Complex interpolation of quasi-Banach spaces
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1. Introduction

Complex interpolation of general couples (X;, X;) of quasi-Banach spaces has
been considered by several authors [8], {11], [16]. The first approach was made by
Riviére in his thesis [16] and recently it has been developed by Cwikel, Milman
and Sagher in [8], where some new interpolation results have been obtained. See
also [9] and [17].

These authors have used in the classical construction of Calderén (see [4] or [3])
the space 4 of all functions f(z):Z,fV:lfk(z)xk, where x,£X,n X, and f,.€ A(S, C),
the class of scalar valued functions analytic on the strip S={z: 0<Rez<1} and
continuous and bounded on S. As a result, a quasi-normed space of analytic func-
tions is obtained in which the quasi-norm [-||; on % is the one introduced by
Calderén [4], i.e.

I/l s = max {sup | f(inlx,, sup I /(1 +in)lx,}-
teR teR

When making the quotient to define the intermediate spaces, the following pa-
thologies can occur for the quasi-seminorm |\x|,=inf{|| fl4: f(6)=x, f€%} on
X,nX,. First, the intermediate space is always the intersection and only the re-
sulting quasi-seminorms defined on it vary. Moreover, these quasi-seminorms can
be identically zero. If they are genuine quasi-norms, the intersection need not neces-
sarily be complete. Its inclusion in the sum space may also fail to be continuous.
Even if this latter problem does not arise, it is not clear whether the extension of
the continuous inclusion to the completion is one to one. For information about
these facts see {8], [14], [16], [18] and [19].

* This research was partially supported by DGICYT/PS87-0027.
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Another approach can be found in a paper by Janson and Jones [11],
where a third term sup, ;| f(2)] x,+x, 15 added to define a space of vector
valued functions as the completion of ¢ with respect to the quasi-norm | ffi=
max {[| fll &> sup,cs | f(2) x,+x,)- The complex interpolation methods introduced in
that paper always yield quasi-Banach intermediate spaces and have been succesfully
used to interpolate Hardy spaces and BMO. However, those methods give no con-
vexity inequality in the interpolation theorem (in the terminology of Bergh—Lof-
strom [3] they are not of exponent 8).

The purpose of this paper is to present a complex interpolation method based
on complete spaces of analytic functions (hence yielding quasi-Banach interpolation
spaces) and with a convexity inequality in the interpolation theorem. In doing so,
we will restrict the category of general quasi-Banach pairs to some smaller category
in which important examples remain included.

In the construction of the interpolation method, one has to deal with analytic
functions with values in a quasi-Banach space. These functions are defined by the
local existence of power series expansions and have many of the usual properties.
For example, the power series expansion about a point z, converges uniformly on
compact subsets of any disk D centered at z, and contained in the domain of the
function. Information can be found in {12], [13] and [21].

We will denote by 4 and S the unit disk |z|<1 and the strip O<Rez<l
respectively. A(4, %) and A(S,%) will be the corresponding spaces of #-valued
bounded analytic functions that are continuous up to the boundary, for a given
quasi-Banach space %.

We will consider quasi-Banach spaces % which have an equivalent plurisub-
harmonic quasi-norm. Those spaces are called A-convex by Kalton [13], locally
analytically pseudo-convex by Peetre [15] and locally holomorphic by Aleksan-
drov [1]. They are characterized by the existence of a constant C so that if
SJEA(A, %) then

/O =C sup I/(2))- 6]

It is known that any quasi-Banach space (X, -||) has an equivalent quasi-
norm |.] so that, for certain r, 0=r=1, |-|" is subadditive. Such a quasi-norm
is said to te an r-norm. Throughout the paper we will consider the case where all
the quasi-norms are r-norms for some r, O<r=1. The general statements can be
reduced to this case by equivalently re-quasi-norming the spaces with suitable
r-norms (phrases like “with equal quasi-norms” would have then to be replaced
by “with equivalent quasi-norms™). Similarly, let (%, -{) be A-convex. The quasi-
norm || -| satisfies the inequality (1). If we pick an equivalent r-norm |-|, (1) still
holds with another constant and (%, | -|) is an r-Banach space satisfying this weak
maximum modulus principle. According to [13, Theorem 3.7), there exists an r-norm
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equivalent to |-| which is plurisubharmonic. Throughout the paper, whenever an
A-convex space (%, -||) appears, we will suppose that ||| is at the same time
r-norm and plurisubharmonic, thus we will have C=1 in (1).
Also we shall make free use of the basic terminology of interpolation theory,
like that of [3], and follow [13] for definitions and results about A-convex spaces.
Finally we wish to thank the referee for many helpful suggestions that have led
to substantial improvements in the paper.

