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Two-dimensional ideal magnetohydrodynaniidHD) simulations are presented that demonstrate
several novel phenomena in MHD shock formation. The stationary symmetrical flow of a uniform,
planar, field-aligned, lows and superfast magnetized plasma around a perfectly conducting cylinder
is calculated. The velocity of the incoming flow is chosen such that the formation of fast switch-on
shocks is possible. Using a time marching procedure, a stationary bow shock is obtained, composed
of two consecutive interacting shock fronts. The leading shock front has a dimpled shape and is
composed of fast, intermediate and hydrodynamic shock parts. A second shock front follows the
leading front. Additional intermediate shocks and tangential discontinuities are present in the
downstream part of the flow. The intermediate shocks are of the 1-3, 1-4, 2—4=dheB%4

types. This is a confirmation in two dimensions of recent results on the admissibility of these types
of shocks. Recently it has also been shown that thk2-43=4 shock, embedded in a double
compound wave, is present in the analytical solution of some planar one-dimensional MHD
Riemann problems. This MHD flow with interacting shocks may have applications for some
observed features of fast solar Coronal Mass Ejections and other phenomena fhsloace
plasmas. ©1998 American Institute of Physid$$1070-664X98)00611-9

I. INTRODUCTION When the plasmg3 of the incoming flow is roughly
smaller than one and, along the magnetic field lines, the in-
Bow shocks can be found in many places in the solacoming velocity lies between the fast MHD wave speed and
system. They are formed when a supersonic flow encounteggughly twice this speed, fast MHD switch-on shocks are
an obstructing object. The space physics literature on hydroyossible? MHD flows with shocks in this parameter regime
dynamic (HD) and magnetohydrodynami¢MHD) bow  (which we will call the switch-on regimehave been studied
shocks is quite extensive. Rankine—HugorRH) relations  py Steinolfson and Hundhausef] in the context of fast
quantify the jumps across the shock, and methods exist fatoronal Mass EjectionéCMES) propagating outward from
the determination of the Mach cone angle, standoff distancgne sun through the loyginner solar corona. They predicted
pressure at the object, etdnalytical solutions of the flow a “dimpling” of the shock front(Fig. 10. Aspects of their
equations are generally impossible to obtain, so numericgheoretical analysis were confirmed by time-dependent nu-
simulations are necessary to construct the model solution$,erical simulations of propagating shock fronts, and sup-
for various parameter regimes. Many simulations have bee(gorted by coronagraph observations of fast CMEs with a
done describing the bow shocks in front of unmagnetize impled leading fron{which can be interpreted as the sig-
planets (like Venus, magnetized planetgike the Earth,  natyre of a shock front™® The stationary bow shock in the
comets, and the sufi! In these two-dimensionalD) and  gyitch-on regime has not been studied before, apart from one
three-dimensiona(3D) simulations, many different param- preliminary study with low resolutiof.
eter regimes have been explored: high or low plagn@ In this paper we study the 2D steady state MHD bow
being the ratio of the thermal pressure and the magnetic pregpgck for field-aligned flow in the switch-on regintfield-
sure, various orientations of the magnetic field to the plasmaa”gned flow is sometimes also called parallel floW/e cal-

velocity, etc. The classical picture of a steady state HD Of, |ate the flow of a 2D 4/9z=0), uniform, planar ¢
MHD bow shock is a single-front structure with a concave-_ g _ ) " field-aligned, lows and superfas,t magnetiéed
z 1 1

inward (to the object geometrical shapéFig. 1a. plasma around a perfectly conducting cylinder. We look for
a stationary flow solution with top—bottom symmetrsp,
dResearch Assistant of the Fund for Scientific Research—Flar(@eils such that the horizontal line which extends to the center of

gium). Also at the Centre for Plasma Astrophysics, Katholieke Universiteitthe cylinder is the stagnation streamline, parallel to the in-
Leuven, Belgium. Electronic mail: desterck@ucar.edu '

YResearch Associate of the Fund for Scientific Research—FlariBets coming f_IOW (Fig. 1)_- We obtain a statipnary bow shock by
gium). using a time marching procedure. In Fig. 2 we show a global
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FIG. 1. Possible bow shock topologies for a uniform flgwagnetic field
lines have arrowscoming in from the left and obstructed by a conducting
cylinder. Shock normals are shown as dashed lines. The horizontal field line
terminating on the cylinder is the stagnation streamligeConcave-inward

(to the cylindey shape. The whole shock frofthick line) is of the fast type.

(b) Dimpled shape. The upper part of the front is of the fast type. At the
nose, a switch-on shock refracts the horizontal incoming magnetic field with
a finite angled. Under the nose the shock is first of the 1-3 intermediate

De Sterck, Low, and Poedts

ray
S
)

-

\
"
Y

]"f

T
N

type, which is then linked to a 1-4 intermediate shock gajtinteracting
shock topology of our simulation results. The dimple is still present. A-B is
a fast shockB—C-D is of theintermediate type. D—E is fast and E-F is
hydrodynamic. The leading front is trailed by an intermediate fidrG—
H-I. E-G is another intermediate shock. E—H is a tangential discontinuity.
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view of our simulation results. It is clear that the bow shock
in this switch-on regime does not have the traditional geo-
metrical shape and topology of Fig. 1a. It contains a central -0.250 -0.125 0.000
. . . . X
concave-outward paft'dimple” ), confirming this aspect of
the analysis of Steinolfson and Hundhau$éhHowever, FIG. 2. Global view of the bow shock solution presented in this paper
the resulting bow shock flow is quite more complicated thar‘ﬂ”ﬂOYtV Macth “‘;”?I*?ers""f 1&]5 a?]d Mlgl-gﬁ a”dt ﬁ?olg‘)l; V\éce show
P . . ensity contourgpiiing up In the snocksand magnetic Tie Inegcoming
COU'|d be ant|C|pated from the Import‘.”mt earlier Wor!( of in horizontally on the left The flow comes in from the left. The cylinder
Steinolfson and Hundhausen. The leading shock front is foliis the space of the white half disc on the right. The leading shock front is
lowed by a second shock front, and other discontinuities caslightly dimpled. The upper and lower parts of this front are of the fast type.
be identified between the two fronts. This flow pattern mayln the central part of the flow, a second front has separated and is trailing the
I . - leading front. Additional discontinuities can be seen in the central interac-

seem intricate and complicated at first. The topology of the;,, region.
flow pattern is sketched in Fig. 1c. In this paper we will
propose a consistent interpretation of this flow pattern, and
we will explain why we obtain such a complicated flow in
our simulation, and not the classical simple concave-inwar
bow shock topology of Fig. la.

