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COMPLEX FOURIER ANALYSIS ON A NILPOTENT
LIE GROUP

BY

ROE GOODMAN(')

Abstract. Let G be a simply-connected nilpotent Lie group, with complexification
Gc. The functions on G which are analytic vectors for the left regular representation of
G on L2(G) are determined in this paper, via a dual characterization in terms of their
analytic continuation to Gc, and by properties of their L2 Fourier transforms. The
analytic continuation of these functions is shown to be given by the Fourier inversion
formula. An explicit construction is given for a dense space of entire vectors for the
left regular representation. In the case G = R this furnishes a group-theoretic setting
for results of Paley and Wiener concerning functions holomorphic in a strip.

Introduction. Let G be a simply-connected nilpotent Lie group. Since G is a
separable, type I, unimodular group [1], there exists by the general Plancherel
theorem [3] a unique Borel measure p. on the space G of equivalence classes of
irreducible unitary representations of G with the following properties:

(i) (Harmonic analysis). Fix a p. measurable cross-section Ç -*■ n( from G to
concrete irreducible unitary representations (ir( e £). Then a function/e L2(G) has a
Fourier transform/defined ii-a.e. on G, such that/(£) is a Hilbert-Schmidt operator
on the space ^(-n*-) of tt(. The map f ->/(i) is a p-measurable field of operators,
and iffe Ly n 7_2 then, for a.e. £,

(0.1) fiè)=\figWig)dg.
Ja

in) (Harmonic synthesis). \ffx,f2 eL2(G), then

(0.2) C/i */2*)(e) = f tr (fy(i)f2(i)*) dp.it),
•¡G

where f*ig)=fig~1) (the bar denoting complex conjugation), and tr denotes the
canonical semifinite trace on the ring of all bounded operators on ^(-n1-).

Iff has sufficiently many derivatives in L2(G), then /can be written as/i */*,
with/, e L2(G) [15]. Hence by (0.2), f(£) will be a trace-class operator for almost all
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374 ROE GOODMAN [October

I, and/may be expressed in terms off by the Fourier inversion formula:

(0.3) f(g) = f tr (^(g-^A^dp^).
•>a

In this paper we want to use the general Plancherel theorem to correlate
analyticity properties of functions on G with suitable properties of their Fourier
transforms. This was first done for the additive group of reals R by Paley and
Wiener [12]. In this case G may be parametrized by R, with tt1, Ç e R, the one-
dimensional representation x -> exp (i{x). For each fixed | the function

x^tr(^(-x)f(0) = e-^f(0
extends holomorphically to the complexification C of R. Hence / will have an
analytic continuation, given by (0.3) with g complex, provided eizif($) remains
square-integrable with respect to the Plancherel measure, uniformly for z on
compact sets of C.

In the noncommutative case a new phenomenon occurs. Namely, the function
g -> tr (^(g'^T) is not analytic for an arbitrary trace-class operator Fon Jf^),
since the matrix elements g-*■ (Tr((g)u, v), u, ve Jif(Trf), are only continuous in
general. To treat analyticity properties of L2 functions on G via the Fourier
transform, we need the following notions:

Let g be the Lie algebra of G, gc the complexification of g, and Gc a simply-
connected group with Lie algebra gc. Since gc is nilpotent, we may assume that G
is the analytic subgroup exp g of Gc (exp: gc -> Gc). Let{JQ, 1 újúd, be an ordered
Jordan-Holder basis for g, i.e. if

i)k = spani^Lsfc
then

[8, *)k] c f>fc-i,       k = 1,2, ...,d.

If 77 is a unitary representation of G on a Hilbert space ^(77), let <?f "(77) denote the
space of analytic vectors for w, and let the subspaces 2^"i(ir)'^M''a(rr), f>0, be
defined as in [5] relative to the basis {X,) (cf. §1). Then ^"ú(-n) = {Jt>0 Jf?(w), and
we call .?f™(77) = n¡>o ^(77) the space of entire vectors for 77. (3#"t(-rr) is dense in
a5fM(77) for some ?>0 [10], and when 77 is irreducible, we showed that #S(ir) is
dense in ^(77) [6].)

On the space .3f w(tt) the representation 77 can be analytically continued to a local
representation 77w of Gc [5, Proposition 2.3]; if g = exp X, then Tra(g) is defined on
the space Ut> \x\ ̂ "t(^)- Here we define the norm \X\ relative to the basis {X¡} by
|2a3^j|=2 K'l> a¡eC Thus if F is a bounded operator on Jt(ir) such that
Range (T)^Jtf't('n), then y -*■ 77m(y)F is a holomorphic opera tor-valued function
defined for y e Ot, where Qt = {exp X; Xe gc, \X\ </}.

Let now L be the left regular representation of G on L2(G). We show in this paper
that the space J^a(L) has the following dual characterizations :
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1971]        COMPLEX FOURIER ANALYSIS ON A NILPOTENT LIE GROUP 375

Theorem A. A function f e L2(G) is an analytic vector for the left regular repre-
sentation L if and only if f extends holomorphically to the region Q.tG<^Gc and
satisfies

(0.4) sup f  \fiiy~lg)\2 dg < co
yefii Ja

for some t > 0, dg denoting Haar measure on G.
Furthermore, f is an entire vector for L if and only if fis an entire function on Gc

and (0.4) holds for all t>0. The analytic continuation Lm ofL acts by left translations.

Theorem B. A function fie L2(G) is an analytic vector for the left regular repre-
sentation if and only if the Fourier transform f of f satisfies

(0.5) Range (/(f)) £ Xftf)   a.e.(p),

(0.6) f  supK(y)/(0[|I.dWf) <«
J¿ ven¡

for some t >0, where p. is the Plancherel measure on G and \\T\\2 denotes the Hilbert-
Schmidt norm.

