Electronic supplementary information

Complex Interactions of Pillar[5]arene with Paraquats and Bis(pyridinium) Derivatives

Chunju Li,* Qianqian Xu, Jian Li, Feina Yao and Xueshun Jia*Department of Chemistry, Shanghai University, Shanghai, 200444, P. R.ChinaE-mail: cjli@shu.edu.cn
Contents
${ }^{1} \mathrm{H}$ NMR spectra $(500 \mathrm{MHz})$ of paraquats $\left(\mathbf{G} 1 \cdot 2 \mathrm{PF}_{6} \sim \mathbf{G} 5 \cdot 2 \mathrm{PF}_{6}\right)$ in the S2absence and presence of P5A in DMSO- d_{6}.
${ }^{1} \mathrm{H} \quad \mathrm{NMR} \quad$ spectra $\quad(500 \mathrm{MHz})$ of $\operatorname{bis}($ pyridinium $)$ derivatives S3
(G6.2 $\mathrm{PF}_{6} \sim \mathbf{G 1 1} \cdot 2 \mathrm{PF}_{6}$) in the absence and presence of $\mathbf{P 5 A}$ in DMSO- d_{6}.
ESI mass spectrum of $\mathbf{G 2} \cdot \mathbf{2 P F} 6$ in the presence of P5A. S4
ESI mass spectrum of $\mathbf{G} 3 \cdot 2 \mathrm{PF}_{6}$ in the presence of $\mathbf{P} 5 \mathbf{A}$. S5
ESI mass spectrum of $\mathbf{G 7} \cdot 2 \mathrm{PF}_{6}$ in the presence of $\mathbf{P} 5 \mathrm{~A}$. S6
ESI mass spectrum of G9•2 PF_{6} in the presence of $\mathbf{P 5 A}$. S7
Job plots of P5A/G8•2PF, P5A/G1 $\cdot 2$ PF $_{6}$ and P5A/G3•2PF 6 complexes. S8
Determination of the association constants. S9
References S13

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectra (500 MHz) of (a) P5A, (b) $\mathbf{G 1} \cdot 2 \mathrm{PF}_{6}$, (c) $\mathbf{P 5 A}+\mathbf{G} 1 \cdot 2 \mathrm{PF}_{6}$, (d) $\mathbf{G} \mathbf{2} \cdot 2 \mathrm{PF}_{6}$, (e) $\mathbf{P} 5 \mathrm{~A}+\mathbf{G} \mathbf{2} \cdot 2 \mathrm{PF}_{6}$, (f) $\mathbf{G} 3 \cdot 2 \mathrm{PF}_{6}$, (g) P5A $+\mathbf{G} \mathbf{3} \cdot 2 \mathrm{PF}_{6}$, (h) $\mathbf{G} 4 \cdot 2 \mathrm{PF}_{6}$, (i)
$\mathbf{P} 5 \mathbf{A}+\mathbf{G} 4 \cdot 2 \mathrm{PF}_{6},(\mathrm{j}) \mathbf{G} 5 \cdot 2 \mathrm{PF}_{6},(\mathrm{k}) \mathbf{P} 5 \mathbf{A}+\mathbf{G} 5 \cdot 2 \mathrm{PF}_{6}$ in DMSO- d_{6} at about 5 mM .

Figure S2. ${ }^{1} \mathrm{H}$ NMR spectra (500 MHz) of (a) $\mathbf{P 5 A}$, (b) $\mathbf{G 6} \cdot 2 \mathrm{PF}_{6}$, (c) $\mathbf{P} 5 \mathrm{~A}+\mathbf{G 6} \cdot 2 \mathrm{PF}_{6}$,
(d) G7•2PF ${ }_{6}$, (e) P5A $+\mathbf{G} 7 \cdot 2 \mathrm{PF}_{6}$, (f) $\mathbf{G 8} \cdot 2 \mathrm{PF}_{6}$, (g) $\mathbf{P} 5 \mathbf{A}+\mathbf{G 8} \cdot 2 \mathrm{PF}_{6}$, (h) $\mathbf{G} 9 \cdot 2 \mathrm{PF}_{6}$, (i)

$\mathbf{P} 5 \mathbf{A}+\mathbf{G} 9 \cdot 2 \mathrm{PF}_{6},(\mathrm{j}) \mathbf{G 1 0} \cdot 2 \mathrm{PF}_{6}$, (k) P5A $+\mathbf{G 1 0} \cdot 2 \mathrm{PF}_{6}$, (l) $\mathbf{G 1 1} \cdot 2 \mathrm{PF}_{6}$ and (m) $\mathbf{P} \mathbf{5 A}+$ G11 $2 \mathrm{PF}_{6}$ in DMSO- d_{6} at $4.5 \sim 5.0 \mathrm{mM}$.

