CH/CH-PEG solutions were determined using the CONTIN algorithm within

the instrument software (ALV, Langen, Germany). All samples were diluted in buffer

until concentration dependence was no longer observed in order to eliminate multiple

scattering effects. The details of this method was published by our previous study

(Burchard, 1983; Du et al., 2016).

Complex morphology of selected samples were characterized by on an MDP-3D

AFM (Asylum Research, Santa Barbara, CA). Each sample with 50 L fresh complex

solution were deposited directly onto cleaved mica, then the sample was dried by

filtered air with a membrane filter (0.45 m pore size), then stored in a desiccator for

at least overnight. Intermittent contact mode was used and images were obtained by

using Asylum Research software (Murphy et al., 2015).

4.3.4 Statistical Treatment

The results were presented as the average of duplicate or triplicate. Statistical

significance was conducted by means of the student’s t-test. Displayed error bars

represent the standard deviation from independent sample measurements.

4.4 Results and Discussion

4.4.1 State of the complex prior to heat-treatment: Influence of pH on

complex charge

Figure 4.1 shows the colloidal charge of α-lac and α-lac complexes with either CH

or CH-PEG with varying molecular weight. With increasing pH, the positive charge

of α-lac decreases until becoming dominantly-negative above pH 4.5. Colloidal charge

of α-lac complexes with CH or CH-PEG was positive for all molecular weights over

the pH region of 3.5 to 7.5, indicating that the polysaccharide interacted with the

negative charges of α-lac and conferred an excess of positive charge to the assembly,
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which is in agreement of literature values of the pKa = 6.5 of chitosan (Liu et al.,

2005). At neutral pH, the charge of complexes approached zero, which could reflect

either the increasing dominance of negative-charge from α-lac at pH values well above

its isoelectric pH or the decreasing charge of the CH or CH-PEG, itself .

Fig. 4.1. ζ-potential as a function of solution pH of (a) 0.1% α-lac, 0.012%
HMWCH, 0.012% MMWCH, 0.012% LMWCH (b) 0.1% α-lac, 0.012%
HMWCH-PEG, 0.012% MMWCH-PEG, 0.012% LMWCH-PEG
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4.4.2 Influence of PEGylation on turbidity of heated protein polysaccha-

ride complex

Following thermal treatment of α-lac complexes, the turbidity of the resulting

suspension was characterized to determine general physical properties of formed ag-

gregates, with results from samples with MMWCH or MMWCH-PEG shown in Figure

4.2. A general feature of all samples was the very low turbidity after heat treatment

at pH 4.3, which may indicate that few aggregates were formed or that the aggre-

gates formed were very small in diameter. Turbidity values of samples containing

PEG were significantly less than samples without PEG, particularly at higher pH

values of 5.3 or 5.8 and with r = 10 or 5. Reduced turbidity with PEG was attributed

to the formation of aggregates with either smaller size, lower in amount, or less in

density. For aggregates formed at r=2, there was minimal difference in the turbidity

between samples with or without PEG, which might be caused by excessive amount

of polysaccharide acting to prevent association of α-lac during thermal treatment.

The PEG chain then had less influence in relation to the impact of the CH, itself.
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Fig. 4.2. Effect of pH on turbidity of heated (a) α-lac and MMWCH (b)
α-lac and MMWCH-PEG with changing r-value

4.4.3 Effect of Chitosan Molecular Weight on Turbidity of Heated Protein

Polysaccharide Complex

Fig. 4.3 shows turbidity as a function of pH for mixtures of α-lac with either

CH or CH-PEG (r = 2) of differing molecular weight after heating. In all heated

complexes there was an increase in turbidity with increasing pH. Samples of α-lac

and LMWCH were significantly more turbid than all others, which might due to the
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reduced ability of LMWCH to restrict α-lac aggregation due to its relatively short

chain length (8.9kDa). Turbidity of aggregates formed from α-lac and LMWCH-PEG

was not significantly different from samples with MMWCH-PEG or HMWCH-PEG.

This indicated that attachment of the PEG chain confers greater resistance of α-lac to

aggregation during thermal treatment. No difference was shown between PEGylated

and non-PEGylated complexes at higher MW. This was attributed to the improved

ability of higher molecular weight CH to interact with and protect α-lac.