Furthermore, f is an entire vector for L if and only if (0.5) and (0.6) hold for all
t>0. The Fourier transform of La(y)f is ^iiy)fiè) a.e. (p).

The analytic continuation of/in Theorem A is furnished by the Fourier inversion
formula:

Theorem C. Letfe 7_2(G) be an analytic vector for the left regular representation,
f its Fourier transform. Then

f  suPK(y)/(¿)!|i^(í) <<»
Jó yen¡

for some t>0, where \\T\\y denotes the trace norm. The analytic continuation off to
the region QtG^Gc is given by the absolutely convergent integral

fiyg) = ( tr K(y- Witfig-l)) dpiO,       yeQt,geG.
Jo

The main technical tool used to prove Theorems A and B is a "global" form of
the semidirect product theorem for spaces of analytic vectors (cf. Corollary 3.1 of
[5]), which we state and prove in §1. This reduces questions about analytic vectors
for G to consideration of analytic vectors for the one-parameter subgroups
{exp tX,}. In §§2, 3, and 4 we state and prove somewhat stronger versions of
Theorems A, B, and C, respectively.

The "local" versions of these theorems, i.e. with the omission of the character-
ization of the space of entire vectors, hold for a general type I unimodular Lie
group (assuming for simplicity that G^GC, where Gc is the simply-connected group
with Lie algebra gc). This can be proved by the same techniques used in the present
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376 ROE GOODMAN [October

paper. We omit the details, and instead, to establish the special nature of the
nilpotent case, we show in §5 that the space of entire vectors for the left regular
representation is dense in L2(G), when G is a simply-connected nilpotent group.
By the results of [5] this fails to hold for large classes of noncompact, nonnilpotent
Lie groups.

1. Basic technical theorem. Let {X¡}, l^j^d, be an ordered Jordan-Holder
basis for g, which will remain fixed throughout the paper. Let 77 be a unitary
representation of the group G. On the space 3tf"*(ir) of infinitely differentiable
vectors for 77 we define the seminorms pn (relative to the basis {Xt}) by

pn(v) =   max   \\dTr(Xh---Xu)v\\,
1SjicS<¡

(po(v)= H|), where 8-rr is the representation of the complex enveloping algebra
It(g)c on jr°°(77) obtained from n. The space J^ffr), t>0, consists of all C°° vectors
v for which

CO „71

^(0 = 2 zi />»(») < °°
n = 0 ' ' •

when 0<5</. Equivalently, by Abel's lemma,

(1.1) Ms(v) = sup [snPn(v)ln\] < oo
nao

for 0<s<t. The families of norms {Fs}0<s<( and {Ms}0<s<t onJ^f(n) are obviously
equivalent.

Let rr} denote the restriction of 77 to the one-parameter subgroup G¡= {exp tX,)teR.
Let ^f(77y) be defined with respect to the basis X¡ for the Lie algebra of G;, i.e.
v e Jf ?(■*]) if and only if for all s, 0 <s < t, there exists a constant C,(v) such that
||dir(Xj)nv|| £ Cs(v)s~nnl. (By the Cauchy inequalities, this is equivalent to assuming
that the £?(Tr)-valued function | -> 7r(exp £Xj)v, | real, can be analytically con-
tinued to the complex disc |£| <t.)

Since [| Ô7r(A^)nu [| Spn(v), we have

(1.2) ¿ff (tt) S *?(«■,),        lûjûd.
Our basic technical tool in studying the spaces ^"(77) is the following converse to
(1.2):

Theorem 1.1. There exist polynomials Pj(t), depending only on the structure of g,
such that for any unitary representation tt of G and all ?>0, one has

(1.3) n^ws^w
If hj = span {Xk}iikSj, and if the integers AT, are chosen so that (ad Xj+1)Ni + 1(t)j)

= 0, then the polynomials Pj(t) may be taken as

(1.4) Pa(t) = i,   Pj(t) = ct(i + tr>,      1 Ü j < d,
where m}+ 1 =]~]kzj (2Nk+l) and Cg 1 is a constant independent of-rr.
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1971]        COMPLEX FOURIER ANALYSIS ON A NILPOTENT LIE GROUP 377

Remarks. 1. In case g is abelian, then N, = 0, /rz;=0. Thus the theorem is best
possible in this case, up to the choice of the constant C.

2. The proof of Theorem 1.1 shows that the inclusion (1.3) is continuous in the
Jf ? topologies. This could also be inferred from the closed graph theorem, since
both sides of (1.3) are Fréchet spaces [5, Proposition 2.1].

Proof of Theorem 1.1. By Theorem 1.1 of [5], we know that H^i <^°°("v)
= J#"c(tt). To obtain the inclusion (1.3) we shall proceed by induction on dim g,
the theorem being trivial when dim 8 = 1, and we shall use the notation and results
of §4 of [6]. Specifically, assume that the theorem is true for nilpotent Lie algebras
of dimension g¿7. Let dim 8 = ^+ 1, and take a Jordan-Holder basis {Xj}1S)Sa+i
for 8- For convenience in notation, set Y, = X,-, lújud, X=Xd+1 and
h=span{F1,..., Yd}. Let

rn(v)=   max   \\8?r(Yh-■ ■ Yjn)v\\,

for v e ^"K(v). Then by Lemma 4.2 of [6], we have the a priori estimate

(1.5) pM í   max if (k\amJTm(8TT(X)k->v)X
k + m = n   l,To\j/ J

holding on ^°°(it). Here amJ ave positive numbers depending only on the Lie
algebra structure of 8, such that for all r>0 and integers m, an inequality