Figure S3. ESI mass spectrum of G2•2PF 6 in the presence of 1.2 eq $\mathbf{P 5 A}$ in methanol solution.

Figure S4. ESI mass spectrum of $\mathbf{G 3} \cdot \mathbf{2} \mathbf{P F}_{6}$ in the presence of 1.2 eq $\mathbf{P 5 A}$ in methanol solution.

Figure S5. ESI mass spectrum of $\mathbf{G 7} \cdot \mathbf{2 P F} \mathbf{6}$ in the presence of 1.2 eq P5A in methanol solution.

Figure S6. ESI mass spectrum of G9•2PF $\mathbf{6}$ in the presence of 1.2 eq $\mathbf{P 5 A}$ in methanol solution.

Figure S7. Job plots showing the 1:1 stoichiometry of the complex between P5A and G8. $2 \mathrm{PF}_{6}$ in DMSO by plotting the absorbance intensity at $\lambda=370 \mathrm{~nm}$ (the host-guest charge transfer band) against the mole fraction of G8.2PF $6 .\left([\mathrm{P} 5 \mathrm{~A}]+\left[\mathbf{G 8} \cdot 2 \mathrm{PF}_{6}\right]=4.0\right.$ $\mathrm{mM})$

Figure S8. Job plots showing the 2:1 stoichiometry of the complex between P5A and G1.2 $2 \mathrm{PF}_{6}$ in DMSO by plotting the absorbance intensity at $\lambda=448 \mathrm{~nm}$ (the host-guest charge transfer band) against the mole fraction of G1 2 PF $_{6} .\left([\mathbf{P 5 A}]+\left[\mathbf{G 1} \cdot 2 \mathrm{PF}_{6}\right]=6.0\right.$ $\mathrm{mM})$

Figure S9. Job plots showing the $2: 1$ stoichiometry of the complex between P5A and G3 $2 \mathrm{PF}_{6}$ in DMSO by plotting the absorbance intensity at $\lambda=445 \mathrm{~nm}$ (the host-guest charge transfer band) against the mole fraction of G3.2PF $6 .\left([\mathbf{P} 5 \mathbf{A}]+\left[\mathbf{G 3} \cdot 2 \mathrm{PF}_{6}\right]=6.0\right.$ $\mathrm{mM})$

Determination of the association constants.

(1) Method A. For P5A-G13•2PF 6 and P5A-G14 $2 \mathrm{PF}_{6}$ host-guest complexes, chemical exchange is slow on the NMR time scale and peaks are observed for both complexed and uncomplexed species in the NMR spectra. (Figure 3d) So association constants ${ }^{\mathrm{S} 1, \mathrm{~S} 2}$ for these complexes could be determined by integration from a $1: 1$ mixture using the ${ }^{1} \mathrm{H}$ NMR single point method. ${ }^{\mathrm{S} 3, \mathrm{~S} 4}$ (Table 2)

$$
K_{\mathrm{a}}=\frac{[\mathrm{P} 5 \mathrm{~A} \cdot \mathrm{G}]_{\mathrm{c}}}{[\mathrm{P} 5 \mathrm{~A}]_{\mathrm{uc}}[\mathrm{G}]_{\mathrm{uc}}}
$$

(2) Method B. The association constants $\left(K_{\mathrm{a}}\right)$ of $\mathbf{G 6} \sim \mathbf{G 1 2} \cdot 2 \mathrm{PF}_{6}$ have been determined by probing the charge-transfer bands of the complexes by UV-vis spectroscopy
employing a titration method. ${ }^{\text {S5, S6 }}$ Progressive addition of a DMSO solution with high guest concentration and low P5A concentration to a DMSO solution with the same P5A concentration results in an increase of the intensity of the CT band of the complex (Figure S10). Using the nonlinear least squares curve-fitting method, we obtained the association constant for each host-guest combination from the following equation ${ }^{\text {S5 }}$:

$$
\begin{align*}
K_{\mathrm{a}}= & \frac{[\mathrm{P} 5 \mathrm{~A} \cdot \mathrm{G}]}{[\mathrm{P} 5 \mathrm{~A}][\mathrm{G}]}=\frac{[\mathrm{P} 5 \mathrm{~A} \cdot \mathrm{G}]}{\left([\mathrm{P} 5 \mathrm{~A}]_{0}-[\mathrm{P} 5 \mathrm{~A} \cdot \mathrm{G}]\right)\left([\mathrm{G}]_{0}-[\mathrm{P} 5 \mathrm{~A} \cdot \mathrm{G}]\right)}= \tag{1}\\
& \frac{\Delta A / \Delta \varepsilon}{\left([\mathrm{P} 5 \mathrm{~A}]_{0}-\Delta A / \Delta \varepsilon\right)\left([\mathrm{G}]_{0}-\Delta A / \Delta \varepsilon\right)}
\end{align*}
$$