2. Interpolation pairs with an A-convex containing space

Let (X, X;) be a compatible pair of quasi-Banach spaces. The pair (X, X})
will be said to have an A-convex containing space if there is an A-convex space %
so that

X+ X, %

with continuous inclusion. We will denote by | -], and |-, respectively the
quasi-norms of % and X;, j=0, I

We define the space #(U)=H# (X,, X;; %) to consist of all functions f€ A(S, «)
such that f(j+it)€X;, and f(j+it) defines a bounded continuous function f;
from R to X;, j=0,1.

Since % is A-convex, the three lines theorem for functions with values in %
can be proved from (1). Also, by [12, Theorem 6.3], A(S,%) is complete with
respect to the quasi-norm || /| =sup,¢s | /(2)|l,. The argument given in [3]} for the
Banach space case works now to prove that

/1 32y = max sup || £;(Dl ;
i=01 tcR
defines a complete quasi-norm on # (%), and we do not need a third term like

in [11].
As 1n [11], we consider the | ‘|| puyclosure F (U)=F (X,, X1; U) of

G = {3 ¢ux,: X, X, Xy, 0,€A(S, C), NEN}.

For 0=0=1, (X, Xy),« Will denote the space of all f(6), feF (%), with
the complete quasi-norm

1xlitey, 2 = If{lLfl oy : SEF (%), f16) = x}.

The same spaces and quasi-norms are obtained if we consider functions in & (%)
vanishing at infinity (multiply by suitable scalar functions).

Thus the existence of an A-convex containing space # allows us to make the
construction in a very similar way to that of Calderdn [4] and guarantees that the
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technical difficulties mentioned in Section 1 do not arise. Also Proposition 5, which
is a resuit on interpolation of Banach spaces and, as far as we know, appears here
for the first time is proved following ideas from the A-convex case.

We shall see that, in general, f€% (%) does not take its values in the sum
Xo+X1, and so (X,, X1« need not to be contained there. However we will
prove that the interpolation spaces are independent in a certain sense of the choice
of %.

3. The independence theorem

Let (X,, X1) be a compatible pair of quasi-Banach spaces and suppose that
there exist two A-convex spaces % and ¥~ such that X,+X,C% andalso X,+X,c¥"
with continuous inclusions. Suppose further that both of the spaces % and ¥~ are
contained with continuous inclusions in an arbitrary Hausdorff topological vector
space &/.

Theorem 1. The spaces & (U) and F (V") are equal as sets of -valued functions
and their quasi-norms coincide. The spaces (X,, X,)g,4 and (Xo, X1)g, 4 are iso-
metric and coincide as vector subspaces of <.

Proof. Clearly, we only have to prove the assertion about the spaces of analytic
functions. If f€# (%), pick g,£% so that |g,—f| e@)—~0 as n—c. The func-
tions g, converge X;-uniformly to f over j+iR, j=0, 1. By the A-convexity of %,
they also converge #-uniformly to f over S. On the other hand, {g,}, is also a Cauchy
sequence in #'(¥7), so there exists fieF(¥) with |g,—fill pyy—0 as n—co.
Thus g,—~f; as n—e X;-uniformly over j+iR,j=0, 1, and ¥ -uniformly over S.
Since both % and ¥~ are continuously contained on .7, it follows that f=f,€ F (¥").
Thus F (%)% (¥") and, interchanging the roles of # and ¥, the equality
follows. |

In view of Theorem I, noctations like (X, XD, @ and & (%) can now be
replaced by (Xy, X1)g, » and F (&) to indicate that these spaces do not depend on
the containing A-convex spaces % so that

Xo+XiCcUC oA.

However, in order to simplify the notation, we will denote by (X,, X)); the
interpolation spaces and by & or F(X,, X;) the corresponding spaces of analytic
functions if there is no danger of confusion.

We will see later that we cannot dispense with the condition in Theorem 1
that both % and #” must te contained in the same space <.



Complex interpolation of quasi-Banach spaces with an 4-convex containing space 187

Let (X,{-]) be a quasi-Banach space and, as in [13], denote
Ixl.¢ = inf {max ¢ (2)]: $€A(4, X), $(0) = x}

the biggest plurisubharmonic quasi-seminorm on X such that |-} =] ].
If we have a continuous embedding XC%, % being A-convex, it follows that

Ixlle = Cllx] 4 )

for each x€X and consequently in this case | -1, is a quasi-norm on X. The com-
pletion X, of (X,|-[,) is an A-convex space and X is continuously embedded
in X,.

