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CHAPTER 1

Graph theory in the new millennium

1.1. Introduction

Graph theory has a history dating back more than 250 years (starting with
Leonhard Euler and his quest for a walk linking seven bridges in Königsberg [18]).
Since then, graph theory, the study of networks in their most basic form as inter-
connections among objects, has evolved from its recreational roots into a rich and
distinct subject. Of particular significance is its vital role in our understanding of
the mathematics governing the discrete universe.

Throughout the years, graph theorists have been studying various types of
graphs, such as planar graphs (drawn without crossing in the plane), interval graphs
(arising in scheduling), symmetric graphs (hypercubes, or platonic solids and those
from group theory), routing networks (from communications) and computational
graphs that are used in designing algorithms or simulations.

In 1999, at the dawn of the new Millennium, a most surprising type of graph was
uncovered. Indeed, its universal importance has brought graph theory to the heart
of a new paradigm of science in this information age. This family of graphs consists
of a wide collection of graphs arising from diverse arenas but having completely
unexpected coherence. Examples include the WWW-graphs, the phone graphs,
the email graphs, the so-called “Hollywood” graphs of costars, the “collaboration”
graph of coauthors, as well as legions from all branches of natural, social and the life
sciences. The prevailing characteristics of these realistic graphs are the following:

• Large — The size of the network typically ranges from hundreds of thou-
sands to billions of vertices. Brute force approaches are no longer feasible.
Mathematical wizardry is in demand again — how can we use a relatively
small number of parameters to capture the shape of the network?
• Sparse — The number of edges is linear, i.e., within a small multiple

of the number of vertices. Perhaps there are many dense graphs (having
quadratic number of edges) out there but the large graphs that we can
hope to deal with are mostly sparse.
• The Small world phenomenon This is used to refer to two distinct

properties: small distance and the clustering effect. Namely, two strangers
are typically joined by a short chain of mutual acquaintances. and two
people who share a common neighbor are more likely to know each other.

1



2 1. GRAPH THEORY IN THE NEW MILLENNIUM

• Power law degree distribution — The degree of a vertex is defined to
be the number of adjacent vertices. The power law asserts that the number
of vertices with degree k is proportional to k−β for some exponent β ≥ 1.

Figure 1. A power law
distribution in the usual
scale.

Figure 2. The same
distribution in the log-
log scale.

The first two characteristics (large and sparse) come naturally and the third (small
world phenomenon) has long been within the mindset of the public consciousness.
The most critical and striking fact is the power law. For example, why should the
email graph and the collaboration graph have similar degree distributions? Why
should the phone graphs have the same shape for different times of the day and
different regions? Why should the biological networks constructed using the genome
database have distributions similar to those of various social networks? Is Mother
Nature finally revealing a glimpse of some first principles for the discrete world?

The power law allows us to use one single parameter (the exponent β) to de-
scribe the degree distribution of billions of nodes. With a short description of such
a family of graphs, it is then possible to carry out a comprehensive analysis of these
networks. On one hand, we can use various known methods and tools, combina-
torial, probabilistic and spectral, to deal with problems on power law graphs. On
the other hand, the realistic graphs provide insight and suggest many new and ex-
citing directions for research in graph theory. Indeed, in the pursuit of these large
but attackable, sparse but complex graphs, we have to retool many methods from
extremal graphs and random graphs. Much is to be learned from this broad scope
and new connections.

In fact, even at the end of the 19th century, the power law had been noted
in various scenarios (more history will be mentioned in later sections). However,
only in 1999 were the dots connected and a more complete picture emerged. The
topic has spontaneously intrigued numerous researchers from diverse areas including
physics, social science, computer science, telecommunications, biology and mathe-
matics. A new area of network complexity has since been rapidly developing and
is particularly enriched by the cross-fertilization of abundant disciplines. Mathe-
maticians and especially graph theorists have much to contribute to building the
scientific foundation of this area.
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It is the goal of this monograph to cover some of the developments and mention
what we believe are promising further directions. Since this is a fast moving field,
there are already several books on this topic from the physics or heuristics points
of view. The focus here is mainly on rigorous mathematical analysis via graph
theory. The coverage is far from complete. There are perhaps too many models
that have introduced by various groups. Here we intend to give a consistent and
simple (but not too simple!) picture rather than attempting to give an exhaustive
survey. Instead, we include references to several books [13, 42, 113] and related
surveys [3, 7, 97, 101].

Remark 1.1. In some papers, power law graphs are referred to as “scale-free”
graphs or networks. If the word “scale-free” is going to be used, the issue of “scale”
should first be addressed. We will consider scale-free graphs (see Section 3.5) only
after the notion of scale is clarified.

Remark 1.2. In Figures 1 and 2, we illustrate a power law distribution in the
usual scale and and in a log-log scale, respectively. Figures ?? and 4 contain the
degree distribution of a call graph (with edges indicating telephone calls) and its
power law approximation. In a way, the power law distribution is a straight line
approximation for the log-log scale. Some might say that there are small “bumps”
in the middle of the curves representing various degree distributions of realistic
graphs. Indeed, the power law is a first-order estimate and an important basic case
in our understanding of networks. We will interpret power law graphs in a broad
sense including any graph that exhibits a power law degree distribution.

Figure 3. Degree dis-
tribution of a call graph.

Figure 4. The power
law approximation of
Figure 3.

1.2. Basic definitions

Definition 1. A graph G consists of a vertex set V (G) and an edge set E(G),
where each edge is an unordered pair of vertices.
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For example, Figure 5 shows a graph G = (V (G), E(G)) defined as follows:

V (G) = {a, b, c, d}
E(G) = {{a, b}, {a, c}, {b, c}, {b, d}, {c, d}}.

The graph in Figure 5 is a simple graph since it does not contain loops or multiple
edges. Figure 6 is a general graph with loops and multiple edges.
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Figure 5. A simple graph G.
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Figure 6. A multi-graph with a loop.

Figure 7 is a graph consisting of several mathematicians including the authors.
Each edge denotes research collaboration that resulted in a mathematical paper
reviewed by Mathematicsl Reviews of the American Mathematical Society.

Einstein Straus

Erdos

Graham

Fan

Lincoln

Figure 7. A small subgraph of the collaboration graph.

Here are several equivalent ways to describe that an edge {u, v} is in G:

• {u, v} ∈ E(G).
• u and v are adjacent.
• u is a neighbor of v.
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• The edge {u, v} is incident to u (and also to v).

The degree of a vertex u is the number of edges incident to u. If a graph G has
all the degrees equal to k, we say G is a k-regular graph.

Definition 2. A path from u to v of length k in G is an ordered sequence of
distinct vertices u = v0, v1, . . . , vk = v satisfying

{vi, vi+1} ∈ E(G) for i = 0, 1, . . . , k − 1.

For example, in the graph of Figure 7, there is a path of length 4 from Einstein,
Straus, Erdős, Fan and Lincoln.

Definition 3. A walk of a graph G is an ordered sequence of vertices v0, v1, . . . , vk
satisfying

{vi, vi+1} ∈ E(G) for i = 0, 1, . . . , k − 1.

We remark that vertices in a path are all distinct while a walk is allowed to
have repeated vertices and edges.

Definition 4. For any two vertices u, v ∈ V (G), the distance between u and
v, denoted by d(u, v), is the shortest length among all paths from u to v.

For example, the distance between Einstein and Lincoln is 3, achieved by the
path from Einstein, Straus, Graham, and Lincoln.

Definition 5. A graph is connected if for any two vertices u and v, there is
a path from u to v.

Definition 6. In a connected graph G, the diameter of G is the maximum
distance over all pairs of vertices in G. If G is not connected, we use the convention
that the diameter is defined to be the maximum diameter over the diameters of all
connected components.

Definition 7. The average distance of a connected graph G is the average
taken over the distances of all pairs of vertices in G. If G is not connected, the
average distance of G is the average taken over the distances of pairs of vertices
with finite distance.

Definition 8. A directed graph consists of the vertex set V (G) and the edge
set E(G), where each edge is an ordered pair of vertices. We write u→ v if an edge
(u, v) is in E(G). In this case, we say u is the tail and v is the head of the edge.

Figure 8 is a directed graph associated with juggling patterns with period 3
and at most 2 balls. For an edge from a vertex labelled by (a1, a2) to a vertex
(a2, a3), the sequence (a1, a2, a3) is a juggling pattern with period 3. Thus, a walk
on this graph moves from one juggling pattern to another. It is of interest [30] to
find as few cycles as possible to cover every edge once and only once. So, using
this graph we can answer questions like these to pack all the juggling patterns with
given period and a specified number of balls into sequences as short as possible.

Definition 9. The indegree (or outdegree) of u is the number of edges with u
as the head (or tail respectively).
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Figure 8. A directed graph associated with juggling patterns.

In this book, we are mainly concerned with finite graphs. Very many realistic
graphs are huge but still finite. The Internet graph can has a few billion nodes and
keeps growing. The limit of the growth is perhaps infinity. Indeed, we dabble with
infinity in several ways. We consider families of finite graphs on n vertices where
n goes to infinity. In the enumeration of graphs satisfying various properties, we
estimate the main order of magnitude or bound lower order terms by using the big
“Oh” or little “oh” notation, namely, O(·) and o(·). The reader is referred to the
book of Wilf [116] for a discussion of this notation.

1.3. Degree sequences and the power law

In a graph G, each vertex v has its degree, denoted by dv, as the number of
edges incident to v. The collection of the degrees dv for all v can be viewed as a
function defined on V (G) or be considered as a multi-set. There are several efficient
ways to represent the degrees.

Typically, we can place the degrees as a list. If the vertex set consists of vertices
v1, v2, . . . , vn, the degree sequence can be written as dv1 , dv2 , . . . , dvn . For example,
the graph in Figure 7 has a degree sequence

(1, 3, 4, 3, 3, 2).

Of course, the degree sequence depends on the choice of the order that we label the
vertices. So, (4, 3, 3, 3, 2, 1) is also a degree sequence for the graph in Figure 7.

For a given integer sequence (d1, d2, . . . , dn), a natural question is if such a
sequence is graphical, i.e., is a degree sequence of some graph. This question was
answered by Erdős and Gallai in 1960. For a sequence to be graphical, it is necessary
that the sum of all the degrees is even (as dictated by the Handshake Theorem).
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Another necessary condition is as follows: For each integer r ≤ n− 1,
r∑

i=1

di ≤ r(r − 1) +
n∑

i=r+1

min{r, di}.(1.1)

Erdős and Gallai [50] showed that these two necessary conditions are in fact suffi-
cient. In other words, an integer sequence (d1, d2, . . . , dn) is graphical if

∑n
i=1 di is

even and (1.1) holds for all r ≤ n− 1.

Another characterization of graphical sequences was given by Havel [71] and
Hakimi [70]. Namely, a sequence (d1, d2, . . . , dn) with di ≥ di−1, n ≥ 3 and d1 ≥ 1
is graphical if and only if (d2 − 1, d3 − 1, . . . , dd1+1 − 1, dd1+2, . . . , dn) is graphical.

An alternative way to present the collection of degrees is to consider the fre-
quencies of the degrees. Let nk denote the number of vertices of degree k. The
degree distribution of G can be represented as (n1, n2, . . . , nt) where t denotes the
maximum degree in G. For example, the degree distribution of the graph in Figure
7 is 〈1, 2, 3, 1〉. We can also plot the degree distribution as shown in Figure 9.

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4

Figure 9. The degree distribution of the graph in Figure 7.

Suppose the degree distribution 〈n0, n1, . . . , nt〉 of a graph G satisfies the con-
dition that nk is proportional to k−β for some fixed β > 1, i.e.,

nk ∝ 1
kβ

(1.2)

We say that G has a power law distribution with exponent β. We note that the
expression in (1.2) is an asymptotic equation and is not exact. This is due to
the fact that when dealing with a very large graph the precise numbers are either
impossible to obtain or just unimportant. In such cases, what is important is to
be able to control the error bounds. The asymptotic expression says the ratio of
the error bound and the main term goes to 0 as the number of vertices approaches
infinity.

For a graph with a power law degree distribution, a good way to illustrate the
degree distribution is by using a logarithmic scale. Namely, if we plot, for each k,
the point (log x, log y) with x = k and y = nk. The resulting curve should be a
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straight line. If the power law has exponent β, the points satisfy the equation

log y ≈ α− β log x.

The negative slope of the line is just β as indicated in Figure 4.

1.4. History of the power law

The earliest work on power laws can be traced back to the lecture notes of
three volumes by the economist Wilfredo Pareto [103] in 1896 who argued that
in all countries and times, the distribution of income and wealth follows a regular
logarithmic pattern.

In 1926, Lotka [85] plotted the distribution of authors in the decennial index of
Chemical Abstracts (1907-1916), and he found that the number of authors published
n papers is inversely proportional to the square of n (which is often called Lotka’s
law).

In 1932, Zipf [121] observed that the frequency of English words follows a
power law function. That is, the word frequency that has rank i among all word
frequencies is proportional to 1/ia where a is close to 1. This is called Zipf’s law or
Zipf’s distribution. Estoup [52] observed the same phenomenon for French in 1916.
In fact, Zipf’s law (which perhaps should be called Estoup’s law) holds for other
human languages, as well as for some artificial ones (e.g. programming languages)
[92]. Similarly, Zipf [122] is often credited for noting that city sizes seem to follow
a power law, although this idea can be traced back to Auerback [12] in 1913.

In 1949, Yule [120] gave an explanation quite similar to preferential attachment
for the distribution of species among genera of plants based on the empirical results
of Willis [118]. The definition and analysis of the preferential attachment scheme
will be given later in Chapter 3.

In an influential paper of 1955, Simon [106] gave an argument of how the
preferential attachment model leads to power law and he listed five applications —
the distribution of word frequencies in a document, the distribution of the number of
papers published by scientists, the distribution of cities by population, distribution
of income, and the distribution of species among genera.

After Simon’s article appeared, Mandelbrot raised vigorous objections to Si-
mon’s model and derivations based on preferential attachment. There was a series
of heated exchanges between Simon and Mandelbrot in Information and Control
[89, 90, 91, 107, 108, 109]. A scholarly report of this can be found in [97]. In the
end, the economists seem to have sided with Simon and the preferential attachment
model, as seen in the comprehensive survey by Gabaix [61].

In the study of random recursive trees, the parent is chosen from current vertices
with probability proportional to the number of children of the node plus 1. This
is just a special case of preferential attachment. The degree distribution of such
recursive trees was shown to obey a power law [93] (also see a 1993 survey [110]).
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Then came the dawn of the new Millennium. The Internet and the vast amount
of information flowing through it have touched every aspect of our lives as never
before. Huge interconnection networks, physical as well as those derived from
massive data, are ubiquitous. It is then essential to understand the structure of
these networks and their true nature. Around 1999, several research groups found
power law distributions in numerous large networks. These include the Notre Dame
group, the Santa Barbara group, the IBM group (and their consultants at the time),
and the AT&T group (and their consultants including one of the authors) among
others.

In 1999, Kumar et al. [84] from IBM reported that a web crawl of a pruned
data set from 1997 containing about 40 million pages revealed that the in-degree
and out-degree distributions of the web followed a power law. At Notre Dame,
Albert and Barabási [6, 14] independently reported the same phenomenon on the
approximately 325 thousand node nd.edu subset of the web. Both reported an
exponent of approximately 2.1 for the in-degree power law and 2.7 for the out-
degree (although the degree sequence for the out-degree deviates from the power
law for small degree). Later on, these figures were confirmed for a Web crawl
of approximately 200 million nodes [27]. Thus, the power law fit of the degree
distribution of the Web appears to be remarkably stable over time and scale.

Faloutsos et al. [54] have observed a power law for the degree distribution of
the Internet network. They reported that the distribution of the out-degree for the
interdomain routing tables fits a power law with an exponent of approximately 2.2
and that this exponent remained the same over several different snapshots of the
network. At the router level the out-degree distribution for a single snapshot in
1995 followed a power law with an exponent of approximately 2.6. Their influential
paper [54] also includes data on various properties of the Internet graphs.

At AT&T, the researchers studied the graph derived from telephone calls during
a period of time over one or more carriers’ networks which is called a call graph.
Using data collected by Abello et al. [1], Aiello et al. [2] observed that their call
graphs are power law graphs. Both the in-degrees and the out-degrees have an
exponent of 2.1.

In addition to the Web graph and the call graph, many other massive graphs
exhibit a power law for the degree distribution. The graphs derived from the U.S.
power grid, the Hollywood graph of actors (where there is an edge between two
actors if they have appeared together in a movie), the foodweb (links for ecological
dynamics among diverse assemblages of species [117]), cellular and metabolic net-
works [16], and various social networks [111] all obey a power law. Thus, a power
law fit for the degree distribution appears to be a ubiquitous and robust property
for many massive real-world graphs.

Since 1999, several factors helped accelerate the progress on power law graphs
—ample computing power for experimentalists, the usage of rigorous analysis from
theoreticians and a conducive interdisciplinary nature of the area. There is room
for all kinds of ideas and imagination, through modeling, analysis, optimization,
algorithms, heuristics, biocomplexity and all their foundation in graph theory.
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Time Reference Comments
1896 Pareto [103] The distribution of income and wealth.
1926 Lotka [85] Lotka’s law for authors in Chemical Abstracts.
1932 Zipf [121] Zipf’s law for the frequency of English words.
1949 Yule [120] The distribution of species among genera of plants.
1955 Simon [106] Simon’s model for various power law distributions.

