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Abstract—Communications systems rarely have perfect chan-

nel state information (PCSI) when demodulating received sym-

bols. This paper shows that the symbol error rate (SER) of a

flat fading communications system can be expressed in closed

form by expressing the demodulator outputs as random variable

(RVs) that have a complex ratio distribution, which is the

ratio of two correlated complex Gaussian RVs. To complete the

analysis, the complex ratio probability density function (PDF)

and cumulative distribution function (CDF) are both derived.

Finally, using several scenarios based on M-QAM signaling, the

SER performance of imperfect channel state information (ICSI)

systems is analyzed.

I. INTRODUCTION

The real-valued Gaussian ratio distribution (see [1], [2])

has been studied extensively for a variety of applications. The

ratio of two zero-mean independent Gaussian random variables

(RVs) has a Cauchy distribution, which is commonly used in

physics and is sometimes referred to as the Cauchy−Lorentz

distribution. Work in [3] determined a closed form expression

for the ratio of two non-zero mean correlated Gaussian RVs.

Most recently, in 2006 the author’s of [4] derived an expression

for the general real-valued ratio distribution in terms of the

Hermite function and Kummer’s confluent hypergeometric

function to make evaluating the ratio density less computa-

tionally complex. All of the works cited above deal with the

real-valued ratio distribution. Unfortunately, we were unable

to find any literature on the ratio of two complex Gaussian

RVs, which we refer to as the “complex ratio distribution.”

While radio communication involves the transmission of

radio frequency (RF) waves that have real-valued ampli-

tude, most practical signal analysis is performed on a down-

converted and sampled version of the RF signal in the base-

band. Because of this, communications systems are often

characterized using the baseband representation of the trans-

mitted and received symbols. Such baseband symbols are

conveniently described using complex-valued variables and

complex-valued mathematical operations. Not surprisingly, the

complex ratio distribution has applications in analyzing the

performance of communications systems.

In this paper, we derive the complex ratio distribution

between two zero-mean correlated complex Gaussian random

variables and we use this result to analyze the performance of

the zero-forcing equalizer in a fading channel scenario where

the channel state information (CSI) is not perfectly known to

the receiver (i.e. the receiver only has imperfect CSI (ICSI)).

The case where perfect CSI (PCSI) is known is a special case

of the ICSI case; therefore the results presented here also apply

to PCSI systems.

Several studies have been done on the effect that ICSI has

on the system performance. Recent work on error rate analysis

for ICSI systems with error correction coding has been done in

[5]. Earlier in 1999, the authors of [6] undertook a similar task

of determining the error rate for ICSI systems. In that work,

integral expressions for the bit error rate of QAM signals in

fading were derived. To do this, the authors found the joint

distribution of the true channel amplitude and the channel

amplitude estimate as well as the joint distribution between

the channel phase and the estimated channel phase. The result

also assumes that the receiver uses the pilot symbol assisted

modulation (PSAM) scheme by Cavers [7] to estimate the

channel. The work in this paper is distinct because we derive

and utilize the complex ratio distribution which allows for

closed form expressions on the error rate for general QAM

modulated signals.

II. SIGNAL MODEL

To illustrate the effect of ICSI on symbols detections in

communications systems, assume a simple flat-fading channel

model, where, after demodulation, the received signal in the

kth channel is

rk = hkqk + ηk, (1)

where qk ∈ A are the modulating values drawn from a

constellation set, A, ηk is additive white Gaussian noise, and

hk is the channel response that is assumed to be complex

Gaussian. The complex Gaussian distribution assumption for

hk is commonly referred to as a Rayleigh fading channel

and is well-justified in rich scattering environments where

multiple signal paths combine at the receiver. In this case, each

path is modeled as an independent RV allowing the Central

Limit Theorem to be invoked resulting in a complex Gaussian

distribution on hk [8]. The demodulation process takes place

in baseband, so all of these variables are complex valued.
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To decode qk, hk must be estimated by ĥk. This is typically

done using a known preamble sequence that precedes the

payload symbols. The receiver can use this known sequence

to estimate the channel response (see [9] for a review of

preamble channel estimation techniques). Using the zero-

forcing equalizer the estimated symbol is

q̂k =
rk

ĥk

. (2)

In many analyses, it is assumed that ĥk = hk, which is not

generally true in practice. Instead, to generalize, assume the

channel estimate ĥk can be modeled as

ĥk = αhk + wk, (3)

where wk ∼ CN(0, σ2
w) is complex Gaussian distributed

and where α is some deterministic complex-valued constant.