(1.6) Ítí^j-Si C-O+rT
j=0J-

holds. (The exponent N in (1.6) is determined by the condition (ad X)N + 1=0.)
In order to obtain an a priori estimate of the right side of (1.5) in terms of rm(v)

and |[ Ö77-(Jif)'c/y ||, we observe that by the skew-symmetry of the operators 8-niXf) one
has

( l .7)    || 8n( Yh ■ ■ ■ YimXk)v||2 = ( - l)- + *(¡HX* Yjm ■ ■ ■ Yh Yh - ■ ■ YimXk)v, v)

for any vector v e ¿P"(w). Let D be the derivation of U(a)c which coincides with
ad X on a. For a multi-index a = ij\,.. .,jn), with l ^jk^d, set Ya= Yjl- ■ ■ YJn.
Then by Lemma 4.1 of [6], we may express

F Ya =    y    Caj Yß,

with the coefficients Cktß satisfying maX|a]=n 2izn=n \Ck,e\ = an.k, on,k as above. Now
by the standard commutation formula

xkY« =  2 (k)D%Ya)Xk->.
i = o \J/

Using this in (l .7), transposing the Yg factors, and applying the Schwarz inequality,
we obtain the estimate

\\8niYh-- ■ YimXk)v\\2 í Z(k)i  2    ICl.AllMXr-'vll^iv),
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where a=(jm ...,/,/,.. .,jm). Since this holds for any (jx,.. .,jm), we thus have
the second a priori estimate

(1.8) [rm(8rr(X)kv)]2 S   f  (k)a2mJ\\8rr(X)2k-'v\\r2m(v)
i = o \JI

holding for allí; eJfm(7r).
By the induction hypothesis there are polynomials q¡(t), lújúd, so that the

theorem is true for the restriction of 77 to the subgroup exp f). Assume now that
r, s>0 and that v e J^""(tt) satisfies the estimates

\\8ir(Y,)nv\\ = Mqj(rYnn\,        1 ú j Ú d,

\\dir(X)nv\\ á Ms~nn\

for n-1, 2,.... By the induction hypothesis v will then satisfy an estimate rn(v)
fiMxr~nn\. (We may assume q£t) is monotone increasing in t.) Hence by (1.8)
and the inequality k ! (2k —j) ! ¿ (2k) ! (k — j) ! we have

[rm(dn(Xfv)}2 S MMir-2™s-2"(2m)\(2k)\ % Í<W
i = 0 ./ ■

Using (1.6), we thus obtain the growth estimate

rm(d-rr(X)kv) ¿ M2r-ms'k[Cx(l +sN)]mk\ml

with a constant Cx independent of 77-. By the a priori estimate (1.5), this implies that

Pn(v) â M2n\  max {s-kr-m[C2(l +s2N)]m},
k + m = n

using (1.6) again, with a constant C2 independent of 77. In particular, if r and í are
related by r=C2s(l+s2N), and if v satisfies (1.9), then v satisfies pn(v)i¿M2n\s~n.

We conclude from the estimates of the last paragraph that (1.3) holds, with the
polynomials p}(t) taken as qj(Ct(l +t2N)) for 1 újúd, and pd + x(t) = t. If the poly-
nomials qAt) are assumed to be of the form (1.4), then with suitable choice of the
constant C one easily verifies that suitable p,(t) can be also given by (1.4), relative
to the basis {Ar<}1SjSí¡+1.    Q.E.D.

Corollary 1.1. Let -nbea unitary representation ofG, and let v e 3^(tt). Suppose
that for some r> 0 and all j, 1 ¿7'á d, the function t -*■ (77(exp tX,)v, v), t real, extends
holomorphically to the complex disc \t\ <2p¿(r). Then v e M"^(n). In particular, v is
an entire vector for 77 if and only if the associated positive-definite function
g -* (Tr(g)v, v) extends holomorphically to an entire function on Gc.

Proof. Under the stated assumptions on v, we conclude from Proposition 4.1
of [5] that v e Jf %ir)(^A> lay azi. Hence by Theorem 1.1 we have v e 3^f(-rr). If
this holds for all r, then v will be an entire vector. Conversely, iff is an entire vector,
then by Corollary 2.1 of [5] the function X->(7r(exp X)v, v) on g extends holo-
morphically to gc.   Q.E.D.
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2. Analytic vectors for the regular representation. Let L be the left regular
representation of G on L2(G):

iLix)f)iy)=fix-iy).
An explicit description of the analytic vectors for L is given by

Theorem 2.1. Suppose f e 3tf"?(L), t>0. Then f is a C™ function on G, such that
(i) f can be analytically continued to the connected open subset QtG of Gc, where

£lt = {expX;XeQc,\X\<t}.
(ii) IfO<s<t, then

sup      |/(yg)|2 dg < co.
veils Ja

Conversely, let the polynomials p¡(t) be as in Theorem 1.1, and suppose that f is a
C" function on G such that for fixed g e G, the function $ -^/(exp (f Xf)g), f real,
can be analytically continued to the complex disc |£| <Pj(t),j= 1.d. Assume that
the analytic continuations satisfy

(2.1) sup fl/rexpfz;^)!2^ <oo,
liISs J

for 1 uj^d,s<Pi(t). ThenfeJff(L).