We will start with a brief review of the classification of
MHD discontinuities in Sec. Il, discussing the properties of

the different types of MHD discontinuities. This review will shocks of the “sonic” type—which are a manifestation of

help us with the interpretation of our simulation results. Inthe nonconvexity of the MHD equations—in our simulation

Sec. ”.l we will d_escrlbe the setup of the smula’_uon and.theresults. This will be discussed in Sec. V B. We will conclude
numerical technique used. In Sec. IV we will give detailed.

simulation results. We will determine the type of everym Sec. V1.
MHD discontinuity present in the flow.

Sectio_n V coptains a discggsion of our re;ults. In Sec,, MHD DISCONTINUITIES
V A we will explain why a traditional concave-inward bow
shock geometry(Fig. 13 is not possible in the switch-on In anticipation of the occurrence of MHD discontinuities
regime. We will make use of the Steinolfson and of all types in the simulation results we wish to present, it is
Hundhauseh'® analysis of the symmetry of flows in the useful to give a brief introducton of MHD
switch-on regime. Our results show very clearly the presencdiscontinuities®*#and an explanation of the nomenclature
of intermediate shocks. These types of discontinuities werand notation we will use further on in this paper.

gonsidered unphysical for a long time!® Recent numerical
and analytical study shows that intermediate shocks can be
physical**~?! and we will try to relate our results to these
recent developments. The MHD flux function is
nonconvexX?2%21 and we will try to identify intermediate
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The equations of ideal one-fluid MHD in conservative
form are given by 1 c<v® Mv>1 M®>1 MO>1
P Py 2c0<v@<c® MOP<1] M®>1 MO®>1
a| pv pw+I(p+B-B/2)—BB * ?
— +V. =0. D e D — e
Jt| B vB—Bv @ i
e (e+p+B-B/2)v—(v-B)B 3c<v®<c,® M@P<l M©O<1l [MO®>1
Here p andp are the plasma density and pressure, respec- B AR
tively, v is the plasma velocityB the magnetic field and 4 vo<e® M#@<1 M@®<l M®<1
p v-v B-B .
e=——+p——+—— 2) FIG. 3. Possible states that can be connected through a MHD shock. They
y—1 2 2 are ordered by increasing entropy, with the lowest entropy for state 1. The

normal fast, Alfve and slow wave speeds arg, c, andc,, respectively.
is the total energy density of the plasnhas the unity matrix.  The normal plasma speed i . The fast, Alfver and slow normal Mach

The magnetic permeabilinl in our units. We take/=5/3 numbers ar(N_If . M, andMg, respe_ctively. State 1 is superfast, because its
for the adiabatic index normal velocity in the shock frame is larger than the normal fast MHD wave

: speed. Therefore the fast, Alfvie and slow Mach numbers are all greater
MHD allows for 3 linear wave modes, the fast, the Alf- than one. State 2 is subfast but super-Atfice State 3 is sub-Alfeic but

ven and the slow wave, witl{positive) anisotropic wave superslow. State 4 is subslow. Possible shock transitions aréfast2 3—4
speeds satisfying;=c,=c; in standard notation. The MHD (slow) and 1-3, 1-4, 2-3, 2-@intermediat¢:

Rankine—Hugoniot relations, relating the jumps across a dis-

continuity with the propagation speed of the discontinuity,

: : ,13,8,23 , . .
can rea_ldllylbe lderlveb‘? A general prlop(_erty of MHD Alfvenic) downstream. A fast shock increadgs (because
discontinuities is that the normal magnetic field component

B, is continuous(in this section we choose theand they Is in phase withB for a fast wavg such that magnetic field

. . . lines are refracted away from the shock normal. Transition
coordinates normal and parallel to the surface of discontinu; y

ity, respectively. MHD discontinuities can be divided in 3|_4 I(Sb ctalleg Zlfilow)smi(ﬂg' 40 ;’hebpllasmjl IS SLtheI’-
three classes. For shocks there is both a mass flow throu oW (but sub- @ic) upstream, and subsiow downstream.

the surface of discontinuity, and an increase in the quantit¥0r5|;ws\'|§:v0v?l;\?; C;Lejgr?ﬁ/a(tbrigalriﬁésﬁg;ﬂ::;:psh:rsee rv;‘trr:cte d
s=p/p”? (which we will call the entropy. For contact and ’ 9

tangential discontinuities, there is an entropy jump, but nc;[owards the shock normal. Transitions 1-3, 1-4, 2-3 and

mass flow. For rotational discontinuities, there is a mas%l:‘le?-flfialiidumst?rregi?Iztr(? dsgggfl%é%ow&tegasrwiﬁ
flow, but no entropy change. P P ' '

intermediate shock changes the signBgf, such that mag-
A. Shocks netic field lines are flipped over the shock normal.

Generally up to four plasma states can be found that There exist limiting cases of these types of shocks. A

satisfy given values for the fluxes of mass, momentum and@St 1-2=3 switch-on shockFig. 4d hasB, ,=0 upstream.
energy through the discontinuity surface, with the possibilityThe _downstreanBy_z, however, d_oe_s no_t vanish. The tan-
ntial component of the magnetic field is thus switched on,

that a pair of those states can be connected by a shock. Thel3g

states are conventionally labeled states 1, 2, 3 and 4, order:?(‘]"ncfa the name of this shock. Th_e angles nonvar_1ish_ing
by increasing entropyFig. 3. State 1 has the lowest en- only if the upstream normal velocity component lies in the

tropy, and in a frame moving with the shock the normalSW('thh'o_n,re?'onI bgthe? thg Epstream normal Aifepeed
plasma velocityv ™ is larger than the normal fast MHD 2Nd & critical velocity defined by

wave speed, so that the flow is superf@std, therefore, also [y(1-B)+1

super-Alfvenic and supersloy This means that the normal Ca1<vx1<Ca1 -1 Vit 3

fast Mach numbeMgl) (normal plasma velocity divided by Y

normal fast MHD wave speéds greater than onéhe same with 8=2p/B? the plasmag. Switch-on shocks can thus

for the Alfven and slow Mach numbgrState 2 is subfast, only exist whenB8<2/y (or the normal Alfve speedcy,

but super-Alfvaic and superslow. State 3 is subfast and sub=> 'y p/p). For a fast switch-on shock, the downstream nor-

Alfvénic, but superslow. State 4 is subfast, sub-Atficeand  mal Alfvénic Mach number is exactly equal to one. A slow

subslow. In a frame of reference that moves with the shock2=3-4 switch-off shockFig. 4¢ hasB, ,=0 downstream.