Typically, to find the error rate performance in a fading

channel, the AWGN error rate is derived and then integrated

over the channel density function [10, p. 817].

In this paper, we take a different approach and calculate the

non-Gaussian distribution of q̂k. By expanding (2), we find

that

q̂k =
hk

αhk + wk
qk +

ηk

αhk + wk
. (4)

We assume that ηk ∼ CN(0, σ2
η) and hk ∼ CN(0, σ2

h),

making the two quotients above ( hk

αhk+wk
and ηk

αhk+wk
) RVs

with a complex Gaussian ratio distribution, which is described

in detail in the next section.

For an ICSI system in noise, when q̂k in (4) crosses a

predefined symbol boundary a symbol error occurs. In the

ICSI noiseless case, a symbol error occurs when the quantity
hk

αhk+wk
qk crosses a detection boundary. Similarly in the PCSI

case with additive noise, a symbol error occurs when qk + ηk

hk

crosses a detection boundary. In the following section, we

derive the distribution of the ratio of two correlated complex

Gaussian random variables and then use this distribution to

find the symbol error rate of the fading system.

III. RATIO DISTRIBUTION

From [11], define x and y to be zero-mean correlated

complex Gaussian random variables having joint density

fx,y(x, y) =
1

π2|Σ|
exp

(

−

[

x
y

]H
Σ−1

[

x
y

]

)

, (5)

where

Σ =

[

E[x∗x] E[x∗y]
E[xy∗] E[y∗y]

]

(6)

=

[

σ2
x ρσxσy

ρ∗σxσy σ2
y

]

. (7)

Notice that ρ = ρr + jρi is complex valued. In the appendix,

we show that the new random variable z = x
y = zr + jzi ∈ C

has probability density function (PDF)

fx/y(zr, zi) =
1 − |ρ|2

πσ2
xσ2

y

(

|z|2

σ2
x

+
1

σ2
y

− 2
ρrzr − ρizi

σxσy

)−2

,

(8)

which we denote as z ∼ CR(σ2
x, σ2

y, σxσyρ). When there is

no correlation between the numerator x and the denominator

y in the quotient, the ratio distribution simplifies to

fx/y(z) =
σ2

x

πσ2
y

(

|z|2 +
σ2

x

σ2
y

)−2

(9)

and is denoted as z ∼ CR(σ2
x, σ2

y, 0).
The integral of the PDF in (8) can be expressed in closed

form as
∫ ∫

fx/y(zr, zi)dzrdzi = g(zr, zi, ρr, ρi) (10)

+g(zi, zr,−ρi,−ρr) (11)

= G(zr, zi), (12)

where

g(zr, zi, ρr, ρi) =
λ(zi, ρr, ρi)

2π
·

tan−1





σyzr − ρrσx
√

(1 − ρ2
r)σ

2
x + 2ρiσxσyzi + σ2

yz2
i



 , (13)

and

λ(zi, ρr, ρi) =
(ρiσx + σyzi)

√

(1 − ρ2
r)σ

2
x + 2ρiσxσyzi + σ2

yz2
i

. (14)

To avoid overly cumbersome notation, we excluded σx and σy

from the argument list of λ(·), g(·) and G(·), but all three of

these functions are also functions of σx and σy. Using these

equations, the cumulative distribution function (CDF) is

Fx/y(zr, zi) = G(zr, zi) +
1

4
(λ(zi, ρr, ρi)+

λ(zr,−ρi,−ρr) + 1). (15)

The marginal CDFs can be calculated by

Fzi(zi, ρr, ρi) = lim
zr→∞

Fx/y(zr, zi) (16)

=
1

2
(λ(zi, ρr, ρi) + 1) . (17)

Similarly,

Fzr(zr, ρr, ρi) = Fzi(zr,−ρi,−ρr). (18)

Fig. 1 is a plot of the CDF, PDF and marginal CDFs of

the complex ratio distribution CR(4, 1, 0). From the equation

in (9), it is clear that the PDF is circularly symmetric in

the complex plane, which is also evident in the plot. For

comparison the CR(4, 1, 1 + j 1
2 ) distribution functions are

plotted in Fig. 2. The plot illustrates that for a non-zero value

of ρ, the complex ratio distribution is no longer circularly

symmetric.