1999
Faloutsos et al. [54]
Kumar et al. [84]
Barabási et al. [6]

The WWW graph is a power law graph.

1999 Abello et al. [1]
Aiello et al. [2] The call graphs are power law graphs.

1999 Bhalla et al.[16]
Schilling [105] Cellular and metabolic networks are power law graphs.

2000 Watts, Strogatz [114] Various social networks are power law graphs.

Table 1. A time table on the history of the power law.

1.5. Examples of power law graphs

1.5.1. Internet graphs. Here we mention several graphs that are related to
Internet.

(1) AS-BGP networks: An autonomous system (AS) is a network or a
group of networks under a common administration with common routing
policies, such as networks inside a university or a corporation. The Border
Gateway Protocol (BGP) is an inter-autonomous system routing protocol,
for exchanging routing information between ASes or within an AS. For
each destination, the router of an AS selects one AS path via BGP and
records it to its BGP routing tables. The AS-BGP network is a graph
with vertices consisting of ASes, and edges as AS pairs occurring in all AS
paths. Using the data collected by AS1221 (ASN-TELSTRA Telstra Pty
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Figure 10. The num-
ber of vertices for each
possible outdegree for
an AS-BGP network.

Figure 11. The num-
ber of vertices for each
possible indegree for an
AS-BGP network.
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Figure 12. A subgraph of a BGP graph.

Ltd), we examine a particular subgraph of the AS-BGP network, whose
edge set is the union of AS paths recorded in AS1221’s BGP routing
table. The asymmetry of indegree distribution and outdegree distribution
is apparent as seen in Figure 10 and 11.

(2) The WWW-graphs are basically Internet topology maps. The vertices are
URL’s and the edges are those detected by traceroute-style path probes.
For example, there are about 5 billion distinct web pages indexed by
Google search engines. According to the Internet Systems Consortium,
there are about 480,000 top level domain names as of July 2005. Figure
12 is a drawing of a subgraph of a BGP graph with about 6,400 vertices
and 13,000 edges.

(3) There are many large social networks based on various Internet commu-
nities such as the Instant Messaging networks of Yahoo, AOL and MSN.
One of such examples is illustrated in Figure ??.

1.5.2. The call graph. The call graphs are generated by long distance tele-
phone calls over different time intervals. For the sake of simplicity, we consider an
example consisting of all the calls made in one day. A completed phone call is an
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edge in the graph. Every phone number which either originates or receives a call is
a node in the graph. When a node originates a call, the edge is directed out of the
node and contributes to that node’s outdegree. Similarly, when a node receives a
call, the edge is directed into the node and contributes to that node’s indegree.

In Figure 13, we plot the number of vertices versus the outdegree for the call
graph of a particular day. A similar plot is shown in Figure 14 for the indegree.
Plots of the number of vertices versus the indegree or outdegree for the call graphs
for longer or shorter periods of time are extremely similar. For the call graph in
Figures 13 and 14, we plot the number of connected components for each possible
size in Figure 15.

Figure 13. The num-
ber of vertices for each
possible outdegree for a
call graph.

Figure 14. The num-
ber of vertices for each
possible indegree for a
call graph.

1.5.3. Collaboration graphs. The collaboration graph is based on the data-
base of Math Review of the American Mathematical Society. The database consists
of 1.9 million authored items. There are several versions of the collaboration graph:

• The collaboration graph C has roughly 401, 000 authors as its vertices.
as of July, 2004. Two authors are connected by an edge if and only if
they have coauthored a paper. We remark that in this definition, a paper
with five authors can introduce 10 edges. Also, C is a simple graph, not
counting loops. The maximum degree of C is 1416, which of course is the
number of coauthors of Paul Erdős, who have Erdős number 1. Anyone
who wrote a paper with someone with Erdős number 1 has Erdős number
2 and so on. The maximum Erdős number is 13. The collaboration
graph has 84,000 isolated vertices. The largest connected component of
C has about 268,000 vertices and 676,000 edges. The reader is referred to
the website of Grossman [68] for many interesting properties of C. For
example, C is a power law graph with exponent 2.46. The collaboration
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Figure 15. The number of connected components for each possible
component size for a call graph.

graph C is sometimes called the collaboration graph of the first kind, in
order to distinguish it from the other collaboration graphs below.
• The collaboration graph of the second kind, denoted by C ′, has the same

vertex set as C. In contrast with C, only papers with two coauthors are
considered. Two vertices in C ′ are joined by an edge if and only if the
corresponding two authors have written a paper by themselves without
other coauthors. Not surprisingly, C ′ has 84,000 isolated vertices. Among
the remaining 235,000 vertices, there are 284,000 edges. The maximum
degree of C ′ is 230, of course still due to Paul Erdős. The giant component
of C ′ has 176,000 vertices. Additional properties on the giant component
of C ′ can be found in Section 6.10.

• The collaboration multigraph allows multiple edges between two vertices.
The number of edges between two authors are exactly the number of their
joint papers. For example, Andras Sarkozy has 62 joint papers with Erdős.
Therefore there are 62 edges between the two vertices representing them.
The collaboration multigraph has not been closely studied.

• The fractional collaboration graph has edge weights as inverses of the num-
bers of joint papers of two coauthors. For example, the edge between
Sarkozy and Erdős has weight 1/62. The edge between Chung and Erdős
has weight 1/13. The edge weight has some geometrical interpretations.
The smaller the weight is, the closer the coauthor relation is. The frac-
tional collaboration graph also has not been closely examined.
• The collaboration graph is growing rapidly. For example, the collabora-

tion graph of the first kind as of May 2000 had about 333,000 vertices and
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496,000 edges. Here we illustrate the degree distribution of such a col-
laboration graph in Figure 16. The distribution of connected component
sizes is given in Figure 17.

The drawing of the induced subgraph of the collaboration graph of the first kind
(as of May 2000) is included in Figure 18.
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Figure 16. The num-
ber of vertices for each
possible degree for the
collaboration graph.

Figure 17. The num-
ber of components for
each possible size for
the collaboration graph.

1.5.4. Hollywood graph. The Hollywood graph is another version of a col-
laboration graph derived from the movies database. The vertices are about 225,000
actors and an edge connects any two actors who have appeared in a feature film
together. There are about 13 million edges. In [6], Barabási and Albert found the
Hollywood graph satisfies the power law with exponent 2.3. Watts and Strogatz
[114] have examined the Hollywood graph in their study of small world phenome-
non. Similar to the Erdős number, the so-called Kevin Bacon number of an actor
is the shortest distance to Kevin Bacon in the Hollywood graph. There are several
websites delicated to this topic as well a few variations of games. In Figure 19, an
induced subgraph with about 10,000 vertices is illustrated.

1.5.5. Biological networks. To exploit the huge amount of information from
the genome data and the extensive bioreaction database, a major approach in the
post-genome era is to understand the organizational principle of various genetic
and metabolic networks. A great number of gene products are enzymes that cat-
alyze cellular reactions forming a complex metabolic network. In fact, there are
many kinds of biological networks with nodes corresponding to the metabolites
and edges representing reactions between the nodes. The adjacency can be de-
fined using various reaction databases, including the enzyme-reaction database,
chemical-reaction database, reversibility information of reactions, reaction-enzyme
relation, enzyme-gene relations, and the evolving and updating of metabolic net-
works. Among the numerous biological networks, the yeast protein-protein net-
works are powerlaw graphs with exponents about 1.6 (see [45, 112]). The E. coli
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Figure 18. An induced subgraph of the collaboration graph.

metabolic networks are power law networks with exponents in the range of 1.7−2.2
(see [2, 59]). The yeast gene expression networks have exponents 1.4−1.7 (see [45])
and the gene functional interaction network has exponent 1.6 (see [69]). As can be
seen, the range for the exponents of biological networks is somewhat different from
the non-biological ones. This will be further discussed in Chapter 4.

1.6. An outline of the book

The main goal of this book is to study several random graph models and the
tools required for analyzing these models.

When we say “a random graph”, it means a probability space (consisting of
some family F of graphs) together with a probability distribution (which assigns
to each member of F a probability of being chosen).

All random graph models for power law graphs basically belong to the following
two categories — the off-line model and on-line model.

For the off-line model, in the graph under consideration the number of vertices
is fixed, say n vertices. For example, the probability space can be the set of all
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Figure 19. A subgraph of the Hollywood graph.

graphs on n vertices. The probability distribution of the random graph depends
upon the choice of the model.

The on-line model is often called the generative model. At each tick of the
clock, a decision is made for adding or deleting vertices/edges. The on-line model
can be viewed as an infinite sequence of off-line models while the random graph
model at time t may depend on all the earlier decisions.

The on-line models are of course much harder to analyze than the off-line
models. Nevertheless, one might argue that the on-line models are closer to the
way that realistic networks are generated. Soon after the recent “rediscovery” of
power law networks, the attention was first on the on-line models. In Chapter 3,
we discuss the generative model coming from a preferential attachment scheme.
In Chapter 4 we consider the duplication models, that are especially suitable for
studying networks that arise in biology.

Random graph theory has its roots in the early work of Erdős and Rényi. The
classical model, that we call the Erdős-Rényi model, is an off-line model. There are
two parameters – n, the number of vertices and p, the fixed probability for choosing
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edges. The probability space consists of all graphs with n vertices. Each pair of
vertices {u, v} is chosen to be an edge with probability p. Thus, the probability of
choosing a specified graph on n vertices and e edges is pe(1− p)(n2)−e.

There is a large literature and extensive research on random graphs of the
Erdős-Rényi model which includes thousands of papers and dozens of books. There
is a wealth of knowledge in classical random graph theory. Nevertheless, the Erdős-
Rényi graphs have vertices which are almost regular and the expected degree is
the same for every vertex. That is very different from realistic graphs that have
uneven degree distributions such as the power law. Furthermore, the study of
classical random graphs mostly focuses on dense graphs and not as much on sparse
graphs. (Here a sparse graph means a graph on n vertices with at most cn edges
for some constant c.) The sparse random graphs in the Erdős-Rényi model do
not have much local structure — locally the induced subgraphs are all like trees
while the power law graphs are sparse but with a great deal of local structures. In
spite of these shortcomings, the classical random graph theory and in particular,
the seminal work of Erdős and Rényi provide a solid foundation for our study of
general random graphs. In Section 5.1, we review some of the significant results in
classical random graphs.

In Chapter 5, we consider an off-line random graph model G(w) for given degree
distribution w. Our model is a generalization of the Erdős-Rényi model. Each pair
{u, v} of vertices is independently chosen to be an edge with probability puv. Here
puv is selected so that the expected degree at each vertex is as given. (For details,
see Section 5.2.)

Because of the simplicity and elegance inherited from the Erdős-Rényi model,
the random graph model G(w) is quite amendable for probabilistic analysis. By
sharpening the techniques in classical random theory (as seen in Chapter 2), we are
able to examine a number of the major invariants of interest.

In Chapter 6, we analyze the sizes of the connected components and in par-
ticular the emergence of the giant component in a graph in G(w). In Chapter 7,
we study the diameter and average distance of a random graph in G(w) and in
particular the implications for power law graphs. In Chapter 8, we examine the
eigenvalue distribution of the adjacency matrix of a random graph in G(w). In
Chapter 9, we analyze the spectra of the Laplacian of a random graph in G(w) and
particularly the semi-circle law.

In addition to the random graph G(w) we also consider another off-line model
called the configuration model. The original configuration model is a random graph
model for k-regular graphs formed by combining k random matchings. The configu-
ration model for a given degree sequence can be constructed by contracting random
matchings appropriately (details in Section 11.1). In Chapter 11, we examine the
evolution of random graphs in the configuration model and other related problems.

We consider two on-line random graphs — the generative model by preferential
attachment schemes (in Chapter 3) and the duplication model that is particularly
appropriate for biological networks (in Chapter 4). In addition, we also discuss the
dynamic models that involve both addition and deletion of vertices/edges.
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In Chapter 10, we analyze the on-line models using the knowledge that we have
about the off-line models. We examine the comparisons of random graph models
and the methods that are needed in this line of study.

Although random graph models are useful for analyzing realistic networks, there
is no doubt that some aspects of realistic networks are not captured by random
graphs. In Chapter 12, we look into a more general setting which uses random
graphs to model the “global” aspects of networks while allowing further control of
“local” aspects.

A flow chart in Figure 20 summarizes the interrelations of the chapters. Many
chapters are mainly based on previous papers by the two authors and their col-
laborators. Chapter 1 is based on two papers with Bill Aiello [?, ?]. An earlier
version of Chapter 2 has appeared as a survey paper [35] which contains additional
examples. Chapter 3 is partly based on [?, 40] and Chapter 4 is based on [41].
Several sections of Chapter 5 contain material in [32, 33, 37]. Chapter 6 is mainly
based on [33, 37] and Chapter 7 is based on [34]. Chapters 8 and 9 are based on
two papers with Van Vu [38, 39]. Chapter 10 is partly in [40] and Chapter 11
is based on [2]. Chapter 12 has overlapped with [36] and the papers with Reid
Andersen [10, 11].
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Figure 20. A flow chart of the chapters





CHAPTER 2

Old and new concentration inequalities

In the study of random graphs or any randomly chosen objects, the “tools
of the trade” mainly concern various concentration inequalities and martingale
inequalities.

To say this in layman’s terms, suppose we wish to predict the outcome of
a problem of interest. One reasonable guess is the expected value of the subject.
However, how can we tell how good the expected value is, say, to the actual outcome
of the event? Wouldn’t it be nice if such a prediction can be accompanied by a
guarantee of its accuracy (within a certain error estimate, for example)? This
is exactly the role that the concentration inequalities play. In fact, the analysis
can easily go astray without the rigorous control coming from the concentration
inequalities.

In our study of random power law graphs, the usual concentration inequalities
are simply not enough. The reasons are multi-fold: Due to uneven degree distri-
bution, the error bound of those very large degrees offset the delicate analysis in
the sparse part of the graph. Furthermore, our graph is dynamically evolving and
therefore the probability space is changing at each tick of the time. The problems
arising in the analysis of random power law provide impetus for improving our
technical tools.

Indeed, in the course of our study of general random graphs, we need to use
several strengthened versions of concentration inequalities and martingale inequal-
ities. They are interesting in their own rights and may be useful for many other
problems as well.

In the next several sections, we state and prove a number of variations and
generalizations of concentration inequalities and martingale inequalities. Many of
these will be used in later chapters. An earlier version of this chapter led to a
survey paper in [35].

2.1. Binomial distribution and its asymptotic behavior

The Bernoulli trials, named after James Bernoulli, can be thought of as a
sequence of coin-tossings. For some fixed value p, where 0 ≤ p ≤ 1, the outcome of
the coin-tossing has probability p of getting a “head”. Let Sn denote the number
of heads after n tosses. We can write Sn as a sum of independent random variables

21
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Xi as follows:
Sn = X1 +X2 + · · ·+Xn

where, for each i, the random variable X satisfies

Pr(Xi = 1) = p,

Pr(Xi = 0) = 1− p.(2.1)

A classical question is to determine the distribution of Sn. It is not too difficult to
see that Sn has the binomial distribution B(n, p):

Pr(Sn = k) =
(
n

k

)
pk(1− p)n−k, for k = 0, 1, 2, . . . , n.

The expectation and variance of B(n, p) are

E(Sn) = np, Var(Sn) = np(1− p).

To better understand the asymptotic behavior of the binomial distribution, we
compare it with the normal distribution N(a, σ), whose density function is given
by

f(x) =
1√
2π
e−

(x−a)2

2σ2 , −∞ < x <∞

where a denotes the expectation and σ2 is the variance.

The case N(0, 1) is called the standard normal distribution whose density func-
tion is given by

f(x) =
1√
2π
e−x

2/2, −∞ < x <∞.
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Figure 1. The Bi-
nomial distribution
B(10000, 0.5)

Figure 2. The Stan-
dard normal distribu-
tion N(0, 1)

When p is a constant, the limit of the binomial distribution, after scaling, is the
standard normal distribution and can be viewed as a special case of the Central-
Limit Theorem, sometimes called the DeMoivre-Laplace limit Theorem [51].
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Theorem 2.1. The binomial distribution B(n, p) for Sn, as defined in (2.1),
satisfies, for two constants a and b,

lim
n→∞

Pr(aσ < Sn − np < bσ) =
∫ b

a

1√
2π
e−x

2/2dx

where σ =
√
np(1− p) provided np(1− p)→∞ as n→∞.

Proof. We use the Stirling formula for n! (see [67]).

n! = (1 + o(1))
√

2πn(
n

e
)n

or, equivalently, n! ≈
√

2πn(
n

e
)n.

For any constant a and b, we have

Pr(aσ < Sn − np < bσ)

=
∑

aσ<k−np<bσ

(
n

k

)
pk(1− p)n−k

≈
∑

aσ<k−np<bσ

1√
2π

√
n

k(n− k)
nn

kk(n− k)n−k
pk(1− p)n−k

=
∑

aσ<k−np<bσ

1√
2πnp(1− p) (

np

k
)k+1/2(

n(1− p)
n− k )n−k+1/2

=
∑

aσ<k−np<bσ

1√
2πσ

(1 +
k − np
np

)−k−1/2(1− k − np
n(1− p) )−n+k−1/2.