Proof. Suppose feJff(L). By Sobolev's lemma (cf. Proposition 5.1 of [13]),
M"a(L)'^Cx(G) continuously, so that point evaluations on G define continuous
linear functionals on ¿(""(L). Hence/is C°°, and by Corollary 2.1 of [5], the func-
tion X->f(exp Xg) extends holomorphically to the region \X\ <t in a« for each
g e G, giving (i). By Proposition 2.2 of [5] and the uniqueness of analytic con-
tinuation, we have the identity

(2.2) La(y)f(g) = f(y-ig)
holding for yeilt, geG (La denoting the analytic continuation of the repre-
sentation L to a local representation of Gc on ¿¿""(L), as defined in [5]). Since
y -> L„(y)/is holomorphic from Qt to L2(G), it is bounded on compact subsets of
0(, yielding (ii).

For the converse, we first recall the fact that if I) is an ideal in a of codimension
one, and we write 3 = h © (X), then the maps

(/, Y) -> exp tX exp Y,       (t, Y) -> exp F exp tX

from Rxl) to G are analytic manifold isomorphisms, and that a Haar measure on
G is given by the product of Lebesgue measures on R and h in these coordinates
(cf. [14, Part II, Chapter II, §2, Corollary 2, Remark 2]).

As a consequence, we may take as global coordinates on G the "canonical
coordinates of the second kind" given by

(2.3) •,:(*!,..., td) ->giitjgiity)■ ■ ■ ig,it,)r ■ ■ -gaita),
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the circumflex denoting omission. Here gk(t) = exp tXk, and we have picked a
particular one-parameter subgroup g¡(t) to appear on the left, the other one-
parameter subgroups occurring in increasing order from left to right. In these
coordinates a Haar measure on G is given by Lebesgue measure on Rd.

Let/e C°(G) be such that the function £ -^f(exp ($Xj)g) can be analytically
continued to the complex disc |£| <r, r=p,(t). Since exp($Xj)<S>j(tx,..-, td)
= <t>,(tx,..., tj+í,..., ta), this is equivalent to the assumption that the function
Fy=/o 0; can be analytically continued in the variable t¡ to the strip |Im t,-\ <r,
for fixed real values of the remaining tk. By expanding F¡ in a Taylor series in the
variable /,, we see that the function g -+f(exp (¡¡,X,)g) is measurable for fixed
complex £, |£| <r. Hence the integral in condition (2.1) is defined.

Assume now that/can be analytically continued as above, and that condition
(2.1) is satisfied. In the coordinate system <D3 this condition becomes

ip        \Fj(tx,. .., tj+i-q,..., td)\2 dtx-- -dtd < co
<s jRd

(2.4) sup
In!

for all s<r. Let £/,(£) be the operator of translation by £ in the /th coordinate,
acting on L2(Rd). It follows from Morera's theorem and the Fubini theorem,
using (2.4), that the function £ -> Uj(^)F} extends to a holomorphic function from
the disc |£| <r to L2(Rd). (We could have invoked the original theorem of Paley
and Wiener at this point.) But

UAOF, = l(*aW° o„
so we deduce that/e Jt^m(L¡). By Theorem 1.1 we obtain/e ^(77).    Q.E.D.

As an immediate consequence of Theorem 2.1 and equation (2.4), we obtain

Corollary 2.1. A function f on G is an entire vector for the left regular repre-
sentation L if and only if f is the restriction to G of an entire function on Gc which
satisfies

(2.5) sup f |/(yg)|24r<oo
ye£2i Ja

for all t <oo.
The representation Lm of Gc on the space ^%(L) is given by left translation.

Remark. It is an easy consequence of the closed graph theorem (or the explicit
estimates of §1) that the family of norms defined by the left side of (2.5), as / ranges
over the positive reals, gives the topology on Jf%(L) defined in [5].

3. Fourier transforms of analytic vectors. In this section we will obtain the
characterization of the Fourier transforms of analytic vectors for the left regular
representation (Theorem B of the Introduction). We first state and prove two
general lemmas concerning analytic vectors for direct integrals and tensor products
of unitary representations.
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Lemma 3.1. Let U be a unitary representation of G, and assume that

U=VuxdX,       Jf(U) = \jf(UA) dX

is a direct integral decomposition of U. Let the polynomials pf(t) be as in Theorem 1.1,
and set S = (dim G)1'2. 77ze analytic vectors for U decompose as follows:

(a) If v e Jff(U) for some t > 0, then the components z/ e 3^f(UK) a.e. (dX), and
for alls<t,

(3.1) fsup \\Ui,(y)vk\\2 dX < oo.
J  refis

(b) Conversely, if v e ^f(U) is such that tzA e J?%m(U]) and

(3.2) j max || U£,(exp zX,)vÁ \\2 dX < oo
J   2= ±IS

for all s,0<s<pß), and 1 újúd, then v e J?"?(U).
(c) Ifve 3tf"?(U) and ye i\, then the X-component of Um(y)v is U*(y)vA a.e. (dX).

Proof, (a) We first establish that the space Jf °°((7) decomposes in the direct
integral as the space of sections {vA} such that

(3.3) z/e^f°°(77A)   a.e.,

and

(3.4) [\\8U\W)vA\\2dX < oo

for any We U(g).
Indeed, if X e a and -n is a unitary representation of G, then by Stone's theorem

we may write zr(exp tX) = etd"a), where dn(X) is a skew-adjoint operator on J^(tt).
We have the representation formula

(3.5) [l-dn(X)]-1 = r 7r(exptX)e-t dt

relating the resolvent of d-n-(X) and the one-parameter group n(exp tX).
Let Jifk(-rr) denote the space of zc-times differentiable vectors for a representation

Tr (cf. [7]), and suppose that v eJt°\U). Set w = dU(X)v. Then by (3.5) we have
f* CO

í/(expíAO(zj + K0e-í1dt.

