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COMPLEX IMAGE METHOD ANALYSIS OF A PLANE
WAVE-EXCITED SUBWAVELENGTH CIRCULAR APER-
TURE IN A PLANAR SCREEN

K. A. Michalski
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Texas A&M University, College Station, TX 77843-3128, USA

Abstract—A complex image method is presented for the analysis of
a subwavelength circular aperture in a perfectly conducting screen of
infinitesimal thickness illuminated by a plane wave. The method is
based on the Bethe-Bouwkamp quasi static model of the aperture field
and uses the spectral domain formulation as the point of departure.
Closed-form expressions are obtained for the electromagnetic fields
valid for all observation points. Sample numerical results demonstrate
the accuracy and efficiency of the method for both normal and oblique
illuminations, including an evanescent wave. In the latter case, the
results show a circulating power flux and enhanced field confinement
near the aperture.

1. INTRODUCTION

The problem of light transmission through a subwavelength aperture
in a metallic screen continues to be of interest in the context of
scanning near-field optical microscopy (SNOM) [1–3]. Important in
these applications is not only the light transmission efficiency, but also
the electromagnetic field distribution in the vicinity of the aperture,
including the polarization effects. We limit attention here to a perfectly
conducting screen of infinitesimal thickness with a circular aperture
of radius a ¿ λ, where λ is the wavelength. The first solution of
this problem was put forward by Bethe [4], who derived a quasi-static
expression for the aperture equivalent magnetic current, which was
later corrected by Bouwkamp [5–7]. In spite of the assumption of an
infinitely thin perfect conductor, the Bethe-Bouwkamp (BB) model
has been extensively used in the aperture source characterization for
SNOM applications [2, 8].
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The first numerical studies of the transmitted field distribution
based on the BB aperture model were by Leviatan [9], Dürig et al. [10],
and Nakano and Kawata [11], using the space domain method, and by
Van Labeke et al. [12–14] and Grober et al. [15], using the spectral
domain approach. The latter method has the advantage that the
fields may be expressed as one-dimensional integrals [2, 14, 15], and
that planar and layered dielectric samples may be easily incorporated
in the formulation [3, 13, 14, 16]. Of all the studies mentioned above
only Nakano and Kawata [11] considered the non-normal incidence
case. However, Nakano and Kawata [11] (as well as Dürig et al. [10])
used Bethe’s original magnetic current in their analysis, which differs
from the correct Bouwkamp’s expression by a solenoidal vector.
Ducourtieux et al. [2] noted the desirability of extending the spectral
domain method of Grober et al. [15] for non-axial illumination, but
stated that “at off-normal angles of incidence (· · · ) the theory appears
to become numerically intractable at the moment.”

The Hankel transform integrals that arise in the spectral domain
approach must be evaluated numerically, which can be computationally
expensive, since the integrations must be redone for every distinct
observation point of interest. In the present paper, we describe an
efficient complex image method, which makes it possible to evaluate
the Hankel transforms analytically, and thus leads to closed-form
expressions for the electromagnetic fields excited by the aperture
source, valid for all observation points. The basic premise of
this method is that the so-called aperture source functions, which
characterize the spectrum of the BB aperture field distribution, can
accurately be represented by a small number of complex exponential
terms. We present sample numerical results that demonstrate the
accuracy and efficiency of this method for both normal and oblique
illuminations, including an evanescent wave. In the latter case, our
results show a circulating power flux and enhanced field confinement
near the aperture.