IV. M-QAM ERROR PROBABILITIES

A nice feature of the complex ratio distribution is that the

sum of two complex ratios is also a complex ratio random

variable. To calculate the error rate of a constellation using this

channel model, we declare a symbol error when the difference

q̂k − qk =
((1 − α)hk − wk)qk + ηk

αhk + wk
(19)
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Fig. 1. Plot of CDF, PDF and marginal CDFs for ratio distribution.
Distribution parameters are σx = 2, σy = 1, ρ = 0.
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Fig. 2. Plot of CDF, PDF and marginal CDFs for ratio distribution.
Distribution parameters are σx = 2, σy = 1, ρ = 1/2 + j1/4.

crosses a complex-valued threshold and resides in a region

{Ri}
|A|
i=1 ⊂ C that is dependent on the transmitted constella-

tion point ai ∈ A and is centered on the origin of the complex

plane. Thus, the total symbol error is simply

SER =

|A|
∑

i=1

Pr(qk = ai)

∫

Ri

fq̂k−qk|qk=ai
(z)dz. (20)

To compute this, we will compute the difference distribution

of q̂k − qk, which is given by

fq̂k−qk
(z) ∼ CR

(

|qk|
2(σ2

h|1 − α|2 + σ2
w) + σ2

η,

|α|2σ2
h + σ2

w, q∗k(α(1 − α)∗σ2
h + σ2

w)

)

. (21)

From the PDF, it is clear that the ratio distribution is not

necessarily circularly symmetric. In fact, it is only symmetric

when ρ = 0. For the channel/detection model in this paper,

a value of ρ = 0 implies ĥ = h; i.e., the receiver has PCSI.

Thus, for the ICSI case, it is not possible to simplify (20)

by only evaluating the symbol errors for one quadrant of the

constellation plane. The implication is that the SER depends

on the transmitted constellation point and the channel is not

symmetric across all symbols.

We can compute the M-QAM symbol error probabilities in

closed form by simply enumerating all of the error events.

For M-QAM, the error region from (20) is dependent on the

constellation point ai and is defined by a box around the

origin, where R = {zr ∩ zi : zi ∈ [jǫil, jǫih], zr ∈ [ǫrl, ǫrh]}.

Accordingly, the probability that a transmitted symbol is in

Ri can be expressed as

pe(ǫ, ai) =

∫

Ri

fq̂k−qk|qk=ai
(z)dz

= 1 − G(ǫrl, ǫil) − G(ǫrh, ǫih) +

G(ǫrl, ǫih) + G(ǫrh, ǫil), (22)

where ǫ = [ǫil, ǫih, ǫrl, ǫrh].
For large M-QAM constellations, boundary effects con-

tribute less to the SER. So for large M , the SER is well

approximated by the probability of a symbol error occurring

on one of the interior constellation points. For normalized M-

QAM where
∑

i |ai|
2 = 1, the bounding box on the interior

constellation points is defined by −ǫil = ǫih = −ǫrl = ǫrh =
√

3
2(M−1) . It is not clear from (22) because we shorten the

argument list of G(·), but this probability of error depends on

the moments σx, σy and ρ.

For the assumed channel/equalization model defined in

Section II the resulting demodulated output has a distribu-

tion defined by (21), which is explicitly dependent on the

transmitted value qk ∈ A. Therefore, each of the moments of

q̂k − qk depend on qk, which means that both G(·) and pe(·)
depend on the transmitted qk. With this, the probability of error

only requires evaluating (20) using the M-QAM assumption.

Assuming equally likely symbols,

SER ≤
1

M

|A|
∑

i=1

pe(ǫ, ai). (23)

This is an upper bound on the SER because the edge and

corner constellation points are not bound by the same detection

box as the interior constellation as assumed here. However, it

is straightforward to use these results to derive the exact SER.

We omit this derivation here because of space constraints,

but the procedure simply involves finding an error expression

similar to (22) for each constellation point. This precise SER

expression along with the upper bound in (23) is evaluated in

the simulations in the next section.

V. SIMULATIONS

As outlined in the previous sections, the complex ratio

distribution allows for a concise representation of the SER

in fading channels both when PCSI is available to the receiver

and when only ICSI is available. In this section, several

experiments are run to evaluate the performance of an ICSI

system.
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Fig. 3. SER for the proposed exact expression (same as (24)), SER given
by the upper bound in (23), and SER from [12] in (24).