If a quasi-Banach space has a separating dual, it has a Banach envelope. In
analogy to this case, we call X, the A-convex envelope of X. It follows that any con-
tinuous linear operator from X into an A-convex space factors through X,. See
the remarks after [13, Theorem 3.7].

It will be convenient to compute the interpolation spaces (X, X)) x, when
0<0<1.

Lemma 1. I 0<0<1, the relation
(Xa X)[0].XA = XA
holds with equality of quasi-norms.

Proof. By the definition of the interpolation spaces. it follows that (X, X)) x <
X,. and

Ixlla = [xXllgo1, x40 3
for each x¢(X, X)[,,LXA.
Let xcX,. We consider x,€X, n€EN, so that 3~ x,=x, the series being
convergent in X,, and

S Il = Ixlre.

Pick f,6A(4, X) such that f,(0)=x, and

e
45 < %l
where

4l = max £, (w)-

Thus, the series >~ f, converges X-uniformly on T (and hence X,-uni-
formly on 4) to a function f€A(4, X,) because 7 | fl7<+es.
Let & be a conformal mapping between S and A\{z,, z;} where z; and z, are

certain points in T and @(0)=0. The function g(z)=f(P(z)) belongs to F (X ).
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To see this, consider §=>0 and N=1 such that

o e Il <6
N

Denote by ¢,=23_,f,. It follows that ¢,€ A(4, X). If we dilate a little, we
will obtain a function ¢,, X-uniformly close to ¢, over 4, defined and analytic on a
neighborhood of 4. Hence the power series of ¢, will converge X-uniformly over 4.
We take a partial sum of the power series of ¢, X-uniformly close to ¢, on 4 and
we obtain an X-valued function of finite rank ¢, (a polynomial), X-uniformly close to
¢y over 4. Say |¢,—gllf<6. Then @,o®c¥ and [g— @50 Dy <20

Thus we have that ge#(X,) and g(0)=x, so x€(X, X)y x, and the equal-
ity (X, X)g, x, =X, follows.

Moreover
Ixl1Ees, x » = N&l%cx.00
= Ifl%
=20 Ak
< [|lx|\% +2e.
From this inequality, and from (3), the lemma follows. ]

In the sequel we will need to use the fact that there exist quasi-Banach spaces
which have separating duals but which are not A-convex. The following example
of such a space was suggested to us by N. J. Kalton.

Consider E=I?/H? (0<p=1) and f¢A(4,E) vanishing on T but with
I f(O)]=1. See [1] or [12, pp. 276 and 278]. As in the proof of Lemma 1, we can
obtain f,€A4(4, E) with finite rank and so that | £,(0)]=1 and

Ifallr = O,

as n-w. Let X, be the linear span of f,(4) with the quasi-norm |[-| of E, and
define the space X to consist of all sequences x={x,}, with x,€X, and |x|y=
pAEARSS

It is clear that X has a separating dual. However it is not A-convex, since the
functions F,(2)={fm(2)},, with

P { it o n=m,
meo, if on = om,

are in A(4, X) and satisfy |F,(2)|x=1fn(2)] for all z€A4.
The following proposition will enable us, among other things, to show that
in some cases the space (X, X;)g, , may depend on . If Xis a quasi-Banach
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space so that for an A-convex space % the continuous inclusion Xc% holds, (2)
shows that the inclusion extends continuously to an operator

J Xy~

Proposition 1, Let X be a non A-convex space with separating dual. There exists
a Banach space U such that X <% but the continuous extension

J: XA - ‘/)Zl
is not one to one.
Proof. Let | -{; be the Banach envelope norm of the quasi-Banach space X.
Thus | -|l; is the Minkowski functional of the convex envelope of the unit ball

on X. Denote by X; the completion of the normed space (X, | -|;). The Banach
space X; is an A-convex containing space for X, hence the inclusion

X110 c X

is continuous and extends to a continuous operator J: X, —X,.
if J(X, )X, then J is not one to one and we have a counterexample, # =X].
Suppose that J(X,)d¢X. Pick v=Jx,eJ(X NX, xeX X and consider
#=X,/[v]. Let n: X;—~% denote the quotient map, then the restriction of © to X
is a continuous inclusion of X into the Banach space # and the continuous extension
to X, is moJ, which vanishes at x,0. [ |

Now, to see, as mentioned above, that f¢# need not take its values in X+ X,
we simply choose X;=X;=X with X and % as in Proposition I. By Lemma I,
(Xo, Xy x, Is strictly Jarger that X,+X,.