2. FORMULATION

The geometry of the problem and the coordinate system used are
illustrated in Fig. 1. We assume that the screen resides in an isotropic
homogeneous medium characterized by the wavenumber k = ω

√
εµ =

2π/λ and intrinsic impedance η =
√

µ/ε, where ε and µ are the
permittivity and permeability of the medium, respectively. The plane
of incidence is chosen as the xz-plane, θi is the angle between the z
axis and the direction of incidence, and ψi is the angle between Ei and
the xz-plane. The polarization is parallel for ψi = 0◦ (TM wave) and
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Figure 1. Diagram of a plane wave obliquely incident on the circular
aperture in a planar screen, indicating the coordinate system used in
the analysis.

perpendicular for ψi = 90◦ (TE wave). Without loss of generality, the
amplitude of the incident wave Ei is set to unity. In the Cartesian
component notation, using the ejωt time convention and SI units, the
electric and magnetic incident fields are given as

Ei = (κzi cosψi, sinψi,−κxi cosψi) e−jk(κxix+κziz), (1)

ηHi = (−κzi sinψi, cosψi, κxi sinψi) e−jk(κxix+κziz), (2)

where
κxi ≡ kxi

k
= sin θi, κzi ≡ kzi

k
= cos θi, (3)

are the normalized x and z components of the propagation vector
ki. For generality, we also allow for an inhomogeneous plane wave,
evanescent along the z axis [17], where κxi may be any real number
with the corresponding κzi given as

κzi =
√

1− κ2
xi, =m κzi ≤ 0 . (4)

Hence, κzi is positive for a homogeneous wave (κ2
xi ≤ 1) and negative

imaginary for an evanescent wave (κ2
xi > 1).

In view of the equivalence principle [18, p. 110], the knowledge of
the tangential electric field in the aperture plane (z = 0) is sufficient
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to determine the electromagnetic field everywhere in the z > 0 half-
space. According to the BB model, the tangential field components in
the aperture (ρ < a) may be approximated as [6, 7]

Ea
x = − 2

π
κxi cosψi cosϕ

ρ√
a2 − ρ2

+
2jk

3π

{
cosψi

(
4a2 − 3ρ2

√
a2 − ρ2

+ κ2
xi

3ρ2 − 2a2

√
a2 − ρ2

)

+
[
(1 + κ2

xi) cos ψi cos 2ϕ + κzi sinψi sin 2ϕ
] ρ2

√
a2 − ρ2

}
,(5)

Ea
y = − 2

π
κxi cosψi sinϕ

ρ√
a2 − ρ2

+
2jk

3π

{
κzi sinψi

4a2 − 3ρ2

√
a2 − ρ2

+
[
(1 + κ2

xi) cos ψi sin 2ϕ− κzi sinψi cos 2ϕ
] ρ2

√
a2 − ρ2

}
, (6)

where the superscript a indicates that these expressions pertain to the
aperture plane. Outside the aperture (ρ > a), Ea

x = Ea
y = 0.

In our spectral domain formulation we utilize the Fourier
transform pair

f̃(kx, ky) =
∫ ∞

−∞

∫ ∞

−∞
f(x, y) ej(kxx+kyy) dxdy, (7)

f(x, y) =
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
f̃(kx, ky) e−j(kxx+kyy) dkxdky . (8)

The Fourier transformation (7) of the aperture plane fields (5)–(6)
yields

Ẽa
x = −4ja3

3
κxi cosψi kxF1 +

4jka3

3

{
cosψi

[
(F1 + F0)− κ2

xi F2

]

− [
(1 + κ2

xi) cos ψi (k2
x − k2

y) + 2κzi sinψi kxky

] F2

k2
ρ

}
, (9)

Ẽa
y = −4ja3

3
κxi cosψi kyF1 +

4jka3

3

{
κzi sinψi (F1 + F0)

− [
2(1 + κ2

xi) cosψi kxky − κzi sinψi (k2
x − k2

y)
] F2

k2
ρ

}
, (10)

where we have introduced the notation

F0 = j0(kρa), (11)
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Figure 2. Plot of the aperture source functions.

F1 = 3
j1(kρa)

kρa
, (12)

and
F2 = F1 − F0 = j2(kρa), (13)

where kρ =
√

k2
x + k2

y and jn is the spherical Bessel function of order n.
The functions Fi, i = 0, 1, 2, which we refer to as the aperture source
functions, are plotted in Fig. 2. In interpreting these plots one should
bear in mind that the small and large spatial frequencies correspond
to the far and near fields, respectively.