To approximate the above sum, we consider the following slightly simpler expres-
sion. Here, to estimate the lower ordered term, we use the fact that k = np+O(σ)
and 1 + x = eln(1+x) = ex−x

2+O(x3), for x = o(1). To proceed, we have

Pr(aσ < Sn − np < bσ)

≈
∑

aσ<k−np<bσ

1√
2πσ

(1 +
k − np
np

)−k(1− k − np
n(1− p) )−n+k

≈
∑

aσ<k−np<bσ

1√
2πσ

e
− k(k−np)

np +
(n−k)(k−np)

n(1−p) +
k(k−np)2

n2p2 +
(n−k)(k−np)2

n2(1−p)2
+O( 1

σ )

=
∑

aσ<k−np<bσ

1√
2πσ

e−
1
2 ( k−npσ )2+O( 1

σ )

≈
∑

aσ<k−np<bσ

1√
2πσ

e−
1
2 ( k−npσ )2

Now, we set x = xk = k−np
σ , and dx = xk − xk−1 = 1/σ. Note that a < x1 < x2 <

· · · < b form a 1/σ-net for the interval (a, b). As n approaches the infinity, the limit
exists. We have

lim
n→∞

Pr(aσ < Sn − np < bσ) =
∫ b

a

1√
2π
e−x

2/2dx.

Thus, the limit distribution of the normalized binomial distribution is the normal
distribution. �
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When np is upper bounded (by a constant), the above theorem is no longer
true. For example, for p = λ

n , the limit distribution of B(n, p) is the so-called
Poisson distribution P (λ).

Pr(X = k) =
λk

k!
e−λ, for k = 0, 1, 2, · · · .

The expectation and variance of the Poisson distribution P (λ) is given by

E(X) = λ, and Var(X) = λ.

Theorem 2.2. For p = λ
n , where λ is a constant, the limit distribution of

binomial distribution B(n, p) is the Poisson distribution P (λ).

Proof. We consider

lim
n→∞

Pr(Sn = k) = lim
n→∞

(
n

k

)
pk(1− p)n−k

= lim
n→∞

λk
∏k−1
i=0 (1− i

n )
k!

e−p(n−k)

=
λk

k!
e−λ.

�.
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Figure 3. The Bi-
nomial distribution
B(1000, 0.003)

Figure 4. The Pois-
son distribution P (3)

As p decreases from Θ(1) to Θ( 1
n ), the asymptotic behavior of the binomial

distribution B(n, p) changes from the normal distribution to the Poisson distribu-
tion. (Some examples are illustrated in Figure 5 and 6). Theorem 2.1 states that
the asymptotic behavior of B(n, p) within the interval (np−Cσ, np+Cσ) (for any
constant C) is close to the normal distribution. In some applications, we might
need asymptotic estimates beyond this interval.
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2.2. General Chernoff inequalities

If the random variable under consideration can be expressed as a sum of inde-
pendent variables, it is possible to derive good estimates. The binomial distribution
is one such example where Sn =

∑n
i=1Xi and Xi’s are independent and identical.

In this section, we consider sums of independent variables that are not necessarily
identical. To control the probability of how close a sum of random variables is to
the expected value, various concentration inequalities are in play. A typical ver-
sion of the Chernoff inequalities, attributed to Herman Chernoff, can be stated as
follows:

Theorem 2.3. [28] Let X1, . . . , Xn be independent random variables with E(Xi) =
0 and |Xi| ≤ 1 for all i. Let X =

∑n
i=1Xi and let σ2 be the variance of Xi. Then

Pr(|X| ≥ kσ) ≤ 2e−k
2/4n,

for any 0 ≤ k ≤ 2σ.

If the random variables Xi under consideration assume non-negative values,
the following version of Chernoff inequalities is often useful.

Theorem 2.4. [28] Let X1, . . . , Xn be independent random variables with

Pr(Xi = 1) = pi, P r(Xi = 0) = 1− pi.
We consider the sum X =

∑n
i=1Xi, with expectation E(X) =

∑n
i=1 pi. Then we

have

(Lower tail) Pr(X ≤ E(X)− λ) ≤ e−λ
2/2E(X),

(Upper tail) Pr(X ≥ E(X) + λ) ≤ e−
λ2

2(E(X)+λ/3) .

We remark that the term λ/3 appearing in the exponent of the bound for the
upper tail is significant. This covers the case when the limit distribution is Poisson
distribution as well as the normal distribution.
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There are many variations of the Chernoff inequalities. Due to the fundamen-
tal nature of these inequalities, we will state several versions and then prove the
strongest version from which all the other inequalities can be deduced. (See Fig-
ure 7 for the flowchart of these theorems.) In this section, we will prove Theorem
2.8 and deduce Theorems 2.6 and 2.5. Theorems 2.10 and 2.11 will be stated and
proved in the next section. Theorems 2.9, 2.7, 2.13, 2.14 on the lower tail can be
deduced by reflecting X to −X.

Theorem 2.8 Theorem 2.9

Theorem 2.6 Theorem 2.7

Theorem 2.5

Theorem 2.4

Theorem 2.10 Theorem 2.13 Theorem 2.14Theorem 2.11

Upper tails Lower tails

Figure 7. The flowchart for theorems on the sum of independent variables.

The following inequality is a generalization of the Chernoff inequalities for the
binomial distribution:

Theorem 2.5. [33] Let X1, . . . , Xn be independent random variables with

Pr(Xi = 1) = pi, P r(Xi = 0) = 1− pi.
For X =

∑n
i=1 aiXi with ai > 0, we have E(X) =

∑n
i=1 aipi and we define ν =∑n

i=1 a
2
i pi. Then we have

Pr(X ≤ E(X)− λ) ≤ e−λ
2/2ν(2.2)

Pr(X ≥ E(X) + λ) ≤ e−
λ2

2(ν+aλ/3)(2.3)

where a = max{a1, a2, . . . , an}.

To compare inequalities (2.2) to (2.3), we consider an example in Figure 8.
The cumulative distribution is the function Pr(X > x). The dotted curve in Figure
8 illustrates the cumulative distribution of the binomial distribution B(1000, 0.1)
with the value ranging from 0 to 1 as x goes from −∞ to ∞. The solid curve at
the lower-left corner is the bound e−λ

2/2ν for the lower tail. The solid curve at the
upper-right corner is the bound 1− e− λ2

2(ν+aλ/3) for the upper tail.
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Figure 8. Chernoff inequalities

The inequality (2.3) in the above theorem is a corollary of the following general
concentration inequality (also see Theorem 2.7 in the survey paper by McDiarmid
[94]).

Theorem 2.6. [94] Let Xi (1 ≤ i ≤ n) be independent random variables
satisfying Xi ≤ E(Xi) + M , for 1 ≤ i ≤ n. We consider the sum X =

∑n
i=1Xi

with expectation E(X) =
∑n
i=1 E(Xi) and variance Var(X) =

∑n
i=1 Var(Xi). Then

we have

Pr(X ≥ E(X) + λ) ≤ e−
λ2

2(Var(X)+Mλ/3) .

In the other direction, we have the following inequality.

Theorem 2.7. If X1, X2, . . . , Xn are non-negative independent random vari-
ables, we have the following bounds for the sum X =

∑n
i=1Xi:

Pr(X ≤ E(X)− λ) ≤ e−
λ2

2
Pn
i=1 E(X2

i
) .

A strengthened version of the above theorem is as follows:

Theorem 2.8. Suppose Xi are independent random variables satisfying Xi ≤
M , for 1 ≤ i ≤ n. Let X =

∑n
i=1Xi and ‖X‖ =

√∑n
i=1 E(X2

i ). Then we have

Pr(X ≥ E(X) + λ) ≤ e− λ2

2(‖X‖2+Mλ/3) .

Replacing X by −X in the proof of Theorem 2.8, we have the following theorem
for the lower tail.

Theorem 2.9. Let Xi be independent random variables satisfying Xi ≥ −M ,
for 1 ≤ i ≤ n. Let X =

∑n
i=1Xi and ‖X‖ =

√∑n
i=1 E(X2

i ). Then we have

Pr(X ≤ E(X)− λ) ≤ e− λ2

2(‖X‖2+Mλ/3) .
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Before we give the proof of Theorems 2.8, we will first show the implications of
Theorems 2.8 and 2.9. Namely, we will show that the other concentration inequal-
ities can be derived from Theorems 2.8 and 2.9.

Fact: Theorem 2.8 =⇒ Theorem 2.6:

Proof. Let X ′i = Xi − E(Xi) and X ′ =
∑n
i=1X

′
i = X − E(X). We have

X ′i ≤M for 1 ≤ i ≤ n.
We also have

‖X ′‖2 =
n∑

i=1

E(X ′2i )

=
n∑

i=1

E((Xi − E(Xi))2)

=
n∑

i=1

Var(Xi)

= Var(X).

Applying Theorem 2.8, we get

Pr(X ≥ E(X) + λ) = Pr(X ′ ≥ λ)

≤ e
− λ2

2(‖X′‖2+Mλ/3)

≤ e
− λ2

2(Var(X)+Mλ/3) .

�

Fact: Theorem 2.9 =⇒ Theorem 2.7
The proof is straightforward by choosing M = 0.

Fact: Theorem 2.6 and 2.7 =⇒ Theorem 2.5

Proof. We define Yi = aiXi. Note that

‖X‖2 =
n∑

i=1

E(Y 2
i ) =

n∑

i=1

a2
i pi = ν.

Equation (2.2) follows from Theorem 2.7 since Yi’s are non-negatives.

For the other direction, we have

Yi ≤ ai ≤ a ≤ E(Yi) + a.

Equation (2.3) follows from Theorem 2.6. �

Fact: Theorem 2.8 and Theorem 2.9 =⇒ Theorem 2.3

The proof is by choosing Y = X − E(X), M = 1 and applying Theorem 2.8 and
2.9 to Y .
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Fact: Theorem 2.5 =⇒ Theorem 2.4

The proof is by choosing a1 = a2 = · · · = an = 1.

Finally, we give the complete proof of Theorem 2.8 and thus finish the proofs
for all the above theorems on Chernoff inequalities.

Proof of Theorem 2.8: We consider

E(etX) = E(et
P
iXi) =

n∏

i=1

E(etXi)

since the Xi’s are independent.

We define g(y) = 2
∑∞
k=2

yk−2

k! = 2(ey−1−y)
y2 , and use the following facts about

g:

• g(0) = 1.
• g(y) ≤ 1, for y < 0.
• g(y) is monotone increasing, for y ≥ 0.
• For y < 3, we have

g(y) = 2
∞∑

k=2

yk−2

k!
≤
∞∑

k=2

yk−2

3k−2
=

1
1− y/3

since k! ≥ 2 · 3k−2. Then we have

E(etX) =
n∏

i=1

E(etXi)

=
n∏

i=1

E(
∞∑

k=0

tkXk
i

k!
)

=
n∏

i=1

E(1 + tE(Xi) +
1
2
t2X2

i g(tXi))

≤
n∏

i=1

(1 + tE(Xi) +
1
2
t2E(X2

i )g(tM))

≤
n∏

i=1

etE(Xi)+
1
2 t

2E(X2
i )g(tM)

= etE(X)+ 1
2 t

2g(tM)
Pn
i=1 E(X2

i )

= etE(X)+ 1
2 t

2g(tM)‖X‖2 .

Hence, for t satisfying tM < 3, we have

Pr(X ≥ E(X) + λ) = Pr(etX ≥ etE(X)+tλ)

≤ e−tE(X)−tλE(etX)

≤ e−tλ+ 1
2 t

2g(tM)‖X‖2

≤ e−tλ+ 1
2 t

2‖X‖2 1
1−tM/3 .
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To minimize the above expression, we choose t = λ
‖X‖2+Mλ/3 . Therefore, tM < 3

and we have

Pr(X ≥ E(X) + λ) ≤ e−tλ+ 1
2 t

2‖X‖2 1
1−tM/3

= e
− λ2

2(‖X‖2+Mλ/3) .

The proof is complete. �

2.3. More concentration inequalities

Here we state several variations and extensions of the concentration inequalities
as in Theorem 2.8. We first consider the upper tail.

Theorem 2.10. Let Xi denote independent random variables satisfying Xi ≤
E(Xi) + ai +M , for 1 ≤ i ≤ n. For, X =

∑n
i=1Xi, we have

Pr(X ≥ E(X) + λ) ≤ e−
λ2

2(Var(X)+
Pn
i=1 a

2
i
+Mλ/3) .

Proof. Let X ′i = Xi − E(Xi)− ai and X ′ =
∑n
i=1X

′
i. We have

X ′i ≤M for 1 ≤ i ≤ n.

X ′ − E(X ′) =
n∑

i=1

(X ′i − E(X ′i))

=
n∑

i=1

(X ′i + ai)

=
n∑

i=1

(Xi − E(Xi))

= X − E(X).

Thus,

‖X ′‖2 =
n∑

i=1

E(X ′2i )

=
n∑

i=1

E((Xi − E(Xi)− ai)2)

=
n∑

i=1

E((Xi − E(Xi))2 + a2
i

= Var(X) +
n∑

i=1

a2
i .

By applying Theorem 2.8, the proof is finished. �
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Theorem 2.11. Suppose Xi are independent random variables satisfying Xi ≤
E(Xi) +Mi, for 0 ≤ i ≤ n. We order Xi’s so that Mi are in increasing order. Let
X =

∑n
i=1Xi. Then for any 1 ≤ k ≤ n, we have

Pr(X ≥ E(X) + λ) ≤ e−
λ2

2(Var(X)+
Pn
i=k(Mi−Mk)2+Mkλ/3) .

Proof. For fixed k, we choose M = Mk and

ai =
{

0 if 1 ≤ i ≤ k
Mi −Mk if k ≤ i ≤ n

We have
Xi − E(Xi) ≤Mi ≤ ai +Mk. for 1 ≤ k ≤ n.

n∑

i=1

a2
i =

n∑

i=k

(Mi −Mk)2.

Using Theorem 2.10, we have

Pr(Xi ≥ E(X) + λ) ≤ e−
λ2

2(Var(X)+
Pn
i=k(Mi−Mk)2+Mkλ/3) .

�

Example 2.12. Let X1, X2, . . . , Xn be independent random variables. For 1 ≤
i ≤ n− 1, Xi follows the same distribution with

Pr(Xi = 0) = 1− p and Pr(Xi = 1) = p.

Xn follows the distribution with

Pr(Xn = 0) = 1− p and Pr(Xn =
√
n) = p.

Consider the sum X =
∑n
i=1Xi.

We have

E(X) =
n∑

i=1

E(Xi)

= (n− 1)p+
√
np.

Var(X) =
n∑

i=1

Var(Xi)

= (n− 1)p(1− p) + np(1− p)
= (2n− 1)p(1− p).

Apply Theorem 2.6 with M = (1− p)√n. We have

Pr(X ≥ E(X) + λ) ≤ e− λ2

2((2n−1)p(1−p)+(1−p)
√
nλ/3) .

In particular, for constant p ∈ (0, 1) and λ = Θ(n
1
2 +ε), we have

Pr(X ≥ E(X) + λ) ≤ e−Θ(nε).
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Now we apply Theorem 2.11 with M1 = . . . = Mn−1 = (1 − p) and Mn =√
n(1− p). We choose k = n− 1, we have

Var(X) + (Mn −Mn−1)2 = (2n− 1)p(1− p) + (1− p)2(
√
n− 1)2

≤ (2n− 1)p(1− p) + (1− p)2n

≤ (1− p2)n.

Thus,

Pr(Xi ≥ E(X) + λ) ≤ e− λ2

2((1−p2)n+(1−p)2λ/3) .

For constant p ∈ (0, 1) and λ = Θ(n
1
2 +ε), we have

Pr(X ≥ E(X) + λ) ≤ e−Θ(n2ε).

From the above examples, we note that Theorem 2.11 gives a significantly better
bound than that in Theorem 2.6 if the random variablesXi have very different upper
bounds.

For completeness, we also list the corresponding theorems for the lower tails.
(These can be derived by replacing X by −X.)

Theorem 2.13. Let Xi denote independent random variables satisfying Xi ≥
E(Xi)− ai −M , for 0 ≤ i ≤ n. For X =

∑n
i=1Xi, we have

Pr(X ≤ E(X)− λ) ≤ e−
λ2

2(Var(X)+
Pn
i=1 a

2
i
+Mλ/3) .

Theorem 2.14. Let Xi denote independent random variables satisfying Xi ≥
E(Xi)−Mi, for 0 ≤ i ≤ n. We order Xi’s so that Mi are in increasing order. Let
X =

∑n
i=1Xi. Then for any 1 ≤ k ≤ n, we have

Pr(X ≤ E(X)− λ) ≤ e−
λ2

2(Var(X)+
Pn
i=k(Mi−Mk)2+Mkλ/3) .

Continuing the above example, we choose M1 = M2 = . . . = Mn−1 = p, and
Mn =

√
np. We choose k = n− 1, so we have

Var(X) + (Mn −Mn−1)2 = (2n− 1)p(1− p) + p2(
√
n− 1)2

≤ (2n− 1)p(1− p) + p2n

≤ p(2− p)n.

Using Theorem 2.14, we have

Pr(X ≤ E(X)− λ) ≤ e− λ2

2(p(2−p)n+p2λ/3) .