4. Some properties of the spaces (X,. X))y

Let (X,, X;) be an interpolation pair with the containing A-convex space #,
and O0<6<1. Let (¥, ¥;} be another interpolation pair with an A-convex containing
space ¥, and let

T: % v

be a linear continuous map which is of type (X;.Y;) with constant M; (j=0,1).

Theorem 2. The operator T is bounded from (X, X{)e; 10 (X5, Yy with con-
stant M}~ M?.

Proof. See [3]. |- |



190 A. Bernal and J. Cerda

If the operator T is only defined in the sum Xy+JX, and is of type (X;, Y})
with constant M, it extends continuously to

Ta: (Xo+X)a =7,

thus Theorem 2 applies and T, maps (X, Xy, x,+x,), o (Yo, Y- This
observation makes it interesting to compute the interpolation spaces with respect to
the A-convex envelope of the sum space. In the section of applications we have done
this for a class of vector valued L? spaces.
If
Yoo

we denote by Y, the interpolation space (¥, Y),;. We note that (Y, Y)s; are the
same spaces if 0<8-<1. Also, by Proposition 1, it follows that there are examples
where the natural map between Y, and Y, the extension to ¥, of the inclusion
Y%, is not one to one (the fact that this extension maps Y, into Y, can be de-
duced from Theorem 2 and it can be proved directly that it maps ¥, onto Y,).

Proposition 2. The intersection Xy X, is dense in (Xo, Xo1, (Xos XDpj1=X;
(the closure of X,nX, in X,, j=0,1) and

(Xon X)) g © (X, X1 = (X5, X))oy © (X5 + A7) 0 C .
Proof. X,n X, is dense in (X;, Xy by construction. The equalities
X[j] = Xja and (X, Xy = (X7, X?)[o}

can be proved as in the locally convex case. See [3].
Thus % is a containing space of (X, X;) and

(Xon X)) oy © (Xo, X)) © (X5 +X7) g C . |

As mentioned in the previous section, if all the conditions of Theorem 1 are
not fulfilled, we may have a situation similar to that described in [7] where the inter-
polation spaces (X;, X1 o can be essentially different for different choices of
the containing space %. Let us describe this phenomenon more precisely. We shall
consider a particular couple (X, X;) for which there exist A-convex spaces %
and ¥~ both of which continuously contain X,+JX,. Let T be any continuous
linear map from (Xo, X1)) 5 into (X, X)) o Whose restriction to Xon X, is the
identity map. We shall see that 7 cannot be one to one. This example is obtained
using the spaces X and % and the map J of Proposition 1, and setting X,=X, =X
and ¥'=X,. The restrictions of the maps T and J to X;nX; coincide, so by
density and interpolation (Theorem 2 and Proposition 2) they also coincide on
X,y=(X,, Xl)[g],«;f-
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We want to note that the following result of [16] holds true in our setting:

Proposition 3. Let ¢; (j=0.1) be a pair of increasing functions on (0, +<)
such that ¢;(exp t) is convex, and let f€F. Then

@) log /)l = [~_log [ /Gn)lls B(0. D dt

+ [ log |l f(1+inll R(B. 0 dr,
| - ) 1—-9
®) 1Oty = {"’ﬂ' ' [m f __ @olLfn)lle) (B, 1) dt]}

for o~ otk R0, ]

Proof. For (a) see [3] or [4]. We sketch the proof of (b) given in [16] to provide
an easy reference. The inequality in (a) can be re-written as

1 . 1-0
1)l = (exp g S ™ Tog /101, £(0. 1) i)

1 pe . ’
(expa S togl s iy B 0 )
Now we observe that
[~ R@O.0dt=1-0 and [~ B0, 0di=0.
Then, since @;(exp ) (j=0,1) are convex functions, we have

1

oulexp (g [ tog 101, B6, 0 dt)| = 5 [ aulistilo) B, D,

and a corresponding inequality for ¢,. |

Finally we show a relation with the interpolation method given in [16] and [8).
If (X,, X,) is a general quasi-Banach couple, in [16] and [8] the quasi-seminorm
fixlig is defined in X, X; by

Ixlig = Inf {{l fll 52 €%, 1(0) = x},

where the space ¢ and the quasi-norm |-}, on it are the ones introduced in Sec-
tion 1 as in the locally convex case. If (X,, X,) has a containing A-convex space %,
the relation |x|{,=C x|, holds for some absolute constant C and all x£X,nX;.

Thus, in this case, || -, is a genuine quasi-norm. Moreover:
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Proposition 4. The inclusion

(Xon Xy, |- llg) &~ (Xo, Xidioy
is continuous.