Hence

p* = í" U\exp tX)(vx + wÁ)e~l dt   a.e. (dX)

= [l-dU\X)]-\vx + wx)   a.e.(dX),

so that vA e &(dU\X)) a.e. (dX), and dV\X)vK = wK a.e. (dX). (3¡(S) denotes the
domain of definition of an operator S.) By Proposition 1.1 of [7] we conclude that
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z/ e M'1(UX) a.e. (dX). Iterating this argument, we obtain (3.3) and (3.4) for any
v e Jf"»(U), and the equation

(3.6) (dU(W)vf = 8U\W)vx   a.e.(dX),        rVeU(q)c.

Conversely, if vA e Jf\Ux) a.e. (dX), and

I ||¿l/a(A>Í2í/A < »

for all leg, let weJf(U) be such that wx = dU\X)vx. Then

UA(exptX)v*-vh = f  U\exp sX)wK ds
Jo

SO

||<7A(exp/.*>*-z/|| 5 \t\ ||wA||.

By the dominated convergence theorem, we obtain v e 3>(dU(X)). Iteration of this
argument (using Proposition 1.1 of [7] again) shows that (3.3) and (3.4) imply that
yejr^t/).

Suppose now that v e Jtco(U). Recall the notation Xtt = Xh- ■ -Xjn, where
a = (ju ■ ■ -,./n) with 1 ¿jk£d is a multi-index, |otj =«, and {X,) is the fixed Jordan-
Holder basis for g. If r>0, then by the monotone convergence theorem and equa-
tion (3.6) we have

(3-7) 2 7^5   2   \\8U(XM2 = f 2 7^2   1   \\8U\Xa)vA\\2 dX.
n = 0('l.)    ia| = n Jn = o\n-)    ]ct| = n

Since there are dn multi-indices of length n, the left side of (3.7) is bounded by
2 (z-2i/)n(n!)_2pn(i02, where {pn} are the canonical seminorms on Jf co(U), as in §1.
Hence if v eJf?^d(U), then the left side of (3.7) is finite when r<t. It follows in
this case that the integrand on the right side is finite a.e. Since the integrand
dominates 2 r2n(n!) "2pA(i'A)2, we conclude that vx e 3tff(Ux) a.e. (Here p* denotes
the canonical seminorm on /°(t/*).) From the power series definition of U^(y)
we also have from (3.7)

(3.8) sup||£/¿(y)i>i ¿ 4>S(A)
yea,

where <I>S e L2(dX).
Since || Ua(y)vÁ\\ is continuous in y, the supremum in (3.8) is obtained by letting y

run over a fixed countable dense subset of ÍL., and hence is a measurable function of
A. This proves part (a) of the lemma.

Let v satisfy the conditions of part (b) of the lemma. We observe that by the
maximum modulus principle and the unitarity of U, we have

sup llt/^expz^KH = max || C/*(exp zX,)vA ||.
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Hence by the Cauchy estimates and (3.7), v e ^llt)(U¡). Thus v e ^(U) by Theo-
rem 1.1.

To prove (c), we start with the formula

(U(y)v, w) = í(UÁ(y)v\ wh) dX,

valid for y e G and v, w e J^(U). If v e J^f¿t(U), then by part (a), using the theorems
of Morera and Fubini, we see that the right side of this equation has an analytic
continuation to the region yefl, given by J" (U^(y)vA, wA) dX. By Proposition 2.2 of
[5], the left side has the analytic continuation (Ua(y)v, w). Since Q, is connected,
these two continuations must coincide, and hence (c) follows by the arbitrariness
of w.    Q.E.D.

Lemma 3.2. Let n be a unitary representation ofG, and let A be the representation
given by left multiplication by ir(g) acting on the space of Hilbert-Schmidt operators
on J^(tt). Let the polynomials p¡(t) be as in Theorem 1.1. Then the analytic vectors
for A may be described as follows:

(a) IfTejef(A), then Range (T^Jf^n), and for all s<t,

(3.9) Sup ||7TM(y)F||2 < oo
vens

(|| • || a denoting the Hilbert-Schmidt operator norm).
(b) Conversely, ifT is a Hilbert-Schmidt operator on ^(-n) such that Range (T)

^Jfp^TTj), and z/7rw(exp ±isX,)T is a Hilbert-Schmidt operator for 0<s<p¡(t),
lúj^d, then T e Jc"f(A).

(c) The analytic continuation of A is given by left multiplication by -rr^y).

Proof, (a) We first note that the C°° vectors for A consist of all Hilbert-Schmidt
operators F on Jf(-rr) such that

(i) Range (T)^Jt""(-n),
(ii) 8ir(W)T is a Hilbert-Schmidt operator for all We\\(<x)c.
Indeed, if Jf*(Tr) and J^k(A), k = 0, 1,2,..., denote the chains of spaces of

zt-times differentiable vectors for n and A respectively (cf. [7]), then for Te 3^f1(A)
and A'egwe may write

(3.10) 7r(exp tX)T =T+[ 7r(exp sX)Ty ds,
Jo

where Ty = 8A(X)T is a Hilbert-Schmidt operator, and the integral in (3.10) con-
verges in the Hilbert-Schmidt operator norm. Hence if v e 3V(tt), then

[7r(exp tX)-l]Tv =     7r(exp sX)Txv ds,
Jo

so that Tv e 3>(dir(X)) and d-rr(X)Tv = TyV. Since this holds for all X e a, we have
Range iT)^3^\ir) and dn(X)T=dA(X)T. Conversely, if Range (T)^je\n) and
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d-n(X)T=Tx, then the integral formula (3.10) is valid, where the integral converges
in the strong operator topology. If F, is again a Hilbert-Schmidt operator, then
the integral converges in the Hilbert-Schmidt norm, so that TeJ^P1(A). Iteration
of this argument and the use of Proposition 1.1 of [7] establishes that Te 3^k(A)
if and only if Range (rjojf*^ and dn(Yx)- ■ drr(Yk)T is a Hilbert-Schmidt
operator for any Yu ..., Yk e g. In particular, we obtain (i) and (ii). (In case 77
is irreducible, the chain {Jfk(Tr)} is nuclear, and one may show that (i) implies (ii).
We shall not need this fact in the following however.) The proof just given also
shows that 8A(W) is simply left multiplication by dn(rV), for We ll(g)c.