It follows from the Maxwell’s equations that the aperture plane
spectral fields may be propagated to any location z as [16][

Ẽx

Ẽy

]
=

[
Ẽa

x

Ẽa
y

]
e−jkzz, (14)

where
kz =

√
k2 − k2

ρ , =m kz ≤ 0 . (15)

The corresponding transverse magnetic field can then be determined
as [19] [

H̃y

−H̃x

]
=

1
kηkz

[
k2 − k2

y kxky

kxky k2 − k2
x

] [
Ẽx

Ẽy

]
, (16)

and the axial field components as

Ẽz = −η

k
(kxH̃y − kyH̃x), (17)

H̃z = − 1
kη

(kyẼx − kxẼy) . (18)
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What remains now is the Fourier inversion of the above expressions via
(8). Switching to cylindrical coordinates, the two-dimensional Fourier-
type integrals may be converted to one-dimensional Hankel transforms

Sn{·} ≡
∫ ∞

0
dkρ kρ Jn(kρρ) e−jkzz {·}, n = 0, 1, 2, (19)

where Jn is the Bessel function of order n. As a result, we obtain the
space domain fields as

Ex = −2a3

3π
κxi cosψi cosϕS1{kρF1}

+
2jka3

3π

[
cosψi

(S0{(F1+F0)} − κ2
xiS0{F2}

)

+
(
c1 + κ2

xi cosψi cos 2ϕ
)S2{F2}

]
, (20)

Ey = −2a3

3π
κxi cosψi sinϕS1{kρF1}+

2jka3

3π
[κzi sinψi S0{(F1+F0)}

+
(
c2 + κ2

xi cosψi sin 2ϕ
)S2{F2}

]
, (21)

Ez = −2a3

3π
κxi cosψi S0

{
k2
ρ F1

jkz

}

−4jka3

3π

[
c3 S1

{
kρF0

jkz

}
− κ2

xi cosψi cosϕS1

{
kρF2

jkz

}]
, (22)

Hx =
2jka3

3πη
κxi cosψi sinϕS1

{
kρF1

jkz

}

+
2k2a3

3πη

[
κzi sinψi S0

{
F1+F0

jkz
− k2

ρ

k2

F1

jkz

}

+c2 S2

{
F2

jkz
− k2

ρ

k2

F1

jkz

}
+ κ2

xi cosψi sin 2ϕS2

{
F2

jkz

}]
, (23)

Hy = −2jka3

3πη
κxi cosψi cosϕS1

{
kρF1

jkz

}

−2k2a3

3πη

[
cosψi

(
S0

{
F1+F0

jkz
− k2

ρ

k2

F1

jkz

}
− κ2

xi S0

{
F2

jkz

})

+c1 S2

{
F2

jkz
− k2

ρ

k2

F1

jkz

}
+ κ2

xi cosψi cos 2ϕS2

{
F2

jkz

}]
, (24)



Progress In Electromagnetics Research B, Vol. 27, 2011 259

Hz = − 4a3

3πη
c4 S1{kρF1}, (25)

where we have introduced the notation

c1 = cosψi cos 2ϕ + κzi sinψi sin 2ϕ, (26)
c2 = cosψi sin 2ϕ− κzi sinψi cos 2ϕ, (27)
c3 = cosψi cosϕ + κzi sinψi sinϕ, (28)
c4 = cosψi sinϕ− κzi sinψi cosϕ . (29)

It should be noted that several terms in the above expressions drop
out for a normally incident x-polarized plane wave, where κxi = 0 and
sinψi = 0.

The field expressions (20)–(25) comprise Hankel transform
integrals, which must be computed numerically. Since the integrations
have to be redone for every distinct required value of ρ or z,
the computational effort may be high, even if extrapolation is
employed [20]. As an alternative, here we apply a complex image
method, which leads to closed-form expressions for the electromagnetic
fields, valid for all observation points.