It is unknown to us whether the continuous extension to the completion is one
to one, at least in the case where the containing space is taken to be (X,+X)),.

5. Examples
The following examples show a number of quasi-Banach couples (X,, X;) with
a containing A-convex space.

Example 1. If X, is continuously contained in X; and X, is A-convex, then X is
a containing A-convex space. This is the case of the pairs (LP, L) on a finite
measure space, (H?(4), H?(4)) and (I/%,17), if O<py<p,<ce.

Example 2. (Hardy spaces on R".) For the pair (H?(R"), H 7(R")), the sum
can be imbedded into a Banach space because it has a separating dual.
To see this, take ¢€S(R") with ¢(0)~0 and define

¢(y) =17 y),
u(x, 1) = f* ¢, (x).

for yeR", t=0, and

It is well-known that
fu(x, ) = C(m)t="'?| fline,

if fcHP, and the evaluations fi—~u(x, ) are continuous on the sum space. We
remark that when computing the interpolated spaces for this example, another con-
taining space will be used.

Example 3. (L? spaces on a o-finite measure space (2, Z, p)). If (¥, |-]) is
a quasi-Banach space, a function f: QY is said to be measurable if it is the limit
of an almost everywhere convergent sequence of measurable simple functions. If
O<p<e, LP(Y) will be the completion of the simple measurable functions with
respect to the quasi-norm

| fhren = ([, 1 f(@)f du(@)"”.

If fis a measurable function, so is || f(-)lly. It follows that L?(Y) (denoted by
I?(Y)in [22]) consists of all measurable functions f such that || fll poy,< +<=. See
[22] ““korollar 4.(2)”".
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For every quasi-Banach pair (X,, X;) with an A-convex containing space %,
let us see that (LP(X,), L7(X;)) has an A-convex containing space too. Sup-
pose for simplicity that the inclusion X,+X,C% is norm decreasing. Define
g=min {p,, p;, 1).

Let {B,}, be an increasing sequence of measurable sets of finite measure such
that Q= , B,. For f=fy+f; in LP(X,)+L"(X;), we have (j=0,1)

/578, e = ﬂ(Bn)u/a)_(npj)?!./}'E!ij(xj) ,
so that, for a certain constant C(n)=C(n, p,, p,,%)>0,
”fZB,,“Lp(’ﬂ) = C(n)”‘f‘nLPO(X0)+Lpl(.Yl) .

Now we define the space ¥ to consist of all measurable #-valued functions g
such that

lgly = SHIIJ C(n)™1| g1 liecm =+

We notice that L#(%) is A-convex. In fact, if [ .}, is plurisubharmonic and
is an r-norm, then ((~H%=H-HWA. Then, by (13, Theorem 3.7], the functions
log | -ll4> and hence |f-]%, are plurisubharmonic. Thus the following inequal-
ities hold:

1 Viecy = ([, I/ @)]g, dit())

A

(fq%fo’r ilf(a))+-ei‘g(w)ll%ds‘[l‘(‘“)] ’

= o 7 ([, 1)+ e g (@) (@) ds

0

] 2 i
- 77!_-[0 lf+e“ gl e a) ds.

After this observation, we prove that | - ||, is plurisubharmonic. If F¢ A(4, %),
we have

| FO)y = Nifl’ C(”)—IHF(O)ZB,,”LQ(?/) = S‘ilzc(”)ﬂ sup “I:(W)XB,,”L"(%)

iwi=1

= sup [Fw)ly.

Jwi=1

Also, completeness of ¥~ follows easily from the completeness of L4(%).
Thus LP(Xp)+ L7 (X,) is continuously contained in the A-convex space ¥
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Example 4. (Tent spaces of Coifman, Meyer and Stein [6].) Let O<p, g<eo.
The tent space T is the set of all measurable functions f on R’*! such that

where I'(x) is the cone of all (y, 7)éR"*! such that vEB(x,1).

If fis a function defined on R%?, we define

Tf(x) = Zr(x)f
if xeR™ If f¢ T? it is clear that, for almost every x¢R" Tf(x) belongs to the L?

space on R%*! with respect to the measure dy dt/r"*'. We denote by L this space.

Thus we have a function T/: R"—Lj.
Lemma 2. The function Tf is measurable.

