Electronic supplementary information

Complex Interactions of Pillar[5]arene with Paraquats and Bis(pyridinium) Derivatives

Chunju Li,* Qianqian Xu, Jian Li, Feina Yao and Xueshun Jia*

Department of Chemistry, Shanghai University, Shanghai, 200444, P. R.China

E-mail: cjli@shu.edu.cn

Contents

¹ H NMR spectra (500 MHz) of paraquats (G1·2PF ₆ ~G5·2PF ₆) in the	S2
absence and presence of P5A in DMSO- d_6 .	
¹ H NMR spectra (500 MHz) of bis(pyridinium) derivatives	S3
$(\mathbf{G6} \cdot 2\mathbf{PF}_6 \sim \mathbf{G11} \cdot 2\mathbf{PF}_6)$ in the absence and presence of P5A in DMSO- <i>d</i> ₆ .	
ESI mass spectrum of $G2 \cdot 2PF_6$ in the presence of P5A.	S4
ESI mass spectrum of $G3 \cdot 2PF_6$ in the presence of P5A .	S5
ESI mass spectrum of $\mathbf{G7} \cdot 2\mathbf{PF}_6$ in the presence of $\mathbf{P5A}$.	S6
ESI mass spectrum of $G9.2PF_6$ in the presence of $P5A$.	S7
Job plots of $P5A/G8 \cdot 2PF_6$, $P5A/G1 \cdot 2PF_6$ and $P5A/G3 \cdot 2PF_6$ complexes.	S 8
Determination of the association constants.	S9
References	S13

Figure S1. ¹H NMR spectra (500 MHz) of (a) P5A, (b) G1·2PF₆, (c) P5A + G1·2PF₆, (d) G2·2PF₆, (e) P5A + G2·2PF₆, (f) G3·2PF₆, (g) P5A + G3·2PF₆, (h) G4·2PF₆, (i) P5A + G4·2PF₆, (j) G5·2PF₆, (k) P5A + G5·2PF₆ in DMSO-*d*₆ at about 5 mM.

Figure S2. ¹H NMR spectra (500 MHz) of (a) P5A, (b) $G6 \cdot 2PF_6$, (c) P5A + $G6 \cdot 2PF_6$,

(d) $G7 \cdot 2PF_6$, (e) $P5A + G7 \cdot 2PF_6$, (f) $G8 \cdot 2PF_6$, (g) $P5A + G8 \cdot 2PF_6$, (h) $G9 \cdot 2PF_6$, (i) $P5A + G9 \cdot 2PF_6$, (j) $G10 \cdot 2PF_6$, (k) $P5A + G10 \cdot 2PF_6$, (l) $G11 \cdot 2PF_6$ and (m) $P5A + G11 \cdot 2PF_6$ in DMSO- d_6 at 4.5~5.0 mM.

Figure S3. ESI mass spectrum of $G2-2PF_6$ in the presence of 1.2 eq P5A in methanol solution.

Figure S4. ESI mass spectrum of $G3 \cdot 2PF_6$ in the presence of 1.2 eq P5A in methanol solution.

Figure S5. ESI mass spectrum of $G7 \cdot 2PF_6$ in the presence of 1.2 eq P5A in methanol solution.

Figure S6. ESI mass spectrum of $G9.2PF_6$ in the presence of 1.2 eq P5A in methanol solution.

Figure S7. Job plots showing the 1:1 stoichiometry of the complex between P5A and G8·2PF₆ in DMSO by plotting the absorbance intensity at $\lambda = 370$ nm (the host–guest charge transfer band) against the mole fraction of G8·2PF₆. ([P5A] + [G8·2PF₆] = 4.0 mM)

Figure S8. Job plots showing the 2:1 stoichiometry of the complex between P5A and G1·2PF₆ in DMSO by plotting the absorbance intensity at $\lambda = 448$ nm (the host-guest charge transfer band) against the mole fraction of G1·2PF₆. ([P5A] + [G1·2PF₆] = 6.0 mM)

Figure S9. Job plots showing the 2:1 stoichiometry of the complex between P5A and G3·2PF₆ in DMSO by plotting the absorbance intensity at $\lambda = 445$ nm (the host-guest charge transfer band) against the mole fraction of G3·2PF₆. ([P5A] + [G3·2PF₆] = 6.0 mM)

Determination of the association constants.