After some manipulation, eq 1 yields:

$$
\begin{equation*}
\Delta A=\frac{\Delta \varepsilon\left([\mathrm{G}]_{0}+[\mathrm{P} 5 \mathrm{~A}]_{0}+\frac{1}{K_{\mathrm{a}}}\right) \pm \sqrt{\Delta \varepsilon^{2}\left([\mathrm{G}]_{0}+[\mathrm{P} 5 \mathrm{~A}]_{0}+\frac{1}{K_{\mathrm{a}}}\right)^{2}-4 \Delta \varepsilon^{2}[\mathrm{P} 5 \mathrm{~A}]_{0}[\mathrm{G}]_{0}}}{2} \tag{2}
\end{equation*}
$$

where $[\mathrm{P} 5 \mathrm{~A}]_{0}$ and $[\mathrm{G}]_{0}$ denote the initial concentrations of P5A host and guests, respectively.

Figure S10. Left: UV-Vis spectra of $\mathbf{P 5 A}(1.51 \mathrm{mM})$ in the presence of $\mathbf{G 8} \cdot 2 \mathrm{PF}_{6}(0$, $0.64,1.26,2.07,3.04,3.98,5.75,7.41,10.4,13.0,15.4,16.8,19.9,23.3,26.9$, and 29.0 mM from a to p) in DMSO solution at 298 K. Right: Curve-fitting analyses for
the complexation of P5A with G8•2PF 6 . $(\lambda=370 \mathrm{~nm})$ The "Control" is the UV-vis spectrum of a high concentration of G8•2PF $6(29.0 \mathrm{mM})$ in the absence of P5A host.

The K_{a} values of $\operatorname{bis}($ pyridinium $)$ derivatives $\left(\mathbf{G 6} \sim \mathbf{G} 12 \cdot 2 \mathrm{PF}_{6}\right)$ by $\mathbf{P} 5 \mathrm{~A}$ are listed in Table 1.

The K_{a} value for $\mathbf{P 5 A} / \mathbf{G 1 3} \cdot 2 \mathrm{PF}_{6}$ system was also determined using UV-vis titration. The K_{a} value obtained is almost accordant with that from the ${ }^{1} \mathrm{H}$ NMR single point method (Figure S11 \& Table S1).

Figure S11. Left: UV-Vis spectra of P5A $(1.60 \mathrm{mM})$ in the presence of $\mathbf{G 1 3} \cdot 2 \mathrm{PF}_{6}(0$, $0.27,0.54,0.93,1.32,1.94,2.54,3.67,4.72,6.63,8.30,10.5,11.7,13.8,17.1,18.4$, 23.1 and 27.0 mM from a to r) in DMSO solution at 298 K . Right: Curve-fitting analyses for the complexation of P5A with G13•2PF 6 . $(\lambda=420 \mathrm{~nm})$ The "Control" is the UV-vis spectrum of a high concentration of $\mathbf{G 1 3} \cdot 2 \mathrm{PF}_{6}(27.0 \mathrm{mM})$ in the absence of P5A host.

TABLE S1. Association constant $\left(K_{\mathrm{a}} / \mathrm{M}^{-1}\right)$ for complexation of host P5A with G13.2 PF_{6} in DMSO (or DMSO-d6) at 298 K using different methods.

guest	K_{a}
G13.2PF $_{6}$	$(7.4 \pm 0.3) \times 10^{2 a}$
G13.2PF $_{6}$	$(7.6 \pm 0.4) \times 10^{2 b}$
${ }^{a}$ Met $^{b}{ }^{b}$ M.	

[^0](3) Method C. The association constants $\left(K_{\mathrm{a}}\right)$ of $\mathbf{G 6} \sim \mathbf{G 1 2} \cdot 2 \mathrm{PF}_{6}$ have also been determined using the indirect method based on ${ }^{1} \mathrm{H}$ NMR spectroscopy introduced by Mock in his pioneering work on cucurbituril. ${ }^{57}$ In our implementation of this method, a more tightly binding guest $\left(\mathbf{G 1 3} \cdot 2 \mathrm{PF}_{6}\right)$ that exhibits slow exchange kinetics and an excess of a more weakly binding guest are allowed to compete for a limiting quantity of P5A. The integration of the resonances for the free and bound guest then allow for a calculation of the association constant.