Let pi and p% be the seminorms on ^"(ir) and Jff"°(A) respectively, as defined in
§1. If Te ^°°(A) and v e J^(tt), we have by (i) and (ii) above the a priori estimate

(3.11) pI(Tv) í pÎ(T)\\v\\.
Suppose now that Te Jff(A). Then (3.11) implies that Tv e Jff(ir) for all v e ^(u).
Thus the operator 77w(y)Fis holomorphic in ye Q,, and agrees with Am(y)F when
y eG. By the uniqueness of analytic continuation, we have 77tu(y)F= Am(y)F, when
y e Qt. Hence (3.9) follows from Proposition 2.2 of [5].

(b) Suppose F is a Hilbert-Schmidt operator on ¿f (77) satisfying the conditions
of part (b) of Lemma 3.2. If Z, = $ + is, with ¿j, s real and [£| <p,(t), then

77m(exp IX,)T = 7r(exp ^X¡yna(e\p isX,)T.

Since 7r(exp ÇX,) is unitary, it follows that the operator 7rm(exp iX,)T is Hilbert-
Schmidt, and

¡Tr^exp IX,)T\\2 = \\7Tm(exp isXAT\\2.

Since 77i0(exp ÇJ^ç^41'^, it follows from the spectral theorem that if r is real and
\r\ <s, then

||7rw(exp irX,)v\\ Ú max \irJe\p^X¡)vl.
Í- ±is

Combining these two estimates, we conclude that supK,=s ¡77ra(exp t,X,)T\2 is a
nondecreasing finite-valued function of s, s<Pj(t). By the usual argument, via
Fubini's theorem and Morera's theorem, we obtain the analyticity of the function

I -> tr (77ffl(exp IX,)TS*)

for |£| <Pj(t) and 5 an arbitrary Hilbert-Schmidt operator. Theorem 1.1 then
gives. Te Jiff (A).    Q.E.D.

We now give the dual version of Theorem 2.1. For this, let G, p., tt( be as in the
Introduction, let pj(t) be the polynomials in Theorem 1.1 and set S = (dim G)1'2.

Theorem 3.1. Letfe L2(G), and let fbe its Fourier transform. Suppose fe Jfft(L)
for some t > 0. Then

(i) Range/(0=¿nV)a-e-(¿>;
(ii) (La(y)fr(0 = rri(y)f(0 a.e. (p.) when yeQt;
(iii) J"¿supy6ns || 77« (y)f(è) Il %dp.(Ç)< 00 for all s<t.
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Conversely, if'£—»-/(£) is a p-measurable field of operators such that for lújúd
and 0 <s<P)it) one has

(3.12) Range/(I) £ ^%ltM) a.e. (p.),

(3.13) Í  max ||w<(exp lX,)ftt)\l dp.({) < oo,
Ja C™ ±fs

then/is the Fourier transform of a function fe ¿tf'f(L), and f satisfies (i), (ii), a/7i/(iii).

Remark. It was shown in the proof of Lemma 3.2 that the integrand in (3.13)
is a nondecreasing function of s. Hence to check that/is the Fourier transform of
an analytic vector for7_, it suffices to have (3.12) satisfied for some t>0, and (3.13)
satisfied for some positive s<minjpj(t), for all/ 1 újttd.

Proof of Theorem 3.1. By the Plancherel theorem [3], L = |® A« rfp(f), where A«
is the representation given by left multiplication by n( on the space of Hilbert-
Schmidt operators. The theorem thus follows immediately from Lemmas 3.1
and 3.2.    Q.E.D.

As an immediate consequence of Theorem 3.1 we have

Corollary 3.1. A function f on G is an entire vector for the left regular repre-
sentation L if and only if its Fourier transform f satisfies

(i) Range/(rf) is contained in the space of entire vectors for n( a.e. (p.).
(ii) For every t>0,

(3.14) í supK(y)/(i)||2f/p(a<oo.
Jo vent

The Fourier transform of the representation La is given by left multiplication by -rr%.

Remark. The family of norms defined by (3.14), as t ranges over the positive
reals, gives the topology on J#"i(L) defined abstractly in [5].

4. Analytic continuation of the Fourier inversion formula. Let /be an analytic
vector for the left regular representation L. In this section we use the results of §3
to show that the analytic continuation off, which exists by Theorem 2.1, is explicitly
given by analytic continuation of the Fourier inversion formula. Let 8 = (dim G)1/2.
If Fis an operator on Hubert space, let ||T||i denote the trace norm of T, and let
G, p, tt( be as in the Introduction.