a particle that moves from the upstream regftaditionally ~ The upstreani8, ,, however, does not vanish. The tangential

indicated as region)lto the downstream regiofregion 2, component of the magnetic field is thus switched off, hence

necessarily has to undergo an increase in entropy. So 1-fhe name of this shock. For a slow switch-off shock, the

1-3, 1-4, 2-3, 2—4, and 3—-4 are the possible entropyupstream normal Alfveic Mach number is exactly equal to

satisfying shock transitions. In Fig. 4 we summarize some obne. A limiting case of intermediate shocks are shocks that

their properties. do not change the magnetic field, and those shocks are called
Transition 1-2 is called a fast shodkig. 49. The  1-4 hydrodynamidor paralle) shocks(Fig. 4f). Both B ,

plasma is superfast upstream and subféstit super- andB,, are equal to zero.
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(a) fast (d) fast switch-on (g) contact

M, <1 M, <1
P N . —’—\Q /:// """ "

M >1 M =My >1 !
(b) slow (e) slow switch-off (h) tangential
Mo <1 \\ Mg =M, <1 * A
| )
1 2 | 1
M >1 | |
M,1>1 Mag= ! !
(c) intermediate (f) hydrodynamic (i) rotational
My, <1 M, =M,y <1 My =1
............. t
1 2 1 2
MA,l >1 Mf,l = MA,] >1 MA= 1

FIG. 4. Some properties of MHD shocks and discontinuities. The thick vertical line is the shock surface. The shock normal is dotted. The full arrowed lines
are magnetic field lines that are refracted through the shock surface. The dashed arrowed lines are velocity vectors. Region 1 is upstream, 2 is downstream.

B. Other discontinuities A. Setup and numerical technique
Contact discontinuitie$Fig. 49, with vanishingov, but In our simulations a 2D uniform field-aligned flow in
nonzeroB,, have only a jump in densitgand entropy. All planar symmetry 4/ 9z=0) enters from the left and encoun-

other quantities are continuous. Tangential discontinuitiesers a perfectly conducting rigid cylinder. The resulting sta-
(Fig. 4h), with vanishingv, andB,, have a jump in density, tionary ideal MHD flow is completely determined by the
pressure and tangential velocity and field. However, the totahflow plasmag and the inflow Alfvaic Mach number in the
pressurep+B?/2 is continuous. Planar rotational disconti- direction of the flow speed. For the incoming flow we choose
nuities (Fig. 4i) rotate the magnetic field around the normal 3=0.4, which implies a critical Alfveic Mach number
of the discontinuity surface over an angle of 180 degreesMA’Cm:1_732 [Eg. (3)]. We choose the Alfvgic Mach
without a jump in entropy. The normal plasma velodity — number of the incoming flow ,= 1.5, such that the param-
equalsB,/p"% such that the normal Alfiéc Mach number  eter regime of our simulation allows for switch-on shocks.
equals one on both sides. The x axis being horizontal, we can chooge=1 and B,
=1 (implying that the Alfven speed along the field lines
ca=1). The pressure and velocity can then be determined
from g andM,, yielding p=0.2 andv,= 1.5 (such that the

In this section we describe the setup of the numericahcoustic Mach numbeM =1.5\/§). Finally, we takeB,
simulation and we discuss the numerical technique used. We 0 andv,=0. As the resulting stationary ideal MHD flow
will also discuss some invariants and constraints of this probwill be scale invariant, we can freely choose the radius of the
lem, which will help us with the interpretation of the simu- cylinder. We take =0.125 and the cylinder is placed at the
lation results. origin of the coordinate system. We simulate the flow in the

Ill. SETUP OF THE NUMERICAL SIMULATION
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0.08 ' ' ' ' ] tion. Roe’s scheme suffers from various instabilities, like the

i 1 carbuncle-instability? and in consequence of these instabili-

] ties, a steady state solution could not be obtained with this
0.06 [y . scheme. Using the Lax—Friedrichs scheme, we obtained con-
] vergence of more than eight orders of magnitude in the norm
of the density residual.

We carefully checked if the results we obtained do not
contain numerical artifacts or features dependent on the nu-
merical resistivity. We did many simulations with grids of
different cell sizes and we obtained uniform grid conver-
gence to the solution shown in Fig. 2. We also did simula-
tions on uniform grids and grids with a different accumula-
tion of points than in the grid of Fig. 5, and refinement
FIG. 5. Detail of the stretched structured simulation grid. The cylinder is notstudies using these different grids resulted in grid conver-
shown, but is located to the right. We show density contours of the congence to the same solution of Fig. 2. The fully consistent and
verged solution. The shocks are generally well resolved. complete physical interpretation of all the features in the so-

lution to be presented in the next section, gives further con-
fidence that the features present in our solution are real and
upper left quadrant, on a 12020 stretched elliptic polar- physically meaningful.
like structured grid, extending t&=—0.35 on thex axis, We use a projection scheilé® to keep theV-B=0
and toy=1.4 on they axis. Part of the simulation grid is constraint satisfied. After every time step a small correction
shown in Fig. 5. We impose the above described unifornis added to the magnetic field, resulting in a solution scheme
flow as the initial condition. We use ghost cells to specify thethat guarantee¥-B=0 up to machine accuracy in the cho-
boundary conditions. On the left, we impose the uniformsen discretization.
superfast incoming flow. The cylinder wall is an ideally con-
ducting wall. We look for a stationary flow solution with
top—bottom symmetry:1°such that the horizontal line which B. Invariants and constraints

extends to the center of the cylinder is the stagnation line, 11,4 problem considered in this paper has several inter-

parallel to the incoming flowFig. 1). This stagnation line, oging invariants and constrairttsyhich we can use for the
which is a streamline and a magnetic field line, then has thgo hretation of the results and the performance assessment

same symmetries as an ideally conducting wall. This Symu¢ 1he nymerical method. The solution is in a steady state,

metry has to be imposed in the boundary condition on theneaning that fluid element paths are stationary curves, called
lower border of the simulation domain in order to obtain agyeamiines. For a smooth flow, the entropy remains constant
stationary symmetrical solution. The simulated bow shockg, 5 fuid element, so the streamlines have to coincide with
flow in the upper quadrant can thus also be thought of as @iy contours. At shocks, however, the entropy increases.
2D.mod'el floyv over a .pe.rfectly conducting platiae Stag' If viIB in the inflow (meaning that the electric field is zgro
nation line with a semi-circular bump or corner. The right then this property will be conserved throughout the whole

outflow condition is superfast, so there we extrapolate a'how, also through shocks. HilB everywhere, then the stag-
quantities to the ghost cells. The flow evolves in time until a4 enthalpy,
converged steady state bow shock solution is obtained.

