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Abstract. Estimation of physiologically plausible deformations is crit-
ical for several medical applications. For example, lung cancer diagnosis
and treatment requires accurate image registration which preserves slid-
ing motion in the pleural cavity, and the rigidity of chest bones. This
paper addresses these challenges by introducing a novel approach for
regularisation of non-linear transformations derived from a bilateral fil-
ter. For this purpose, the classic Gaussian kernel is replaced by a new
kernel that smoothes the estimated deformation field with respect to the
spatial position, intensity and deformation dissimilarity. The proposed
regularisation is a spatially adaptive filter that is able to preserve discon-
tinuity between the lungs and the pleura and reduces any rigid structures
deformations in volumes. Moreover, the presented framework is fully au-
tomatic and no prior knowledge of the underlying anatomy is required.
The performance of our novel regularisation technique is demonstrated
on phantom data for a proof of concept as well as 3D inhale and ex-
hale pairs of clinical CT lung volumes. The results of the quantitative
evaluation exhibit a significant improvement when compared to the cor-
responding state-of-the-art method using classic Gaussian smoothing.

Keywords: nonrigid registration, respiratory motion, sliding motion
modeling, adaptive bilateral filtering.

1 Introduction

Image registration is a key processing step in medical image analysis. However,
common deformation models such as diffusion, elasticity or fluid methods usu-
ally do not reflect the underlying mechanisms (true tissue properties) of the tis-
sue changes between the consecutive volumes. Therefore, additional constraints
need to be introduced such as displacement field discontinuities (sliding motion)
[8,7,9,1], rigidity [11] or incompressibility [5]. Applications such as diagnosis and
image guided radiotherapy (IGRT) have attracted active research on accurate
lung motion estimation over the last years [3,9,1].

The sliding motion pattern that naturally occurs at e.g. lungs and liver bound-
aries has been addressed by various image registration approaches. Direction de-
pendent regularisation [9] decouples diffusion regularisation into normal and
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tangential direction around lung boundaries, while the registration of the remain-
ing part of the volume is based on a classic diffusion model. Similarly, anisotropic
diffusion regularisation was utilised for a lung phantom data study in [6]. A dif-
ferent concept was proposed in [8] where the deformation is decomposed into ba-
sic components that are then regularised separately. Recently, Large Deformation
Diffeomorphic Metric Mapping (LDDMM) was extended towards the piecewise-
diffeomorphic registration that enables explicit slidingmotionmodelling [7]. These
approaches have some limitations, as they require preprocessing steps in form of
segmentation of some structures where sliding motion may occur [6,9], very accu-
rate domain splitting strategy to ensure diffeomorphism [7], or a sliding motion
detection system [9]. For approaches where no segmentations are required or avail-
able, the estimated deformations remain smooth at lung boundaries, or disconti-
nuity preserving regularisation is applied to the whole volume domain [8].

Several methodologies that enforce the rigidity on some volume objects have
been described in literature. The most related to the method presented in this
paper was proposed in [11]. It is based on an iterative procedure of adaptive
filtering of the deformation field that is employed for the area of rigid objects.
The simplicity is however deceptive as it requires a stiffness coefficient which
has to be derived either from segmentation or from Hounsfields unit if CT data
are available. One such example is the recent work [1], where a fluid registration
framework with preservation of topology and rigidity is proposed, which however
also relies on the segmentation of the lung surface and bony structures.

This work aims to develop automated method for deformable registration to
address both, the problem of sliding motion estimation and the local rigidity
preservation. The contributions of this paper are as follows. First, we adapt the
bilateral filter technique previously introduced for image filtering and occlusion
detection in computer vision applications [13,15] to regularise the estimated
deformation field in a Demons formulation [12]. The classic Gaussian kernel is
then replaced by a new kernel that is dependent on the anisotropic diffusion,
the intensity and deformation dissimilarity. The presented framework does not
require any prior knowledge about the organs’ properties and therefore it forms
a fully automated technique.