3. COMPLEX IMAGE APPROXIMATION

Our complex image approach is based on the premise that each of
the three aperture source functions can accurately be represented
by a small number of complex exponential terms. To effect these
approximations, we employ the so-called discrete complex image
method (DCIM), which has been used to approximate Green functions
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Figure 3. Linear sampling path segments in the kz-plane and their
mapping into the kρ-plane.
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in layered media [21–23]. In the present case, we only need to perform
three exponential fits

Fi(kρa) ≈
Ni∑

n=1

αin eβint =
Ni∑

n=1

ain e−jkzbin , i = 0, 1, 2, (30)

where t is a real sampling parameter and kz is defined in (15). The
exponential terms in the above expansions may be interpreted as
arising from point sources, or images, located at complex-valued z
coordinates bin, hence the name of the method. To find the coefficients
ain and bin, we employ the matrix pencil method (MPM) [24], which
is based on a uniform sampling of (30) along one or more linear path
segments in the complex kz-plane, defined as

kz = γl−1 + (γl − γl−1) t, 0 ≤ t < 1, (31)

where γ` are suitably selected nodes. The MPM returns the coefficients
αin and βin, from which we find

bin =
jβin

γ` − γ`−1
, ain = αin ejγ`−1bin . (32)

We have adapted here the two-level approach of Aksun [21], with the
sampling path segments Cl, l = 1, 2, as illustrated in Fig. 3. The kz-
plane nodes are at γ0 = k, γ1 = 0, and γ2, where the latter is a user-
specified point on the negative imaginary axis. These nodes map via
(15) into the origin, k, and kc of the kρ-plane, respectively. Note that
the segments C1 and C2 contribute to the propagating and evanescent
fields, respectively. In the two-level DCIM, we first sample on C2,
subtract the so-obtained exponential fit from the source function, and
then sample the remainder again over C1. This way, both the visible
(kρ < k) and invisible (kρ > k) light ranges can accurately be captured.
The sampling densities on these two segments and the desired accuracy
of the fit must also be selected by the user. Hence, this approach
requires a few trial-and-error computer runs to arrive at the suitable
values for γ2 (or kc) and the sampling rates on C2 and C1. This process
involves some trade-offs between efficiency and accuracy, where the
latter can only be ascertained by comparisons with the results of a
rigorous method, such as the spectral domain method using numerical
quadrature. For our problem, we have found that excellent accuracy
is obtained by choosing kc = 150/a and using 150 and 50 sampling
points on C2 and C1, respectively. After this initial tuning, the DCIM
is fully automatic, since the MPM determines the number of images
Ni in (30) required for accurate exponential fits of the aperture source
functions. With the parameters mentioned above, the resulting total
number of images for each of the three functions Fi is around 20.
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When the expansions (30) are substituted into (20)–(25), the
Hankel transforms can be evaluated in closed forms with the help of
Sommerfeld-type identities listed in Appendix A, which remain valid
for complex-valued z coordinates [22]. As a result, we obtain

χeEx = −jκxikρ cosψi cosϕ

N1∑

n=1

a1nkz1nB1n

+ cosψi

(
1∑

i=0

Ni∑

n=1

ainkzinAin − κ2
xi

N2∑

n=1

a2nkz2nA2n

)

+
(
c1 + κ2

xi cosψi cos 2ϕ
) N2∑

n=1

a2n (2D2n − kz2nA2n) , (33)

χeEy = −jκxikρ cosψi sinϕ

N1∑

n=1

a1nkz1nB1n

+κzi sinψi

1∑

i=0

Ni∑

n=1

ainkzinAin

+
(
c2 + κ2

xi cosψi sin 2ϕ
) N2∑

n=1

a2n (2D2n − kz2nA2n) , (34)

