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Intermittent instability is commonly observed in switching power supplies during the design and
development phase. It manifests as symmetrical period-doubling bifurcation in the time domain
with long intermittent periods. Such intermittent operation is considered undesirable in practice
and is usually avoided by appropriate adjustments of circuit parameters. This paper explores the
mechanism and conditions for the emergence of intermittency in a common voltage-mode con-
trolled buck converter. It is found that interference at frequencies near the switching frequency
or its rational multiples will induce intermittent operation. The strengths and frequencies of
the interfering signals determine the type and period of intermittency. The problem is analyzed
by transforming the conventional parameter-bifurcation analysis to a time-bifurcation analysis.
Analytical results are verified by simulations and experimental measurements.
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1. Introduction

Intermittent operation, sometimes referred to as
“breathing” in the physics literature [Hu et al.,
2000; Qu et al., 1995; Yang et al., 1996], is a phe-
nomenon which is frequently observed in period-
ically driven nonlinear systems. A specific form
of intermittent operation exhibits period-doubling
bifurcation in two symmetrical directions over the
time domain. In this type of intermittent oper-
ation, the system intermittently bifurcates from
the initial regular (or subharmonic) operation to
the higher subharmonic operation or chaos, and
then returns to the initial operation through the
same bifurcation sequence in the reverse manner.

To distinguish it from the usual bifurcation in the
parameter space, we refer to this intermittent bifur-
cation in the time domain as time-bifurcation, as
it manifests as a change of qualitative behavior of
the system as time elapses [Zhou et al., 2003] rather
than as parameter changes. Such intermittency may
arise in periodically driven nonlinear systems, where
the frequency of a coupled signal is not consis-
tent with the system’s driving frequency. Switching
power converters are periodically driven nonlinear
systems, to which abundant sources of periodic
interference are coupled via unintended paths (e.g.
conducted or radiated paths) [Ferreira et al., 1997;
William, 1994]. When the interference frequency

121



122 Y. Zhou et al.

differs from the switching frequency, and if the
interference is strong enough, intermittent opera-
tion occurs [Tse et al., 2003]. Intermittent chaotic
operation in a current-mode controlled boost con-
verter has been studied recently [Wong et al., 2004].
In practice, intermittency is an undesirable operat-
ing state that should be avoided because frequent
deviations from the intended working regime may
increase device stresses and hence jeopardize relia-
bility. As the emergence of intermittency in power
supplies is a complex issue of practical importance,
a through understanding of the mechanism and the
conditions under which intermittency occurs is vital
to the reliable design of power supplies.

This paper studies the simple voltage-mode con-
trolled buck converter using a simple model that
takes into account the coupling of intruding interfer-
ence signal with the converter. With this model, the
condition for the emergence of intermittency is stud-
ied in detail. Simulation and experimental results
verify the analytical findings. In particular, we will
identify the parameters that are crucial to the emer-
gence of intermittency. We will show that when the
frequency of the intruding interference is close to the
switching frequency or its rational multiples, inter-
mittency may emerge in a few different forms (or
patterns). The traditional bifurcation analysis deals
with bifurcation in a parameter space, and hence is
not directly relevant to the present study. By “trans-
ferring” the analytical procedure from a parameter
domain to the time domain, we consider the varia-
tion of the characteristic multipliers as time elapses
and establish a few important findings regarding
the appearance of intermittent bifurcation in the
voltage-controlled buck converter. Computer sim-
ulation and experimental measurements verify the
analytical results. This paper focuses on a voltage-
mode controlled buck converter, but the same mod-
eling approach and analysis can be extended to other
switching power converters as well as other periodi-
cally driven nonlinear systems.

2. Voltage-Mode Controlled Buck

Converter Coupled with

Intruding Interference

The buck converter consists of an inductor, a
switch, a diode, a storage capacitor and a resistor
load, which are connected as shown in Fig. 1(a).
When switch G turns on, the inductor current
ramps up almost linearly, and when switch G
turns off, the inductor current ramps down and

de-energizes through the diode to the load. In the
voltage-mode control scheme, the output voltage
error with respect to the reference voltage is ampli-
fied to give a control voltage Vcon:

Vcon = A(vo − Vref) (1)

which is then compared with a ramp signal Vramp,
defined as

Vramp = VL + (VU − VL)

(

t

T
mod 1

)

, (2)

where all symbols are explained in Fig. 1. The com-
parator output, u, gives the pulse-width-modulated
signal necessary for driving the switch. Typically,
the switch G is turned on when Vcon ≤ Vramp,
and turned off when Vcon > Vramp, as illustrated
in Fig. 1(b). The state equations can be written as

ẋ = Aonx + BonE for switch G on

ẋ = Aoffx + BoffE for switch G off
(3)

where x denotes the state variables, i.e. x =
[vo iL]T , the A’s and B’s are the system matrices
given by