For a constant p ∈ (0, 1) and λ = Θ(n
1
2 +ε), we have

Pr(X ≤ E(X)− λ) ≤ e−Θ(n2ε).
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2.4. A concentration inequality with large error estimate

In the previous chapter, the Chernoff inequality gives very good probabilistic
estimates when a random variable is close to its expected value. Suppose we allow
the error bound to the expected value to be a positive fraction of the expected
value. Then we can obtain even better bounds for the probability of the tails. The
following two concentration inequalities can be found in [100].

Theorem 2.15. Let X be a sum of independent random indicator variables.
For any ε > 0,

(2.4) Pr(X ≥ (1 + ε)E(X)) ≤
[

eε

(1 + ε)1+ε

]E(X)

.

Theorem 2.16. Let X be a sum of independent random indicator variables.
For any 1 > ε > 0,

(2.5) Pr(X ≤ εE(X)) ≤ e−(1−ε)2E(X)/2.

The above inequalities, however, are still not enough for our applications in
Chapter 7. We need the following somewhat stronger concentration inequality for
the lower tail.

Theorem 2.17. Let X be the sum of independent random indicator variables.
For any 0 ≤ ε ≤ e−1, we have

(2.6) Pr(X ≤ εE(X)) ≤ e−(1−2ε(1−ln ε))E(X).

Proof. Suppose that X =
∑n
i=1Xi, where Xi’s are independent random vari-

ables with

Pr(Xi = 0) = 1− pi and Pr(Xi = 1) = pi.
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We have

Pr(X ≤ εE(X)) =
bεE(X)c∑

k=0

Pr(X = k)

=
bεE(X)c∑

k=0

∑

|S|=k

∏

i∈S
pi
∏

i 6∈S
(1− pi)

≤
bεE(X)c∑

k=0

∑

|S|=k

∏

i∈S
pi
∏

i 6∈S
e−pi

=
bεE(X)c∑

k=0

∑

|S|=k

∏

i∈S
pie
−Pi 6∈S pi

=
bεE(X)c∑

k=0

∑

|S|=k

∏

i∈S
pie
−Pn

i=1 pi+
P
i∈S pi

≤
bεE(X)c∑

k=0

∑

|S|=k

∏

i∈S
pie
−E(X)+k

≤
bεE(X)c∑

k=0

e−E(X)+k (
∑n
i=1 pi)

k

k!

= e−E(X)

bεE(X)c∑

k=0

(eE(X))k

k!
.

When εE(X) < 1, the statement is true since

Pr(X ≤ εE(X)) ≤ e−E(X) ≤ e−(1−2ε(1−ln ε))E(X).

Now we consider the case εE(X) ≥ 1.

Note that g(k) = (eE(X))k

k! increases when k < eE(X). Let k0 = bεE(X)c ≤
εE(X).

We have

Pr(X ≤ εE(X)) ≤ e−E(X)
k0∑

k=0

(eE(X))k

k!

≤ e−E(X)(k0 + 1)
(eE(X))k0

k0!
.

By using the Stirling formula

n! ≈
√

2πn(
n

e
)n ≥ (

n

e
)n,
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we have

Pr(X ≤ εE(X)) ≤ e−E(X)(k0 + 1)
(eE(X))k0

k0!

≤ e−E(X)(k0 + 1)(
e2E(X)
k0

)k0

≤ e−E(X)(εE(X) + 1)(
e2

ε
)εE(X)

= (εE(X) + 1)e−(1−2ε+ε ln ε)E(X).

Here we replaced k0 by εE(X) since the function (x+ 1)( e
2E(X)
x )x is increasing for

x < eE(X).

To simplify the above expression, we have

E(X) ≥ 1
ε
≥ 1

1− ε
since εE(X) ≥ 1 and ε ≤ e−1 ≤ 1− ε. Thus, εE(X) + 1 ≤ E(X).

Also, we have E(X) ≥ 1
ε ≥ e. The function ln x

x is decreasing for x ≥ e. Thus,

ln E(X)
E(X)

≤ ln 1
ε

1
ε

= −ε ln ε.

We have

Pr(X ≤ εE(X)) ≤ (εE(X) + 1)e−(1−2ε+ε ln ε)E(X)

≤ E(X)e−(1−2ε)E(X)e−ε ln εE(X)

≤ e−(1−2ε)E(X)e−2ε ln εE(X)

= e−(1−2ε(1−ln ε))E(X).

The proof of Theorem 2.17 is complete. �

2.5. Martingales and Azuma’s inequality

A martingale is a sequence of random variables X0, X1, . . . with finite means
such that the conditional expectation of Xn+1 given X0, X1, . . . , Xn is equal to Xn.

The above definition is given in the classical book of Feller [51], p. 210. How-
ever, the conditional expectation depends on the random variables under consider-
ation and can be subtly difficult to deal with in various cases. In this book we will
use the following definition which is concise and basically equivalent for the finite
cases.

Suppose that Ω is a probability space with a probability distribution p. Let F
denote a σ-field on Ω. (A σ-field on Ω is a collection of subsets of Ω which contains
∅ and Ω, and is closed under unions, intersections, and complementation.) In a
σ-field F of Ω, the smallest set in F containing an element x is the intersection of
all sets in F containing x. A function f : Ω → R is said to be F-measurable if
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f(x) = f(y) for any y in the smallest set containing x. (For more terminology on
martingales, the reader is referred to [77].)

If f : Ω → R is a function, we define the expectation E(f) = E(f(x) | x ∈ Ω)
by

E(f) = E(f(x) | x ∈ Ω) :=
∑

x∈Ω

f(x)p(x).

If F is a σ-field on Ω, we define the conditional expectation E(f | F) : Ω → R by
the formula

E(f | F)(x) :=
1∑

y∈F(x) p(y)

∑

y∈F(x)

f(y)p(y)

where F(x) is the smallest element of F which contains x.

A filter F is an increasing chain of σ-subfields

{0,Ω} = F0 ⊂ F1 ⊂ · · · ⊂ Fn = F .
A martingale (obtained from) X is associated with a filter F and a sequence of
random variables X0, X1, . . . , Xn satisfying Xi = E(X | Fi) and, in particular,
X0 = E(X) and Xn = X.

Example 2.18. Given independent random variables Y1, Y2, . . . , Yn. We can
define a martingale X = Y1+Y2+· · ·+Yn as follows. Let Fi be the σ-field generated
by Y1, . . . , Yi. (In other words, Fi is the minimum σ-field so that Y1, . . . , Yi are Fi-
measurable.) We have a natural filter F:

{0,Ω} = F0 ⊂ F1 ⊂ · · · ⊂ Fn = F .
Let Xi =

∑i
j=1 Yj +

∑n
j=i+1 E(Yj). Then, X0, X1, X2, . . . , Xn forms a martingale

corresponding to the filter F.

For c = (c1, c2, . . . , cn) a vector with positive entries, the martingale X is said
to be c-Lipschitz if

|Xi −Xi−1| ≤ ci(2.7)

for i = 1, 2, . . . , n. A powerful tool for controlling martingales is the following:

Theorem 2.19 (Azuma’s inequality). If a martingale X is c-Lipschitz, then

Pr(|X − E(X)| ≥ λ) ≤ 2e
− λ2

2
Pn
i=1 c

2
i ,(2.8)

where c = (c1, . . . , cn).

Theorem 2.20. Let X1, X2, . . . , Xn be independent random variables satisfying

|Xi − E(Xi)| ≤ ci for 1 ≤ i ≤ n.
Then we have the following bound for the sum X =

∑n
i=1Xi.

Pr(|X − E(X)| ≥ λ) ≤ 2e
− λ2

2
Pn
i=1 c

2
i .
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Proof of Azuma’s inequality: For a fixed t, we consider the convex function
f(x) = etx. For any |x| ≤ c, f(x) is below the line segment from (−c, f(−c)) to
(c, f(c)). In other words, we have

etx ≤ 1
2c

(etc − e−tc)x+
1
2

(etc + e−tc).

Therefore, we can write

E(et(Xi−Xi−1)|Fi−1) ≤ E(
1

2ci
(etci − e−tci)(Xi −Xi−1) +

1
2

(etci + e−tci)|Fi−1)

=
1
2

(etci + e−tci)

≤ et
2c2i /2.

Here we apply the conditions E(Xi −Xi−1|Fi−1) = 0 and |Xi −Xi−1| ≤ ci.
Hence,

E(etXi |Fi−1) ≤ et2c2i /2etXi−1 .

Inductively, we have

E(etX) = E(E(etXn |Fn−1))

≤ et
2c2n/2E(etXn−1)

≤ · · ·

≤
n∏

i=1

et
2c2i /2E(etX0)

= e
1
2 t

2Pn
i=1 c

2
i etE(X).

Therefore,

Pr(X ≥ E(X) + λ) = Pr(et(X−E(X)) ≥ etλ)

≤ e−tλE(et(X−E(X)))

≤ e−tλe
1
2 t

2Pn
i=1 c

2
i

= e−tλ+ 1
2 t

2Pn
i=1 c

2
i .

We choose t = λPn
i=1 c

2
i

(in order to minimize the above expression). We have

Pr(X ≥ E(X) + λ) ≤ e−tλ+ 1
2 t

2Pn
i=1 c

2
i

= e
− λ2

2
Pn
i=1 c

2
i .

To derive a similar lower bound, we consider −Xi instead of Xi in the preceding
proof. Then we obtain the following bound for the lower tail.

Pr(X ≤ E(X)− λ) ≤ e−
λ2

2
Pn
i=1 c

2
i .

�
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2.6. General martingale inequalities

Many problems which can be set up as a martingale do not satisfy the Lipschitz
condition. It is desirable to be able to use tools similar to the Azuma inequality in
such cases. In this section, we will first state and then prove several extensions of
the Azuma inequality (see Figure 9).

Theorem 2.20

Theorem 2.21

Theorem 2.18

Theorem 2.19 Theorem 2.22

Theorem 2.24

Theorem 2.23

Upper tails Lower tails

Figure 9. The flowchart for theorems on martingales.

Our starting point is the following well known concentration inequality (see
[94]):

Theorem 2.21. Let X be the martingale associated with a filter F satisfying

(1) Var(Xi|Fi−1) ≤ σ2
i , for 1 ≤ i ≤ n;

(2) |Xi −Xi−1| ≤M , for 1 ≤ i ≤ n.

Then, we have

Pr(X − E(X) ≥ λ) ≤ e−
λ2

2(
Pn
i=1 σ

2
i

+Mλ/3) .

Since the sum of independent random variables can be viewed as a martingale
(see Example 2.18), Theorem 2.21 implies Theorem 2.6. In a similar way, the
following theorem is associated with Theorem 2.10.

Theorem 2.22. Let X be the martingale associated with a filter F satisfying

(1) Var(Xi|Fi−1) ≤ σ2
i , for 1 ≤ i ≤ n;

(2) Xi −Xi−1 ≤Mi, for 1 ≤ i ≤ n.

Then, we have

Pr(X − E(X) ≥ λ) ≤ e−
λ2

2
Pn
i=1(σ2

i
+M2

i
) .

The above theorem can be further generalized:

Theorem 2.23. Let X be the martingale associated with a filter F satisfying

(1) Var(Xi|Fi−1) ≤ σ2
i , for 1 ≤ i ≤ n;
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(2) Xi −Xi−1 ≤ ai +M , for 1 ≤ i ≤ n.

Then, we have

Pr(X − E(X) ≥ λ) ≤ e−
λ2

2(
Pn
i=1(σ2

i
+a2
i
)+Mλ/3) .

Theorem 2.23 implies Theorem 2.21 by choosing a1 = a2 = · · · = an = 0.

We also have the following theorem corresponding to Theorem 2.11.

Theorem 2.24. Let X be the martingale associated with a filter F satisfying

(1) Var(Xi|Fi−1) ≤ σ2
i , for 1 ≤ i ≤ n;

(2) Xi −Xi−1 ≤Mi, for 1 ≤ i ≤ n.

Then, for any M , we have

Pr(X − E(X) ≥ λ) ≤ e−
λ2

2(
Pn
i=1 σ

2
i

+
P
Mi>M

(Mi−M)2+Mλ/3) .

Theorem 2.23 implies Theorem 2.24 by choosing

ai =
{

0 if Mi ≤M,
Mi −M if Mi ≥M.

It suffices to prove Theorem 2.23 so that all the above stated theorems hold.

Proof of Theorem 2.23:

Recall that g(y) = 2
∑∞
k=2

yk−2

k! satisfies the following properties:

• g(y) ≤ 1, for y < 0.
• limy→0 g(y) = 1.
• g(y) is monotone increasing, for y ≥ 0.
• When b < 3, we have g(b) ≤ 1

1−b/3 .
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Since E(Xi|Fi−1) = Xi−1 and Xi −Xi−1 − ai ≤M , we have

E(et(Xi−Xi−1−ai)|Fi−1) = E(
∞∑

k=0

tk

k!
(Xi −Xi−1 − ai)k|Fi−1)

= 1− tai + E(
∞∑

k=2

tk

k!
(Xi −Xi−1 − ai)k|Fi−1)

≤ 1− tai + E(
t2

2
(Xi −Xi−1 − ai)2g(tM)|Fi−1)

= 1− tai +
t2

2
g(tM)E((Xi −Xi−1 − ai)2|Fi−1)

= 1− tai +
t2

2
g(tM)(E((Xi −Xi−1)2|Fi−1) + a2

i )

≤ 1− tai +
t2

2
g(tM)(σ2

i + a2
i )

≤ e−tai+
t2
2 g(tM)(σ2

i+a2
i ).

Thus,

E(etXi |Fi−1) = E(et(Xi−Xi−1−ai)|Fi−1)etXi−1+tai

≤ e−tai+
t2
2 g(tM)(σ2

i+a2
i )etXi−1+tai

= e
t2
2 g(tM)(σ2

i+a2
i )etXi−1 .

Inductively, we have

E(etX) = E(E(etXn |Fn−1))

≤ e
t2
2 g(tM)(σ2

n+a2
n)E(etXn−1)

≤ · · ·

≤
n∏

i=1

e
t2
2 g(tM)(σ2

i+a2
i )E(etX0)

= e
1
2 t

2g(tM)
Pn
i=1(σ2

i+a2
i )etE(X).

Then for t satisfying tM < 3, we have

Pr(X ≥ E(X) + λ) = Pr(etX ≥ etE(X)+tλ)

≤ e−tE(X)−tλE(etX)

≤ e−tλe
1
2 t

2g(tM)
Pn
i=1(σ2

i+a2
i )

= e−tλ+ 1
2 t

2g(tM)
Pn
i=1(σ2

i+a2
i )

≤ e−tλ+ 1
2

t2
1−tM/3

Pn
i=1(σ2

i+a2
i )

We choose t = λPn
i=1(σ2

i+a2
i )+Mλ/3

. Clearly tM < 3 and

Pr(X ≥ E(X) + λ) ≤ e−tλ+ 1
2

t2
1−tM/3

Pn
i=1(σ2

i+c2i )

= e
− λ2

2(
Pn
i=1(σ2

i
+c2
i
)+Mλ/3

)
.

The proof of the theorem is complete. �
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For completeness, we state the following theorems for the lower tails. The
proofs are almost identical and will be omitted.

Theorem 2.25. Let X be the martingale associated with a filter F satisfying

(1) Var(Xi|Fi−1) ≤ σ2
i , for 1 ≤ i ≤ n;

(2) Xi−1 −Xi ≤ ai +M , for 1 ≤ i ≤ n.

Then, we have

Pr(X − E(X) ≤ −λ) ≤ e−
λ2

2(
Pn
i=1(σ2

i
+a2
i
)+Mλ/3) .

Theorem 2.26. Let X be the martingale associated with a filter F satisfying

(1) Var(Xi|Fi−1) ≤ σ2
i , for 1 ≤ i ≤ n;

(2) Xi−1 −Xi ≤Mi, for 1 ≤ i ≤ n.

Then, we have

Pr(X − E(X) ≤ −λ) ≤ e−
λ2

2
Pn
i=1(σ2

i
+M2

i
) .

Theorem 2.27. Let X be the martingale associated with a filter F satisfying

(1) Var(Xi|Fi−1) ≤ σ2
i , for 1 ≤ i ≤ n;

(2) Xi−1 −Xi ≤Mi, for 1 ≤ i ≤ n.

Then, for any M , we have

Pr(X − E(X) ≤ −λ) ≤ e−
λ2

2(
Pn
i=1 σ

2
i

+
P
Mi>M

(Mi−M)2+Mλ/3) .

2.7. Supermartingales and Submartingales

In this section, we consider further strengthened versions of the martingale
inequalities that were mentioned so far. Instead of a fixed upper bound for the
variance, we will assume that the variance Var(Xi|Fi−1) is upper bounded by a
linear function of Xi−1. Here we assume this linear function is non-negative for all
values that Xi−1 takes. We first need some terminology.

For a filter F:
{∅,Ω} = F0 ⊂ F1 ⊂ · · · ⊂ Fn = F ,

a sequence of random variables X0, X1, . . . , Xn is called a submartingale if Xi is
Fi-measurable (i.e., Xi(a) = Xi(b) if all elements of Fi containing a also contain b
and vice versa) then E(Xi | Fi−1) ≤ Xi−1, for 1 ≤ i ≤ n.

A sequence of random variables X0, X1, . . . , Xn is said to be a supermartingale
if Xi is Fi-measurable and E(Xi | Fi−1) ≥ Xi−1, for 1 ≤ i ≤ n.