Proof. The proof is straightforward and we leave the details to the reader.
First one has to prove that measurability is preserved by a.e. limits, this can be
done using Egorov’s theorem. Now, approximating f by simple scalar functions
o defined on R%'Y, it is enough to prove the measurability of oyr(.,. Also, we can
restrict ourselves to consider the functions ygyr.,, whenever KCR”*' is compact.
Now, if I, ...,I; are the dyadic cubes of volume 2" which are contained in
B(0, r), we considér A and define the simple L%-valued function defined on R"

S,(x) = 2,;::;1 21tk Lrepy)-
It follows that, for each x€R”",

”Sr(x)_lxlr(x)ul_z -0,
as F-»oo, |

It is clear that the measurable function Tf is in LP(LY). Here we understand
L? as the Lebesgue space on R” with respect to the Lebesgue measure. Moreover,
it is also clear that T is a one to one map from the space .4 of all complex meas-
urable functions on R"*! to the space of all functions defined on R” with values
in /.

The operator T maps T-+T/: into LPo(LI)+ L7 (L%) and it is an isometry
from TP into LPi(LY), 0<pj, gj<e=, (j=0,1). From Example 3, we have an
A-convex containing space ¥ for the pair (LP(L%), L*(L})). We define #° to
be the set of all complex measurable functions / on R%'! so that Tf¢¥" and we
put in #  the induced quasi-norm by ¥". It follows by standard arguments that
#"1s an A-convex quasi-Banach space which contains continuously the sum 7o+ 7.

Now, some interpolation spaces can be computed.
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Theorem 3. Let O<p,, py<w, 0=0=1, (X,, X)), % and ¥~ be as in Example
3. Then
(L7 (Xo), L (X))y, v = LP((Xos Xiier, )

isometrically (here 1/p=(1—6)/p,+0/p,).
It will be useful to have the following auxiliary result:

Lemma 3. The space & (X,nX,) of all simple X, X,-valued measurable func-
tions Is dense in LPo(Xy) n L7 (X).

Proof. Let B, be an increasing sequence of measurable sets on Q of finite meas-
ure with UB,=Q. Let feLP(X)nLP(X,) and e=0. The functions fxs, ap-
proximate f in LP(X,)nLP(X,) and so we only have to approximate Jis, in
LPo(X)n LP(X;) by simple X, X,-valued measurable functions.

Fix an integer n. The function fx, maps B, into X,nX; and is X;-measurable,
(7=0,1). The argument given in {4, ;op. 171—172) works, without any change, to
prove that fZB,, is Xy X, -measurable, Pick simple X, X;-measurable functions S,
supported on B, so that

1S () =/ xonx, —~ 05

as m-—oo, for almost each x¢B,. Let =0 be such that, whenever N is a meas-
urable subset of B, with u{(N)<4d it follows that

fN (1AM +1LACONE) du(x) < e.

By Egorov’s theorem, there is a measurable subset N of B, with u(N,)<dJ so that
Sy converges Xy X, -uniformly to fy, outside N;. Define ¢,=Spyp\n,- The
functions ¢,, are in ¥ (X,nX,) and, if j=0, 1,

Iom=Fitn by = 2+ [y, 1520 SO, A ).

By the uniform convergence of S, over B\ N,. the last integral can be made
arbitrarily small and the lemma is proved. | |

Proof of Theorem 3. The case where =0 or 8=1 follows from Proposition 2.
We consider 0<0<1.

(a) Let fe€(LPo(Xy), LP1(Xy))e; and FEF (LPo(X,), LP1(Xy)) with F(B)=f. We
consider F, of finite rank so that |F,—F|,,~0 as n—e. In view of Lemma 3
we can in fact assume that each F, is of the form 2}’:1 ¢;x;, where ¢;€A4(S, C)

and x;€£(XynX,). For xeQ, the functions F, ,(z)=F,(z)(x) are in F(X,, X,).
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We apply Proposition 3 to the functions ¢,(r)=1" (j=0, 1) and we obtain

i - 1-8)/p,
e Ol = (1o S VGOl B, D)

1 £ 8/p,
'[Ffw I1F, < (107 R (O, I)dt) . Q)

We observe that the right-hand side of the last inequality is a simple measurable
function of x. Also f,=F,(0)¢¥(X,n X,) are (X,, X,)p;-measurable. Hence fol-
lowing the usual steps, we obtain from (2) the estimates

B xop = S| (g S Vil B, D

) p(1—8)/p,

i oo pO/py
'(‘g‘fﬂollﬂ,x(l+it)|1{’1Pl(9, t)dt] ]du(x)

]p(l—ﬁ)/p.,

1A

(f Qﬁ [ W (D18 RO, et du(x)

1 PO/PI
(S 7 B4 0 A6, 0 ()

,__\

i

1 e p(1—6)/p
(1—6 f._m IEGn ?pu(xo) £y (0, 1)dt]

1 had pO/p,
(G 7 IBO 0, B, 0 a)

= Bl o -
It follows that | f,—f.l LP((Xo, X l)m)_nF Foll gy =0, as n, m—oo and there is
g€ LP((X,, Xy)yey) so that
”f;;_g“L"((Xo,Xﬂ[e]) - 0.