(1) Method A. For P5A-G13·2PF₆ and P5A-G14·2PF₆ host-guest complexes, chemical exchange is slow on the NMR time scale and peaks are observed for both complexed and uncomplexed species in the NMR spectra. (Figure 3d) So association constants^{S1, S2} for these complexes could be determined by integration from a 1:1 mixture using the ¹H NMR single point method.^{S3, S4} (Table 2)

$$K_{a} = \frac{[P5A \cdot G]_{c}}{[P5A]_{uc}[G]_{uc}}$$

(2) Method B. The association constants (K_a) of G6~G12·2PF₆ have been determined by probing the charge-transfer bands of the complexes by UV-vis spectroscopy employing a titration method.^{S5, S6} Progressive addition of a DMSO solution with high guest concentration and low **P5A** concentration to a DMSO solution with the same **P5A** concentration results in an increase of the intensity of the CT band of the complex (Figure S10). Using the nonlinear least squares curve-fitting method, we obtained the association constant for each host-guest combination from the following equation^{S5}:

$$K_{a} = \frac{[P5A \cdot G]}{[P5A][G]} = \frac{[P5A \cdot G]}{([P5A]_{0} - [P5A \cdot G])([G]_{0} - [P5A \cdot G])} = \frac{\Delta A / \Delta \varepsilon}{([P5A]_{0} - \Delta A / \Delta \varepsilon)([G]_{0} - \Delta A / \Delta \varepsilon)}$$
(1)

After some manipulation, eq 1 yields:

$$\Delta A = \frac{\Delta \varepsilon ([G]_0 + [P5A]_0 + \frac{1}{K_a}) \pm \sqrt{\Delta \varepsilon^2 ([G]_0 + [P5A]_0 + \frac{1}{K_a})^2 - 4\Delta \varepsilon^2 [P5A]_0 [G]_0}}{2}$$
(2)

where $[P5A]_0$ and $[G]_0$ denote the initial concentrations of **P5A** host and guests, respectively.

Figure S10. Left: UV-Vis spectra of **P5A** (1.51 mM) in the presence of **G8**·2PF₆ (0, 0.64, 1.26, 2.07, 3.04, 3.98, 5.75, 7.41, 10.4, 13.0, 15.4, 16.8, 19.9, 23.3, 26.9, and 29.0 mM from a to p) in DMSO solution at 298 K. Right: Curve-fitting analyses for

the complexation of **P5A** with **G8**·2PF₆. (λ =370 nm) The "Control" is the UV-vis spectrum of a high concentration of **G8**·2PF₆ (29.0 mM) in the absence of **P5A** host.

The K_a values of bis(pyridinium) derivatives (G6~G12·2PF₆) by P5A are listed in Table 1.

The K_a value for **P5A/G13**·2PF₆ system was also determined using UV-vis titration. The K_a value obtained is almost accordant with that from the ¹H NMR single point method (Figure S11 & Table S1).

Figure S11. Left: UV-Vis spectra of **P5A** (1.60 mM) in the presence of **G13**·2PF₆ (0, 0.27, 0.54, 0.93, 1.32, 1.94, 2.54, 3.67, 4.72, 6.63, 8.30, 10.5, 11.7, 13.8, 17.1, 18.4, 23.1 and 27.0 mM from a to r) in DMSO solution at 298 K. Right: Curve-fitting analyses for the complexation of **P5A** with **G13**·2PF₆. (λ =420 nm) The "Control" is the UV-vis spectrum of a high concentration of **G13**·2PF₆ (27.0 mM) in the absence of **P5A** host.

guest	K_{a}
G13 ·2PF ₆	$(7.4\pm0.3) \times 10^{2} a$
G13 ·2PF ₆	$(7.6\pm0.4) \times 10^{2b}$

TABLE S1. Association constant (K_a/M^{-1}) for complexation of host **P5A** with **G13**·2PF₆ in DMSO (or DMSO-*d6*) at 298 K using different methods.