We solve Eq(1) using a conservative finite volume high ho— YP N v @
resolution Godunov shock capturing scheme which is second % (y—1)p 2

order in space and time, employing a slope-limiter, . .
157 . N is constant on streamlines, also across shocks. As the incom-
approach*®>” with minmod-limiting on the slopes of the

primitive variables. The time-integration is explicit with a ing flow is uniform, the stagnation enthalpy should remain

; .~ constant over the whole simulation domain.vilB every-

two-step Runge—Kutta method. This code was extenswe% . .
: here, then the normal Alfwec Mach number becomes in-

tested and the test results were compared with results from Lo

. ... dependent of the direction:
other codes. The code was previously used for resistive
MHD simulations of interacting hot filaments in a v(6) v
tokamalk® Ma(6)= = : ®)

For our present simulations, we use the Lax—Friedrichs B(a)/\/; B/‘/;

numerical flux functiorf®?%?” which is simple and robust. This means that the Alfirégc Mach number is isotropic and
Contact and tangential discontinuities are not perfectly welkan easily be determined and plotted, greatly facilitating the
resolved due to the relatively high numerical dissipation fordetermination of MHD shock types. The RH relations for the
these waves, but shocks are well resolved in a steady staghock on the stagnation streamline are simple and can be
calculation. We did not use Roe’s schéfhalthough this solved easily, resulting in downstream quantitigs=1.64,
scheme in theory could resolve shocks and, especially, tap=2.77, v,=0.542 ands=0.300. In the next section
gential discontinuities much better. We have found severalve will show that the numerical solution reproduces these

problems while trying to apply this scheme to our simula-quantities.

777
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FIG. 6. Detail of the solution in the
..... half plane above the stagnation stream-
"""" line. We show Alfvaiic Mach number
: contours(piling up in the shocksand
magnetic field lines(coming in hori-
zontally on the left The dashed line is
S a contour where the Alfwdc Mach
’~ number exactly equals one. This infor-
mation together with the refraction of
~ the field lines serves to identify the
shocks as fast, hydrodynamic and in-
termediate(see the text

> 0.04 — - —
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As v and B are both constrained to lie in they plane, through the shogdk and because the field lines are flipped
linear Alfven waves oscillating out of they plane as a sepa- over the normal. In Sec. VB it will be shown that shock
rate fundamental mode, can not be present in the simulatef—-G is a }2-3=4 intermediate shockD—-G—-H-I is an
flow. However, intermediate shocks can in principle beintermediate shock with an upstream Alhie Mach number
present, because of the highly nonlinear interactions in théslightly) greater than one, and with magnetic field lines that

flow with shocks. are flipped over the normal. At various places along the
shock front, the upstream intermediate Mach number ap-

IV. INTERPRETATION OF THE SIMULATION proaches one and the downstream magnetic field becomes

RESULTS almost normal to the front, meaning that the shock is close to

In this section we will show our simulation results in @ 2=3—4 slow switch-off shock at those places. The inter-

detail. We will show how the type of all arising MHD dis- Mediate shock is thus of the 2—4 type, close to-e324
continuities can be clearly determined. For the identificatiors/oW switch-off shock. E-H is a tangential discontinuity.
of shock parts we refer to the lettering labels of Fig. 1c. Other tangential discontinuities are stretching out from
In Fig. 2 we show a global view of the converged bow points D, G and H along the streamlines to infinity. E—F is
shock solution. The uniform flow comes in from the left. We Very reminiscent of a Mach stem as it occurs in Hydrody-
clearly see the dimple in the central part of the shock fronthamic shock reflectiof: A priori the point E could lie on the
confirming this particular aspect of the Steinolfson andstagnation streamline, in which case this point would be a
Hundhausehanalysis. However, behind the leading shocksingular point on this streamline where four shock branches
front, we see a rich structure of several other shocks witdnteract. In such a situation, the stagnation streamline would
intricate field line refractions. The leading shock freopm- ~ Nnot be a shock normal. In such a hypothetical singular point,
posed of fast and intermediate shocksfollowed by a sec- theV-B=0 constraint could be satisfied if the jumpBj in
ond shock front. The refraction of the field linémvay from  they direction is exactly the sam&ith opposite sighas the
the shock normalabove point B of Fig. 1c shows that this jump inB, in thex direction. A solution with such a singular
part of the shock front is a fast shock. point is found for the simulation on a grid with low spatial
In Fig. 6 we show a detail of the flow in the half plane resolution. With sufficient resolution, however, the shock
above the stagnation streamline. D—E is a fast shock witlpart E-F appears, reducing the singularity to three branches
By. almost vanishing upstream, so it is almost a fastinteracting in point E. An interaction point where four
switch-on shock. E—F is a 1-4 hydrodynamic intermediatédranches meet seems thus to be avoided. This may be a more
shock. (It could be slightly concave-inward and thus not of general feature of MHD shock interaction, at least for some
the hydrodynamic type at locations on the front away fromtypes of shocks.
point F, but this is hard to tell at the resolution of our simu- In Fig. 7 we show a detail of the region close to the
lations. At point F, the shock is definitely of the hydrody- “nose” point B. The shock at point B is a 1=23 fast
namic type. E-G is an intermediate shock, because it clearlyswitch-on shock, because the tangential field component is
contains the dashell =1 contour(showing that the flow switched on, and because the downstream AliveViach
goes from super-Alfveic to sub-Alfvenic upon passing number equals onéB—C-D is anintermediate shock, be-
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0.25 Going further to the right, we see that we pass through a

rarefaction to reach a constant state. This slow rarefaction
converges the flow slightly towards the stagnation stream-
line. Although the flow near the stagnation line may appear
to be close to a 1D flow in Fig. 6, the flow is, in fact, 2D at
various places along the stagnation line. In Fig. 8d we plot
dBy/dy (thin line), indicating that the flow is 2D in this
rarefaction region. The density decreases in the main direc-
tion of the converging flow on the stagnation line, because
the velocity @,) is increasing andv-(pv)=0. B, is not
significantly influenced by the increasing because the field
is aligned to the flow. HoweveB, increases along the flow
0.05 _3 ‘ because of the 2D effect of converging flow in thdirection
0.25 -0.20 0.15 perpendicular to the stagnation line. This flow component

X causes the field lines to converge towards the stagnation line,
FIG. 7. Detail of the solution close to the “nose.” We show Alfiile Mach as can be seen in Fig. 8B, /Jx balances?By/ay such that
number contours and magnetic field lines. The dashed line is a contouV -B=0.
where the Alfvaic Mach number exactly equals one. This information to- Going further to the right, we pass a region where the
gether Wi_th the re_fraction of the field lines serves to identify the shocks 330w is uniform. The flow becomes 2D again as we approach
fast and intermediatésee the text . . . . .

the stagnation point at the cylinder, as can be seen in Fig. 8d.