Aon = Aoff =
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0

0

]

. (5)

When it operates under a common voltage-mode
control, the buck converter has been shown to
exhibit complex behavior [Banerjee & Verghese,
2000; di Bernardo & Vasca, 2000; Fossas & Olivar,
1996; Hamill et al., 1992; Tse & di Bernardo, 2002;
Tse, 1994; Wong et al., 2004]. Figure 1(b) gives
the key waveforms under this control. In practice,
the intruding interference can take the form of cou-
pling via conducted or radiated paths. Sometimes,
the intruders can live on the same circuit board or
be present at a very close proximity. Suppose the
overall effect of the intruding signal is lumped to
one spurious source vs. We can model this coupling
as an additive process which superposes the spuri-
ous signal vs directly on the control signal Vcon, as
shown in Fig. 1(a). The resulting perturbed control
voltage is then given by

V ∗

con = Vcon + vs (6)

When the circuit parameters are chosen as
follows: L = 20 mH, C = 47 µF, R = 22 Ω,
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Fig. 1. Voltage-mode controlled buck converter coupled with spurious interference. (a) Schematic diagram; (b) key operation
waveforms; (c) bifurcation diagram with E as the bifurcation parameter.

1/T = fo = 2500 Hz, Vref = 11.3 V, A = 8.4,
VL = 3.8 V, VU = 8.2 V, and without the inter-
ference (vs = 0), the buck converter will expe-
rience a typical period-doubling bifurcation cas-
cade with input voltage E varying from 12 V to
33 V as shown in Fig. 1(c) [Fossas & Olivar, 1996;
Zhou et al., 2003]. The first bifurcation occurs when
E ≈ 24.6 V, and the buck converter eventually
enters a chaotic region when E ≈ 32.3 V.

3. A Glimpse at the Phenomenon

With the same set of circuit parameters shown
above, the unperturbed buck converter operates
in a regular period-1 orbit (steady state) when E

is fixed at 22 V [Fig. 2(a)], which corresponds to
Vcon ≈ 6.2 V. In general, if we consider the interfer-
ence vs being a periodic signal, e.g. sinusoidal signal
with amplitude v̂s, the perturbed control voltage
can be written as

V ∗

con = Vcon + v̂s sin(2πfst)

= Vcon [1 + αv sin(2πfst)] (7)

where fs is the frequency of the interference, and αv

is the strength of the interference which is defined
as the ratio of the v̂s to Vcon, i.e. αv = v̂s/Vcon. Here,
we assume that in the steady state, the ripple of Vcon

is negligible. Coupling with this intruding interfer-
ence signal, the converter will operate in a range of
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Fig. 2. (a) Period-1 operation; Poincaré sections of responses induced by different levels of interference with (b) αf =
√

3/2,
αv = 0.015; (c) αf = 1/2 or 1/3, αv = 0.021; (d) αf = 1, αv = 0.0046; (e) αf = 2 or 3, αv = 0.0046.
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possible regimes, such as periodic operation, quasi-
periodic operation, etc., according to the frequency
ratio αf (αf = fs/fo). We can summarize them in
two cases.

Case 1. Frequency ratio αf is an irrational

number

In this case, the buck converter exhibits quasi-
periodic behavior, because there are two incom-
mensurate frequencies, i.e. switching frequency fo

and interference frequency fs in the system. The
quasi-periodicity is characterized by a torus on the
Poincaré section. Figure 2(b) shows an example
with αf =

√
3/2 and αv = 0.015.

Case 2. Frequency ratio αf is a rational

number

If αf is a rational number, we have

αf =
fs

fo
=

Nnum

Nden

(8)

where Nnum and Nden are positive integers. In this
case, the buck converter operates periodically with
period number equalling Nden, i.e. have an opera-
tion of period-Nden subharmonics. We can further
summarize them in two subcases.

(a) αf = 1/Nden: In this subcase, the buck con-
verter operates in a period-Nden subharmonic
orbit. Figures 2(c) and 2(d) show three exam-
ples with Nden = 3, 2, 1, which correspond
to period-3, period-2 and period-1 operation,
respectively, and are characterized by 3, 2 and
1 intersections on the Poincaré section.

(b) αf = Nnum: In this subcase, the buck con-
verter operates in a period-1 orbit definitely.
Figures 2(d) and 2(e) show three examples with
Nnum = 1, 2, 3, all corresponding to period-1
operation, and being characterized by one inter-
section on the Poincaré section.