Fig. 4.3. Effect of CH molecular weight on turbidity of heated (a) α-lac
and CH (b) α-lac and CH-PEG (r = 2) at different heating pH
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4.4.4 Colloidal charge of aggregates formed from protein polysaccharide

complexes

Figure 4.4 and 4.5 shows the results of surface charge after heating, emphasizing

the role of r-value and molecular weight, respectively. In each of the figures, there

were no consistent statistical differences in charge between aggregates formed with

CH versus CH-PEG, indicating that the PEG chain did not alter the presentation of

exposed surface charges after thermal treatment. Samples prepared from complexes

with r=2 possessed significantly greater positive charge (Figure 4.4), which could

be attributed to the greater amount of positively-charged CH or CH-PEG present

in the samples. Colloidal charge was largely not impacted by the molecular weight

of the CH or CH-PEG, except for samples containing LMWCH, which had lower

surface charge (Figure 4.5). These results are in agreement with turbidity observed

in these samples, with greater or less charge coinciding with lesser or greater turbidity,

respectively (Figure 4.3). Since the MW of LMWCH (8.9kDa) is smaller than α-lac

(14kDa), α-lac might be easy to exposed to the surface of the complex, and therefore

reduced the net charge on complex surface.

It should be noted that the values of surface charges measured after heating was

not significant different from the samples before heating (Fig 3.4), which indicated

that the surface structures of complexes were not changed significantly after heat

treatment. The reason for this phenomena is either the lacking of protein to associate

to the complexes, or unfolded protein are located in the core of the coacervates or

microgel, or a combination of both.
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Fig. 4.4. Effect of r- value on ζ-potential of heated (a) α-lac and MMWCH
(b) α-lac and MMWCH-PEG at different heating pH

Fig. 4.5. Effect of CH molecular weight on ζ-potential of heated (a) α-lac
and CH (b) α-lac and CH-PEG with changing r-value
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4.4.5 Microgel hydrodynamic radius

Fig. 4.6 and 4.7 shows RH of protein-polysaccharide complexes after heating,

emphasizing the role of r-value and polysaccharide molecular weight, respectively. In

all cases, sizes observed at pH 4.3 were significantly larger than at higher pH values,

indicating minimal protection of α-lac against aggregation at the lower pH. With

increasing pH, aggregate radii were typically around 100 nm, and there was no signif-

icant difference between aggregates with or without PEG chains. Fig. 4.7 shows that

there was also no significant differences in the RH of aggregates in samples with differ-

ing molecular weight of the polysaccharide component. Micogels, sometimes refers as

nanogels, are a semi-permanent colloidal particle with gel-like internal structure, and

size ranges from approximately 100-10,000 nm (Oh and Park, 2009). The increase of

turbidity with the trending of pH, and the structure of internal polymer network, the

RH range of the aggregates detected by DLS, and similar morphology indicates the

aggregates formed by α-lac and CH/CH-PEG are similar to the microgels formed by

b-lac and pectin at low salt concentration (Hirt et al., 2014; Murphy et al., 2015).

Fig. 4.6. Effect of pH on hydrogel radius of complexes involving (a) α-lac
and MMWCH (b) α-lac and MMWCH-PEG with varying r-value
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Fig. 4.7. Effect of pH on hydrogel radius of complexes involving (a) α-lac
and CH (b) α-lac and CH-PEG with CH molecular weight

4.4.6 Visual Characterization of Complexes

The AFM images in Fig. 4.8 demonstrate the morphology of microgels formed by

α-lac/MMWCH or α-lac/MMWCH-PEG at pH 4.8 and r=2. Based on the spherical

morphology of the aggregates, it was confirmed that microgels are formed by the

method and materials used. Approximate diameter of the samples in AFM images

were around 100nm, which are smaller than the RH results obtained from DLS. The

reduced of size in AFM might due to the shrinking during drying or the absence of

water layers compared to microgels in solution. Differences of microgel size between

α-lac/HMWCH to α-lac/HMWCH-PEG could be observed by AFM, which is also in

agreement with DLS results. Further increase of r-value among α-lac and CH/CH-

PEG samples is needed to confirm the effect of PEGylation on microgel sizes.
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Fig. 4.8. Topographical images of (a) microgels of α-lac and HMWCH, r
= 2, pH 4.8 (b) microgels of α-lac and HMWCH-PEG, r = 2, pH 4.8 after
heating
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4.5 Conclusions