To avoid repetition, we will first state a number of useful inequalities for for
submartingales and supermartingales. Then we will give the proof for the general
inequalities in Theorem 2.30 for submartingales and in Theorem 2.32) for super-
martingales. Furthermore, we will show that all the stated theorems follow from
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Theorems 2.30 and 2.32 (See Figure 10). Note that the inequalities for submartin-
gales and supermartingales are not quite symmetric.

Theorem 2.27

Theorem 2.25

Theorem 2.10 Theorem 2.29

Theorem 2.26

Theorem 2.22

Submartingale Supermartingale

Figure 10. The flowchart for theorems on submartingales and supermartingales

Theorem 2.28. Suppose that a submartingale X, associated with a filter F,
satisfies

Var(Xi|Fi−1) ≤ φiXi−1

and
Xi − E(Xi|Fi−1) ≤M

for 1 ≤ i ≤ n. Then we have

Pr(Xn ≥ X0 + λ) ≤ e−
λ2

2((X0+λ)(
Pn
i=1 φi)+Mλ/3) .

Theorem 2.29. Suppose that a supermartingale X, associated with a filter F,
satisfies, for 1 ≤ i ≤ n,

Var(Xi|Fi−1) ≤ φiXi−1

and
E(Xi|Fi−1)−Xi ≤M.

Then we have

Pr(Xn ≤ X0 − λ) ≤ e−
λ2

2(X0(
Pn
i=1 φi)+Mλ/3) ,

for any λ ≤ X0.

Theorem 2.30. Suppose that a submartingale X, associated with a filter F,
satisfies

Var(Xi|Fi−1) ≤ σ2 + φiXi−1

and
Xi − E(Xi|Fi−1) ≤ ai +M

for 1 ≤ i ≤ n. Here σi, ai, φi and M are non-negative constants. Then we have

Pr(Xn ≥ X0 + λ) ≤ e−
λ2

2(
Pn
i=1(σ2

i
+a2
i
)+(X0+λ)(

Pn
i=1 φi)+Mλ/3) .

Remark 2.31. Theorem 2.30 implies Theorem 2.28 by setting all σi’s and ai’s
to zero. Theorem 2.30 also implies Theorem 2.23 by choosing φ1 = · · · = φn = 0.

The theorem for a supermartingale is slightly different due to the asymmetry
of the condition on variance.
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Theorem 2.32. Suppose a supermartingale X, associated with a filter F, sat-
isfies, for 1 ≤ i ≤ n,

Var(Xi|Fi−1) ≤ σ2
i + φiXi−1

and
E(Xi|Fi−1)−Xi ≤ ai +M,

where M , ai’s, σi’s, and φi’s are non-negative constants. Then we have

Pr(Xn ≤ X0 − λ) ≤ e−
λ2Pn

i=1(σ2
i

+a2
i
)2(X0(

Pn
i=1 φi)+Mλ/3) ,

for any λ ≤ 2X0 +
Pn
i=1(σ2

i+a2
i )Pn

i=1 φ
.

Remark 2.33. Theorem 2.32 implies Theorem 2.29 by setting all σi’s and ai’s
to zero. Theorem 2.32 also implies Theorem 2.25 by choosing φ1 = · · · = φn = 0.

Proof of Theorem 2.30:

For a positive t (to be chosen later), we consider

E(etXi |Fi−1) = etE(Xi|Fi−1)+taiE(et(Xi−E(Xi|Fi−1)−ai)|Fi−1)

= etE(Xi|Fi−1)+tai

∞∑

k=0

tk

k!
E((Xi − E(Xi|Fi−1)− ai)k|Fi−1)

≤ etE(Xi|Fi−1)+
P∞
k=2

tk

k! E((Xi−E(Xi|Fi−1)−ai)k|Fi−1)

Recall that g(y) = 2
∑∞
k=2

yk−2

k! satisfying

g(y) ≤ g(b) <
1

1− b/3
for all y ≤ b and 0 ≤ b ≤ 3.

Since Xi − E(Xi|Fi−1)− ai ≤M , we have
∞∑

k=2

tk

k!
E((Xi − E(Xi|Fi−1)− ai)k|Fi−1) ≤ g(tM)

2
t2E((Xi − E(Xi|Fi−1)− ai)2|Fi−1)

=
g(tM)

2
t2(Var(Xi|Fi−1) + a2

i ).

≤ g(tM)
2

t2(σ2
i + φiXi−1 + a2

i ).

Since E(Xi|Fi−1) ≤ Xi−1, we have

E(etXi |Fi−1) ≤ etE(Xi|Fi−1)+
P∞
k=2

tk

k! E((Xi−E(Xi|Fi−1−)−ai)k|Fi−1)

≤ etXi−1+
g(tM)

2 t2(σ2
i+φiXi−1+a2

i )

= e(t+
g(tM)

2 φit
2)Xi−1e

t2
2 g(tM)(σ2

i+a2
i ).

We define ti ≥ 0 for 0 < i ≤ n, satisfying

ti−1 = ti +
g(t0M)

2
φit

2
i ,
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while t0 will be chosen later. Then

tn ≤ tn−1 ≤ · · · ≤ t0,
and

E(etiXi |Fi−1) ≤ e(ti+
g(tiM)

2 φit
2
i )Xi−1e

t2i
2 g(tiM)(σ2

i+a2
i )

≤ e(ti+
g(t0M)

2 t2iφi)Xi−1e
t2i
2 g(tiM)(σ2

i+a2
i )

= eti−1Xi−1e
t2i
2 g(tiM)(σ2

i+a2
i ).

since g(y) is increasing for y > 0.

By Markov’s inequality, we have

Pr(Xn ≥ X0 + λ) ≤ e−tn(X0+λ)E(etnXn)

= e−tn(X0+λ)E(E(etnXn |Fn−1))

≤ e−tn(X0+λ)E(etn−1Xn−1)e
t2i
2 g(tiM)(σ2

i+a2
i )

≤ · · ·
≤ e−tn(X0+λ)E(et0X0)e

Pn
i=1

t2i
2 g(tiM)(σ2

i+a2
i )

≤ e−tn(X0+λ)+t0X0+
t20
2 g(t0M)

Pn
i=1(σ2

i+a2
i ).

Note that

tn = t0 −
n∑

i=1

(ti−1 − ti)

= t0 −
n∑

i=1

g(t0M)
2

φit
2
i

≥ t0 − g(t0M)
2

t20

n∑

i=1

φi.

Hence

Pr(Xn ≥ X0 + λ) ≤ e−tn(X0+λ)+t0X0+
t20
2 g(t0M)

Pn
i=1(σ2

i+a2
i )

≤ e−(t0− g(t0M)
2 t20

Pn
i=1 φi)(X0+λ)+t0X0+

t20
2 g(t0M)

Pn
i=1(σ2

i+a2
i )

= e−t0λ+
g(t0M)

2 t20(
Pn
i=1(σ2

i+a2
i )+(X0+λ)

Pn
i=1 φi)

Now we choose t0 = λPn
i=1(σ2

i+a2
i )+(X0+λ)(

Pn
i=1 φi)+Mλ/3

. Using the fact that t0M <

3, we have

Pr(Xn ≥ X0 + λ) ≤ e
−t0λ+t20(

Pn
i=1(σ2

i+a2
i )+(X0+λ)

Pn
i=1 φi)

1
2(1−t0M/3)

= e
− λ2

2(
Pn
i=1(σ2

i
+a2
i
)+(X0+λ)(

Pn
i=1 φi)+Mλ/3) .

The proof of the theorem is complete. �

Proof of Theorem 2.32:
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The proof is quite similar to that of Theorem 2.30. The following inequality
still holds.

E(e−tXi |Fi−1) = e−tE(Xi|Fi−1)+taiE(e−t(Xi−E(Xi|Fi−1)+ai)|Fi−1)

= e−tE(Xi|Fi−1)+tai

∞∑

k=0

tk

k!
E((E(Xi|Fi−1)−Xi − ai)k|Fi−1)

≤ e−tE(Xi|Fi−1)+
P∞
k=2

tk

k! E((E(Xi|Fi−1)−Xi−ai)k|Fi−1)

≤ e−tE(Xi|Fi−1)+
g(tM)

2 t2E((Xi−E(Xi|Fi−1)−ai)2)

≤ e−tE(Xi|Fi−1)+
g(tM)

2 t2(Var(Xi|Fi−1)+a2
i )

≤ e−(t− g(tM)
2 t2φi)Xi−1e

g(tM)
2 t2(σ2

i+a2
i ).

We now define ti ≥ 0, for 0 ≤ i < n satisfying

ti−1 = ti − g(tnM)
2

φit
2
i .

tn will be defined later. Then we have

t0 ≤ t1 ≤ · · · ≤ tn,
and

E(e−tiXi |Fi−1) ≤ e−(ti− g(tiM)
2 t2iφi)Xi−1e

g(tiM)
2 t2i (σ

2
i+a2

i )

≤ e−(ti− g(tnM)
2 t2iφi)Xi−1e

g(tnM)
2 t2i (σ

2
i+a2

i )

= e−ti−1Xi−1e
g(tnM)

2 t2i (σ
2
i+a2

i ).

By Markov’s inequality, we have

Pr(Xn ≤ X0 − λ) = Pr(−tnXn ≥ −tn(X0 − λ))

≤ etn(X0−λ)E(e−tnXn)

= etn(X0−λ)E(E(e−tnXn |Fn−1))

≤ etn(X0−λ)E(e−tn−1Xn−1)e
g(tnM)

2 t2n(σ2
n+a2

n)

≤ · · ·
≤ etn(X0−λ)E(e−t0X0)e

Pn
i=1

g(tnM)
2 t2i (σ

2
i+a2

i )

≤ etn(X0−λ)−t0X0+
t2n
2 g(tnM)

Pn
i=1(σ2

i+a2
i ).

We note

t0 = tn +
n∑

i=1

(ti−1 − ti)

= tn −
n∑

i=1

g(tnM)
2

φit
2
i

≥ tn − g(tnM)
2

t2n

n∑

i=1

φi.
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Thus, we have

Pr(Xn ≤ X0 − λ) ≤ etn(X0−λ)−t0X0+
t2n
2 g(tnM)

Pn
i=1(σ2

i+a2
i )

≤ etn(X0−λ)−(tn− g(tnM)
2 t2n)X0+

t2n
2 g(tnM)

Pn
i=1(σ2

i+a2
i )

= e−tnλ+
g(tnM)

2 t2n(
Pn
i=1(σ2

i+a2
i )+(

Pn
i=1 φi)X0)

We choose tn = λPn
i=1(σ2

i+a2
i )+(

Pn
i=1 φi)X0+Mλ/3

. We have tnM < 3 and

Pr(Xn ≤ X0 − λ) ≤ e−tnλ+t2n(
Pn
i=1(σ2

i+a2
i )+(

Pn
i=1 φi)X0) 1

2(1−tnM/3)

≤ e
− λ2

2(
Pn
i=1(σ2

i
+a2
i
)+X0(

Pn
i=1 φi)+Mλ/3) .

It remains to verify that all ti’s are non-negative. Indeed,

ti ≥ t0

≥ tn − g(tnM)
2

t2n

n∑

i=1

φi

≥ tn(1− 1
2(1− tnM/3)

tn

n∑

i=1

φi)

= tn(1− λ

2X0 +
Pn
i=1(σ2

i+a2
i )Pn

i=1 φi

)

≥ 0.

The proof of the theorem is complete. �

2.8. The decision tree and relaxed concentration inequalities

In this section, we will extend and generalize previous theorems to a martingale
which is not strictly Lipschitz but is nearly Lipschitz. Namely, the (Lipschitz-
like) assumptions are allowed to fail for relatively small subsets of the probability
space and we can still have similar but weaker concentration inequalities. Similar
techniques have been introduced by Kim and Vu [78] in their important work on
deriving concentration inequalities for multivariate polynomials. The basic setup
for decision trees can be found in [9] and has been used in the work of Alon, Kim and
spencer [8]. Wormald [119] considers martingales with a ‘stopping time’ that has
a similar flavor. Here we use a rather general setting and we shall give a complete
proof here.

We are only interested in finite probability spaces and we use the following
computational model. The random variable X can be evaluated by a sequence of
decisions Y1, Y2, . . . , Yn. Each decision has finitely many outputs. The probability
that an output is chosen depends on the previous history. We can describe the
process by a decision tree T , a complete rooted tree with depth n. Each edge uv of
T is associated with a probability puv depending on the decision made from u to
v. Note that for any node u, we have

∑
v

pu,v = 1.
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We allow puv to be zero and thus include the case of having fewer than r outputs
for some fixed r. Let Ωi denote the probability space obtained after the first i
decisions. Suppose Ω = Ωn and X is the random variable on Ω. Let πi : Ω → Ωi
be the projection mapping each point to the subset of points with the same first i
decisions. Let Fi be the σ-field generated by Y1, Y2, . . . , Yi. (In fact, Fi = π−1

i (2Ωi)
is the full σ-field via the projection πi.) The Fi form a natural filter:

{∅,Ω} = F0 ⊂ F1 ⊂ · · · ⊂ Fn = F .
The leaves of the decision tree are exactly the elements of Ω. Let X0, X1, . . . , Xn =
X denote the sequence of decisions to evaluate X. Note that Xi is Fi-measurable,
and can be interpreted as a labeling on nodes at depth i.

There is one-to-one correspondence between the following:

• A sequence of random variablesX0, X1, . . . , Xn satisfyingXi is Fi-measurable,
for i = 0, 1, . . . , n.

• A vertex labeling of the decision tree T , f : V (T )→ R.

In order to simplify and unify the proofs for various general types of martingales,
here we introduce a definition for a function f : V (T ) → R. We say f satisfies an
admissible condition P if P = {Pv} holds for every vertex v.

Examples of admissible conditions:

(1) Supermartingale: For 1 ≤ i ≤ n, we have

E(Xi|Fi−1) ≥ Xi−1.

Thus the admissible condition Pu holds if

f(u) ≤
∑

v∈C(u)

puvf(v)

where Cu is the set of all children nodes of u and puv is the transition
probability at the edge uv.

(2) Subermartingale: For 1 ≤ i ≤ n, we have

E(Xi|Fi−1) ≤ Xi−1.

In this case, the admissible condition of the submartingale is

f(u) ≥
∑

v∈C(u)

puvf(v).

(3) Martingale: For 1 ≤ i ≤ n, we have

E(Xi|Fi−1) = Xi−1.

The admissible condition of the martingale is then:

f(u) =
∑

v∈C(u)

puvf(v).

(4) c-Lipschitz: For 1 ≤ i ≤ n, we have

|Xi −Xi−1| ≤ ci.
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The admissible condition of the c-Lipschitz property can be described as
follows:

|f(u)− f(v)| ≤ ci, for any child v ∈ C(u)

where the node u is at level i of the decision tree.
(5) Bounded Variance: For 1 ≤ i ≤ n, we have

Var(Xi|Fi−1) ≤ σ2
i

for some constants σi.
The admissible condition of the bounded variance property can be

described as:∑

v∈C(u)

puvf
2(v)− (

∑

v∈C(u)

puvf(v))2 ≤ σ2
i .

(6) General Bounded Variance: For 1 ≤ i ≤ n, we have

Var(Xi|Fi−1) ≤ σ2
i + φiXi−1

where σi, φi are non-negative constants, and Xi ≥ 0. The admissible
condition of the general bounded variance property can be described as
follows:∑

v∈C(u)

puvf
2(v)− (

∑

v∈C(u)

puvf(v))2 ≤ σ2
i + φif(u), and f(u) ≥ 0

where i is the depth of the node u.
(7) Upper-bound: For 1 ≤ i ≤ n, we have

Xi − E(Xi|Fi−1) ≤ ai +M

where ai’s, and M are non-negative constants. The admissible condition
of the upper bounded property can be described as follows:

f(v)−
∑

v∈C(u)

puvf(v) ≤ ai +M, for any child v ∈ C(u)

where i is the depth of the node u.
(8) Lower-bound: For 1 ≤ i ≤ n, we have

E(Xi|Fi−1)−Xi ≤ ai +M

where ai’s, and M are non-negative constants. The admissible condition
of the lower bounded property can be described as follows:

(
∑

v∈C(u)

puvf(v))− f(v) ≤ ai +M, for any child v ∈ C(u)

where i is the depth of the node u.

For any labeling f on T and fixed vertex r, we can define a new labeling fr as
follows:

fr(u) =
{
f(r) if u is a descendant of r.
f(u) otherwise.

A property P is said to be invariant under subtree-unification if for any tree
labeling f satisfying P , and a vertex r, fr satisfies P .
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We have the following theorem.

Theorem 2.34. The eight properties as stated in the preceding examples —
supermartingale, submartingale, martingale, c-Lipschitz, bounded variance, general
bounded variance, upper-bounded, and lower-bounded properties are all invariant
under subtree-unification.

Proof. We note that these properties are all admissible conditions. Let P
denote any one of these. For any node u, if u is not a descendant of r, then fr and
f have the same value on v and its children nodes. Hence, Pu holds for fr since Pu
does for f .

If u is a descendant of r, then fr(u) takes the same value as f(r) as well as
its children nodes. We verify Pu in each case. Assume that u is at level i of the
decision tree T .