χeEz = jκxi cosψi

N1∑

n=1

a1n

[
2A1n + (kρ)2B1n

]

+2kρ

[
κ2

xi cosψi cosϕ

N2∑

n=1

a2nA2n − c3

N0∑

n=1

a0nA0n

]
, (35)

χhHx = jκxikρ cosψi sinϕ

N1∑

n=1

a1nA1n + c2 (kρ)2
N1∑

n=1

a1nB1n

+κzi sinψi

{
1∑

i=0

Ni∑

n=1

ainGin −
N1∑

n=1

a1n

[
2A1n + (kρ)2B1n

]
}

+
(
c2 + κ2

xi cosψi sin 2ϕ
) N2∑

n=1

a2n (2C2n −G2n) , (36)
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χhHy = −jκxikρ cosψi cosϕ

N1∑

n=1

a1nA1n − c1(kρ)2
N1∑

n=1

a1nB1n

− cosψi

{
1∑

i=0

Ni∑

n=1

ainGin −
N1∑

n=1

a1n

[
2A1n + (kρ)2B1n

]
}

−2
(
c1 + κ2

xi cosψi cos 2ϕ
) N2∑

n=1

a2nC2n

+
[
c1 + κ2

xi cosψi(1 + cos 2ϕ)
] N2∑

n=1

a2nG2n, (37)

χh Hz = 2c4kρ

N1∑

n=1

a1nkz1nB1n, (38)

where we have introduced the notation

χe =
3π

2j(ka)3
, χh =

3πη

2(ka)3
, (39)

Gin =
e−jkrin

krin
, (40)

Ain = (1 + jkrin)
Gin

(krin)2
, (41)

Bin =
[
1− 3

1 + jkrin

(krin)2

]
Gin

(krin)2
, (42)

Cin =
1

j(kρ)2
(
e−jkzin − e−jkrin

)
−−−→
ρ→0

e−jkzin

2kzin
, (43)

Din =
1

(kρ)2
(
e−jkzin − kzinGin

)
−−−→
ρ→0

(1 + jkzin)
e−jkzin

2(kzin)2
, (44)

zin = z + bin, rin =
√

ρ2 + z2
in . (45)

Note that, since bin are in general complex-valued, so are zin and rin.
Note also that (43) and (44) have finite limits on the aperture axis.

We emphasize that the exponential fits (30) need only be
performed once for a given electrical aperture radius ka. The resulting
closed-form field expressions can then be used for any observation point
in the z > 0 half-space. It should also be noted that some of the
terms in the above field expressions appear more than once, and may
thus be saved and reused to further improve the efficiency of computer
simulations. Also, as already mentioned, several terms drop out for
the normal incidence case.
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4. SAMPLE NUMERICAL RESULTS

To illustrate the performance of the proposed complex image approach,
we present sample computed results for both the normal and oblique
incidence cases. The first set of results is for an aperture with
a = 10nm, illuminated by a normally incident plane wave (κxi = 0,
ψi = 0◦) with λ = 500 nm, so that a/λ = 0.02. In Fig. 4, we plot
the electric and magnetic field components along the x axis for three
different z values close to the aperture, and in Fig. 5 similar plots are
presented along the y axis. Not shown in these figures are plots of
Ey and Hx, which identically vanish along the x and y axes. Note
the expected near-singularity of the field components normal to the
aperture edge. As a check for our complex image method, we also
include in the above figures the corresponding results obtained by the
rigorous spectral domain approach.

Figure 4. Electric and magnetic field plots along the x axis for
a/λ = 0.02 and z/a = 0.01, 0.1, and 1.0. The symbols indicate
the corresponding results obtained by the rigorous spectral domain
method.
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Figure 5. As in Fig. 4, except that the plots are along the y axis.