2 Classic Diffusion Based Regularisation

In a classic non-linear image registration formulation [4,16], the optimal dis-
placement field û describing the geometrical transformation between a reference
image IR and a source image IS is estimated by minimising a global energy:

û = argmin
u

(Sim(IR, IS(u)) + αReg(u)) (1)

where Sim is a similarity measure, Reg is a regularisation term, and α is a
positive weighting factor. A common choice of similarity criterion is the sum of
the squared differences (SSD) and a diffusion regularisation yielding:

∫

Ω

(IR(x)− IS(x+ u(x)))2 + αtr(∇u(x)T∇u(x))2dx (2)
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The diffusion regularisation is performed as Gaussian smoothing of the defor-
mation field, therefore solving the Euler-Lagrange equations of Eq. (1) can be
divided into two steps [15]: finding an update du that is related to the similarity
measure Sim, and performing smoothing of the estimated deformation field us-
ing an isotropic Gaussian kernel Giso instead of explicit regularisation Reg(u):

unew(x) = Giso ∗ (uold(x) ◦ du(x)) (3)

where unew is a new estimate of the deformation field, uold is a deformation
field calculated in the previous iteration, and ◦ is a composition operation. Fil-
tering the deformation field using an isotropic Gaussian kernel leads to smooth
deformations. In medical image registration, this framework can be related to
the commonly used Demons algorithm [12,14].

3 Adaptive Bilateral Smoothing

In order to prevent the deformation field to be smoothed across object bound-
aries which would not be physically realistic, we propose to replace the standard
Gaussian filtering of the deformation field by a more powerful non-linear filter-
ing technique originally proposed for image denoising [13]. The bilateral filter
smoothes an input image Ii by two Gaussian kernels in the following way:

Io(x) =
1

W

∑

y∈N

exp

(

−
(x− y)T (x− y)

2σ2
x

)

︸ ︷︷ ︸

Giso(x,y)

· exp

(

−
‖Ii(x)− Ii(y)‖2

2σ2
r

)

︸ ︷︷ ︸

Gr(I(x),I(y))

·Ii(y)

(4)
where Giso is Gaussian kernel on the spatial domain (with variance σ2

x
) and Gr

is another Gaussian kernel but defined on the intensity domain Ii (with variance
σ2
r
), y is a spatial position within the image neighbourhood N , and W is a nor-

malisation factor for this image neighbourhood N . Even though the additional
kernel Gr does not allow for smoothing when the neighbourhood intensity values
are different, direct substitution of the Gaussian kernel by the bilateral kernels in
our registration framework can lead to several deformation field discontinuities
(motion over-segmentation) in the whole volume domain. This discontinuity can
occur at each intensity change and is typical for image-driven regularisation [16].
In addition to this, some organs have very similar intensity values, however they
can slide along each other. Therefore, a supplementary kernel is employed [15]
and the bilateral filtering of deformation field is extended in the following way:

unew(x) =
1

W

∑

y∈N

Giso(x,y) ·Gr(I(x), I(y)) ·

exp

(

−
(ucur(x)− ucur(y))

T (ucur(x)− ucur(y))

2σ2
u

)

︸ ︷︷ ︸

Gu(u(x),u(y))

·ucur(y) (5)
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Fig. 1. Comparison between different kernels used for deformation filtering. Two local
patches from distinctive areas of the chest were taken from the NCAT data. The patch
presenting the chest bone (red circle) and its corresponding kernels are shown in the top
row, while the patch including the lung boundary (green circle) and its corresponding
kernels are shown in the bottom row.

whereGu describes a Gaussian kernel based on the local deformation field dissimi-
larity anducur(x) = uold(x)◦du(x). Thus, the combination of three kernelsGiso,
Gr, andGu leads to a joint image- and deformation-driven regularisationmethod,
which compromises mutual benefits such as discontinuous deformation without
motion over-segmentation. Finally, we can also replace the isotropic Gaussian ker-
nel Giso by an oriented Gaussian kernel Gani. After that substitution, the kernel
Gani varies at different image position x with respect to the diffusion tensor D.
The diffusion tensor D for n-dimensional volumes is defined as [4]:

D =
(λ+ ‖∇I‖2)Id −∇I∇IT

(n− 1)‖∇I‖2 + nλ
(6)

where ∇I is the gradient of image I, λ is an (an)isotropy parameter, Id is a
n× n identity matrix. As can be expected, if the intensity values around point
x are (close to) constant (‖∇I‖ ≈ 0), the eigenvalues of D are equal and the
kernel Gani is equivalent to the isotropic kernel Giso.