Theorem 4.1. Let f'e Jíf02'ót(L). Then for any s <t,

(4.1) f.supK(y)/(0||i<Hf) <ao.
Ja yecis

The analytic continuation off to the set QtG is given by the absolutely convergent
integral

(4.2) fiyg) = £ tr «(y-VtfM*-1)) d^i),       ye&t,geG.
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Proof. Let A = 2?=1 Xf. If -rr is a unitary representation of G, we denote by A(v)
the selfadjoint operator 8tt(1 — A)*, and by 7í(tt) the positive square root of A(-n).
When n = L is the left regular representation, we will simply write A and F respec-
tively. Let />0. Then for any Te U(s),

Range (8L(T)e~tA) £ fl ^(^n) = ^°°(7.)
n

[10]. Hence by a Sobolev lemma (Proposition 5.1 of [13]), 8L(T)e'tA maps L2(G)
continuously into CCC(G). Since it commutes with right translations, it follows that
e-tA ¡s g¡ven by ]eft convolution with an L2 function Kt, and that g, t—> Kt(g) is
C" (cf. [15]). Furthermore, Nelson and Stinespring [11] proved that KteLy(G),
|| Kt || ll(G) £ 1, and that for an arbitrary unitary representation it,

(4.3) e-M<* = f 7r(g)Ft(g) i/g.

The semigroup ? -» e"'B(,t) can be obtained from the semigroup í -*> e"MOl) by an
integral formula [16, Chapter IX, §11]. Using this formula, (4.3), and the Fubini
theorem, we conclude that

where

(4.4) Wt(g) = et f Ks(g)e~t2liss-312 ds,

c = (2\/tt)~1. If Wt is the Z,2-Fourier transform of Wt, we thus have by (0.1) and the
above the identity

(4.5) Wt(0 = e-tB^    a.e.(p).

We next observe, that if v e 3/ecc(tt), then

\\B(nTv\\2 = (8rr(l-ATv,v) á   |   (t) dkPk^2-
k=0   VV

Here {pk} are the canonical seminorms on 3tf "(tt), and we have used the obvious
estimate

(-ir(8n(Afv,v)^dkPk(v)2.

Hence if the norms M? on ^f(n) are defined by (1.1), s <t, then for v e3>?f(ir)
and a a multi-index of length m, we have

\\B(7rf87r(Xa)v\\2 Ú Mf(v)2 f  i") dks-*k + m)[(k + m)\]2
zc = o \k'

^ M?iv)24ms-2mil +4 ds'2)nimln\)2.
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Thus if X e gc, then

(4.6) ¡B(n)ndir(X)mvl g Mi(v)(2s-1\X\)mc(s)nm\n\,

where c(s) = (l+4 ds~2)112. Let 0<£<c(s)~\ and \X\<sj2. Then from (4.6) we
have

(4.7) HS(">7rM(exp X)v\\ g CM*(v),

where C = (l — 2s_1|A'|)_1(l —ec(s))~1 is independent of 77.
We can now complete the proof of Theorem 4.1. Letfe3tf"%6l(L), and denote by

A* the representation given by left multiplication by tt(, acting on the space of
Hilbert-Schmidt operators on Jf (77a). By equation (3.7) we have an estimate

(4.8) M?(f(0) á 0,(f),
where <1>S e L2(G, dp), s<2t. From the characterization of the space a3f°°(A?)
given in the proof of Lemma 3.2, we see that the operator F(A{) is left-multiplica-
tion by B(ns). Given now shandy e Qs, choose s, with 2s <sx <2t, and e<c(í1)"1.
Write

^(y)/(f) = rVs(èy**%r%(y)f(ï).
Then by the Holder inequality for the trace-norm and (4.7), (4.8), we have the
estimate

(4.9) sup K(y)/(£)l|i á C<t>tl(è)fVt($),
yeas

with the constant C depending only on s, sx, e. Since We e L2(G), W¡. e L2(G, dp.)
by the Plancherel theorem. Hence the right side of (4.9) is /¿-integrable. The left
side of (4.9) is easily seen to be /¿-measurable, so we obtain (4.1).

To establish the identity (4.2), we observe that the left side is holomorphic for
y e Í2¡, by Theorem 2.1. The integrand on the right side is holomorphic for y e Q.t
and /¿-almost all £, by (4.1) and Theorem 3.1, while another use of (4.1) allows us
to apply the Fubini theorem and Morera's theorem to obtain the analyticity of the
right side of (4.2). By the Fourier inversion formula both sides agree when y e G,
hence by the uniqueness of analytic continuation (4.2) holds for y e D¡ also.    Q.E.D.

Corollary 4.1. Let f be an entire vector for the left regular representation. Then
the analytic continuation of f to Gc is given by the absolutely convergent integral

(4.10) f(y) = Jd tr (rrUy-1)/^)) dp(i).

Example. Let G be the Heisenberg group, consisting of all matrices

"1    a   c~

(4.11) 0    1    b
0   0    1
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with a, b, c real. Then Gc consists of all such matrices with a, b, c complex. The
representations {nA} which enter into the Plancherel formula, and the spaces
J^f(irK), were described in Theorem 6.2 of [5], where A e R — {0}. (The statement of
this theorem has a misprint, and should read Jfti^^-^t.^^'iti^)-) In this
parametrization the Plancherel measure is |A| dX, dX denoting Lebesgue measure on
R [2]. The space of entire vectors for tta is independent of A, and consists of all
entire functions/on C such that sup|Im(a)|Sr er|2||/(z)| <co for all r>0.