This is no surprise, because, in general, every stationary stag-

cause it clearly contains the dasHed =1 contour, and be- nation point flow is necessarily 2D due to the requirement of
cause the field lines are flipped over the normal. Shock B-Mass conservatiofV- (pv) =0]. Indeed, a stagnation point
C-D is of the 1-3 type, which can be merged continuouslycan clearly not be reached by means of a stationary 1D flow
with the fast 1-23 switch-on shock in point B. (neither a shock nor a continuous flpvibecause a 1D flow

In Fig. 8 we show plots of the variables along the stag-can not bringov, down from a finite value to a value of zero
nation streamline. The first feature we encounter when we gat the stagnation point.
from left to right is a discontinuity which corresponds to the ~ As a clear example of a stationary 2D stagnation point
hydrodynamic shock at point F. The jumps of the densityflow, we show in Fig. 9 how a stagnation point is reached in
pressure, velocity and entropy agree well with the jumpsa traditional single-front MHD bow shock flow, which is
calculated from the RH relations in Sec. IlIB. The fast, obtained by choosing the inflow velocity outside of the
Alfvénic, and slow Mach number all jump from above one toswitch-on regiofEq. (3)]: p=1, p=0.2, v,=2, v,=0, By
under one, indicating a 1-4 intermediate shock. The mag=1, andB,=0 at the inflow, resulting in inflow Mach num-
netic field does not show a jump consistent with a purelybersM,=2 andM =2 /3 (8=0.4). The stagnation point is

> 0.15F

hydrodynamic shock. reached in a continuougonstant-entropy2D compressive
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FIG. 8. Plots of the variables along the stagnation streamline. From left to right, the uniform incoming flow first jumps in the hydrodynamic shock, followed
by a slow rarefaction, which brings the flow back to uniform. Close to the cylinder we pass the intermediate shock. The flow is then brought to the stagnation
point in a continuous diverging compression. The variatio@®§/dy in (d) (thin line, axis on the rightshows that the flow is effectively 2D at various
locations on the stagnation line.
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(a) density contours and Magnetic field lines the flow near the cylinder in Fig. 8 as a weak shock followed
I by a 2D compressive diverging stagnation point flow is rea-
sonable because it is consistent with the simulation data and
because it establishes a clear analogy with less complicated
stagnation point flows. It will be interesting to see if future
simulations with more powerful numerical techniques will
confirm all the details of this interpretation of the highly
complicated stagnation point flow.
In Fig. 10 we show plots of some variables along several
' instructive 1D cuts. Figures 10a—c show a cut along the
-0.250 0.125 0.000 lower dotted line cutting the leading front in Fig. 6 under an
x angle of #=13.82 degrees. The dotted line is a part of a ray
through the center of the cylinder. First we cross the fast
shock. Then the intermediate shock brings the Alfee
Mach number from above one to under one. Figures 10d—f
show a cut along the upper dotted line cutting the leading
front in Fig. 6 (#=29.25). Again we cross the fast shock
first. Then we cross the intermediate shock, with the up-
stream Alfvaic Mach number close to one. Figures 10g—i
show a cut along the lower dotted line cutting the leading
front in Fig. 7 (¢=47.66). We cross only one shock, which
is of the intermediate type, because it brings the Alfee
Mach number from above one to under one. Figures 10j—I
show a cut along the upper dotted line cutting the leading
FIG. 9. Simulation of a MHD flow with a single-front bow sho¢kflow  front in Fig. 7 (#=53.40). We cross the same intermediate
Mach numberV ,=2 andM=2 /3, and3=0.4). (a) Flow near the cyl-  shock.
inder. (b) Stagnation Iing varia_bles. Behi_nd the shock, the flow var?able_s are In Fig. 11 we show plots of some variables along the
_brought to thelrstagnatlon point values in a continuous compressive dlver%ertical dotted line in Fig. 6. Where the pressure jumps for
ing flow. B, is dashedp, dotted,s dash—dotted ang full. ; : ] ; e
the first time, we pass through the tangential discontinfaity
little more smeared out than the shogkas is proved by the

diverging flow region behind the shock front. continuity of the total pressure here. The next jump is the
In our simulation, the 2D stagnation point flow is com- intermediate shock, with an upstream Alfite Mach number
plicated by the presence of intermediate sh@ckG—H-I.  close to one(This profile is a little smeared out because we

Figure 2 shows that point | lies very close to the cylinder. Incross it under a large angle

this region very close to the cylinder we expect the 2D stag-

nation point flow. Because this region is extremely smally. p|SCUSSION

compared to the dimensions of the other features in our . . . .
simulation, we have a comparatively low numerical resolu- !N this section we will discuss how topological con-
tion in this region. Moreover, the curvature of the interme-Straints lead inevitably to the complicated solution for a bow

diate shock front at point | is very large and may even peshock flow in the switch-on regime that we have found in our

singular, which makes the post-shock flow 2D and Comp”_simulation results. We will then discuss the presence of in-

cates the interpretation of the shock as a 1D shock. termediate shocks in our simulation results and investigate if
All these complications make the interpretation of theSOMe of the shocks present in our simulation results can be

simulation results near the cylinder quite difficult. However, '¢lated to the nonconvexity of the MHD equations.
we can propose the following possible interpretation for the _ _
variation of the flow variables near the cylinder in Fig. 8. A. Topological problem for a concave-inward bow
The location of the small jump in entropy in Fig. 8e shock
close to the cylinder can reasonably be identified with the In this section we discuss the topological problem of a
point | of Fig. 6, where the intermediate shobk-G—-H—-I  concave-inward shock solution for a flow in the switch-on
intersects the stagnation line. This entropy jump is located ategime, along the lines of the ideas of Steinolfson and
a finite distance from the cylinder, which means that there isHundhauser:*°
a small but finite standoff distance between the shock and the Suppose a uniform field-aligned magnetized flow with a
cylinder. In the small constant-entropy region between poinflow velocity lying in the switch-on regiofEq. (3)] is ob-
| and the cylinder, we can expect a continuous 2D stagnatiostructed by a perfectly conducting cylinder. A bow shock
point flow analogous to the flow in Fig. 9. The variation of will result. If the magnetic field were absent, a hydrodynamic
p, vy andBy close to the cylinder in Fig. 8 appears to be bow shock would have the classical well-known concave-
consistent with the continuous variation of these quantities innward (to the cylindey geometrical shapéFig. 139. For a
the stagnation point flow of Fig. 9. MHD bow shock in the switch-on regime, such a geometry is
Although not conclusively proven, this interpretation of physically not admissible. Because of symmetry, the mag-
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FIG. 10. Alfvenic Mach numbera), (d), (g), (j), pressureb), (e), (h), (k) and magnetic fieldc), (f), (i), () along various cuts through the simulation domain.
(a)—(c) Cut along the lower dotted line cutting the leading front in Fig(The lower axis shows the distance to the center of the cyliptiée. pass the fast
shock, and then the intermediate shock followed by a rarefadiipn(f) Cut along the upper dotted line cutting the leading front in Fig. 6. We pass the fast
shock, and then the intermediate shagh—(i) Cut along the lower dotted line cutting the leading front in Fig. 7. We cross the intermediate §hegk Cut
along the upper dotted line cutting the leading front in Fig. 7. We cross the intermediate shock.

