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Complex magnetohydrodynamic bow shock topology in field-aligned
low- b flow around a perfectly conducting cylinder
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Two-dimensional ideal magnetohydrodynamic~MHD! simulations are presented that demonstrate
several novel phenomena in MHD shock formation. The stationary symmetrical flow of a uniform,
planar, field-aligned, low-b and superfast magnetized plasma around a perfectly conducting cylinder
is calculated. The velocity of the incoming flow is chosen such that the formation of fast switch-on
shocks is possible. Using a time marching procedure, a stationary bow shock is obtained, composed
of two consecutive interacting shock fronts. The leading shock front has a dimpled shape and is
composed of fast, intermediate and hydrodynamic shock parts. A second shock front follows the
leading front. Additional intermediate shocks and tangential discontinuities are present in the
downstream part of the flow. The intermediate shocks are of the 1–3, 1–4, 2–4 and 152–354
types. This is a confirmation in two dimensions of recent results on the admissibility of these types
of shocks. Recently it has also been shown that the 152–354 shock, embedded in a double
compound wave, is present in the analytical solution of some planar one-dimensional MHD
Riemann problems. This MHD flow with interacting shocks may have applications for some
observed features of fast solar Coronal Mass Ejections and other phenomena in low-b space
plasmas. ©1998 American Institute of Physics.@S1070-664X~98!00611-9#
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I. INTRODUCTION

Bow shocks can be found in many places in the so
system. They are formed when a supersonic flow encoun
an obstructing object. The space physics literature on hy
dynamic ~HD! and magnetohydrodynamic~MHD! bow
shocks is quite extensive. Rankine–Hugoniot~RH! relations
quantify the jumps across the shock, and methods exist
the determination of the Mach cone angle, standoff distan
pressure at the object, etc.1 Analytical solutions of the flow
equations are generally impossible to obtain, so numer
simulations are necessary to construct the model solut
for various parameter regimes. Many simulations have b
done describing the bow shocks in front of unmagnetiz
planets ~like Venus!, magnetized planets~like the Earth!,
comets, and the sun.2–7 In these two-dimensional~2D! and
three-dimensional~3D! simulations, many different param
eter regimes have been explored: high or low plasmab ~b
being the ratio of the thermal pressure and the magnetic p
sure!, various orientations of the magnetic field to the plas
velocity, etc. The classical picture of a steady state HD
MHD bow shock is a single-front structure with a concav
inward ~to the object! geometrical shape~Fig. 1a!.
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When the plasmab of the incoming flow is roughly
smaller than one and, along the magnetic field lines, the
coming velocity lies between the fast MHD wave speed a
roughly twice this speed, fast MHD switch-on shocks a
possible.8 MHD flows with shocks in this parameter regim
~which we will call the switch-on regime! have been studied
by Steinolfson and Hundhausen9,10 in the context of fast
Coronal Mass Ejections~CMEs! propagating outward from
the sun through the low-b inner solar corona. They predicte
a ‘‘dimpling’’ of the shock front~Fig. 1b!. Aspects of their
theoretical analysis were confirmed by time-dependent
merical simulations of propagating shock fronts, and s
ported by coronagraph observations of fast CMEs with
dimpled leading front~which can be interpreted as the si
nature of a shock front!.11,9 The stationary bow shock in th
switch-on regime has not been studied before, apart from
preliminary study with low resolution.4

In this paper we study the 2D steady state MHD bo
shock for field-aligned flow in the switch-on regime~field-
aligned flow is sometimes also called parallel flow!. We cal-
culate the flow of a 2D (]/]z50), uniform, planar (vz

5Bz50), field-aligned, low-b and superfast magnetize
plasma around a perfectly conducting cylinder. We look
a stationary flow solution with top–bottom symmetry,9,10

such that the horizontal line which extends to the center
the cylinder is the stagnation streamline, parallel to the
coming flow ~Fig. 1!. We obtain a stationary bow shock b
using a time marching procedure. In Fig. 2 we show a glo
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5 © 1998 American Institute of Physics



ck
eo
tr
f

a
of
fo
ca
a
th
ill

an
in
ar

f
o
ll
In
h
ed
ry

ec

d
e
nc
e

be
e
is

of
n

de

s
is

re

ng
li

the
wi
ate

i
is

it

per

r
t is
pe.