For the same aperture and incidence, in Figs. 6(a) and (b) we
present surface plots of the magnitude of the time-average Poynting
vector in two planes parallel to the screen at z = a/10 and z = a,
respectively. In the first case, we note the expected appearance of two
“hot spots” where the x-polarized electric field of the incident wave is
perpendicular to the aperture edges. In the second case, only a single
peak is observed, centered at the aperture axis. We have obtained
virtually the same plots by the rigorous spectral domain approach
using adaptive quadrature and extrapolation [20], with the maximum
discrepancy between the two methods not exceeding 0.1%. However,
the complex image approach was more than 50 times faster than the
already accelerated rigorous method.

The second set of results is for an aperture of radius a = 50 nm,
illuminated by an obliquely incident plane wave at λ = 600 nm, so
that a/λ ≈ 0.083. This is an example of a larger aperture, previously
analyzed for normal incidence by Stevenson and Richards [16]. For
the oblique incidence case, no reliable published data are available
for comparison. We begin with field plots along the aperture axis
for z extending from a small fraction of a into the radiation zone,
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(a) (b)

Figure 6. Plots of the magnitude of the time-average Poynting vector
in two planes parallel to the screen for a/λ = 0.02. The plots in (a)
and (b) are for z = a/10 and z = a, respectively, and are normalized
to the maximum values, which are 4.195×10−5/η and 1.176×10−5/η,
respectively.

under TM (ψi = 0◦) and TE (ψi = 90◦) excitation. The results in
Figs. 7 and 8 are for a homogeneous plane wave (κxi = 0.5, θi = 30◦)
and the results in in Figs. 9 and 10 are for an evanescent plane
wave (κxi = 3). The field components not shown are identically
zero on the z axis. For comparison we also include in these figures
the results obtained by the quasi-static theory [6], valid in the near
zone, and by the equivalent dipole method [25], applicable in the far
zone. We note that the complex image method results (solid lines)
follow the quasi-static results (dotted lines) in the near zone and then
transition to the equivalent dipole results (dashed lines) farther from
the aperture. Also, as already noted by Leviatan [9], the transmitted
field magnitude remains approximately constant up to z ≈ a, and
then decreases precipitously, reaching the drop off rate of 1/z for
z > 10a. The magnetic field plots exhibit a distinct intermediate
zone with a drop off rate of 1/z2. Comparing the homogeneous and
evanescent illumination results, we note a significant near-zone electric
field enhancement in the latter case, with a concomitant enhancement
in transmission efficiency [17]. For the evanescent TM wave, we note
a null in the axial plot of |Ex|, which is a near-field phenomenon also
predicted by the quasi-static analysis. We have observed that this null
appears near the aperture as soon as κxi >

√
2 and moves away with

increasing κxi.
For the same aperture (a/λ = 0.083) and TM plane wave (ψi =

0◦), in Fig. 11 we present plots of the time-average Poynting vector
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in the xz-plane in the range −2a < x < 2a and 0.1a < z < a.
The three plots shown are for κxi = 0 (normal incidence), κxi = 0.5
(θi = 30◦), and κxi = 3 (evanescent wave incidence). The vectors
at any fixed longitudinal distance z from the aperture are normalized

Figure 7. Axial plots of the electric and magnetic field components
for a/λ = 0.083, ψi = 0◦, and κxi = 0.5 (θi = 30◦) (homogeneous TM
wave incidence).

Figure 8. As in Fig. 7, except that ψi = 90◦ (homogeneous TE wave
incidence).
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to the maximum magnitude at the same z coordinate, in order to
clearly show the direction of the power flux in the entire z range
considered. The magnitude distribution information is provided by
the constant level contours superposed on the vector plots, with the
level separation of one-tenth of the maximum value, where the latter

Figure 9. Axial plots of the electric and magnetic field components
for a/λ = 0.083, ψi = 0◦, and κxi = 3 (evanescent TM wave incidence).