(1) For supermartingale, submartingale, and martingale properties, we have
∑

v∈C(u)

puvfr(v) =
∑

v∈C(u)

puvf(r)

= f(r)
∑

v∈C(u)

puv

= f(r)
= fr(u).

Hence, Pu holds for fr.
(2) For c-Lipschitz property, we have

|fr(u)− fr(v)| = 0 ≤ ci, for any child v ∈ C(u).

Again, Pu holds for fr.
(3) For the bounded variance property, we have
∑

v∈C(u)

puvf
2
r (v)− (

∑

v∈C(u)

puvfr(v))2 =
∑

v∈C(u)

puvf
2(r)− (

∑

v∈C(u)

puvf(r))2

= f2(r)− f2(r)
= 0
≤ σ2

i .

(4) For the second bounded variance property, we have

fr(u) = f(r) ≥ 0.

∑

v∈C(u)

puvf
2
r (v)− (

∑

v∈C(u)

puvfr(v))2 =
∑

v∈C(u)

puvf
2(r)− (

∑

v∈C(u)

puvf(r))2

= f2(r)− f2(r)
= 0
≤ σ2

i + φifr(u).
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(5) For upper-bounded property, we have

fr(v)−
∑

v∈C(u)

puvfr(v) = f(r)−
∑

v∈C(u)

puvf(r)

= f(r)− f(r)
= 0
≤ ai +M.

for any child v of u.
(6) For the lower-bounded property, we have

∑

v∈C(u)

puvfr(v)− fr(v) =
∑

v∈C(u)

puvf(r)− f(r)

= f(r)− f(r)
= 0
≤ ai +M,

for any child v of u.

Therefore, Pv holds for fr and any vertex v. �.

For two admissible conditions P and Q, we define PQ to be the property,
which is only true when both P and Q are true. If both admissible conditions
P and Q are invariant under subtree-unification, then PQ is also invariant under
subtree-unification.

For any vertex u of the tree T , an ancestor of u is a vertex lying on the unique
path from the root to u. For an admissible condition P , the associated bad set Bi
over Xi’s is defined to be

Bi = {v| the depth of v is i, and Pu does not hold for some ancestor u of v}.
Lemma 2.35. For a filter F

{∅,Ω} = F0 ⊂ F1 ⊂ · · · ⊂ Fn = F ,
suppose each random variable Xj is Fi-measurable, for 0 ≤ i ≤ n. For any admis-
sible condition P , let Bi be the associated bad set of P over Xi. There are random
variables Y0, . . . , Yn satisfying:

(1) Yi is Fi-measurable.
(2) Y0, . . . , Yn satisfy condition P .
(3) {x : Yi(x) 6= Xi(x)} ⊂ Bi, for 0 ≤ i ≤ n.

Proof. We modify f and define f ′ on T as follows. For any vertex u,

f ′(u) =
{
f(u) if f satisfies Pv holds for every ancestor v of u including u itself.
f(v) v is the ancestor with smallest depth so that f fails Pv.

Let S be the set of vertices u satisfying

• f fails Pu,
• f satisfies Pv for every ancestor v of u.
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It is clear that f ′ can be obtained from f by a sequence of subtree-unifications,
where S is the set of the roots of subtrees. Furthermore, the order of subtree-
unifications does not matter. Since P is invariant under subtree-unifications, the
number of vertices that P fails decreases. Now we will show f ′ satisfies P .

Suppose to the contrary that f ′ fails Pu for some vertex u. Since P is invariant
under subtree-unifications, f also fails Pu. By the definition, there is an ancestor
v (of u) in S. After the subtree-unification on subtree rooted at v, Pu is satisfied.
This is a contradiction.

Let Y0, Y1, . . . , Yn be the random variables corresponding to the labeling f ′.
Yi’s satisfy the desired properties in (1)-(3). �

The following theorem generalizes Azuma’s inequality. A similar but more
restricted version can be found in [78].

Theorem 2.36. For a filter F

{∅,Ω} = F0 ⊂ F1 ⊂ · · · ⊂ Fn = F ,
suppose the random variable Xi is Fi-measurable, for 0 ≤ i ≤ n. Let B = Bn
denote the bad set associated with the following admissible condition:

E(Xi|Fi−1) = Xi−1

|Xi −Xi−1| ≤ ci

for 1 ≤ i ≤ n where c1, c2, . . . , cn are non-negative numbers. Then we have

Pr(|Xn −X0| ≥ λ) ≤ 2e
− λ2

2
Pn
i=1 c

2
i + Pr(B),

Proof. We use Lemma 2.35 which gives random variables Y0, Y1, . . . , Yn sat-
isfying properties (1)-(3) in the statement of Lemma 2.35. Then it satisfies

E(Yi|Fi−1) = Yi−1

|Yi − Yi−1| ≤ ci.

In other words, Y0, . . . , Yn form a martingale which is (c1, . . . , cn)-Lipschitz. By
Azuma’s inequality, we have

Pr(|Yn − Y0| ≥ λ) ≤ 2e
− λ2

2
Pn
i=1 c

2
i .

Since Y0 = X0 and {x : Yn(x) 6= Xn(x)} ⊂ Bn = B, we have

Pr(|Xn −X0| ≥ λ) ≤ Pr(|Yn − Y0| ≥ λ) + Pr(Xn 6= Yn)

≤ 2e
− λ2

2
Pn
i=1 c

2
i + Pr(B).

�

For c = (c1, c2, . . . , cn) a vector with positive entries, a martingale is said to be
near-c-Lipschitz with an exceptional probability η if

∑

i

Pr(|Xi −Xi−1| ≥ ci) ≤ η.(2.9)

Theorem 2.36 can be restated as follows:
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Theorem 2.37. For non-negative values, c1, c2, . . . , cn, a martingale X is near-
c-Lipschitz with an exceptional probability η. Then X satisfies

Pr(|X − E(X)| < a) ≤ 2e
− a2

2
Pn
i=1 c

2
i + η.

Now, we can use the same technique to relax all the theorems in the previous
sections.

Here are the relaxed versions of Theorems 2.23, 2.28, and 2.30.

Theorem 2.38. For a filter F

{∅,Ω} = F0 ⊂ F1 ⊂ · · · ⊂ Fn = F ,
suppose a random variable Xj is Fi-measurable, for 0 ≤ i ≤ n. Let B be the bad
set associated with the following admissible conditions:

E(Xi | Fi−1) ≤ Xi−1

Var(Xi|Fi−1) ≤ σ2
i

Xi − E(Xi|Fi−1) ≤ ai +M

where σi, ai and M are non-negative constants. Then we have

Pr(Xn ≥ X0 + λ) ≤ e−
λ2

2(
Pn
i=1(σ2

i
+a2
i
)+Mλ/3) + Pr(B).

Theorem 2.39. For a filter F

{∅,Ω} = F0 ⊂ F1 ⊂ · · · ⊂ Fn = F ,
suppose a non-negative random variable Xj is Fi-measurable, for 0 ≤ i ≤ n. Let B
be the bad set associated with the following admissible conditions:

E(Xi | Fi−1) ≤ Xi−1

Var(Xi|Fi−1) ≤ φiXi−1

Xi − E(Xi|Fi−1) ≤ M

where φi and M are non-negative constants. Then we have

Pr(Xn ≥ X0 + λ) ≤ e−
λ2

2((X0+λ)(
Pn
i=1 φi)+Mλ/3) + Pr(B).

Theorem 2.40. For a filter F

{∅,Ω} = F0 ⊂ F1 ⊂ · · · ⊂ Fn = F ,
suppose a non-negative random variable Xj is Fi-measurable, for 0 ≤ i ≤ n. Let B
be the bad set associated with the following admissible conditions:

E(Xi | Fi−1) ≤ Xi−1

Var(Xi|Fi−1) ≤ σ2
i + φiXi−1

Xi − E(Xi|Fi−1) ≤ ai +M

where σi, phii, ai and M are non-negative constants. Then we have

Pr(Xn ≥ X0 + λ) ≤ e−
λ2

2(
Pn
i=1(σ2

i
+a2
i
)+(X0+λ)(

Pn
i=1 φi)+Mλ/3) + Pr(B).

For supermartingales, we have the following relaxed versions of Theorem 2.25,
2.29, and 2.32.



2.8. THE DECISION TREE AND RELAXED CONCENTRATION INEQUALITIES 53

Theorem 2.41. For a filter F

{∅,Ω} = F0 ⊂ F1 ⊂ · · · ⊂ Fn = F ,
suppose a random variable Xj is Fi-measurable, for 0 ≤ i ≤ n. Let B be the bad
set associated with the following admissible conditions:

E(Xi | Fi−1) ≥ Xi−1

Var(Xi|Fi−1) ≤ σ2
i

E(Xi|Fi−1)−Xi ≤ ai +M

where σi, ai and M are non-negative constants. Then we have

Pr(Xn ≤ X0 − λ) ≤ e−
λ2

2(
Pn
i=1(σ2

i
+a2
i
)+Mλ/3) + Pr(B).

Theorem 2.42. For a filter F

{∅,Ω} = F0 ⊂ F1 ⊂ · · · ⊂ Fn = F ,
suppose a random variable Xj is Fi-measurable, for 0 ≤ i ≤ n. Let B be the bad
set associated with the following admissible conditions:

E(Xi | Fi−1) ≥ Xi−1

Var(Xi|Fi−1) ≤ φiXi−1

E(Xi|Fi−1)−Xi ≤ M

where φi and M are non-negative constants. Then we have

Pr(Xn ≤ X0 − λ) ≤ e−
λ2

2(X0(
Pn
i=1 φi)+Mλ/3) + Pr(B).

for all λ ≤ X0.

Theorem 2.43. For a filter F

{∅,Ω} = F0 ⊂ F1 ⊂ · · · ⊂ Fn = F ,
suppose a non-negative random variable Xj is Fi-measurable, for 0 ≤ i ≤ n. Let B
be the bad set associated with the following admissible conditions:

E(Xi | Fi−1) ≥ Xi−1

Var(Xi|Fi−1) ≤ σ2
i + φiXi−1

E(Xi|Fi−1)−Xi ≤ ai +M

where σi, φi, ai and M are non-negative constants. Then we have

Pr(Xn ≤ X0 − λ) ≤ e−
λ2

2(
Pn
i=1(σ2

i
+a2
i
)+X0(

Pn
i=1 φi)+Mλ/3) + Pr(B),

for λ < X0.

To see the powerful effect of the concentration and Martingale inequalities as
stated in this chapter, the best way is to check out many interesting applications.
Indeed, the inequalities here are especially useful for estimating the error bounds in
the random graphs that we shall discuss in subsequent chapters. The applications
for random graphs of the off-line models are easier than those for the on-line models.
In fact, the concentration results in Chapter 3 (for the preferential attachment
scheme) and Chapter 4 (for the duplication model) are all quite complicated. For a
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beginner, a good place to start is Chapter 5 on classical random graphs of the Erdős-
Rényi model and the generalization of random graph models with given expected
degrees. An earlier version of this chapter has appeared as a survey paper [35] and
includes some applications there.



CHAPTER 3

A generative model - the preferential attachment
scheme

The preferential attachment scheme is often attributed to Herbert Simon. In
his paper [106] of 1955, he gave a model for word distribution using the preference
attachment scheme and derived Zipf’s law. Namely, the probability of a word
having occurred exactly i times is proportional to 1/i.

The basic setup for the preferential attachment scheme is a simple local growth
rule, which however leads to a global consequence — a power law distribution. Since
this local growth rule gives preferences to vertices with large degrees, the scheme
is often described as “the rich get richer”.

In this chapter, we shall give a clean and rigorous treatment of the preferential
attachment scheme. Of interest is to determine the exponent of the power law from
the parameters of the local growth rule.

3.1. Basic steps of the preferential attachment scheme

There are two parameters for the preferential attachment model:

• A probability p, where 0 ≤ p ≤ 1.
• An initial graph G0, that we have at time 0.

Usually, G0 is taken to be the graph formed by one vertex having one loop. (We
consider the degree of this vertex to be 1, and in general a loop adds 1 to the degree
of a vertex.) Note, in this model multiple edges and loops are allowed.

We also have are two operations we do on a graph:

• Vertex-step — Add a new vertex v, and add an edge {u, v} from v by
randomly and independently choosing u in proportion to the degree of u
in the current graph.
• Edge-step — Add a new edge {r, s} by independently choosing vertices r

and s with probability proportional to their degrees.

Note that for the edge-step, r and s could be the same vertex. Thus loops could
be created. However, as the graph gets large, the probability of adding a loop can
be well bounded and is quite small.

55
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The random graph model G(p,G0) is assembled as follows:

Begin with the initial graph G0.
For t > 0, at time t, the graph Gt is formed by modifying Gt−1 as follows:

with probability p, take a vertex-step,
otherwise, take an edge-step.

When G0 is the graph consisting of a single loop, we will simplify the notation
and write G(p) = G(p,G0).

3.2. Analyzing the preferential attachment model

To analyze the graph generated by the preferential attachment model G(p), we
let nt denote the number of vertices of G(p) at time t and let et denote the number
of edges of G(p) at time t. We have

et = t+ 1.

The number of vertices nt, however, is a sum of t random indicator variables,

nt = 1 +
t∑

i=1

st

where

Pr(sj = 1) = p,

Pr(sj = 0) = 1− p.
It follows that the expected value E(nt) satisfies

E(nt) = 1 + pt.

To get a handle on the actual value of nt, we use the binomial concentration in-
equality as described in Theorem 2.4. Namely,

Pr(|nt − E(nt)| > a) ≤ e−a2/(2pt+2a/3).

Thus, nt is exponentially concentrated around E(nt).

The problem of interest is the degree distribution of a graph generated by G(p).
Let mk,t denote the number of vertices of degree k at time t. First we note that

m1,0 = 1, and m0,k = 0.

We wish to derive the recurrence for the expected value E(mk,t). Note that a vertex
of degree k at time t could have come from two cases, either it was a vertex of degree
k at time t − 1 and had no edge added to it, or it was a vertex of degree k − 1 at
time t − 1 and the new edge was put in adjacent to it. Let Ft be the σ-algebra
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associated with the probability space at time t. Thus, for t > 0 and k > 1, we have

E(mk,t|Ft−1) = mk,t−1(1− kp

2t
− (1− p)2k

2t
)

+mk−1,t−1(
(k − 1)p

2t
+

(1− p)2(k − 1)
2t

)

= mk,t−1(1− (2− p)k
2t

) +mk−1,t−1(
(2− p)(k − 1)

2t
).(3.1)

If we take the expectation on both sides, we get the following recurrence formula.

E(mk,t) = E(mk,t−1)(1− (2− p)k
2t

) + E(mk−1,t−1)(
(2− p)(k − 1)

2t
).

For t > 0 and k = 1, we have

(3.2) E(m1,t|Ft−1) = m1,t−1(1− (2− p)
2t

) + p.

Thus,

E(m1,t) = E(m1,t−1)(1− (2− p)
2t

) + p.

To solve this recurrence, some existing papers made the (unjustified) assump-
tion E(mk,t) ≈ akt where ak is independent of k. The peril of such innocent-looking
assumptions will be discussed later in this chapter.

Here we will give a rigorous proof that the expected values E(mk,t) follow a
power law when t goes to infinity. To do so, we invoke Lemma 3.1 (to be proved
in the next section) which asserts that for a sequence {at} satisfying the recursive
relation at+1 = (1− bt

t )at + ct the limit limt→∞ at
t exists and

lim
t→∞

at
t

=
c

1 + b

provided that limt→∞ bt = b > 0 and limt→∞ ct = c.

We proceed by induction on k to show that limt→∞E(mk,t)/t has a limit Mk

for each k.

The first case is k = 1. In this case, we apply Lemma 3.1 with bt = b = (2−p)/2
and ct = c = p to deduce that limt→∞E(m1,t)/t exists and

M1 = lim
t→∞

E(m1,t)
t

=
2p

4− p .

Now we assume that limt→∞E(mk−1,t)/t exists and we apply the lemma again
with bt = b = k(2−p)/2 and ct = E(mk−1,t−1)(2−p)(k−1)/(2t), so c = Mk−1(2−
p)(k−1)/2. Lemma 3.1 implies that the limit limt→∞E(mk,t)/t exists and is equal
to

Mk = Mk−1
(2− p)(k − 1)
2 + k(2− p) = Mk−1

k − 1
k + 2

2−p
.(3.3)
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Thus we can write

Mk =
2p

4− p
k∏

j=2

j − 1
j + 2

2−p
=

2p
4− p

Γ(k)Γ(2 + 2
2−p )

Γ(k + 1 + 2
2−p )

(3.4)

where Γ(k) is the Gamma function.

We wish to show that the graph G generated by G(p) is a power law graph
with Mk ∝ k−β (where ∝ means “is proportional to”) for large k. If Mk ∝ k−β ,
then

Mk

Mk−1
=

k−β

(k − 1)−β
= (1− 1

k
)β = 1− β

k
+O(

1
k2

).

From (3.3) we have

Mk

Mk−1
=

k − 1
k + 2

2−p
= 1−

1 + 2
2−p

k + 2
2−p

= 1−
1 + 2

2−p
k

+O(
1
k2

)

Thus we have an approximated power-law graph with

β = 1 +
2

2− p = 2 +
p

2− p .

Since p is between 0 and 1, the range for β is 2 ≤ β ≤ 3 as illustrated in Figure 3.2.