the
rac-

4016 Phys. Plasmas, Vol. 5, No. 11, November 1998 De Sterck, Low, and Poedts
view of our simulation results. It is clear that the bow sho
in this switch-on regime does not have the traditional g
metrical shape and topology of Fig. 1a. It contains a cen
concave-outward part~‘‘dimple’’ !, confirming this aspect o
the analysis of Steinolfson and Hundhausen.9,10 However,
the resulting bow shock flow is quite more complicated th
could be anticipated from the important earlier work
Steinolfson and Hundhausen. The leading shock front is
lowed by a second shock front, and other discontinuities
be identified between the two fronts. This flow pattern m
seem intricate and complicated at first. The topology of
flow pattern is sketched in Fig. 1c. In this paper we w
propose a consistent interpretation of this flow pattern,
we will explain why we obtain such a complicated flow
our simulation, and not the classical simple concave-inw
bow shock topology of Fig. 1a.

We will start with a brief review of the classification o
MHD discontinuities in Sec. II, discussing the properties
the different types of MHD discontinuities. This review wi
help us with the interpretation of our simulation results.
Sec. III we will describe the setup of the simulation and t
numerical technique used. In Sec. IV we will give detail
simulation results. We will determine the type of eve
MHD discontinuity present in the flow.

Section V contains a discussion of our results. In S
V A we will explain why a traditional concave-inward bow
shock geometry~Fig. 1a! is not possible in the switch-on
regime. We will make use of the Steinolfson an
Hundhausen9,10 analysis of the symmetry of flows in th
switch-on regime. Our results show very clearly the prese
of intermediate shocks. These types of discontinuities w

FIG. 1. Possible bow shock topologies for a uniform flow~magnetic field
lines have arrows! coming in from the left and obstructed by a conducti
cylinder. Shock normals are shown as dashed lines. The horizontal field
terminating on the cylinder is the stagnation streamline.~a! Concave-inward
~to the cylinder! shape. The whole shock front~thick line! is of the fast type.
~b! Dimpled shape. The upper part of the front is of the fast type. At
nose, a switch-on shock refracts the horizontal incoming magnetic field
a finite angleu. Under the nose the shock is first of the 1–3 intermedi
type, which is then linked to a 1–4 intermediate shock part.~c! Interacting
shock topology of our simulation results. The dimple is still present. A–B
a fast shock.B–C–D is of theintermediate type. D–E is fast and E–F
hydrodynamic. The leading front is trailed by an intermediate frontD–G–
H–I. E–G is another intermediate shock. E–H is a tangential discontinu
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considered unphysical for a long time.12,13 Recent numerical
and analytical study shows that intermediate shocks can
physical,14–21 and we will try to relate our results to thes
recent developments. The MHD flux function
nonconvex,22,20,21 and we will try to identify intermediate
shocks of the ‘‘sonic’’ type—which are a manifestation
the nonconvexity of the MHD equations—in our simulatio
results. This will be discussed in Sec. V B. We will conclu
in Sec. VI.

II. MHD DISCONTINUITIES

In anticipation of the occurrence of MHD discontinuitie
of all types in the simulation results we wish to present, it
useful to give a brief introduction of MHD
discontinuities12,13,8and an explanation of the nomenclatu
and notation we will use further on in this paper.

ne
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s
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FIG. 2. Global view of the bow shock solution presented in this pa
~inflow Mach numbersMA51.5 andM51.5A3 and b50.4). We show
density contours~piling up in the shocks! and magnetic field lines~coming
in horizontally on the left!. The flow comes in from the left. The cylinde
fills the space of the white half disc on the right. The leading shock fron
slightly dimpled. The upper and lower parts of this front are of the fast ty
In the central part of the flow, a second front has separated and is trailing
leading front. Additional discontinuities can be seen in the central inte
tion region.
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The equations of ideal one-fluid MHD in conservati
form are given by

]

]tF r

rv

B

e

G1¹•F rv

rvv1I ~p1B–B/2!2BB

vB2Bv

~e1p1B–B/2!v2~v–B!B
G50. ~1!

Here r and p are the plasma density and pressure, resp
tively, v is the plasma velocity,B the magnetic field and

e5
p

g21
1r

v–v

2
1

B–B

2
~2!

is the total energy density of the plasma.I is the unity matrix.
The magnetic permeabilitym51 in our units. We takeg55/3
for the adiabatic index.