Examples of different kernels are presented in Fig. 1. Filtering the deforma-
tion field with the anisotropic Gaussian kernel leads to smooth flow at lung
boundaries (Fig. 1 bottom row) as the kernel averages the deformation field
between neighbourhood areas. Whereas the bilateral filter working on both the
spatial Gani and intensity domain Gr improves the shape of the kernel, still some
deformation field averaging is done (see area marked by arrows). While better
separation between different structures can be only captured by limiting the size
of the bilateral filter using only an intensity kernel (lower value of variance σ2

r),
it will lead to the aforementioned motion over-segmentation problem. Such ex-
ample of motion over-segmentation in case of lung data registration is illustrated
in Fig. 2c. The proposed composition of three kernels Gani, Gr and Gu produces
a kernel which visually has better overlap with the underlying anatomical struc-
ture than the two others. Similarly, the kernel comprising all of Gani, Gr and
Gu acts mostly inside the rigid structure (Fig. 1 top row).
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Table 1. Average ratio of overlap obtained for the NCAT data set using the Demon
framework with four different smoothing kernels. The last column shows statistical
significance of improvement between iso-dem compared to others methods.

lungs liver ribs p-value

iso-dem 0.86±0.08 0.89±0.10 0.76±0.05 N/A
ani-dem 0.90±0.05 0.91±0.07 0.79±0.05 0.475
iso-bil 0.92±0.02 0.93±0.05 0.80±0.05 0.061
ani-bil 0.92±0.02 0.93±0.05 0.80±0.05 0.067

4 Results

Materials. The proposed approach is assessed using two publicly available data
sets. The first data set is a set of synthetically generated 4D CT volumes mod-
elling consecutive respiratory cycle phases from the NCAT phantom [10]. The
spatial resolution of the data is 2.0 x 2.0 x 2.0 mm3. The second data set con-
sists of ten 4D CT data from the Dir-Lab data set [2]. The spatial resolution of
that data varies between 0.97 x 0.97 x 2.5 mm3 and 1.16 x 1.16 x 2.5 mm3. For
all data sets, the end-of-inspiration volume was chosen as a reference, and the
end-of-expiration volume as a source image.

Experiments. For quantitative evaluation of the proposed regularisation filters,
a Demon approach with an update composition scheme was implemented (see
[14] for details). Four different kernels for smoothing the deformation field were
used for comparison: isotropic Gaussian Giso (iso-dem), anisotropic Gaussian
Gani (ani-dem), bilateral kernel with isotropic Gaussian Giso ·Gr ·Gu (iso-bil)
and with anisotropic GaussianGani ·Gr ·Gu (ani-bil). In most cases, the registra-
tion with a bilateral filter without deformation similarity kernelGiso·Gr produces
unrealistic deformation fields (see example in Fig. 2c), therefore the quantitative
results obtained are not included. Additionally, a two-sample Wilcoxon rank sum
test was performed between iso-dem and the other evaluated methods. Filtering
of the deformation field was performed once after each update of deformation
field, but in principle it could be done several times at each iteration following
the approach presented in [11]. Although the best design parameters (σx, σr , σu,
λ) were determined empirically by an extensive search over parameter space for
each method, experiments on both data sets showed that the proposed algorithm
is very robust to their choice, hence these parameters do not need to be tuned
for each volume separately (for this particular application i.e. lung CT).

Results on NCAT Data. The ratio of overlap (RO) for the organ of interest
(lungs, liver, ribs) was calculated and the registration outcomes for the NCAT
data are presented in Tab. 1. The RO exhibits an improvement for methods based
on the bilateral filtering when compared with the Gaussian smoothing. Although
this does not necessarily ensure deformation field plausibility, it can highlight
differences between methods in terms of the anatomical correspondence.
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Results on CT Dir-Lab Data. The TRE was calculated for the landmarks
which are included in this data set (300 per case) and the results of quantitative
evaluation can be found in Tab. 2. The initial average TRE is 8.46±5.48 mm.
As can be seen, the deformation fields obtained using both frameworks based
on the bilateral filtering produce significantly lower TRE when compared to the
classic Demon algorithm. Contrary to expectation, the bilateral filtering with
anisotropic kernel Gani performs slightly worse than the method with isotropic
kernel Giso. This indicates that the bilateral filtering with isotropic Gaussian
kernel can effectively adapt smoothing across different structures. Moreover, the
proposed methods based on bilateral filtering yields a lower TRE (2.34 mm)
whereas the classic Demon has a TRE=2.88 mm. The results reported in the
literature [9] were 3.02 mm for diffusion regularisation and 2.13 mm for direction
dependent regularisation. It must be noted that further improvement might be
expected when a more advanced similarity Sim would be applied to capture local
intensity variations apparent in the Dir-Lab data due to lung compression [2].