netic field line which coincides with the stagnation stream-angle 6, as illustrated in Fig. 1la. Clearly, approaching the
line [stretching horizontally from infinity to the stagnation stagnation line from its two sides along the fast shock front,
point (v=0) at the cylinder; line F—I in Fig. Jchas to be a would lead to two switch-on shocks of opposite deflection.
straight line. In other words, on this line, the field is not This means that there is a discontinuity between the two
deflected by the shock. At the point where a shock froniphysical states on the two sides of the stagnation field line.
crosses this line, the shock is necessarily of the hydrodySuch a discontinuity is not physically justified, so the as-
namic type. Away from this point along the shock front, the sumed concave-inward shock geometry needs to be modified
shock has to be a fast MHD shock, with the field refractedio avoid the discontinuity.

away from the normafFigs. 1a and 4ain order to have the Petrinec and Russélsuggest that some form of symme-
post-shock flowing plasma drape around the cylinder. As wery breaking could solve this problem. The symmetry could
move along this fast shock front closer and closer to thébe broken by relaxing the field-aligned condition, but this
intersection of the front with the stagnation line, the up-requires a treatment in three dimensio(see Sec. VI
stream tangential component of the magnetic field goes tSteinolfson and Hundhausepropose a solution with a dif-
zero. But when the upstream velocity lies in the switch-onferent geometry for the shock front in 2D without the need to
region, the downstream tangential component of the magbreak the symmetry. They add a level of complexity by al-
netic field does not vanish as we approach this intersectiolowing for a shock front composed of segments of different
point, resulting in a switch-on shock with a finite turning MHD shock types. Based on the analysis of the RH relations

(a) total pressure

i

(c) Alfvenic Mach number
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FIG. 11. The cut along the vertical dotted line in Fig. 6. We first cross the tangential discontinuity, with a jump in pressure but not in total pressure. Then we
pass the intermediate shock.
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along the shock front, they propose a front that is composedility analysis leading to the concept of “evolutionarity,”

of fast and intermediate shocks, with physical parametergeometrical conditions, nonlinear stability, &cRecently
continuously varying along the frorFig. 1b. In such a this belief has been challenged from several points of view.
topology, the central part of the front has a concave-outwardhtermediate shocks were encountered in 1D and 2D numeri-
(“dimpled” ) geometry and is composed of two types of in- cal simulations of the ideal MHD equatidis''° and they
termediate shockél-3 and 1-3 The 1-4 shock can con- were observed in space plasniaghe early results on the
tinuously be linked to the hydrodynamic shock at the staginadmissibility of intermediate shocks thus seem not to be
nation line. The 1-3 shock can be linked continuously to the/alid. These results were obtained in the framework of the
switch-on shock at the new “nose” of the front. Time- classical theory of MHD shocks, which is a discontinuity
dependent 2D MHD simulatiofts” partially confirmed this  theory based on analysis of the ideal equatidiéRecently,
picture(a dimpled shock front is formedand dimpled fronts  \yy has pioneered a new approach, based on analysis of the
were %'53 observed in goronagraph images of fast _mOVi”Q/IHD Navier—Stokes equatiorisee Ref. 16 for a reviewIn
CMEs~"~"" However, Steinolfson and Hundhausen point outyys gissipative theory, numerical and analytical investigation
that there remain some problems with this shock t0pologyot the formation and physical admissibility of 1D intermedi-
The 1-3 and the 1-4 shock can only be continuously linkedyie shocks shows that intermediate shocks can be formed by
under one specific angl@iven the inflow conditions This - o steepening and can have viscous protfiedNonpla-

angle WOU.Id’ for instanc_:e, be indep(_andent pf the shape of thﬁar problems in dissipative MHD lead to the phenomenon of
object. This seems to imply that this solution does not takqime-dependent intermediate shodke334 Intermediate

into account the specific downstream flow. This is not really hocks described by a scalar nonconvex equation exhibit

a surprise, because the analysis is only based on the 1D iy . ; o
relations along the front. Their time-dependent 2D simula- HD-like behavior, and their admissibility depends on the

tion results for a uniform upstream field did not fully confirm ratio of dissipative and dispersive coefficiefftst was sug-

._pgested by Wu that the dissipation mechanism for shock

the shock geometry they proposed from 1D theoretica . .
; . . waves has to be taken into account for any system which
analysis. In their numerical results they found several fea-

tures for which they could not provide a clear interpretation POSSESSes more than two stationary points for its S hock struc-
including traces of slow shocks, an unusual “tube” configu-ture equations and whose shock structure solutions depend

ration near the symmetry line and a possible singular poin?n the dISSIpatIOI’? mechan}slr?].Smce the evolution of inter-
where four shock branches would inter&ct mediate shocks in a dissipative theory may depend on the