MHD allows for 3 linear wave modes, the fast, the A
vén and the slow wave, with~positive! anisotropic wave
speeds satisfyingcf>cA>cs in standard notation. The MHD
Rankine–Hugoniot relations, relating the jumps across a
continuity with the propagation speed of the discontinui
can readily be derived.12,13,8,23A general property of MHD
discontinuities is that the normal magnetic field compon
Bx is continuous~in this section we choose thex and they
coordinates normal and parallel to the surface of discont
ity, respectively!. MHD discontinuities can be divided in
three classes. For shocks there is both a mass flow thro
the surface of discontinuity, and an increase in the quan
s5p/rg ~which we will call the entropy!. For contact and
tangential discontinuities, there is an entropy jump, but
mass flow. For rotational discontinuities, there is a m
flow, but no entropy change.

A. Shocks

Generally up to four plasma states can be found t
satisfy given values for the fluxes of mass, momentum
energy through the discontinuity surface, with the possibi
that a pair of those states can be connected by a shock. T
states are conventionally labeled states 1, 2, 3 and 4, ord
by increasing entropy~Fig. 3!. State 1 has the lowest en
tropy, and in a frame moving with the shock the norm
plasma velocityvx

(1) is larger than the normal fast MHD
wave speed, so that the flow is superfast~and, therefore, also
super-Alfvénic and superslow!. This means that the norma
fast Mach numberM f

(1) ~normal plasma velocity divided by
normal fast MHD wave speed! is greater than one~the same
for the Alfvén and slow Mach number!. State 2 is subfast
but super-Alfvénic and superslow. State 3 is subfast and s
Alfvénic, but superslow. State 4 is subfast, sub-Alfve´nic, and
subslow. In a frame of reference that moves with the sho
a particle that moves from the upstream region~traditionally
indicated as region 1! to the downstream region~region 2!,
necessarily has to undergo an increase in entropy. So
1–3, 1–4, 2–3, 2–4, and 3–4 are the possible entro
satisfying shock transitions. In Fig. 4 we summarize some
their properties.

Transition 1–2 is called a fast shock~Fig. 4a!. The
plasma is superfast upstream and subfast~but super-
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Alfvénic! downstream. A fast shock increasesBy ~becausep
is in phase withB for a fast wave!, such that magnetic field
lines are refracted away from the shock normal. Transit
3–4 is called a slow shock~Fig. 4b!. The plasma is super
slow ~but sub-Alfvénic! upstream, and subslow downstrea
A slow shock decreasesBy ~becausep is in anti-phase withB
for a slow wave!, such that magnetic field lines are refract
towards the shock normal. Transitions 1–3, 1–4, 2–3 a
2–4 are called intermediate shocks~Fig. 4c!. The plasma is
super-Alfvénic upstream, and sub-Alfve´nic downstream. An
intermediate shock changes the sign ofBy , such that mag-
netic field lines are flipped over the shock normal.

There exist limiting cases of these types of shocks.
fast 1–253 switch-on shock~Fig. 4d! hasBy,150 upstream.
The downstreamBy,2 , however, does not vanish. The ta
gential component of the magnetic field is thus switched
hence the name of this shock. The angleu is nonvanishing
only if the upstream normal velocity component lies in t
switch-on region between the upstream normal Alfve´n speed
and a critical velocity defined by

cA,1,vx,1,cA,1Ag~12b!11

g21
5vcrit , ~3!

with b52p/B2 the plasmab. Switch-on shocks can thu
only exist whenb,2/g ~or the normal Alfvén speedcA

.Ag p/r). For a fast switch-on shock, the downstream n
mal Alfvénic Mach number is exactly equal to one. A slo
253–4 switch-off shock~Fig. 4e! hasBy,250 downstream.
The upstreamBy,1 , however, does not vanish. The tangent
component of the magnetic field is thus switched off, hen
the name of this shock. For a slow switch-off shock, t
upstream normal Alfve´nic Mach number is exactly equal t
one. A limiting case of intermediate shocks are shocks t
do not change the magnetic field, and those shocks are c
1–4 hydrodynamic~or parallel! shocks~Fig. 4f!. Both By,1

andBy,2 are equal to zero.