Also f,—~f in (LPo(Xy), LP(Xy))ey. Since this space and LP((X,, X)) are both
continuously contained in ¥, we conclude that f=g¢ L?((X,, X1)p;) and we obtain
the inclusion
(Lp" (Xo)s L2 (X))o < Lp((Xos XDo1): “)
Furthermore:
11 Lo exo xgep = li"'n”f;;||1.l’((x0,x1)m)

= li'En [ Ell v

= 1 F ey

and the above inclusion has norm not exceeding 1.
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(b) For the reverse inclusion, Iet S be a simple function of the form

S = Zk kaEk’

where x,€X,n X, and E, are pairwise disjoint measurable sets on Q of finite meas-
ure. Let ¢, €F (X, X1) be such that ¢, (6)=x, and [l e, 1S close to [Xle-
As in [3, Theorem 5.1.2], define

F(z) = 2k ¥i(2) ¢k(Z)ZE,(a
where Y,.€ A(S, C) is defined by

]p((l/pl)— Q/pe))(z—0)

,(2) = [ ||xk||[o]

”S“Lp((xo.xx){o))
Since ¢ € F (X,, Xy), itis easy to see that FEF (LPo(X,), LP1(X,)). Since F(6)=S,
it follows that
1Y Loocxar, Loscxtingey = 1 -
Now
VEG+iDlgayxy = (f, S W+ i@t 0l 15, (00 dua ()
= ([, Zu WG+ il |l B, () dp(x)) i +e

= [|SlLe((xe X30p H &

We have proved that

IS N crnctg, oscargey = 15 T2t X ©)

for each simple X;n X,-valued function S.
This shows that the quasi-norms of L?((X,, X)) and of (LP(Xo), L(X)))e
concide in ¥ (X,n X;). Applying Lemma 3, the theorem follows.

In the preceeding theorem, the A-convex containing space % for the pair (X;, X7)
is arbitrary and the space ¥~ is the associated A-convex space given in Example 3,
or any other A-convex containing space which is compatible with ¥~ in the sense of
Theorem 1.

The paricular nature of ¥~ was used in part (a) of the proof when it was claimed
that the space L?((X,, X;),s;) Was continuously contained in ¥".

In part (b) the nature of ¥~ was used to claim that F was in

F(LPo(Xo), L(X); ¥)

and to obtain the reverse inclusion of (4) as a consequence of (5).
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We observe however that, if X,=X,=%=C, the above proof works for any
A-convex containing space for the pair (L, LP1), In the scalar case LPcLPo+
Ly and the functions ¢, can be taken to be costant, ¢, =x;, then

F¢ g(Lpo, L"‘) (6)

and the result follows for any A-convex containing space for LPo+ L,
Moreover, if | -|, denotes the quasi-norm introduced in LPon L? by the
method of Riviére, Cwikel, Milman and Sagher [16], [8], it follows from (6) that

Vg 1m0y, = 16 = 1 rs

for each simple function /. By Lemma 3, the same is true for functions fELPenLP1,

We identify the interpolation spaces of vector valued L? spaces with respect to

the A-convex envelope of the sum when the pair (X,, X;) and the space # satisfy
the following property:

I xllo1, 2 = lixllg (7

for each xcXyn X;.

Theorem 4. If (X,, X;) and % satisfy (7), and A denotes the A-convex envelope
of LP(X)+LP(X,), then the identity map on LP(X)nLP (X)) extends to an
isometry from LP((Xy, X\ ) onto (LP(Xy), L?(X\))e1,4- Here 1/p=(1—-0)/py+
0/p.. Moreover, the pair (LP(X,), L*(X,)) and the containing space A satisfy (7).

Proof. Let Sc#(X,nX,) as in part (b) of the proof of Theorem 3. We can
pick the functions ¢, appearing in that part of the proof in %(X,, X;). Then the
function Fis in %(L%(X,), LP(X,)) and we obtain:

ISt

WPk, L gar, 2 = 190 = IS Tecxe xpey, 0> @
and the inclusion
F(Xon X)) < (L79(Xy), L7 (X1))i0y, 4

is continuous with norm not exceeding one. The inclusion extends to a bounded

operator
10 LP((Xo, Xi)tor.) — (LPo(Xy). LP* (X))o, 4

with norm no greater than one.
On the other hand, if ¥ is the A-convex containing space given in Example 3,

the inclusion
LP(Xp)+ L7 (X)) <9

extends to K: A—~7¥" and, by Theorems 2 and 3,
K: (Lp"(Xo)« Lp‘(XJ)w],A - LP((XO’ X1)[s].az)a

with norm not exceeding one.
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The relations
Kol=1d and IoK =1d

(where the identity operator is understood in the corresponding space) hold in
F(XynX,). By Lemma 3, we conclude that the operator [ is an isometry from
L*((Xo, X )ay,4) Onto  (LP(Xy), LP(X;))ey,4 that leaves fixed & (XpnXy).