Our new simulations of the 2D steady state MHD bowShOCk structure, hybrid and kinetic approachiaio not al-

shock problem in the switch-on regime were carried out withVays give result§ con5|stent W'th MHD flndlngs. -
a high resolution shock capturing numerical technique. The Most theorc_aucal analysis is don.e for 1D d'SFO”“”‘,““eS-
solution is stationary in time, which greatly facilitates a clear X€¢eNt theoreuscal work on translation symmetric stationary
interpretation. Our simulation results confirm aspects of the?® MHD ﬂOW_SZ describes explicit self-similar solutions for
Steinolfson and Hundhausen theoretical analysis and clarifguch flows with fast, intermediate and slow shocks.
many of the unclear features present in their numerical re- AIS0, most of the new theoretical results on intermediate
sults. We show that a steady state solution of the symmetr£h0ocks have only been confirmed in 1D numerical simula-
cal bow shock problem does exist in 2D, but our solutiontions- Intermediate shocks of the 1-3, 1-4, 2-4 and3
reveals and explains much richer and more complex physicd=4 types are clearly identified in our steady state 2D simu-
not anticipated in the important earlier work of Steinolfsonlation results. Based on an analysis of the dissipative
and Hundhausen. Clearly an additional level of complexity istguations in 1D, it has been shown recently that all of these
present: not only do shocks of several different types form irshocks can have viscous profiles in the planar MHD
the leading front, but the requirement of continuously vary-case:*~>*Our simulation results are thus the first clear con-
ing physical parameters along the shock front may not bdirmation in two space dimensions of many aspects of the
met. This happens at the interaction points between shockeéWw theoretical results on intermediate shocks.
fronts. These multiple shock fronts are necessary to channel The Steinolfson and Hundhausen analysis is very inter-
the flow around the object. esting from the perspective of the issue of the physical exis-
It is conceivable that our results on shock topology intence of intermediate MHD shocks. It follows from their
stationary flows in the switch-on regime can also be impor-analysis of the topology of a planar 2D MHD flow configu-
tant for shock propagation in time-dependent flows in thisration that intermediate shocks are necessary ingredients of
regime. Detailed simulations of time-dependent flows in thecertain 2D MHD flows. Their analysis was incomplete and
switch-on regime will be the subject of further research.  our results show that the flow pattern can be more complex
than they anticipated, but our simulation results confirm that
intermediate shocks are indeed needed to drape a field-
aligned flow around an object in certain parameter regimes.
There has been much controversy about the physical exn 1D Riemann problems, it could always be argued that
istence of intermediate shocks. For a long time, the belief hafeld rotations can be performed by rotational discontinuities,
been accepted that intermediate shocks are unphyéital. and that intermediate shocks are thus unnecessary. But in
This belief was based upon approximate analysis of 1D disdriven 2D problems, once the 1D degeneracy has been re-
continuous solutions of the ideal equations, e.g., linear stamoved, the situation seems different. In the flow under con-

B. Intermediate shocks and nonconvexity
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sideration, just under the “nose” of the shock froffor However, the admissibility of the intermediate shocks
example, point B in Fig. I¢intermediate shocks seem to be encountered in compound waves was questiorzbBoth
topologically inevitable. The hydrodynamic shock on thefor the scala® and the MHD case, the above analysis—
stagnation streamline has necessarily to be a 1-4 intermeddased on the nonconvexity of the ideal flux function—is in-
ate shock! These geometrical considerations based on placomplete and has to be supplemented with an admissibility
nar 2D flow configurations seem to be an independent indistudy using the dissipative equatioi{s?® Analysis in the
cation that MHD intermediate shocks have to exist anddissipative framework shows clearly when sonic shocks are
naturally arise in realistic initial value problems, as con-admissible and when they occur with attached rarefactions in
firmed by our simulations. It is very hard to prove rigorously solutions of Riemann problent&® Such analysis also
that a solution with only rotational discontinuities and with- shows that compound waves are just one of the many pos-
out intermediate shocks does not exist for the 2D flow probsible wave combinations that may appear in the solution of
lem discussed in this paper. But the above arguments, mainkgiemann problem&>'®when they are analyzed in the appro-
of a heuristic nature, seem to show that the existence of priate dissipative context, especially for nonplanar condi-
solution without intermediate shocks is unlikely, and thattions, and depending on the dissipation mechanism. Com-
intermediate shocks appear naturally. pound waves thus play a less central role than one would
A scalar nonlinear conservation law is described by  conclude from a discontinuity theory. The combination of a
sonic shock with an attached simple wave rarefaction in a
a_u It(w) =0 (6) compound wave is, however, not uncommon in a planar situ-
gt Ix ’ ation, as compound waves are admissible wave combinations
present in the Myong and R®#! analytical solution of
some planar MHD Riemann problems. For the planar case
which they treat, Myong and Roe relate the occurrence of
compound waves to the inadmissibility of 2—3 undercom-
pressive intermediate shocks, for which the compound
waves—with embedded sonic intermediate shocks—are
f(u,)—f(u) substitute$%?!
§S=—, (7) It is thus interesting to look for the presence of2-3
and 2—3=4 sonic intermediate shocks in our 2D simulation
whereu, andu, are the states on the right and the left of theresults, as they are a manifestation of the nonconvex nature
discontinuity®* If f(u) is a strictly convex functioimean-  of the equations, and to study the rarefactions that may be
ing thatf’(u) is strictly monotonous, or thdt’(u) does not attached to them.
vanish anywherg then se]f’(u)), f’'(u,)[. However, if Let us first consider the hydrodynamic intermediate
f(u) is not convex, then there exist statgsandu, such that  shock on the stagnation streamline. It is followed by a slow
the shock connecting, with u, has a speed equal to the rarefaction(Figs. 8, but Figs. 8f—h show clearly that the
characteristic speed in the left or the right state, for instance]ow is not sonic where the rarefaction is attached to the
s=f'(u,)=\,, ors=A,=0 in the shock frame. We will call shock. This shock is thus not of the sonic type, and in this
such a shock a sonic shock. example, the rarefaction is a 2D effect, as noted before. It
The fast and the slow MHD characteristic fields are notserves to bring the Alfudic Mach number from its down-
convex®? So there exist £2—3 shocks, for whiclh=c; (in  stream value lower than one to a value close to one, neces-
the shock frameupstream, meaning that=v —c;=0=s. sary for the shock at point I.
Another type of sonic shock in MHD is the 2=3 shock, Intermediate shock C-DFigs. 10h-j is followed by a
for which v=c4 downstream, meaning thati;=v—c,=0  rarefaction, contrary to intermediate shock B—€igs.
=s. Notice that the term ‘sonic’ is used here in a genericlOk—I; the different behavior of the post-shock magnetic
sense, denoting the condition that the plasma speed equdisld is striking. ShockD—-G-H-Iseems to be followed by
any of the MHD characteristic speetfs. a rarefaction as wel(Figs. 10e—f and Fig. 12dFor all of
The fact that the flow is sonic upstream or downstreanthese structures, the flow is, however, not sonic where the
of the shock, allows for continuous attachment of a simplerarefaction is attached to the shock.
wave'! rarefaction of the slow or fast family, moving with Finally intermediate shock E—G remains to be investi-
the same speed as the shock at the point of attachment. Thasted. This shock is followed by a clear rarefaction and pre-
structure of a sonic shock with an attached simple waveeded by anothefweak rarefaction(Figs. 10b—c and Fig.
rarefaction is called a compound wat?#*?° The above 123. A detailed analysis of the speeds along the solid line
analysis and the definition of a compound wave remain valichormal to shock E—G in Fig. 6 learns that the intermediate
in a dissipative context, because even in a dissipative theorghock is a £2-3=4 shock, as the downstream normal slow
shocks that do not depend on time and have a finite extenilach number and the upstream normal fast Mach number
have to satisfy the ideal RH relations. Compound wavesre both equal to oné-igs. 12b—¢&. The flow is thus sonic
naturally arise in the solution of Riemann problems of non-on both sides of the shock. This is a clear manifestation of
convex systems in the framework of a discontinuity thedry. the nonconvexity of the MHD equations in a steady state 2D
For MHD, they were first observed in the numerical solutionflow. It has been shown recently by Myong and Bdéthat
of planar 1D MHD Riemann problenfs. this type of =2-3=4 shock is admissible and can be