In the three component system:

$$
\begin{aligned}
& K_{\mathrm{a} \text { ref }}=\frac{\left[\mathrm{P} 5 \mathrm{~A} \cdot \mathrm{G}_{\mathrm{ref}}\right]_{\mathrm{c}}}{[\mathrm{P} 5 \mathrm{~A}]_{\mathrm{uc}}\left[\mathrm{G}_{\mathrm{ref}}\right]_{\mathrm{uc}}} \\
& \therefore[\mathrm{P} 5 \mathrm{~A}]_{\mathrm{uc}}=\frac{\left[\mathrm{P} 5 \mathrm{~A} \cdot \mathrm{G}_{\mathrm{ref}}\right]_{\mathrm{c}}}{\left[\mathrm{G}_{\mathrm{ref}}\right]_{\mathrm{uc}} K_{\mathrm{a} \text { ref }}}
\end{aligned}
$$

So the unknown K_{a} could be determined using the following equation:

$$
\begin{aligned}
K_{\mathrm{a}} & =\frac{[\mathrm{P} 5 \mathrm{~A} \cdot \mathrm{G}]_{\mathrm{c}}}{[\mathrm{P} 5 \mathrm{~A}]_{\mathrm{uc}}[\mathrm{G}]_{\mathrm{uc}}}=\frac{[\mathrm{P} 5 \mathrm{~A}]_{0}-[\mathrm{P} 5 \mathrm{~A}]_{\mathrm{uc}}-\left[\mathrm{P} 5 \mathrm{~A} \cdot \mathrm{G}_{\mathrm{ref}}\right]_{\mathrm{c}}}{[\mathrm{P} 5 \mathrm{~A}]_{\mathrm{uc}}\left([\mathrm{G}]_{0}-[\mathrm{P} 5 \mathrm{~A} \cdot \mathrm{G}]_{\mathrm{c}}\right)} \\
& =\frac{[\mathrm{P} 5 \mathrm{~A}]_{0}-[\mathrm{P} 5 \mathrm{~A}]_{\mathrm{uc}}-\left[\mathrm{P} 5 \mathrm{~A} \cdot \mathrm{G}_{\mathrm{ref}}\right]_{\mathrm{c}}}{[\mathrm{P} 5 \mathrm{~A}]_{\mathrm{uc}}\left\{[\mathrm{G}]_{0}-\left([\mathrm{P} 5 \mathrm{~A}]_{0}-[\mathrm{P} 5 \mathrm{~A}]_{\mathrm{uc}}-\left[\mathrm{P} 5 \mathrm{~A} \cdot \mathrm{G}_{\mathrm{ref}}\right]_{\mathrm{c}}\right)\right\}}
\end{aligned}
$$

As shown in Table S 2, the K_{a} values for $\mathbf{P 5 A}$ with $\mathbf{G 6} \sim \mathbf{G 1 2} \cdot 2 \mathrm{PF}_{6}$ systems
determined using this indirect method (Method C) are almost accordant with those from UV-vis titration. (Method B)

TABLE S2. Association constant $\left(K_{a} / \mathrm{M}^{-1}\right)$ for complexation of host P5A with G6~G12•2 PF $_{6}$ in DMSO at 298 K using different methods.

	$K_{\mathrm{a}}{ }^{a}$	$K_{\mathrm{a}}{ }^{\text {b }}$
G6. $2 \mathrm{PF}_{6}$	_c	_ ${ }^{\text {c }}$
G7.2PF 6	$(8.8 \pm 0.7) \times 10$	$(8.1 \pm 0.8) \times 10$
G8.2PF 6	$(4.5 \pm 0.4) \times 10^{2}$	$(4.1 \pm 0.1) \times 10^{2}$
G9•2PF 6	$(3.7 \pm 0.3) \times 10^{2}$	$(3.5 \pm 0.1) \times 10^{2}$
G10.2 PF_{6}	$(1.2 \pm 0.1) \times 10^{2}$	$(1.1 \pm 0.1) \times 10^{2}$
G11.2PF ${ }_{6}$	_ ${ }^{\text {c }}$	_ ${ }^{\text {c }}$
G12.2PF ${ }_{6}$	$(4.0 \pm 0.3) \times 10^{2}$	$(3.9 \pm 0.2) \times 10^{2}$

[^1](4) For paraquat derivative G1~G4 $2 \mathrm{PF}_{6}$, the average association constants ${ }^{\mathrm{S8}}$ with the host (using Method $\mathrm{B}^{\text {S8a\&b }}$ or Method C) are very small $\left(K_{\mathrm{av}}<50 \mathrm{M}^{-1}\right)$ in DMSO, and can't be calculated accurately.