We note that

LPo(Xo) N LP(X,) < (LP°(Xy), LP*(XD)ey, v = LP((X,, Xl)[»].tw)-
Again by Lemma 3, the intersection LPo(X,)n L?(X,) is fixed by L

From (8), it follows that the quasi-norms of L?((Xy, X, a)s (LP(Xy),
L7 (X;))to,4 and | -|ly (the one introduced by Riviére, Cwikel, Milman and Sagher)
coincide on % (XN X;) and therefore on LPo(X,)n LP(X,). [ |

Corollary. Ler (Y,,Y,) be an interpolation pair of quasi-Banach spaces with an
A-convex containing space #°. Suppose that the pair (X,, X,) satisfies (7) for some
A-convex containing space. Let A be a linear operator defined on & (X,nX,), the
space of all simple X, X,-measurable functions, with values in Yy,nY,. If the operator
A satisfies the estimates

1Af v, = M Lo,x s
Jor each fc & (X,nXy), j=0, 1, it follows.

1 Af gy = MolhaMf”f”LP((Xo,x,)m)-

Proof. We extend A4 to an operator defined on Z =LP°(X§)+L"1(X;)). We
remark that L"J(X;?) is the LPi(Xj)closure of & (X,nX;). We extend A4 to
Ay Z4—~W . We observe that if the pair (X,, X;) satisfies (7), by Proposition 2,
the pair (X5, X7) also satisfies (7). The proof ends applying Theorem 2, Theorem 4
and Proposition 2. |

We consider now the A-convex containing space %~ introduced in Example 4.
By definition, the operator T is an isometry from #” into ¥  and, by Theorems 2

and 3, it follows that
T(TZ, TR ) © LP(LY) ©)

6 * gy

with 1/p=(1-8)/p,+6/p, and 1/g=(1—0)/q,+6/q,. Thus we arrive to the fol-
lowing result:

Lemma 4. If O<p;, gj<< (j=0,1) and 0=0=1 then
TL Tfa < T
if 1/p=0—-0)/p,+0/py and 1/q=(1—-0)/q,+6/q,. The inclusion has norm =1.
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Proof. The inclusion follows immediately from the definitions of the tent spaces,
the operator T and (9).
The fact that the inclusion is norm decreasing follows by interpolation of 7. |}

From this lemma and using duality like in [6] we obtain a result that, in part,
complements [6, Theorem 4 and Proposition 6], in which ¢o=¢,, and [2, Theo-
rem 6.5], in which g;=-<°, (j=0, 1).

Proposition 5. If 1<p;, g,<e (j=0,1), 0=0=1, 1/p=(1—6)/p,+0/p, and
1/g=(1—0)/q,+6/q, then

(T30 T oy = T

Finally, we observe that complex interpolation of H? spaces (0<p=<) and
BMO works exactly as in [5] and [11]. We remark that H? is continuously contained
in & endowed with the weak topology relative to & [10, p. 174]. Also BMO is
continuously contained in %’ when normed by

1 laso = |, SO x|+ 171

where || .|, 1is the usual BMO seminorm as in [10]. It is not necessary to make
any new argumernt in the interpolation theorems. It is convenient to take as A-con-
vex containing space % the linear span in &’ of the closed convex hull B of the
unit ball in the corresponding sum space.

This is a Banach space with respect to the Minkowski functional because B is
a bounded, convex, balanced and complete subset of &’. In fact, since & is a Fréchet
space and B is bounded, convex, balanced and closed, B is weakly compact. See [20].

We point out that in the original proofs of {5} and {11] only functions of finite
rank are considered, Thus, when reproducing these proofs in our context, the A-con-
vex containing space % will not appear.

Also, we observe that the conditions on the analytic functions appearing in the
interpolation theorem of 5] are satisfied by functions in & (HP, HP1; %) vanishing
at infinity. This can be seen using that & is a Montel space and so any weakly con-
vergent sequence in &’ is strongly convergent and thus uniformly convergent on
compact sets of &. See [20].
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