0.60.40.20

3

p

2.8

2.6

1

2.4

0.8

2

2.2

Figure 1. Exponent β = 2 + p
2−p falls into the range [2, 3].

The equation for Mk in (3.4) can be expressed by using the Beta function:

B(a, b) =
∫ 1

0

xa−1(1− x)b−1dx

=
Γ(a)Γ(b)
Γ(a+ b)

.(3.5)
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Therefore Mk satisfies

Mk =
2p

4− p
Γ(k)Γ(2 + 2

2−p )

Γ(k + 1 + 2
2−p )

=
p(β − 1)

β

Γ(k)Γ(1 + β)
Γ(k + β)

= p(β − 1)
Γ(k)Γ(β)
Γ(k + β)

= p(β − 1)
∫ 1

0

xk−1(1− x)β−1dx

= p(β − 1)B(k, β)

Another consequence of the above derivation for Mk is the following nontrivial
inequality:

(3.6)
∞∑

k=1

Γ(k)
Γ(k + β)

=
1

Γ(β)(β − 1)
.

One way to prove (3.6) is to use the fact that the expected number of vertices
is 1 + pt. Since

∑∞
k=1Mk = p, the equation (3.6) immediately follows.

An alternative way to directly prove (3.6) is the following:
∞∑

k=1

Γ(k)
Γ(k + β)

=
1

Γ(β)

∞∑

k=1

Γ(k)Γ(β)
Γ(k + β)

=
1

Γ(β)

∞∑

k=1

B(k, β)

=
1

Γ(β)

∞∑

k=1

∫ 1

0

xk−1(1− x)β−1dx

=
1

Γ(β)

∫ 1

0

∞∑

k=1

xk−1(1− x)β−1dx

=
1

Γ(β)

∫ 1

0

(1− x)β−2dx

=
1

Γ(β)(β − 1)
.

Equation 3.6 is proved.

3.3. A useful lemma for rigorous proofs

Lemma 3.1. Suppose that a sequence {at} satisfies the recursive relation

at+1 = (1− bt
t+ t1

)at + ct for t ≥ t0.
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Furthermore, suppose limt→∞ bt = b > 0 and limt→∞ ct = c. Then limt→∞ at
t exists

and
lim
t→∞

at
t

=
c

1 + b
.

Proof. Without loss of generality, we can assume t1 = 0 after shifting t by t1.

By rearranging the recurrence relation, we have

at+1

t+ 1
− c

1 + b
=

(1− bt
t )at + ct

t+ 1
− c

1 + b

= (
at
t
− c

1 + b
)(

t

t+ 1
)(1− bt

t
) +

t

t+ 1
(1− bt

t
)(

c

1 + b
)

+
ct
t+ 1

− c

1 + b

= (
at
t
− c

1 + b
)(1− 1 + bt

t+ 1
) +

ct
t+ 1

− (1 + bt)c
(t+ 1)(1 + b)

= (
at
t
− c

1 + b
)(1− 1 + bt

t+ 1
) +

(1 + b)ct − (1 + bt)c
(1 + b)(1 + t)

Letting st = |att − c
1+b |, the triangle inequality now gives :

st+1 ≤ st|1− 1 + bt
t+ 1

|+ | (1 + b)ct − (1 + bt)c
(1 + b)(1 + t)

|.

Using the fact that limt→∞ bt = b and limt→∞ ct = c , we have

|(1 + b)ct − (1 + bt)c| < ε

for any fixed ε > 0 provided t is sufficiently large. So, for some T , we have bt > b/2
if t ≥ T . Thus,

st+1 − ε < (st − ε)(1− 1 + b/2
t

)

Since b > 0, it is not difficult to show that
∏

(1 − (1 + b/2)/t) goes to 0 as
t → ∞. Repeated application of the above inequality gives st < 2ε for large t.
Since ε can be arbitrarily chosen, we have st → 0 as t goes to infinity as desired.
Therefore we have proved that

lim
t→∞

at
t

=
c

1 + b
.

�

3.4. The peril of heuristics via an example of balls-and-bins

Here we give an example of an incorrect deduction of the power law. This
example of a balls-and-bins problem is a generalized version of Polya’s urn problem
and is quite interesting in its own.

The classical problem of Polya’s urns has the following setup:
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Start with a fixed number of bins each with one ball. At each tick of time, a
new ball is placed in one of the bins with the probability of choosing the i-th bin
proportional to the number of balls in the i-th bin.

Here we consider the ball-and-bin game when the number of bins is not fixed.
We have two parameters, p, a probability between 0 and 1 and a real number r.
We call this model Polya(p, r).

Imagine we have a stream of balls arriving one at a time.
At the very beginning, we place the first ball in a bin.
At time t, with probability p, we place the newly arrived ball in a new bin.

Otherwise, we place the new ball in an existing bin
and we choose a bin with probability proportional to the
rth-power of the number of the balls in the bin.

We can modify Polya(p, r) into the following model, denoted by Polya∗(p, r):

We have a stream of balls arriving two at a time.
At the very beginning, we place the first set of two balls in a bin.
At time t, with probability p, we place one new ball in a new bin and the other

ball in an existing bin with probability proportional to the
rth-power of the bin size.
Otherwise, we place the each of the two new balls in an
existing bin with probability proportional to the rth-power of
the bin size.

For the case of r = 1, the model Polya∗(p, 1) is just the preferential attachment
model in Section 3.1 if we view the bins as vertices and edges are between the
bins the two balls that arrive at the same time go into. The model Polya∗(p, r) is
regarded as a preferential attachment with feedback. When r > 1, it is preferential
attachment with positive feedback. When r < 1, it is preferential attachment with
negative feedback. This general form of preferential attachment has been examined
in a number of papers [31, 46, 47, 83, 102]. For example, it was shown that for
r > 1, a single bin dominates. In fact, for any k > r/(r − 1), with high probability
only finitely many bins ever reach size k.

In the remainder of this section, we will give a “proof” that for r > 1 in
Polya(p, r), the bin sizes have a power law distribution. The exercise here is to find
what is wrong in this “proof”!

Let nk(t) be the number of bins at time t with k balls. Note that

E[nk(t+ 1)] = E[nk(t)(p+ (1− p)(1− kr

wt
))] + (1− p)E[

nk−1(t)(k − 1)r

wt
]

where wt denotes
∑
i ni(t)i

r. Let us assume that as t gets large E(nk(t)) converge
to fixed fractions of the total number of balls. In other words, nk(t) ≈ akt. (A very
dangerous assumption indeed!) Furthermore, assume wt converges to wt for some
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constant w. By plugging those assumptions in the above equation, we get

ak(t+ 1) = akt(p+ (1− p)(1− kr

wt
)) + (1− p)ak−1t

(k − 1)r

wt
.

This implies
ak
ak−1

=
(1− p)(k − 1)r

w + (1− p)kr

=
(k − 1)r
w

1−p + kr

≈
(
k − 1
k

)r

for k large. Thus, one might be inclined to conclude that the bin size distribution
is a power law distribution with exponent r if r > 1!

However, the truth (see [31]) is that all but one of the ai’s are zero. A quick
simulation will show that almost all balls go into one bin. In fact, it can be shown
that all balls go into one bin with the exceptions of the balls in bins of size 1 and
finitely many other balls. This model gives an explanation for the forming of a
monopoly.

What went wrong in the above “proof”? The power law distribution is a
consequence of an unfortunate ratio 0/0. That is exactly why rigorous mathematics
is needed here.

3.5. Scale-free networks

Quite a few recent papers use the term “scale-free networks” to mean graphs
with a power law degree distribution. However, power law and scale-free are very
different concepts. In fact, the term “scale-free” has rarely been properly defined.

Here we intend to clarify the distinction of the two. To discuss “scale-free”,
first we have to answer the question concerning “scale”. What is the appropriate
scale or scales? How should “scale-free” be defined in a natural way?

Two types of scale come to mind — space and time. In fact, scales of space and
time can coexist simultaneously. For example, the Call graphs have very similar
shape (the same exponent in the power law distribution) while sampling at different
geographical locations and at different sampling intervals. To simplify the issues,
we separately discuss “scale-free in space” and “scale-free in time”.

3.5.1. Scale-free in space. “Self-similarity” is one of the visible traits that
exist in numerous networks. By comparing the web crawls of [6, 14] and [27, 84]
we see that the same power law appears to govern various subgraphs of the web as
well as the whole. However, while some subgraphs obey the same power law and
appear to be self-similar, (i.e., similar to the entire graph), there exist subgraphs
of the web which would not obey the power law (e.g., the subgraph defined by all
nodes with out-degree 50). So, for what kind of subgraphs can “self-similarity” be
considered or even formally defined?
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As an example, for the family of recursive trees [93] as rooted trees, the defini-
tion comes naturally. The special subtrees consisting of all descendants of a vertex
is similar to the whole tree.

For a general graph, additional information will be needed to help define the
special subgraphs for which self-similarity will hold. One direction is to consider a
geometric embedding of the graph into some specified metric space. Then we use
the metric to define the special subgraphs. Another direction is to take the graph
as given but to extract a so-called “local graph” from it. The graphic metric of the
local graph provides the geometry of the graph. In Chapter 12, we will define the
local graphs and discuss this idea further.

3.5.2. Scale-free in time. It is easier to define scale-free in terms of time than
space perhaps because time is one-dimensional but space is multi-dimensional. The
generative model is a process of growing graphs by adding nodes and edges one at a
time. One way is to divide the time into almost equal units and combine all nodes
born in the same unit time into one super-node. The bigger time unit one chooses,
the fewer nodes the resulting graph has. We say a model is scale-free if it generates
power law graphs with the same exponent regardless the choice of time scale. In
other words, a generative model is invariant with respect to time in the sense that
if we change the time scale by any given factor, then the original graph and the
scaled graph should satisfy the power law with the same exponent for the degrees.

We can modify the previous model by adding an additional integer parameter
m. Here are the two generalized steps:

• Vertex-m-step — Add a new vertex v, and m new edges {ui, v}, i =
1, . . . ,m, by choosing ui with probability proportional to the degree of u
in the current graph.
• Edge-m-step — Add m new edges {ri, si}, i = 1, . . . ,m, by choosing ver-

tices ri with probability proportional to the degree of ri, and by choosing
vertices si with probability proportional to the degree of si.

Now we assemble a graph G(p,m,G0):

Begin with the initial graph G0.
For t > 0, at time t,

with probability p, take a vertex-m-step,
otherwise, take an edge-m-step.

If G0 is taken to be the graph consisting of a vertex with m loops, we write
G(p,m) = G(p,m,G0).

In this model every vertex has degree at least m. Let mk,t be the number of
vertices with degree k at time t. At time t, Gt has exactly e0 +mt edges. We will
denote this by et. Let Ft be the σ-algebra generated by the probability space at
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time t. Thus, for t > 0 and k > m, we have

E(mk,t|Ft−1) = mk,t−1(1− kmp

2et−1
− m(1− p)2k

2et−1
)

+mk−1,t−1(
(k − 1)mp

2et−1
+

(1− p)2m(k − 1)
2et−1

) +O(
1
t2

)

= mk,t−1(1− (2− p)mk
2et−1

) +mk−1,t−1(
(2− p)m(k − 1)

2et−1
) +O(

1
t2

).(3.7)

Note that the O(1/t2) term above makes it possible to absorb the error terms caused
by loops or multiple edges. Now by taking the expectation on both sides, we get
the following recurrence formula.

E(mk,t) = E(mk,t−1)(1− (2− p)mk
2et−1

) + E(mk−1,t−1)(
(2− p)m(k − 1)

2et−1
) +O(

1
t2

).

In the random graph model G(p,m), we have et = m(t+1). If we substitute et in the
above inequality, all appearances of m are cancelled out. Indeed, we get exactly the
same recurrence formula as we previously had for G(p) in (3.1). Therefore, graphs
generated by G(p,m) has the same power law distribution as graphs generated by
G(p). So we see the exponent β is independent of the scale unit m.

If we compare the figures of the degree distributions of G(p) and G(p,m) in
their logarithmic representation, the figures are almost identical in the sense that
the shape of the curves are straight lines of the same slope. The only difference
is that the line associated with G(p,m) is a slight linear translation to the right.
Mainly, the density of G(p,m) differs from that of G(p) by a factor of m. In the
logarithmic representation, the difference is an additive term of logm, which is
rather small in comparison with n, the number of nodes. Nevertheless, the main
characteristic of the power law is the exponent of the power law as seen from the
same slope in both figures.

3.6. The sharp concentration of preference attachment scheme

In section 3.2 we considered the expected degrees for graphs generated by the
preference attachment scheme and we derived the power law distribution for the
expected degree sequence. However, the expected degree can be quite different
from the actual degree of a random graph in hand. Can we give a (probabilistic)
estimate of the difference? The goal of the section is to answer this question.

Since the preference attachment scheme is an on-line model, a concentration
bound that we intend to give involves nontrivial arguments and is somewhat lengthy.

We will prove the following theorem.

Theorem 3.2. For the preferential attachment model G(p), almost surely the
number of vertices with degree k at time t is

Mkt+O(2
√
k3t ln(t)).
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Recall M1 = 2p
4−p and Mk = 2p

4−p
Γ(k)Γ(1+ 2

2−p )

Γ(k+1+ 2
2−p )

= O(k−(2+ p
2−p )), for k ≥ 2. In

other words, almost surely the graphs generated by G(p) have the power law degree
distribution with the exponent β = 2 + p

2−p .

Proof. We have shown that

lim
t→∞

E(mk,t)
t

= Mk,

where Mk is defined recursively in (3.3). It is sufficient to show mk,t concentrates
on the expected value.

We shall prove the following claim.

Claim: For any fixed k ≥ 1, for any c > 0, with probability at least 1− 2(t+
1)k−1e−c

2
, we have

|mk,t −Mk(t+ 1)| ≤ 2kc
√
t.

To see that the claim implies Theorem 3.2, we choose c =
√
k ln t. Note that

2(t+ 1)k−1e−c
2

= 2(t+ 1)k−1t−k = o(1).

From the Claim, with probability 1− o(1), we have

|mk,t −Mk(t+ 1)| ≤ 2
√
k3t ln t,

as desired.

It remains to prove the claim.

Proof of Claim: We shall prove it by induction on k.

The base case of k = 1:

For k = 1, from equation 3.2, we have

E(m1,t −M1(t+ 1)|Ft−1) = E(m1,t|Ft−1)−M1(t+ 1)

= m1,t−1(1− 2− p
2t

) + p−M1t−M1

= (m1,t−1 −M1t)(1− 2− p
2t

) + p−M1
2− p

2
−M1

= (m1,t−1 −M1t)(1− 2− p
2t

)

since M1 = 2p
4−p and p−M1

2−p
2 −M1 = 0.

LetX1,t = m1,t−M1(t+1)Qt
j=1(1− 2−p

2j )
. We consider the martingale formed by 1 = X1,0, X1,1, · · · , X1,t.
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We have

X1,t −X1,t−1 =
m1,t −M1(t+ 1)∏t

j=1(1− 2−p
2j )

− m1,t−1 −M1t∏t−1
j=1(1− 2−p

2j )

=
1∏t

j=1(1− 2−p
2j )

[(m1,t −M1(t+ 1))− (m1,t−1 −M1t)(1− 2− p
2t

)]

=
1∏t

j=1(1− 2−p
2j )

[(m1,t −m1,t−1) +
2− p

2t
(m1,t−1 −M1t)−M1].

We note that |m1,t −m1,t−1| ≤ 2, m1,t−1 ≤ t, and M1 = 2p
4−p < 1. We have

(3.8) |X1,t −X1,t−1| ≤ 4∏t
j=1(1− 2−p

2j )
.

Since |m1,t −m1,t−1| ≤ 2, we have

Var(m1,t|Ft−1) ≤ E((m1,t −m1,t−1)2|Ft−1)
≤ 4.

Therefore, we have the following upper bound for Var(X1,t|Ft−1).

Var(X1,t|Ft−1) = Var
(
(m1,t −M1(t+ 1))

1∏t
j=1(1− 2−p

2j )

∣∣Ft−1

)

=
1∏t

j=1(1− 2−p
2j )2

Var(m1,t −M1(t+ 1)|Ft−1)

=
1∏t

j=1(1− 2−p
2j )2

Var(m1,t|Ft−1)

≤ 4∏t
j=1(1− 2−p

2j )2
.(3.9)

We apply Theorem 2.22 on the martingale {X1,t} with σ2
i = 4Qi

j=1(1− 2−p
2j )2 ,

M = 4Qt
j=1(1− 2−p

2j )
and ai = 0. We have

Pr(X1,t ≥ E(X1,t) + λ) ≤ e−
λ2

2(
Pt
i=1 σ

2
i

+Mλ/3) .

Here E(X1,t) = X1,0 = 1. We will use the following approximation.

i∏

j=1

(1− 2− p
2j

) =
Γ(i+ p

2 )
Γ(i+ 1)Γ(p2 )

= (
1

Γ(p2 )
+O(

1
i
))i−1+p/2.
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For any c > 0, we choose λ = 2c
√
tQt

j=1(1− 2−p
2j )
≈ 2Γ(p2 )ct(3−p)/2. We have

t∑

i=1

σ2
i =

t∑

i=1

4∏i
j=1(1− 2−p

2j )2

≈
t∑

i=1

4Γ2(
p

2
)i2−p

≈ 4Γ2(p2 )
3− p t3−p

< 2Γ2(
p

2
)t3−p.