4. Intermittency: A Detailed Look

at the Time-Bifurcation Diagrams

Switching power converters are susceptible to abun-
dant sources of periodic interference via unintended
paths (e.g. conducted or radiated paths) [Ferreira
et al., 1997; William, 1994]. As the intruding sig-
nal is coupled unintentionally, its frequency fs is
usually not equal to the switching frequency fo,
or its rational multiples exactly. Therefore, it is
unlikely to observe the kind of operation given
in Fig. 2. But it is possible that the interference

frequency fs approaches the switching frequency fo,
or its rational multiples. In this situation, we have
fs = nfo + f̂ , i.e. αf = n + f̂/fo, where f̂ is a
small number compared to fo and n is a rational
number. This kind of interference will induce inter-
mittency in a few different forms (such as intermit-
tent subharmonics, intermittent chaos). The type
and period of intermittency are determined by the
interference frequency fs and strength αv .

When the interference frequency is close to the
switching frequency, or its rational multiples, the
perturbed control voltage (7) can be rewritten as

V ∗

con = Vcon[1 + αv sin(2πfst)]

= Vcon[1 + αv sin 2π(nfo + f̂)t]. (9)

Assuming f̂ = 1, and n being 1/2, 1 and 2, respec-
tively, we can obtain the time-bifurcation diagrams
of intermittency, as shown in Figs. 3 to 5. From
these figures, we have the following observations.

(1) When the strength of the interference is very
weak (i.e. small αv), the converter can still main-
tain its expected steady-state period-Nden oper-
ation, though the average operating point may
fluctuate. The effect of the interference is not
significant at this stage, and no intermittency
shows up. Figures 3(a), 4(a) and 5(a) show the
corresponding time-bifurcation diagrams.

(2) As the interference signal strength increases,
the converter experiences higher subharmonic
operation intermittently on top of the period-
Nden operation. For a relatively low interference
signal strength, period-2Nden subharmonics
are observed intermittently with period-Nden.
Figures 3(b), 4(b) and 5(b) give the correspond-
ing time-bifurcation diagrams.

(3) Further increase in interference signal strength
causes period-22Nden subharmonics to occur
intermittently with period-2Nden subharmon-
ics and the period-Nden operation, as shown in
Figs. 3(c), 4(c) and 5(c).

(4) For a sufficiently high intruding signal strength,
the converter starts to experience chaotic oper-
ation intermittently with period-2iNden sub-
harmonics and the period-Nden operation, as
shown in Figs. 3(d), 4(d) and 5(d).

(5) The intermittent period Tint is represented as

Tint =
1

Ndenf̂
(10)

where f̂ = |fs − nfo|. Thus, if the interference
signal frequency is very close to the switching
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Fig. 3. Sampled inductor current waveforms (time-bifurcation diagrams) for fs = nfo+f̂ = 1
2
fo+1 = 1251 Hz. (a) αv = 0.021;

(b) αv = 0.066; (c) αv = 0.069; (d) αv = 0.075.
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Fig. 4. Sampled inductor current waveforms (time-bifurcation diagram) for fs = nfo + f̂ = fo +1 = 2501 Hz. (a) αv = 0.0046;
(b) αv = 0.046; (c) αv = 0.054; (d) αv = 0.069.
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Fig. 5. Sampled inductor current waveforms (time-bifurcation diagrams) for fs = nfo + f̂ = 2fo + 1 = 5001 Hz. (a) αv =
0.0046; (b) αv = 0.012; (c) αv = 0.041; (d) αv = 0.053.
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frequency of the converter, or its rational multi-
ples, the intermittency is long. In the examples
here, Tint = 1 s with f̂ = 1 Hz for the case of
Nden = 1, which are shown in Figs. 4 and 5;
and Tint = 1/2 s with f̂ = 1Hz for the case of
Nden = 2, which are shown in Fig. 3.

5. Experimental Observations

We have built a circuit prototype to verify the sim-
ulation results. The circuit parameters are same as
those used in the simulations. Without any inter-
ference, the converter will operate in the original
period-1 orbit as shown in Fig. 6 for E = 22 V.
Sinusoidal intruding interference signals have been
used in the experiment. For consistency, here we
provide three typical cases which correspond to the
simulations reported in the last section, i.e. n equals
1/2, 1 and 2. These cases will also be analyzed
in Secs. 6 and 7. By varying the interference sig-
nal strength, we observe intermittent subharmonics
and chaos, which are consistent with the simula-
tions. Figures 7 to 9 show a few time-bifurcation
diagrams obtained experimentally, in which upper
traces are output voltage vo and lower traces are
inductor current iL.

(1) Figure 7 shows the case when the interfer-
ence frequency nears fo/2. As the interference
strength αv increases, we observe fluctuating
period-2 operation (Fig. 7(a), vo: 200 mV/div,
iL: 100 mA/div), intermittent subharmonic
operation (Fig. 7(b), vo: 200 mV/div, iL:
100 mA/div) and chaos (Fig. 7(c), vo:
500 mV/div, iL: 250 mA/div).