The shift to less negative values of α-lac electrophoretic mobility over increase of

pH indicates the potential of microgel formation by α-lac and CH/CH-PEG with all

MW. Microgel formation among α-lac, CH or CH-PEG were confirmed by increased

turbidity, AFM morphology, and DLS. Reduction in turbidity of PEGylated samples

is observed among samples with higher r and pH values, indicating these microgels

are formed either smaller in size, lower in amount, or less in density. The result also

indicates the stabilizing effect of PEG chain due to the function of repulsion of the

neutral charged PEG chain, and therefore prevent the further association of protein

and polysaccharides to form microgel. Under the materials and methods used in this

chapter, no significant influence of different CH molecular weight, ratios of protein to

polysaccharide on hydrodynamic radius of microgel was observed. Further studies are

needed to explain the impact of polymer ratio, or molecular weight of CH on microgel

formation, such as higher ratios of protein to polysaccharide, and anther molecular

weight of CH.
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5. CONCLUSIONS

Interactions between α-lac and CMD-b-PEG were verified by a negative-shift in the

electrophoretic mobility when compared to pure α-lac, as well as significant increases

in light scattering and turbidity at pH 5.9 and 5, respectively. Neither complex

formation at pH 5.9 nor phase separation at pH 5 was influenced by the α-lac to

CMD-b-PEG ratio (r). Complex formation also occurred at a higher pH value be-

tween α-lac/CMD-b-PEG when compared to α-lac/CMD. This insensitivity of phase

separation to r and the increased pH of complex formation implied that addition of

the PEG chain to CMD increased the favorability of forming complexes with α-lac in

a manner that was insensitive to the quantity of added CMD-b-PEG, at least in the

concentration regimes tested here. It was proposed that α-lac/CMD-b-PEG formed

a C3M structure that was energetically favored at pH 5.9, and that at pH 5 the

C3M, surrounded by the non-ionic PEG chains, flocculated and separated from the

continuous phase. However, the internal structure of the complex needs to be further

characterized to verify this hypothesis, which may be done by small angle scattering

in future studies.

Interactions between α-lac, chitosan and CH-PEG were confirmed by a shift in

the electrophoretic mobility of the protein to less negative values as the pH was

increased above its isoelectric pH. Light scattering intensity verified that complex

formation for α-lac/CH and α-lac/LMWCH-PEG occurred at pH values of 4.1-4.2,

while α-lac/HMWCH-PEG and α-lac/MMWCH-PEG occurs at pH values around

3.8. Above pH 5.0, turbidity significantly increased for both complexes, indicating a

phase-separation at a similar pH range, yet the turbidity of α-lac/CH-PEG samples

were significantly less than α-lac/CH samples. Turbidity of MMW and LMW com-

plexes was significantly reduced by PEGylation at three different r values. Hydrody-

namic radii of α-lac/MMWCH-PEG complexes ranged from 10 to 40 nanometers with
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additional peaks demonstrating the presence of larger assemblies of several hundred

nanometers. Despite larger hydrodynamic radii of α-lac/HMWCH-PEG complexes,

there was little indication that the r-value, molecular weight, or even presence of

PEG has a significant impact on the size of complexes with protein at the studied

pH values. However, the reduced turbidity of complexes with covalent attachment of

the PEG chain implied that there is a reduction in number or internal density of the

complexes. This phenomenon needs to be verified in further experiments with these

complexes, as well as other similar complex structures.

The shift to less negative values of α-lac electrophoretic mobility over increase of

pH indicates the potential of microgel formation by α-lac and CH/CH-PEG with all

MW. Microgel formation among α-lac, CH or CH-PEG were confirmed by increased

turbidity, AFM morphology, and DLS. Reduction in turbidity of PEGylated samples

is observed among samples with higher r and pH values, indicating these microgels

are formed either smaller in size, lower in amount, or less in density. The result also

indicates the stabilizing effect of PEG chain due to the function of repulsion of the

neutral charged PEG chain, and therefore prevent the further association of protein

and polysaccharides to form microgel. Under the materials and methods used in this

chapter, no significant influence of different CH molecular weight, ratios of protein to

polysaccharide on hydrodynamic radius of microgel was observed.

In the further studies, understand of if greater lengths of the PEG chain will confer

increased stability of the complexes to lower pH values is needed. Furthermore,

techniques need to be envisioned to prepare these complexes without formation of

larger clusters, which appear to form due to bridging interactions between complexes

by excess copolymer. Further research are also needed to explain the impact of

polymer ratio, or molecular weight of CH on microgel formation, such as higher

ratios of protein to polysaccharide, and anther molecular weight of CH.
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