Let X, Y, Z be the usual basis for a, satisfying [X, Y] =Z, Z central, as in [5, §6],
and let A = X2+ Y2 + Z2. The eigenfunctions {<p£} of ¿zVA(A) are entire vectors for
tta [5, Corollary 6.1]. Explicitly,

9n(x) = lArVnOAl1'2*),
where <pn is the nth Hermite function. Using these functions and Theorem 3.1, we
can construct the Fourier transforms of some entire vectors for the left regular
representation L of G as follows:

Let Pm„(A) be the operator on L2(R) which maps ^ to <pîi, and sends <pk to 0,
k¥=m. Then Range (Pmn(X))^je£(*■A), and

R(y)Pmn(A)||l = IKiyWil2.
This may be evaluated, using formulas for translates of Hermite polynomials
[9, §5.6.4], with the result that if y is given by (4.11), then

(4.12)        K(y)<pA||2 = Qn(a, b, X) exp [-2A Im (c)+ |A|(Im a + Im b)2],

where Qn is a polynomial in a, b, and A.
If h e L2(R; \X\ dX) and vanishes for large |A|, it follows from Corollary 3.1 and

(4.12) that the operator-valued function /(A) = h(X)Pmn(A) is the Fourier transform
of an L2 function/on G which is an entire vector for L. The entire function/may
be represented by the Fourier inversion formula

/(y)= trfâ(y)Pmn(\))h(X)\\\d\
J — 00

/*00

= (n^(y)9n,cpi)h(X)\X\dX.
J — 00

Using the Plancherel formula and the completeness of the eigenfunctions {<?£},
we conclude that the entire vectors/thus obtained have a dense span in L2(G).
We do not know if a similar construction of entire vectors via Fourier transforms
and the operator A is possible on an arbitrary simply-connected nilpotent group.
In the next section we instead give a direct construction of entire vectors, without
the use of Fourier transforms and irreducible representations.

5. Entire vectors for the regular representation. In this section we use Theorem
2.1 to derive sufficient conditions on an entire function/on Gc, so that/will be
an entire vector for the left regular representation of G.
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Theorem 5.1. There exist numbers p,> 1 with the following property:
If F is an entire function on Cd satisfying an estimate

(5.1) \F(zu...,zd)\ ¿ Cexp\-A £ |Re z;h + F2 |Imz;.|",Ií=l Í-1

with A, B, C positive constants, then the function f on G defined by

/(exp txXx ■ • -exp tdXd) = F(tx, ...,td)

is an entire vector for the left regular representation.

Remark. The proof of Theorem 5.1 gives pj+1> ^Pj as a sufficient condition on
the exponents p¡ for the validity of the theorem, where m is an integer determined by
the Lie algebra g (m = 0 if g is abelian).

As the first step in proving Theorem 5.1, we derive a formula for left translation
by exp zXj in canonical coordinates:

Lemma 5.1. Let {X,) be an ordered Jordan-Holder basis for g, and set gj(t)
= exp tXj. Ifg=gx(tx)- -gd(td), then gj(z)g=gx(s1)- ■ -gd(s), where

sk  —  ¡k + PkA2, 'fc+l, • • -, tj-l), k   < j—1,

c — /
(5.2)

Sj =  tj + Z,

sk = tk,        k > J.

The functions Pkj in (5.2) are polynomials.

Proof of Lemma 5.1. By induction on d it suffices to treat the case j = d. Let
D=ad Xd. Then we can write

gd(z)g = exp(txe*DXx)- ■ •exp(ti-ie">Xi-x)ga(ta + z).

Now ezDXk = Xk mod (f)k_i), where ^k = span {X¡}l%k. It follows from the Campbell-
Hausdorff formula [8] that

exp (td_xesDXd.x) = exp (F,) exp (td_xXd_x),

where Ft e f)i2_2 and is a polynomial function of z and td_x. Hence id_1 = z'd_1.
Furthermore, by the Campbell-Hausdorff formula again, we have

exp(z-d_2e2DA-d_2)exp F, = exp{[z\,_2-|-F(z, td-i)]Xd_2+Y2},

where F is a polynomial and Y2 e i)a_3 is a polynomial function of s, rd_,, td_2.
Another application of the Campbell-Hausdorff formula gives the desired expres-
sion for sd-2. Iterating this argument, we obtain formulas (5.2).    Q.E.D.

Proof of Theorem 5.1. Let pk> 1, with/zk+1^/zfc, be as yet unspecified, and sup-
pose F and/are as in the theorem, with F satisfying (5.1). If g = gi(?i)- ■ -gd(td),
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then by Lemma 5.1 we have f(gj(z)g) = F(sy,..., sd), with sk given by formulas
(5.2). Now if k <j and r, real, then

|Imik| ÚCÍI+ 2   i>ir+izh
\        k < I < i I

\Resk\ £ \tk\-C(l+   2    \h\m+\z\n\,
\       k<l<j I

where m and n are positive integers determined by the degrees of the polynomials
Pjk, and Cis a constant. Hence from (5.1) and (5.3) we obtain the estimate (p0 = 0):

(5.4) \fig¿z)g)\ Ú Cy exp!-A 2 |/fc|'*+*i 2 \'k\m^^ + Cy\z\"),
l k k J

where q = npd.
If we initially pickpfc so that pk>mpk.y, then by (5.4) the entire function/will

satisfy the L2 boundedness condition (2.1) for all positive s. Hence by Theorem 2.1,
/will be an entire vector for the representation L.    Q.E.D.

Corollary 5.1. The space of entire vectors for the left regular representation is
dense in L2(G).

Proof. By the work of Gel'fand and Silov [4], the restrictions to Rd of entire
functions satisfying a growth estimate (5.1) (with A, B, C depending on / p¡> 1
fixed) form a dense subspace of L2(R"). Since Haar measure on G becomes Lebesgue
measure on Rd in canonical coordinates, the corollary follows from Theorem 5.1.
Q.E.D.
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