(2) Figure 8 represents the case when the interfer-
ence frequency is close to fo. As the interference

Fig. 6. Measured phase portrait of period-1 operation with
E = 22 V, x-axis: output voltage vo, 40mV/div; y-axis:
inductor current iL, 50mA/div.

(a)

(b)

(c)

Fig. 7. Measured time-bifurcation diagrams with sinusoidal
interference of different strengths αv and n = 1/2. (a) αv =
0.021; (b) αv = 0.067; (c) αv = 0.093.

strength increases, we observe intermittent
subharmonics (Fig. 8(a), vo: 90 mV/div, iL:
100 mA/div and Fig. 8(b), vo: 150 mV/div,
iL: 100 mA/div) and chaos (Fig. 8(c), vo:
250 mV/div, iL: 200 mA/div). Here, the fluctu-
ating period-1 operation cannot be observed,
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(a)

(b)

(c)

Fig. 8. Measured time-bifurcation diagrams with sinusoidal
interference of different strengths αv and n = 1. (a) αv =
0.015; (b) αv = 0.061; (c) αv = 0.064.

because the minimum output of the signal
generator used here will still induce the inter-
mittent subharmonics.

(3) Figure 9 shows the case when the interference
frequency is close to 2fo. Similar to the case in
Fig. 8, as the interference strength increases, we

(a)

(b)

(c)

Fig. 9. Measured time-bifurcation diagrams with sinusoidal
interference of different strengths αv and n = 2. (a) αv =
0.012; (b) αv = 0.052; (c) αv = 0.061.

observe intermittent subharmonics (Figs. 9(a)
and 9(b), vo: 200 mV/div, iL: 100 mA/div)
and chaos (Fig. 9(c), vo: 200 mV/div, iL:
100 mA/div). The fluctuating period-1 opera-
tion is absent for the same reason as stated
previously.
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6. Mapping from Time-Bifurcation

to Parameter-Bifurcation

As the traditional bifurcation analysis mainly deals
with parameter-bifurcations, it is not directly appli-
cable to the analysis of intermittent bifurcation in
the present study. Before we analyze the observed
intermittency, we need to apply a transformation,
which will transfer the change of time to the change
of another variable. As we will see, the new vari-
able is a conceptual “phase shift”, which is used
to represent the equivalent drift in the interfering
frequency from the switching frequency. Basically
we express the perturbed control voltage, originally

given in (9), as

V ∗

con = Vcon{1 + αv sin[2π(nfo + f̂)t]}
= Vcon[1 + αv sin(2πnfot + θ)] (11)

where θ = 2πf̂ t. After this transformation, a sinu-
soidal term with the phase shift θ, and at the same
frequency as the switching frequency fo or its ratio-
nal multiples, is obtained. Now we can map the
change of the time over interval [0, 1/f̂ ] onto the
change of phase shift θ over interval [0, 2π].

Using the above perturbed control voltage, a
parameter-bifurcation diagram can be constructed
by selecting θ as the bifurcation parameter, which

(a) (b)

(c) (d)

Fig. 10. Parameter-bifurcation diagram with θ as bifurcation parameter for nfo = 1250 Hz. (a) αv = 0.021; (b) αv = 0.066;
(c) αv = 0.069; (d) αv = 0.075.
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Fig. 11. Parameter-bifurcation diagrams with θ as bifurcation parameter for nfo = 2500 Hz. (a) αv = 0.0046; (b) αv = 0.046;
(c) αv = 0.054; (d) αv = 0.069.

is equivalent to the scenario of intermittency over
Nden intermittent period. Using the same set of
interference parameters as those used in Figs. 3 to 5,
we obtain the corresponding parameter-bifurcation
diagrams as shown in Figs. 10 to 12. When we com-
pare the time-bifurcation diagrams and parameter-
bifurcation diagrams, we find that they look very
similar and the results are consistent.

7. Analysis of Intermittent

Bifurcation

In this section, we try to analyze the stability of
the converter. After we apply the transformation,

we are able to carry out the standard parameter-
bifurcation analysis, and the results can be used to
explain the corresponding time-bifurcation of inter-
mittency. Essentially the parameter-bifurcation
over the interval of θ is exactly the same as the
time-bifurcation over an intermittent period shown
in Figs. 3 to 5. In this section, we will first derive the
iterative discrete-time map, and then analyze the
stability of the converter by computing the Jaco-
bian [Alligood et al., 1996] and examining the loci of
the characteristic multipliers [di Bernardo & Vasca,
2000; Hamill et al., 1992; Zhou et al., 2003].