We note that

Mλ/3 ≈ 4
3

Γ2(
p

2
)ct5/2−p < 2Γ2(

p

2
)t3−p

provided c <
√
t. We have

Pr(X1,t ≥ 1 + λ) ≤ e
− λ2

2(
Pt
i=1 σ

2
i

+Mλ/3)

< e
− 4Γ2( p2 )c2t3−p

(4+o(1))Γ2( p2 )t3−p

≈ e−c
2
.

Since 1 is much smaller than λ, we can replace 1+λ by 1 without loss of generality.
Thus, with probability at least 1− e−c2 , we have

X1,t ≤ λ.

Similarly, with probability at least 1− e−c2 , we have

(3.10) m1,t −M1(t+ 1) ≤ 2c
√
t.

We remark that the inequality 3.10 holds for any c > 0. In fact, it is trivial when
c >
√
t since |m1,t −M1(t+ 1)| ≤ 2t always holds.

Similarly, by applying Theorem 2.26 on the martingale, the following lower
bound

(3.11) m1,t −M1(t+ 1) ≥ −2c
√
t

holds with probability at least 1− e−c2 .

We have proved the claim for k = 1.

The inductive step:

Suppose the claim holds for k − 1. For k, we define

Xk,t =
mk,t −Mk(t+ 1)− 2(k − 1)c

√
t∏t

j=1(1− (2−p)k
2j )

.
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we have

E(mk,t −Mk(t+ 1)− 2(k − 1)c
√
t|Ft−1)

= E(mk,t|Ft−1)−Mk(t+ 1)− 2(k − 1)c
√
t

= mk,t−1(1− (2− p)k
2t

) +mk−1,t−1(
(2− p)(k − 1)

2t
)

−Mk(t+ 1)− 2(k − 1)c
√
t.

By the induction hypothesis, with probability at least 1− 2tk−2e−c
2
, we have

|mk−1,t−1 −Mk−1t| ≤ 2(k − 1)c
√
t− 1.

By using this estimate, with probability at least 1− 2tk−2e−c
2
, we have

E(mk,t−Mk(t+1)−2(k−1)c
√
t|Ft−1) ≤ (1− (2− p)k

2t
)(mk,t−1−Mkt−2(k−1)c

√
t− 1)

by using the fact that Mk ≤Mk−1 as seen in (3.3).

Therefore, 0 = Xk,0, Xk,1, · · · , Xk,t forms a submartingale with fail probability
at most 2tk−2e−c

2
.

Similar to inequalities (3.8) and (3.9), it can be easily shown that

(3.12) |X1,t −X1,t−1| ≤ 4∏t
j=1(1− (2−p)k

2j )

and

Var(X1,t|Ft−1) ≤ 4∏t
j=1(1− (2−p)k

2j )2
.

We apply Theorem 2.39 on the submartingale with σ2
i = 4Qi

j=1(1− (2−p)k
2j )2

, M =
4Qt

j=1(1− 2−p
2j )

and ai = 0. We have

Pr(Xk,t ≥ E(Xk,t) + λ) ≤ e−
λ2

2(
Pt
i=1 σ

2
i

+Mλ/3) + Pr(B),

where Pr(B) ≤ tk−1e−c
2

by induction hypothesis.

Here E(Xk,t) = Xk,0 = 0. We will use the following approximation.

i∏

j=1

(1− (2− p)k
2j

) =
Γ(i+ 1− (2−p)k

2 )

Γ(i+ 1)Γ(1− (2−p)k
2 )

= (
1

Γ(1− (2−p)k
2 )

+O(
1
i
))i−k(2−p)/2.
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For any c > 0, we choose λ = 2c
√
tQt

j=1(1− (2−p)k
2j )

≈ 2Γ(1 − (2−p)k
2 )ct1/2+k(2−p)/2.

We have
t∑

i=1

σ2
i ≤

t∑

i=1

4∏i
j=1(1− (2−p)k

2j )2

≈
t∑

i=1

4Γ2(1− (2− p)k
2

)ik(2−p)

≈ 4Γ2(1− (2−p)k
2 )

1 + (2− p)k t1+k(2−p)

< 2Γ2(1− (2− p)k
2

)t1+k(2−p).

We note that

Mλ/3 ≈ 4
3

Γ2(1− (2− p)k
2

)ct
1
2 +(2−p)k < 2Γ2(1− (2− p)k

2
)t1+(2−p)k

as long as c <
√
t. We have

Pr(Xk,t ≥ λ) ≤ e
− λ2

2(
Pt
i=1 σ

2
i

+Mλ/3) + Pr(B)

< e
− 4Γ2(1− (2−p)k

2 )c2t1+(2−p)k

(4+o(1))Γ2(1− (2−p)k
2 )t1+(2−p)k + Pr(B)

< e−c
2

+ tk−1e−c
2

≤ (t+ 1)k−1e−c
2
.

With probability at least 1− (t+ 1)k−1e−c
2
, we have

Xk,t ≤ λ.
Equivalently, with probability at least 1− (t+ 1)k−1e−c

2
, we have

(3.13) mk,t −Mk(t+ 1) ≤ 2kc
√
t.

We remark that the inequality (3.10) holds for any c > 0. In fact, it is trivial when
c >
√
t since |mk,t −Mk(t+ 1)| ≤ 2kt always holds.

To obtain the lower bound, we consider

X ′k,t =
mk,t −Mk(t+ 1) + 2(k − 1)c

√
t∏t

j=1(1− (2−p)k
2j )

.

It can be easily shown that X ′k,t is nearly a supermartingale. Similarly, if applying
Theorem 2.42 to X ′k,t, the following lower bound

(3.14) mk,t −Mk(t+ 1) ≥ −2kc
√
t

holds with probability at least 1− (t+ 1)k−1e−c
2
.

Together these prove the statement for k. The proof of Theorem 3.2 is complete.
�

For completeness, we here state the corresponding theorem for G(p,m).
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Theorem 3.3. For the preferential attachment model G(p,m,G0), almost surely
the number of vertices with degree k at time t is

Mkt+mk,0 +O(2m
√

(k +m− 1)3t ln(t)).

Recall Mm = 2p
4−p and Mk = 2p

4−p
Γ(k)Γ(1+ 2

2−p )

Γ(k+1+ 2
2−p )

= O(k−(2+ p
2−p )), for k ≥ m + 1. In

other words, almost surely the graphs generated by G(p,m,G0) have the power law
degree distribution with the exponent β = 2 + p

2−p .

3.7. Models for directed graphs

Many real-world graphs are directed graphs. For example, the WWW-graph
has edges each of which represents a link from a webpage to another. There are
vertices with large in-degrees but relatively small out-degrees such as Yahoo, CNN
or USA Today. Such vertices are often called authorities [81]. There are also
vertices, called hubs, with large out-degrees but relatively small in-degrees. For
directed graphs, we can have quite different distributions for in-degrees and out-
degrees. For example, the in-degree sequence of the WWW graph follows the power
law distribution with the exponent β about 2.1 while the out-degree sequence follows
a different power law with exponent β about 2.7.

In this section, we will consider a preferential attachment model that can gener-
ate a directed graph with power-law in-degree distributon and power-law out-degree
distribution. Furthermore, the exponents for the power law distributions are spec-
ified different values.

To generate such a directed graph, we have three parameters for the preferential
attachment model:

• Two given probabilities p1, p2, satisfying 0 ≤ p1, p2 ≤ p1 + p2 ≤ 1.
• An initial graph G0 at time 0.

We also have three operations:

• Source-vertex-step — Add a new vertex v, and add an directed edge {v, u}
from v by randomly and independently choosing u in proportion to the
in-degree of u in the current graph.

• Sink-vertex-step — Add a new vertex v, and add an edge {u, v} to v by
randomly and independently choosing u in proportion to the out-degree
of u in the current graph.

• Edge-step — Add a new edge {r, s} by independently choosing vertices
r and s with probability proportional to their in-degree (or out-degree),
respectively.

The random graph model D0(p1, p2, G0) is assembled as follows:

Begin with the initial graph G0.
For t > 0, at time t, the graph Gt is formed by modifying Gt−1 as follows:
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with probability p1, take a source-vertex-step,
with probability p2, take a sink-vertex-step,
otherwise, take an edge-step.

This simple model generates a power law graph with different exponents (as
functions of p1 and p2) for in-degree and out-degree distributions. We remark that
the vertices with in-degree zero (i.e., source vertices) will always have zero in-degree.
Vice versa, the vertices with out-degree zero (i.e., sink vertices) will always have
out-degree zero. Except for the vertices in G0, the rest of vertices are partitioned
into two groups — source vertices and sink vertices. This model might not be
feasible for modeling most realistic networks.

We here consider a modified preferential attachment scheme with an additional
parameter α ≥ 0, defined as follows:

α-preferential attachment scheme (or α-scheme, in short):
A vertex u is chosen for the tail (or head) of a new edge with probability proportional
to its in-weight (or out-weight) where the in-weight of u is defined to be the sum
of the in-degree of u and α. (The out-weight of u is the sum of the out-degree of u
and α. )

The random graph model D(p1, p2, α,G0) is assembled as follows:

Begin with the initial graph G0.
For t > 0, at time t, the graph Gt is formed by modifying Gt−1 as follows:

with probability p1, take a source-vertex-step using the α-scheme,
with probability p2, take a sink-vertex-step using the α-scheme,
otherwise, take an edge-step.

We note that an alternative model is to add loops to a new vertex in each
step. It is not hard to see that adding a loop is equivalent to the 1-preferential
attachment scheme. In fact, the α-preferential attachment scheme can be viewed
as adding α loops. When G0 is the graph consisting of a single vertex, we simplify
the notation and write G(p1, p2, α) = G(p1, p2, α,G0).

The number of edges of G(p1, p2, α) at time t is exactly t. The total weight
at time t is just t+ αnt. The number of vertices nt at time t follows the binomial
distribution. The expected value E(nt) satisfies

E(nt) = 1 + (p1 + p2)t.

To deal with the actual value nt, we use the binomial concentration inequality as
described in Theorem 2.4. Namely,

Pr(|nt − E(nt)| > a) ≤ e−a2/(2pt+2a/3).

Thus, nt is exponentially concentrated around E(nt).

Let min
k,t denote the number of vertices of in-degree k at time t. We note that

min
0,k = 0.
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We wish to derive a recurrence formula for the expected value E(min
k,t). A vertex

of in-degree k at time t could have come from two cases, either it was a vertex of
degree k at time t − 1 and had no edge added to it, or it was a vertex of degree
k − 1 at time t− 1 and the new edge was incident to it.

Let Ft denote the σ-algebra generated by the probability space at time t. For
t > 0 and k > 1, we have

E(min
k,t|Ft−1) = min

k,t−1(1− (k + α)p1

t− 1 + αnt
− (1− p1 − p2)(k + α)

t− 1 + αnt
)

+min
k−1,t−1(

(k − 1 + α)p1

t− 1 + αnt
+

(1− p1 − p2)(k − 1 + α)
t− 1 + αnt

)

= min
k,t−1(1− (1− p2)(k + α)

t− 1 + αnt
) +min

k−1,t−1(
(1− p2)(k − 1 + α)

t− 1 + αnt
).(3.15)

If we take the expectation on both sides and apply the estimation nt ≈ (p1 +
p2)t, we obtain the following recurrence formula.

E(min
k,t) ≈ E(min

k,t−1)(1− (1− p2)(k + α)
t(1 + (p1 + p2)α)

) + E(min
k−1,t−1)(

(1− p2)(k − 1 + α)
t(1 + (p1 + p2)α

).

For t > 0 and k = 0, 1, we have

E(min
1,t|Ft−1) = min

1,t−1(1− (1− p2)(1 + α)
t− 1 + αnt

) +min
0,t−1(

(1− p2)α
t− 1 + αnt

) + p2

E(min
0,t|Ft−1) = min

0,t−1(1− (1− p2)α
t− 1 + αnt

) + p1.

Thus,

E(min
1,t) ≈ E(min

1,t−1)(1− (1− p2)(1 + α)
t(1 + (p1 + p2)α)

) + E(min
0,t−1)

(1− p2)α
t(1 + (p1 + p2)α)

+ p2.

E(min
0,t) ≈ E(min

0,t−1)(1− (1− p2)α
t(1 + (p1 + p2)α)

) + p1.

Here these asymptotic equalities are by the fact that nt ≈ (p1 + p2)t.

We proceed by induction on k to show that limin
t→∞E(min

k,t)/t has a limit M in
k

for each k.

The first case is k = 0. In this case, we apply Lemma 3.1 with bt = b =
(1−p2)α/(1+(p1 +p2)α) and ct = c = p2 to deduce that limt→∞E(min

0,t)/t = M in
0

exists. We have

M in
0 =

c

1 + b

=
p2

1 + (1−p2)α
(1+(p1+p2)α)

=
p2(1 + (p1 + p2)α)

1 + (1 + p1)α
.(3.16)
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For the case k = 1, we apply Lemma 3.1 with bt = b = (1 − p2)(1 + α)/(1 +
(p1 + p2)α)) and ct = E(min

0,t−1) (1−p2)α
t(1+(p1+p2)α) + p1. We have

c = lim
t→∞

ct = M in
0

(1− p2)α
1 + (p1 + p2)α

+ p1.

It implies that limt→∞E(min
0,t)/t = M in

1 exists. We have

M in
1 =

c

1 + b

=
M in

0
(1−p2)α

1+(1+p1)α + p1

1 + (1−p2)(1+α)
(1+(p1+p2)α)

=
p1 + (p1 + p2 + p2

1 − p2
2)α

2− p2 + (1 + p1)α
.(3.17)

For k > 1, we assume that limt→∞E(min
k−1,t)/t = M in

k−1 exists and we apply

the lemma again with bt = b = (1−p2)(k+α)
(1+(p1+p2)α) and ct = E(min

k−1,t−1) (1−p2)(k−1+α)
t(1+(p1+p2)α) ,

so c = M in
k−1

(1−p2)(k−1+α)
(1+(p1+p2)α) . Lemma 3.1 implies that the limit limin

t→∞E(min
k,t)/t =

M in
k exists and is equal to

M in
k =

c

1 + b

= M in
k−1

(1−p2)(k−1+α)
1+(1+p1)α

1 + (1−p2)(k+α)
(1+(p1+p2)α)

= M in
k−1

k − 1 + α

k + α+ 1+(p1+p2)α
1−p2

.(3.18)

Thus we can write

min
k = min

k

k∏

j=2

j − 1 + α

j + α+ 1+(p1+p2)α
1−p2

= min
1

Γ(k + α)Γ(2 + α+ 1+(p1+p2)α
1−p2

)

Γ(1 + α)Γ(k + 1 + α+ 1+(p1+p2)α
1−p2

)

≈ M in
1

Γ(2 + α+ 1+(p1+p2)α
1−p2

)

Γ(1 + α)
k1+

1+(p1+p2)α
1−p2

where Γ(k) is the Gamma function.

Thus we have a power-law graph for the in-degree sequence with

βin = 1 +
1 + (p1 + p2)α

1− p2
= 2 +

p2 + (p1 + p2)α
1− p2

.

Let mout(t, k) be the number of vertices with out-degree at time t. Similarly

we can show limt→∞
E(moutt,k )

t exists. We denote it by Mout
k . We have
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Mout
0 =

p2(1 + (p1 + p2)α)
1 + (1 + p2)α

(3.19)

Mout
1 =

p2 + (p1 + p2 + p2
2 − p2

1)α
2− p1 + (1 + p2)α

(3.20)

(3.21)

For k > 1, we have

Mout
k = Mout

1

Γ(k + α)Γ(2 + α+ 1+(p1+p2)α
1−p1

)

Γ(1 + α)Γ(k + 1 + α+ 1+(p1+p2)α
1−p1

)
(3.22)

≈ Mout
1

Γ(2 + α+ 1+(p1+p2)α
1−p1

)

Γ(1 + α)
k1+

1+(p1+p2)α
1−p1 .(3.23)

The exponent βout for the out-degree distribution is

βin = 1 +
1 + (p1 + p2)α

1− p1
= 2 +

p1 + (p1 + p2)α
1− p1

.

Similar to section 3.6, we can prove the sharp concentration result for the
in-degree and out-degree distributions. For completeness, we state the following
theorem for the directed preferential attachment model.

Theorem 3.4. For the preferential attachment model G(p1, p2, α), we have

(1) Almost surely the number of vertices with in-degree k at time t is

M in
k t+O(2

√
k3t ln(t)),

where M in
k is defined in equation (3.16), (3.17), and (3.19).

(2) Almost surely the number of vertices with out-degree k at time t is

Mout
k t+O(2

√
k3t ln(t)),

where Mout
k is defined in equation (3.19), (3.20), and (3.22).

(3) Almost surely it is a power law directed graph with the exponent βin =
2 + p2+(p1+p2)α

1−p2
for the in-degree distribution and the exponent βout =

2 + p1+(p1+p2)α
1−p1

for the out-degree distribution.

The exponents βin and βout have special meanings. It is not difficult to see
that both values are greater than 2. It can be observed that p2 + (p1 + p2)α is the
expected increment for the in-degree of the new vertex while 1− p2 is the expected
increment for the in-degrees of the current graphs. Hence, βin − 2 is the ratio of
the increment of edges to the new vertex and the increment of edges to the current
graph. There is a similar interpretation for βout − 2 as well.