Fig. 2 is an illustrative example of the deformation field magnitudes when reg-
istering case c5 from the Dir-Lab data set using different smoothing kernels. The
results from the quantitative evaluation (shown in fifth row of Tab. 2) exhibit
a statistically significant improvement in terms of the TRE between different
methods, and consequently some noticeable differences between the estimated
deformation fields can be identified especially close to the lung boundaries (com-
pare Fig. 2b and Fig. 2d, and its corresponding zoomed images in Fig. 2f and
Fig. 2h). Employing bilateral filtering derived both from intensity and deforma-
tion field similarity preserves discontinuity between the lungs and the pleura,
while satisfying smoothness of the deformation field inside the lungs. Contrary,
applying the bilateral filter based only on intensity difference generates disconti-
nuities inside and outside the pleural cavity (depicted by black arrows in Fig. 2c).

Table 2. Target Registration Error and its standard deviations obtained for Dir-Lab
data set using the Demon framework with four different smoothing kernels. The last
column shows statistical significance of improvement between iso-dem compared to
others methods with p-value level below 0.05 (marked as (+)). The proposed iso-bil

achieves the lowest average TRE among all methods.

No. data before iso-dem ani-dem iso-bil ani-bil sign.

c1 3.89±2.78 1.08±0.57 1.09±0.58 1.05±0.54 1.07±0.57 - - -
c2 4.34±3.90 1.11±0.64 1.10±0.63 1.08±0.58 1.09±0.60 - - -
c3 6.94±4.05 1.54±0.98 1.52±0.91 1.47±0.86 1.49±0.89 - ++
c4 9.83±4.86 2.38±2.04 2.38±2.03 2.28±1.82 2.40±2.04 - + -
c5 7.48±5.51 2.26±1.93 2.22±1.90 2.04±1.71 2.13±1.78 - ++
c6 10.9±6.97 3.26±2.84 3.14±2.67 2.72±2.01 3.05±2.49 +++
c7 11.0±7.43 3.81±3.69 3.62±3.47 3.14±2.76 3.53±3.33 +++
c8 15.0±9.01 8.22±8.27 7.73±8.26 4.99±5.14 7.19±7.67 +++
c9 7.92±3.98 2.56±2.02 2.46±1.89 2.08±1.45 2.36±1.79 +++
c10 7.30±6.35 2.65±3.27 2.61±3.21 2.45±2.78 2.57±3.11 - ++

mean 8.46±5.48 2.88±2.07 2.79±1.92 2.34±1.16 2.67±1.77
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Fig. 2. Results for case c5 of the Dir-Lab data set. (a) coronal view of the reference
image with the corresponding contours. The magnitude of the deformation fields esti-
mated using: (b) isotropic Gaussian kernel Giso (Demon), (c) original bilateral kernel
Giso · Gr, (d) the proposed bilateral kernel Giso · Gr · Gu, (e)-(h) zoomed images of
the region of interest (labelled by squared box in the top row), the intensity differences
between input images (i) before registration, and after using (j) iso-dem, (k) original
bilateral kernel Giso ·Gr , and (l) iso-bil. Registration using iso-bil yields smooth defor-
mation inside the pleura cavity whilst preserving sliding motion at the lung boundary.

5 Discussion and Conclusions

This paper presents an image registration framework which is able to estimate
deformation fields preserving both the sliding motion in the cavity of the pleura
whilst preserving the rigidity of the chest bones and yielding desirable smooth
deformation field inside the lungs. The overall deformation field is regularised
within a one step procedure that is performed via adaptive deformation field
filtering. The kernel which is used for the purpose of deformation field filter-
ing, is based on three components: spatial smoothness, local image intensity and
deformation field similarity. Evaluation of the proposed regularisation scheme
was done both on the NCAT phantom data and clinical lung CT data. In cases
where noticeable sliding motion occurs in the data, the presented results exhibit
significant improvements when the new filtering procedure is applied compared
to the classic Gaussian smoothing. Moreover, for non-sliding cases (where sta-
tistical significance of the improvements for the proposed filtering procedure was
not achieved) the slightly lower average TRE was obtained, and in addition, the
visual inspection of the estimated deformation fields still exhibited physiologi-
cally more plausible results. Future work will perform a sensitivity analysis of
design parameters of the proposed filtering procedure such as σx, σr, σu to this
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application, and comparison to methods that require segmentation or explicit
sliding motion detection to achieve desired properties [7,9].
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