By inspecting the time-bifurcation diagram (or
the corresponding parameter-bifurcation diagram),
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(a) (b)

(c) (d)

Fig. 12. Parameter-bifurcation diagrams with θ as bifurcation parameter for nfo = 5000 Hz. (a) αv = 0.0046; (b) αv = 0.012;
(c) αv = 0.041; (d) αv = 0.053.

it is found that the intermittency starts each
intermittent period with the expected steady-state
operation given by the one shown in Sec. 3. In our
previous examples, there are two different cases,
i.e. with the expected steady-state operation under
the particular choice of parameters being a period-1
orbit for n = 1, 2, and being a period-2 subharmonic
operation for n = 1/2. Therefore, we will carry out
the analysis for these two cases separately.

7.1. αf = n + f̂/fo, where n = 1, 2

In the case of n being 1 or 2, with the expected
steady-state operation of the buck converter being
a period-1 orbit, the converter will first lose stabil-
ity and bifurcate from regular period-1 to period-2

subharmonic operation as θ increases. (Note that
varying θ is equivalent to varying t, from (11), for

a given period 1/f̂ .) A discrete-time iterative map
xn+1 = f(xn) should be constructed for the analy-
sis of stability. From the steady-state waveforms of
the converter shown in Fig. 13, we can divide the
operation in one period (tn − tn+1) into two phases
according to the switch state of switch G, as illus-
trated below:

(1) Phase 1, tn − tm: The state of the converter is
xn in the beginning of this phase. In this phase,
G is switched off with Vcon > Vramp. The state
of the converter at the end of this phase, xm,
can be expressed as

xm = Noff(dn)xn + Moff(dn)E. (12)
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Fig. 13. Typical waveforms with n = 1, 2. Note that G is
switched off with Vcon > Vramp; and is switched on with
Vcon < Vramp.

(2) Phase 2, tm−tn+1: G is switched on with Vcon <
Vramp after tm. At the end of this phase, the
state of the converter will be xn+1, which can
be expressed as

xn+1 = Non(1 − dn)xm + Mon(1 − dn)E (13)

Combining (12) and (13), an iterative map over
one switching period can be written as

xn+1 = f(xn, dn)

= Non(1 − dn)Noff(dn)xn

+ [Non(1 − dn)Moff (dn)

+ Mon(1 − dn)]E (14)

where dn is the duty cycle,

dn = 1 − dn,

Non(d) = eAondT ,

Mon(d) = A−1
on [Non(d) − 1]Bon

Noff(d) = eAoffdT ,

Moff(d) = A−1
off [Noff(d) − 1]Boff .

To complete the discrete-time model, we need
to derive the defining function for the duty cycle.
Essentially, we wish to find the connection between
the switching instant tm, or more precisely dn, and
the state variables. By inspecting Fig. 13, we may
define a switching function S(·) as

S(dn) = V ∗

con(dnT ) − Vramp(dnT ), (15)

from which G is switched on when S(dn) < 0, and
off otherwise. Also, S(dn) = 0 defines the switching

instants. Taking into account the perturbed control
voltage and expanding (15) gives:

S(dn) = [A 0]

[

vo(dnT ) − Vref

iL(dnT )

]

+ vs(dnT )

−VL − (VU − VL)dnT

= [A 0][Noff (dn)xn + Moff(dn)E] − AVref

+ αvVcon sin(2πndn + θ) − VL

− (VU − VL)dnT (16)

The discrete-time iterative map derived above can
be used to study the stability of the system. Specif-
ically, by computing the characteristic multipliers
about the equilibrium point, we can analyze the way
the system loses stability as a certain parameter is
varied.

First, we denote the Jacobian of the discrete-
time iterative map by Γ, which can be evaluated by
exploiting the implicit function derivation theorem
to (14) and (16), i.e.

Γ(xn, dn) =
∂xn+1

∂xn
=

∂f

∂xn
− ∂f

∂dn

(

∂S

∂dn

)

−1 ∂S

∂xn

(17)

where

∂f

∂dn

= [−AonTN on(1 − dn)Noff (dn)

+ Non(1 − dn)AoffTN off(dn)]xn

+ [−AonTN on(1 − dn)Moff (dn)

+ Non(1 − dn)Noff(dn)BoffT

−Non(1 − dn)BonT ]E

∂f

∂xn
= Non(1 − dn)Noff(dn)

∂S

∂dn

= [A 0]Noff(dn)(Aoffxn + BoffE)T

+ 2πVconαvn cos(2πndn + θ) − (VU − VL)T

∂S

∂xn

= [A 0]Noff(dn)

Then the characteristic multipliers, λ, can be found
by solving

det[λ1 − Γ(xn, dn)]xn=XQ,dn=dQ
= 0 (18)

where xQ and dQ are the equilibrium values, and 1

is the identity matrix.
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Fig. 14. Loci of the characteristic multipliers for nfo = 2500 Hz. (a) αv = 0.0046; (b) αv = 0.046; (c) αv = 0.054; (d) αv =
0.069.