where f(u) is called the flux function, and\=f'(u)
=dx/dt gives the slope of the characteristite character-
istic speed in the xt plane. Equation(6) allows for discon-
tinuous solutiongshockg that propagate with a speadie-
termined by the RH relation

u,—u
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(c) M in a 2D flow the magnetic flux can not be carried around a
cylinder without reconnection when the flow is not field-

L0 aligned. In this case the flow will lose some of its symme-

0.9 tries and the stationary solution may be different, but there

0.8 will still be a position on the shock surface where the up-

0.7 stream magnetic field is perfectly normal to the bow shock
021 X 0.8 -0.21 X 0.18 - -0.21 < 0.18 surfacet The switch-on singularity would apply at such a

point, which may be expected to lead to shock formation

FIG. 12. The cut along the solid line normal to the intermediate shock E-Gaffects similar to what has been described in this paper. Such
in Fig. 6. The intermediate shock is preceded and followed by rarefactiorbD . lati ill be th biect of furth h. P
regions. The normal fast Mach number equals one where the upstiefim ™ .S|mu ations wi ? € Su Jject of further re.searc - Fre-
rarefaction is attached to the shock. The normal slow Mach number equakminary results for simulations we have carried out of a
one where the downstream rarefaction is attached to the shock. The inteﬁem-aligned bow shock flow around a sphere in axial sym-
mediate shock is thus a=P—3=4 shock. metry show that similar shock formation phenomena occur.

Our simulation results clearly confirm that planar inter-
mediate MHD shocks can exist and naturally arise in 2D

MHD bow shock flows in the switch-on regime. Intermediate

ary 2D rarefaction—shock—rarefaction structure of our simu—sr?OCkﬁ are Iesshentfl_all dco?wpor:je?lts of a b%W shogk stlructure
lation result could be more closely related to this doutile that channels the field-aligned flow around an obstacle. In-

compound wave, if the steady state rarefactions are simplrlfJerrnediate shocks of the 1-3, 1-4, 24 an?1-3=4 types
waves and not merely 2D effects similar to the rarefactiorf clearly identified In our stea'dy' stqte 2D S|r'nulat.|on re-
following the hydrodynamic shock on the stagnation line. Tosults. Based on analysis of the dissipative equations in 1D, it
investigate this, it would be interesting to compare the charh_as been sfr_llown rc:]cenltly that all of J;L]_ezfe ShO_CkSI can have
acteristic structure of this 2D stationary structure in dye viscous profiles in the planar MHD case.™ Our simulation

plane to the characteristic structure of the double compounffSUlts are thus the first clear confirmation in two space di-
wave in thext plane, which has simple wave rarefactions. Mensions of many aspects of the new theoretical results on

This has to be investigated using characteristic analysis dftérmediate shocks. One of the intermediate shocks is pre-
ceded and followed by rarefaction regions with the particular

the steady state MHD equations and remains a topic for fur~ o
ther study. property t.ha't the normal plasm.a velocity is equal to a pormal
characteristic speed at the points where the rarefactions are
attached to the shock. This result constitutes the first clear
occurrence of a #2-3=4 shock in 2D simulations. The
In this paper we have presented a detailed description giresence of this shock is a manifestation in 2D of the non-
an illuminating example of MHD shock interaction, which convex nature of the MHD equatiof%?*?!Recently it has
may have applications in loy-space plasmas. Our results been shown that this type of shock, embedded in a datble
show that a highly complicated steady state solution existsompound wave, is present in the analytical solution of some
for the model problem of a 2D symmetrical bow shock flow planar one-dimensional MHD Riemann problefié!
in the switch-on regime. When the flow speed of the incom-  Our simulations are simple in setup because the incom-
ing field-aligned flow lies in the switch-on region, a seconding flow is uniform and the obstructing object is a perfectly
shock front forms, trailing the leading fast front. The result-conducting cylinder. The resulting flow, however, contains a
ing bow shock solution differs in two fundamental ways wealth of interacting MHD shocks and discontinuities. The
from the classical picture of a bow sho@kig. 19. The new  symmetrical 2D steady state bow shock problem is well de-
bow shock flow is composed of several consecutive interactfined. These properties make this problem a challenging new
ing shock fronts, instead of a single bow shock front. Fur-test case for ideal MHD codes.
thermore, segments of different MHD shock types are Evidence for the shock interaction effects found in our
present in the flow, in contrast to a flow with only fast simulations should be searched for in observations of space
shocks. Physical parameters vary discontinuously alonglasmas. Bow shocks preceding planets in a penviron-
shock fronts where those fronts interact. These are interestaent are obvious candidaté3ime-dependent shock propa-
ing results on MHD shock interaction in a 2D flow. gation phenomena may show similar shock interaction ef-
This kind of flow may be present in space plasmasfects. Field-aligned flow is probably a rather good
However, our simulations are done for specific parameterapproximation when CMEs propagate along open magnetic
and in the symmetrical field-aligned 2D case, so we have tdield lines out of the lowg inner corona of the sun. Corona-
investigate how general these effects are and if they will alsgraph observations of fast CMEs seem to show the dimple
be present in 3D situations. We have found that the floweffects that were found by Steinolfson and Hundhatisén
topology is retained when we slightly change the plaggna and that are also present in our simulations. The separation
and the Mach number of the incoming flow. If we want to of the V-shaped shock froriFig. 2) from the leading front
break the symmetry and relax the condition on field-aligneddivides the downstream flow into two distinct lobes sepa-
flow by allowing for a finite angle between the incoming rated by a density depletion in the V-shaped region. This
velocity and magnetic field, we have to consider the 3D ideafeature provides a possible explanation for the double-loop
MHD problem of a stationary flow around a sphere, becausappearance of some observed fast CMEs. Examination of

present in the analytical solution of plandrRiemann prob-
lems, embedded in a doublecompound wave. The station-

VI. CONCLUSION
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