References.

(S1) K_{a} reported here should be taken as approximate because it does not take into account the extent of ion pair dissociation on the observed binding interaction
with pillar[5]arene. For a detailed discussion, see ref S2.
(S2) (a) Huang, F.; Jones, J. W.; Slebodnick, C.; Gibson, H. W. J. Am. Chem. Soc. 2003, 125, 14458-14464. (b) Jones, J. W.; Gibson, H. W. J. Am. Chem. Soc. 2003, 125, 7001-7004.
(S3) Adrian, Jr., J. C.; Wilcox, C. S. J. Am. Chem. Soc. 1991, 113, 678-680.
(S4) Association constants determined using the ${ }^{1} \mathrm{H}$ NMR single point methods. See:
(a) Braunschweig, A. B.; Ronconi, C. M.; Han, J.-Y.; Arico, F.; Cantrill, S. J.; Stoddart, J. F.; Khan, S. I.; White, A. J. P.; Williams, D. J. Eur. J. Org. Chem. 2006, 1857-1866. (b) Loeb, S. J.; Wisner, J. A. Angew. Chem. Int. Ed. 1998, 37, 2838-2840. (c) Loeb, S. J.; Tiburcio, J.; Vella, S. J. Org. Lett. 2005, 7, 4923-4926. (d) Zhao, J.-M.; Zong, Q.-S.; Han, T.; Xiang, J.-F.; Chen, C.-F. J. Org. Chem. 2008, 73, 6800-6806. (e) Li, L.; Clarkson, G. J. Org. Lett., 2007, 9, 497-500. (f) Castillo, D.; Astudillo, P.; Mares, J.; González, F. J.; Vela, A.; Tiburcio, J. Org. Biomol. Chem., 2007, 5, 2252-2256.
(S5) (a) Benesi, H. A.; Hildebrand, J. H. J. Am. Chem. Soc. 1949, 71, 2703-2707. (b) Tong, L.-H.; Hou, Z.-J.; Inoue, Y.; Tai, A. J. Chem. Soc. Perkin Trans. 1992, 2, 1253-1257.
(S6) Association constants determined using UV-vis titration. See: (a) Zhang, J.; Zhai, C.; Wang, F.; Zhang, C.; Li, S.; Zhang, M.; Li, N.; Huang, F. Tetrahedron Lett. 2008, 49, 5009-5012. (b) Zhu, K.; Li, S.; Wang, F.; Huang, F. J. Org. Chem. 2009, 74, 1322-1328. (c) He, C.; Shi, Z.; Zhou, Q.; Li, S.; Li, N.; Huang, F. J. Org. Chem. 2008, 73, 5872-5880. (d) Zhang, J.; Huang, F.; Li, N.; Wang, H.; Gibson,
H. W.; Gantzel, P.; Rheingol, A. L. J. Org. Chem., 2007, 72, 8935-8938. (e) Liu, Y.; Zhao, Y.-L.; Zhang, H.-Y.; Fan, Z.; Wen, G.-D.; Ding, F. J. Phys. Chem. B 2004, 108, 8836-8843.
(S7) (a) Mock, W. L.; Shih, N. Y. J. Org. Chem. 1986, 51, 4440-4446. (b) Liu, S.; Ruspic, C.; Mukhopadhyay, P.; Chakrabarti, S.; Zavalij, P. Y.; Isaacs, L. J. Am. Chem. Soc. 2005, 127, 15959-15967.
(S8) (a) Connors, K. A. Binding Constants; J. Wiley and Sons: New York, 1987; pp 78-86. (b) Zhu, K.; He, J.; Li, S.; Liu, M.; Wang, F.; Zhang, M.; Abliz, Z.; Yang, H.; Li, N.; Huang, F. J. Org. Chem. 2009, 74, 3905-3912. (c) Huang, F.; Zakharov, L. N.; Rheingold, A. L.; Ashraf-Khorassani, M.; Gibson, H. W. J. Org. Chem. 2005, 70, 809-813.

[^0]: ${ }^{a}$ Method A. ${ }^{b}$ Method B.

[^1]: ${ }^{a}$ Method B. ${ }^{b}$ Method C. ${ }^{c}$ The K_{a} value was too small to be calculated.