We now examine the movement of the char-
acteristic multipliers as the phase shift θ varies.
The loci of the characteristic multipliers are shown
graphically in Figs. 14 and 15. It is noted that we
use the same strength and frequency of interference
as in Sec. 5. Thus, the system’s stability near the
equilibrium point can be studied. The movements of
the loci of the characteristic multipliers agree per-
fectly well with the parameter-bifurcation diagrams
shown in Figs. 11 and 12. We can summarize the
results as follows.

(1) With very weak interference (αv = 0.0046
for nfo = 2500 Hz and 5000 Hz), the loci of
the characteristic multipliers are found as in

Figs. 14(a) and 15(a). From these figures, we
observe that as the phase shift θ increases from
0, two characteristic multipliers move apart
along a circle of radius less than 1 (equals 0.824
here) for the case of nfo = 2500 Hz (for the case
of nfo = 5000 Hz, two characteristic multipliers
move apart along the circle of radius less than
1 in opposite directions). When θ increases fur-
ther, they move back along the original path.
For all values of θ, they stay within the unit
circle, it implies that the converter maintains
its expected operation. This result is consistent
with the parameter-bifurcation diagrams in
Figs. 11(a) and 12(a) and the time-bifurcation
diagrams in Figs. 4(a) and 5(a).
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Fig. 15. Loci of the characteristic multipliers for nfo = 5000 Hz. (a) αv = 0.0046; (b) αv = 0.012; (c) αv = 0.041; (d) αv =
0.053.

(2) As the strength of the interference increases
(αv = 0.046 for nfo = 2500 Hz, and αv = 0.012
for nfo = 5000 Hz), bifurcation is observed as
θ varies, as shown in Figs. 11(b) and 12(b),
which corresponds to the intermittent subhar-
monics in Figs. 4(b) and 5(b). This scenario
can be explained in terms of the movement
of the loci of the characteristic multipliers, as
illustrated in Figs. 14(b) and 15(b). For the
case of nfo = 2500 Hz, one characteristic mul-
tiplier crosses the unit circle along the real axis
from outside when θ increases up to 1.6. Thus,
the converter becomes stable as θ increases up
to about 1.6. It remains in this stable oper-
ation state till θ = 5.25. At this point, one
characteristic multiplier leaves the unit circle
and the converter undergoes a period-doubling.

While for the case of nfo = 5000 Hz, one char-
acteristic multiplier crosses the unit circle along
the real axis from inside when θ increases up to
2.65. Thus, the converter experiences a period-
doubling bifurcation and becomes unstable as
θ increases up to about 2.65. It remains in
this unstable operation state till θ = 4.79. At
this point, one characteristic multiplier enters
the unit circle and the converter returns to its
intended regular operation.

(3) For higher values of αv (for both nfo = 2500 Hz
and 5000 Hz), the converter period-doubles up
to period-4 subharmonics and chaotic regime.
The loci of the characteristic multipliers in
Figs. 14(c), 15(c), 14(d) and 15(d) also locate
the onset of the period-doubling bifurcation
clearly. The movements of the characteristic
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multipliers are very similar to those in the pre-
vious case (αv = 0.046 for nfo = 2500 Hz, and
αv = 0.012 for nfo = 5000 Hz), and they are
not repeated here.

7.2. αf = n + f̂/fo, where n = 1/2

In the case of n being 1/2, with the expected
steady-state operation of the converter being a
period-2 subharmonic orbit, the converter will first
lose stability and bifurcate from a regular period-2
operation to a period-4 operation. A discrete-time
iterative map in the form of xn+2 = f(xn) should be
constructed for the analysis of stability. From the
steady-state waveforms of the converter shown in
Fig. 16, we can divide the operation over two peri-
ods (tn − tn+2) into four phases according to the
switch state of switch G, as illustrated below:

(1) Phase 1, tn − tm1: The state of the converter is
xn at the beginning of this phase. In this phase,
G is switched off with Vcon > Vramp. The state
of the converter at the end of this phase, xm1,
can be expressed as

xm1 = Noff(d1n)xn + Moff(d1n)E (19)

(2) Phase 2, tm1 − tn+1: G is switched on with
Vcon < Vramp after tm1. At the end of this phase,
the state of the converter will be xn+1, which
can be expressed as

xn+1 = Non(1 − d1n)xm1

+ Mon(1 − d1n)E (20)
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Fig. 16. Typical waveforms with n = 1/2. Note that G is
switched off with Vcon > Vramp; and is switched on with
Vcon < Vramp.