^{*a*} Method A. ^{*b*} Method B.

(3) Method C. The association constants (K_a) of G6~G12·2PF₆ have also been determined using the indirect method based on ¹H NMR spectroscopy introduced by Mock in his pioneering work on cucurbituril.^{S7} In our implementation of this method, a more tightly binding guest (G13·2PF₆) that exhibits slow exchange kinetics and an excess of a more weakly binding guest are allowed to compete for a limiting quantity of **P5A**. The integration of the resonances for the free and bound guest then allow for a calculation of the association constant.

In the three component system:

$$K_{\text{a ref}} = \frac{[P5A \cdot G_{\text{ref}}]_{\text{c}}}{[P5A]_{\text{uc}}[G_{\text{ref}}]_{\text{uc}}}$$
$$\therefore \quad [P5A]_{\text{uc}} = \frac{[P5A \cdot G_{\text{ref}}]_{\text{c}}}{[G_{\text{ref}}]_{\text{uc}}K_{\text{a ref}}}$$

So the unknown K_a could be determined using the following equation:

$$K_{a} = \frac{[P5A \cdot G]_{c}}{[P5A]_{uc}[G]_{uc}} = \frac{[P5A]_{0} - [P5A]_{uc} - [P5A \cdot G_{ref}]_{c}}{[P5A]_{uc}([G]_{0} - [P5A \cdot G]_{c})}$$
$$= \frac{[P5A]_{0} - [P5A]_{uc} - [P5A \cdot G_{ref}]_{c}}{[P5A]_{uc} \{[G]_{0} - ([P5A]_{0} - [P5A]_{uc} - [P5A \cdot G_{ref}]_{c})\}}$$

As shown in Table S2, the K_a values for P5A with G6~G12·2PF₆ systems

determined using this indirect method (Method C) are almost accordant with those from UV-vis titration. (Method B)

TABLE S2. Association constant (K_a/M^{-1}) for complexation of host **P5A** with **G6~G12**·2PF₆ in DMSO at 298 K using different methods.

	$K_{a}{}^{a}$	K_{a}^{b}
$G6.2PF_6$	_ c	_ c
$\mathbf{G7} \cdot 2\mathbf{PF}_6$	$(8.8\pm0.7) \times 10$	$(8.1\pm0.8) \times 10$
$\mathbf{G8} \cdot 2\mathrm{PF}_6$	$(4.5\pm0.4) \times 10^2$	$(4.1\pm0.1) \times 10^2$
$G9 \cdot 2PF_6$	$(3.7\pm0.3) \times 10^2$	$(3.5\pm0.1) \times 10^2$
$G10 \cdot 2PF_6$	$(1.2\pm0.1) \times 10^2$	$(1.1\pm0.1) \times 10^2$
$G11 \cdot 2PF_6$	_c	c
$G12 \cdot 2PF_6$	$(4.0\pm0.3) \times 10^2$	$(3.9\pm0.2) \times 10^2$

^{*a*} Method B. ^{*b*} Method C. ^{*c*} The K_a value was too small to be calculated.

(4) For paraquat derivative G1~G4·2PF₆, the average association constants^{S8} with the host (using Method B^{S8a&b} or Method C) are very small ($K_{av} < 50 \text{ M}^{-1}$) in DMSO, and can't be calculated accurately.

References.

(S1) K_a reported here should be taken as approximate because it does not take into account the extent of ion pair dissociation on the observed binding interaction

with pillar[5]arene. For a detailed discussion, see ref S2.