Experiment 1: For the first experiment, it is verified that the

PCSI SER result matches the commonly-cited expression in

the literature given by [12, p. 254]. The authors of [12] derive

the SER and show that it is exactly

SER1 = 2A(1 − B) − A2(1 − B tan−1(B−1/2)), (24)

where A =
√

M−1√
M

and B =
√

1.5
σ2

η(M−1)+1.5 .

In Fig. 3, the SER is plotted for the PCSI channel (assumes

α = 1, σw = 0 and σh = 1). While the SER expression has

long been known, we have illustrated an alternative derivation

and have shown that the SER result of the proposed method

agrees with the truth data.

Experiment 2: In this experiment, the effect of ICSI is

illustrated. Fig. 4 is a plot of the SER as the distortion noise

on the channel estimate, σw is varied. For these results we

assumed α = 1 and σh = 1. It is clear from the plot that even

a moderate noise on the channel estimate σw = −20dB, leads

to a severe SER increase. The effect is seen as an SER floor

that depends on the channel estimation error variance.

Experiment 3: In practice, there may be some residual phase

shift between the true channel and the channel estimate. For

the model proposed in this paper, this phase shift is manifested

in the parameter α. To isolate the phase shift effect, we model

α = ej2πθ and plot the effect of small non-zero values of

θ. The SER results are independent of the sign of θ so only

positive θ is examined. Fig. 5 is a plot of the SER as the

channel estimate phase shift varies for two different distortion

noise levels in the channel estimate, σw = {−∞,−30}dB. For

these results we assumed σh = 1. Unlike channel estimation

noise that imparts an SER floor on the received symbols, small

phase shifts have a less detrimental effect.

VI. CONCLUSIONS

This paper offers two novel contributions. The first is the

derivation of the distribution of the ratio of two zero-mean

correlated complex Gaussian RVs. We call this the complex
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Fig. 4. SER with ICSI for α = 1 and σh = 1.
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Fig. 5. SER with ICSI for α = ej2πθ and σh = 1.

ratio distribution. The second contribution is the use of the

complex ratio distribution in finding the exact closed-form

SER expression of a communication system employing QAM

with ICSI. The example experiments show that the SER is

very sensitive to even small channel estimation variances and

phase shifts.

APPENDIX

From [11], the correlated bivariate complex Gaussian PDF

in (5) is expanded by writing x = xr + ixi and y = yr + iyi.

The density function for the zero-mean case (i.e. µx = µy =
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0), becomes

fx,y(xr, xi, yr, yi) =
1

π2σxσy(1 − ρ2)
exp

(

−1

(1 − ρ2)
(

x2
i + x2

r

σ2
x

+
y2

i + y2
r

σ2
y

−
2ρ

σxσy
(xiyi + xryr)

))

. (25)

The goal is to find the distribution of the ratio z = x/y. It

is clear that the density function, fx/y(z), is defined by the

following quadruple integral

fx/y(z) =

∫ ∫ ∫ ∫

fx,y(xr, xi, yr, yi)

δ

(

xr + jxi

yr + jyi
− z

)

dxrdxidyrdyi, (26)

where the domain of integration is (−∞,∞) for all four

integrals and where δ(·) is the complex valued delta function.

Following the lead of [2], the ratio density can be simplified

with a change of variables so that x = uv and y = v. Unlike

the real-valued case, the complex-valued variable transforma-

tion has a Jacobian of |v|2. Now, the cumulative distribution

function (CDF) of z is defined as

Fx/y(z) =

∫ zr

−∞

∫ zi

−∞

∫ ∞

−∞

∫ ∞

−∞
(v2

i + v2
r)

fx,y(urvr − uivi, viur + uivr, vr, vi)dvrdviduidur. (27)

The goal is to find the density function fx/y(z), which by

definition is the derivative of the CDF,

fx/y(zr, zi) =
∂2

∂ur∂ui
Fx/y(zr, zi)

=

∫ ∞

−∞

∫ ∞

−∞
(v2

i + v2
r)fx,y(zrvr − zivi,

vizr + zivr, vr, vi)dvrdvi. (28)

With this, the problem entials evaluating the following

integral

fx/y(zr, zi) =
1

π2σxσy(1 − ρ2)

∫ ∞

−∞

∫ ∞

−∞
|v|2exp

(

−1

1 − ρ2

(

(z2
i + z2

r )|v|2

σ2
x

+
|v|2

σ2
y

− 2
ρrzr − ρizi

σxσy
|v|2
))

dvidvr.

Evaluating the integral by a change of variables to polar

coordinates and normalizing so that the total probability is

one results in the PDF expression given in (8).
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