(3) Phase 3, tn + 1 − tm2: G is switched off with
Vcon > Vramp. The state of the converter at the
end of this phase, xm2, can be expressed as

xm2 = Noff(d2n)xn+1 + Moff(d2n)E (21)

(4) Phase 4, tm2 − tn+2: G is switched on with
Vcon < Vramp after tm2. At the end of this phase,
the state of the converter will be xn+2, which
can be expressed as

xn+2 = Non(1 − d2n)xm2 + Mon(1 − d2n)E

(22)

Following similar procedures, we can write an
iterative map over two switching periods, using (19)
to (22), as

xn+2 = f(xn, d2n, d1n)

= Non(1 − d2n)Noff(d2n)Non(1 − d1n)

×Noff(d1n)xn

+ Non(1 − d2n)Noff(d2n)Noff(1 − d1n)

×Moff(d1n)E

+ Non(1 − d2n)Noff(d2n)Mon(1 − d1n)E

+ Non(1 − d2n)Moff(d2n)E

+ Mon(1 − d2n)E (23)

where N ’s and M ’s are defined as before.
Similarly, by inspecting Fig. 16, two switching

functions defining the duty cycles can be written as

S1(xn, d1n)

= [A 0][Noff (d1n)xn + Moff(d1n)E] − AVref

+ αvVcon sin(πd1n + θ) − VL

− (VU − VL)d1nT (24)

S2(xn, d1n, d2n)

= [A 0][Noff (d2n)Non(1 − d1n)Noff(d1n)xn

+ Noff(d2n)Non(1 − d1n)Moff(d1n)E

+ Noff(d2n)Mon(1 − d1n)E + Moff(d2n)E]

−AVref − αvVcon sin(πd2n + θ)

−VL − (VU − VL)d2nT (25)

We can analyze the way the system loses
stability of period-2 subharmonic operation by
computing the characteristic multipliers of the
discrete-time iterative map derived above near the
equilibrium point. First, we denote the Jacobian
of the discrete-time iterative map by Γ, which
can be evaluated by applying the implicit function
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derivation theorem to (23) through (25), i.e.

Γ =
∂f

∂xn

− ∂f

∂d1n

(

∂S1

∂d1n

)

−1 ∂S1

∂xn

− ∂f

∂d2n

(

∂S2

∂d2n

)

−1
[

∂S2

∂xn

− ∂S2

∂d1n

(

∂S1

∂d1n

)

−1 ∂S1

∂xn

]

(26)

where

∂f

∂xn
= Non(1 − d2n)Noff(d2n)Non(1 − d1n)Noff (d1n)

∂f

∂d1n

= Non(1 − d2n)Noff(d2n)
∂Non(1 − d1n)

∂d1n

Noff(d1n)xn

+ Non(1 − d2n)Noff(d2n)Non(1 − d1n)
∂Noff (d1n)

∂d1n

xn

+ Non(1 − d2n)Noff(d2n)
∂Non(1 − d1n)

∂d1n

Moff(d1n)E + Non(1 − d2n)Noff(d2n)Non(1 − d1n)

× ∂Moff (d1n)

∂d1n

E + Non(1 − d2n)Noff(d2n)
∂Mon(1 − d1n)

∂d1n

E

∂f

∂d2n

=
∂Non(1 − d2n)

∂d2n

Noff(d2n)Non(1 − d1n)Noff(d1n)xn

+ Non(1 − d2n)
∂Noff(d2n)

∂d2n

Non(1 − d1n)Noff (d1n)xn

+
∂Non(1 − d2n)

∂d2n

Noff(d2n)Non(1 − d1n)Moff (d1n)E

+ Non(1 − d2n)
∂Noff(d2n)

∂d2n

Non(1 − d1n)Moff (d1n)E

+
∂Non(1 − d2n)

∂d2n

Noff(d2n)Mon(1 − d1n)E + Non(1 − d2n)
∂Noff(d2n)

∂d2n

Mon(1 − d1n)E

+
∂Non(1 − d2n)

∂d2n

Moff(d2n)E + Non(1 − d2n)
∂Moff (d2n)

∂d2n

E +
∂Mon(1 − d2n)

∂d2n

E

∂S1

∂xn

= [A 0]Noff(d1n)

∂S1

∂d1n

= [A 0]

[

∂Noff(d1n)

∂d1n

xn +
∂Moff(d1n)

∂d1n

E

]

+ αvVconπ cos(πd1n + θ) − (VU − VL)T

∂S2

∂xn
= [A 0]Noff(d2n)Non(1 − d1n)Noff(d1n)

∂S2

∂d1n

= [A 0]

[

Noff(d2n)
∂Non(1 − d1n)

∂d1n

Noff(d1n)xn + Noff(d2n)Non(1 − d1n)
∂Noff (d1n)