- (S2) (a) Huang, F.; Jones, J. W.; Slebodnick, C.; Gibson, H. W. J. Am. Chem. Soc.
 2003, 125, 14458–14464. (b) Jones, J. W.; Gibson, H. W. J. Am. Chem. Soc. 2003, 125, 7001–7004.
- (S3) Adrian, Jr., J. C.; Wilcox, C. S. J. Am. Chem. Soc. 1991, 113, 678-680.
- (S4) Association constants determined using the ¹H NMR single point methods. See:
 (a) Braunschweig, A. B.; Ronconi, C. M.; Han, J.-Y.; Arico, F.; Cantrill, S. J.; Stoddart, J. F.; Khan, S. I.; White, A. J. P.; Williams, D. J. *Eur. J. Org. Chem.* **2006**, 1857–1866. (b) Loeb, S. J.; Wisner, J. A. *Angew. Chem. Int. Ed.* **1998**, *37*, 2838–2840. (c) Loeb, S. J.; Tiburcio, J.; Vella, S. J. *Org. Lett.* **2005**, *7*, 4923–4926.
 (d) Zhao, J.-M.; Zong, Q.-S.; Han, T.; Xiang, J.-F.; Chen, C.-F. J. Org. Chem. **2008**, *73*, 6800–6806. (e) Li, L.; Clarkson, G. J. *Org. Lett.*, **2007**, *9*, 497–500. (f) Castillo, D.; Astudillo, P.; Mares, J.; González, F. J.; Vela, A.; Tiburcio, J. Org. *Biomol. Chem.*, **2007**, *5*, 2252–2256.
- (S5) (a) Benesi, H. A.; Hildebrand, J. H. J. Am. Chem. Soc. 1949, 71, 2703–2707. (b)
 Tong, L.-H.; Hou, Z.-J.; Inoue, Y.; Tai, A. J. Chem. Soc. Perkin Trans. 1992, 2, 1253–1257.
- (S6) Association constants determined using UV-vis titration. See: (a) Zhang, J.; Zhai,
 C.; Wang, F.; Zhang, C.; Li, S.; Zhang, M.; Li, N.; Huang, F. *Tetrahedron Lett.* **2008**, 49, 5009–5012. (b) Zhu, K.; Li, S.; Wang, F.; Huang, F. *J. Org. Chem.* **2009**,
 74, 1322–1328. (c) He, C.; Shi, Z.; Zhou, Q.; Li, S.; Li, N.; Huang, F. *J. Org. Chem.* **2008**, 73, 5872–5880. (d) Zhang, J.; Huang, F.; Li, N.; Wang, H.; Gibson,

H. W.; Gantzel, P.; Rheingol, A. L. J. Org. Chem., 2007, 72, 8935–8938. (e) Liu,
Y.; Zhao, Y.-L.; Zhang, H.-Y.; Fan, Z.; Wen, G.-D.; Ding, F. J. Phys. Chem. B 2004,
108, 8836–8843.

- (S7) (a) Mock, W. L.; Shih, N. Y. J. Org. Chem. 1986, 51, 4440–4446. (b) Liu, S.;
 Ruspic, C.; Mukhopadhyay, P.; Chakrabarti, S.; Zavalij, P. Y.; Isaacs, L. J. Am.
 Chem. Soc. 2005, 127, 15959–15967.
- (S8) (a) Connors, K. A. *Binding Constants*; J. Wiley and Sons: New York, **1987**; pp 78–86. (b) Zhu, K.; He, J.; Li, S.; Liu, M.; Wang, F.; Zhang, M.; Abliz, Z.; Yang, H.; Li, N.; Huang, F. *J. Org. Chem.* **2009**, *74*, 3905–3912. (c) Huang, F.; Zakharov, L. N.; Rheingold, A. L.; Ashraf-Khorassani, M.; Gibson, H. W. *J. Org. Chem.* **2005**, *70*, 809–813.