Figure 10. As in Fig. 9, except that ψi = 90◦ (evanescent TE wave
incidence).
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Figure 11. Plots of the time-average Poynting vector in the xz-
plane for an aperture with a/λ = 0.083, excited by a TM plane wave
(ψi = 0◦) with different angles of incidence.

corresponds to the contour closest to the aperture. We note that for
the normal incidence case the power flux is directed away from the
aperture, as expected. Under oblique incidence, however, the power
tends to flow along semi-circular paths returning to the aperture and
the power-flux density is stronger and more confined to the aperture
region. For the homogeneous wave case this was previously observed
by Nakano and Kawata [11]. These effects are further enhanced for the
evanescent wave illumination, where the Poynting vector plot is nearly
symmetric and the power flow is nearly transverse along the aperture
axis. The dip in the axial plot of |Ex| observed in Fig. 9 is clearly
responsible for the vanishing of the axial component of the Poynting
vector on the z axis at some distance from the aperture in the plot
corresponding to κxi = 3.



Progress In Electromagnetics Research B, Vol. 27, 2011 269

5. CONCLUSION

We have presented an efficient complex image method for the analysis
of a subwavelength circular aperture in a perfectly conducting screen
of infinitesimal thickness, illuminated by a plane wave, which may be
obliquely incident and evanescent. The method is based on the Bethe-
Bouwkamp (BB) quasi-static model of the aperture and the spectral
domain formulation of the problem. In the spectral domain approach,
the fields are expressed as Hankel transforms, which must be evaluated
numerically for every distinct observation point of interest. The key
step in the proposed method is the approximation of three so-called
aperture source functions, which characterize the spectrum of the BB
aperture field, in terms of a small number of complex exponential
terms. This makes it possible to evaluate the Hankel transforms
analytically, resulting in closed-form expressions for the electric and
magnetic field components, valid for all observation points.

The complex image method results are in excellent agreement with
those of a rigorous spectral domain method using numerical quadrature
with extrapolation. However, in a typical case the complex image
method is more than 50 times faster than the already accelerated
rigorous method. Hence, the spectral domain complex image method
presented here is a useful alternative to other available techniques for
the modeling of the aperture sources in scanning near-field optical
microscopy.

We have included sample results showing a circulating power
flux and enhanced field confinement under oblique incidence. These
effects are further amplified when the aperture is illuminated by an
inhomogeneous (evanescent) plane wave.

APPENDIX A. HANKEL TRANSFORM IDENTITIES

The identities used in the closed-form Hankel transform inversion are∫ ∞

0
dkρkρJ0(kρρ)

e−jkzz

jkz
= G, (A1)

∫ ∞

0
dkρkρJ0(kρρ)e−jkzz = z(1 +jkr)

G

r2
, (A2)

∫ ∞

0
dkρk

3
ρ J0(kρρ)

e−jkzz

jkz
= 2(1+jkr)

G

r2
+(kρ)2

[
1−3

1+jkr

(kr)2

]
G

r2
, (A3)
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∫ ∞

0
dkρk

2
ρ J1(kρρ)

e−jkzz

jkz
= ρ(1 + jkr)

G

r2
, (A4)

∫ ∞

0
dkρk

2
ρ J1(kρρ)e−jkzz = −k2ρz

[
1− 3

1 + jkr

(kr)2

]
G

r2
, (A5)

∫ ∞

0
dkρkρJ2(kρρ)

e−jkzz

jkz
=

2
jkρ2

(
e−jkz − rG

)
−G, (A6)

∫ ∞

0
dkρkρJ2(kρρ)e−jkzz =

2
ρ2

(
e−jkz−zG

)
−z(1 + jkr)

G

r2
, (A7)

∫ ∞

0
dkρk

3
ρ J2(kρρ)

e−jkzz

jkz
= −(kρ)2

[
1− 3

1 + jkr

(kr)2

]
G

r2
, (A8)

where

G =
e−jkr

r
, r =

√
ρ2 + z2, (A9)

and kz is given by (15). Note that the first identity above is the well-
known Sommerfeld identity [26, p. 66], from which the other identities
can be derived.
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