∂d1n

xn

+ Noff(d2n)
∂Non(1 − d1n)

∂d1n

Moff(d1n)E + Noff(d2n)Non(1 − d1n)
∂Moff (d1n)

∂d1n

E

+ Noff(d2n)
∂Mon(1 − d1n)

∂d1n

E

]
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∂S2

∂d2n

= [A 0]

[

∂Noff (d2n)

∂d2n

Non(1 − d1n)Noff(d1n)xn +
∂Noff(d2n)

∂d2n

Non(1 − d1n)Moff (d1n)E

+
∂Noff(d2n)

∂d2n

Mon(1 − d1n)E +
∂Moff(d2n)

∂d2n

E

]

− αvVconπ cos(πd2n + θ) − (VU − VL)T

Then, the characteristic multipliers, λ, can be found by solving

det
[

λ1 − Γ(xn, d1n, d2n)
]

xn=XQ,d1n=d1,Q,d2n=d2,Q
= 0 (27)

where xQ, d1,Q and d2,Q are the equilibrium val-
ues, and 1 is the identity matrix. We should note
that the intermittent period is 1/2 with Tint =

1/(Nden f̂) as indicated in Sec. 4. Therefore, the
parameter-bifurcation diagram of θ over interval

[0, π] is exactly equivalent to that of θ over interval
[π, 2π]. Also, we only need to compute the charac-
teristic multipliers with θ over interval [0, π], and
the characteristic multipliers corresponding to θ
over interval [π, 2π] are the same.
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Fig. 17. Loci of the characteristic multipliers for nfo = 1250 Hz. (a) αv = 0.021; (b) αv = 0.066; (c) αv = 0.069; (d) αv =
0.075.
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We now examine the movement of the charac-
teristic multipliers as the phase shift θ varies for
different values of the strength and the frequency
of interference. The loci of the characteristic mul-
tipliers are shown graphically in Fig. 17. Thus,
the stability of the expected steady-state operation
(period-2 subharmonics) can be studied. The move-
ments of the loci of characteristic multipliers are in
perfect agreement with the parameter-bifurcation
diagrams shown in Fig. 10. We can summarize the
results as follows.

(1) For very weak interference (αv = 0.021), the
loci of the characteristic multipliers are shown
in Fig. 17(a). We observe that as phase shift θ
increases from 0, the two characteristic multi-
pliers move along a circle of radius less than 1
(equals 0.68 here). When θ increases further,
they move back along the original path. For
all values of θ, the corresponding characteristic
multipliers are located within the unit circle, it
implies that the buck converter maintains its
expected steady-state operation. This result is
consistent with the parameter-bifurcation dia-
gram in Fig. 10(a) and time-bifurcation dia-
gram in Fig. 3(a).

(2) As the strength of the interference increases
(αv = 0.066), bifurcation occurs as θ is var-
ied as shown in Fig. 10(b), which corresponds
to the intermittent subharmonics of the same
parameters in Fig. 3(b). This scenario can be
explained in terms of the movement of the
loci of the characteristic multipliers, as illus-
trated in Fig. 17(b). From the figure, one
characteristic multiplier crosses the unit cir-
cle along the real axis from outside when θ
increases up to 0.89. Thus, the converter is
stabilized to the expected steady-state period-
2 operation as θ increases up to about 0.89.
It remains in this stable operation state till
θ = 2.59. At this point, one characteristic mul-
tiplier leaves the unit circle and the converter
period-doubles.

(3) For higher values of αv, the converter period-
doubles up to period-8 subharmonics or chaotic
regime. The loci of the characteristic multi-
pliers in Figs. 17(c) and 17(d) also locate
the onset of the period-doubling bifurcation
clearly. The movements of the characteristic
multipliers are very similar to the previous
case (αv = 0.066), and they are not repeated
here.

8. Conclusion

Switching power converters are nonlinear systems
which have been shown to exhibit a range of
complex behavior. In this paper we attempt to
explore a commonly observed but rarely explained
nonlinear phenomenon in power supplies. Sources of
periodic interference are easily coupled to the con-
verters via unintended paths. We find that when
the interference frequency approaches the switching
frequency or its rational multiples, intermittency
occurs with the intended period-Nden operation
being interrupted. We also show that the signal
strength and frequency of the interference signal
determine the type and period of intermittency.
Furthermore, a mapping that transforms the time-
bifurcation to parameter-bifurcation is introduced.
By applying the transformation, the intermittency
can be analyzed indirectly by using the traditional
numerical analysis procedures. We derive the itera-
tive discrete-time map and examine the movement
of the corresponding loci of the characteristic mul-
tipliers to explain the observed intermittency. The
same line of analysis can be used to study the inter-
mittency in other types of converters, as well as
other periodically driven nonlinear systems.
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