FIG. 3. Possible states that can be connected through a MHD shock.
are ordered by increasing entropy, with the lowest entropy for state 1.
normal fast, Alfvén and slow wave speeds arecf , cA andcs , respectively.
The normal plasma speed isvx . The fast, Alfvén and slow normal Mach
numbers areM f , MA andMs , respectively. State 1 is superfast, because
normal velocity in the shock frame is larger than the normal fast MHD wa
speed. Therefore the fast, Alfve´nic and slow Mach numbers are all great
than one. State 2 is subfast but super-Alfve´nic. State 3 is sub-Alfve´nic but
superslow. State 4 is subslow. Possible shock transitions are 1–2~fast!, 3–4
~slow! and 1–3, 1–4, 2–3, 2–4~intermediate!.
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FIG. 4. Some properties of MHD shocks and discontinuities. The thick vertical line is the shock surface. The shock normal is dotted. The full arro
are magnetic field lines that are refracted through the shock surface. The dashed arrowed lines are velocity vectors. Region 1 is upstream, 2 is d
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B. Other discontinuities

Contact discontinuities~Fig. 4g!, with vanishingvx but
nonzeroBx , have only a jump in density~and entropy!. All
other quantities are continuous. Tangential discontinui
~Fig. 4h!, with vanishingvx andBx , have a jump in density
pressure and tangential velocity and field. However, the t
pressurep1B2/2 is continuous. Planar rotational discon
nuities ~Fig. 4i! rotate the magnetic field around the norm
of the discontinuity surface over an angle of 180 degre
without a jump in entropy. The normal plasma velocityvx

equalsBx /r1/2, such that the normal Alfve´nic Mach number
equals one on both sides.

III. SETUP OF THE NUMERICAL SIMULATION

In this section we describe the setup of the numer
simulation and we discuss the numerical technique used.
will also discuss some invariants and constraints of this pr
lem, which will help us with the interpretation of the simu
lation results.
s

al

l
s,

l
e
-

A. Setup and numerical technique

In our simulations a 2D uniform field-aligned flow i
planar symmetry (]/]z50) enters from the left and encoun
ters a perfectly conducting rigid cylinder. The resulting s
tionary ideal MHD flow is completely determined by th
inflow plasmab and the inflow Alfvénic Mach number in the
direction of the flow speed. For the incoming flow we choo
b50.4, which implies a critical Alfve´nic Mach number
MA,crit51.732 @Eq. ~3!#. We choose the Alfve´nic Mach
number of the incoming flowMA51.5, such that the param
eter regime of our simulation allows for switch-on shock
The x axis being horizontal, we can chooser51 and Bx

51 ~implying that the Alfvén speed along the field line
cA51). The pressure and velocity can then be determi
from b andMA , yielding p50.2 andvx51.5 ~such that the
acoustic Mach numberM51.5A3). Finally, we takeBy

50 andvy50. As the resulting stationary ideal MHD flow
will be scale invariant, we can freely choose the radius of
cylinder. We taker 50.125 and the cylinder is placed at th
origin of the coordinate system. We simulate the flow in t
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upper left quadrant, on a 1203120 stretched elliptic polar
like structured grid, extending tox520.35 on thex axis,
and to y51.4 on they axis. Part of the simulation grid is
shown in Fig. 5. We impose the above described unifo
flow as the initial condition. We use ghost cells to specify t
boundary conditions. On the left, we impose the unifo
superfast incoming flow. The cylinder wall is an ideally co
ducting wall. We look for a stationary flow solution wit
top–bottom symmetry,9,10 such that the horizontal line whic
extends to the center of the cylinder is the stagnation l
parallel to the incoming flow~Fig. 1!. This stagnation line,
which is a streamline and a magnetic field line, then has
same symmetries as an ideally conducting wall. This sy
metry has to be imposed in the boundary condition on
lower border of the simulation domain in order to obtain
stationary symmetrical solution. The simulated bow sho
flow in the upper quadrant can thus also be thought of a
2D model flow over a perfectly conducting plate~the stag-
nation line! with a semi-circular bump or corner. The righ
outflow condition is superfast, so there we extrapolate
quantities to the ghost cells. The flow evolves in time unt
converged steady state bow shock solution is obtained.

We solve Eq.~1! using a conservative finite volume hig
resolution Godunov shock capturing scheme which is sec
order in space and time, employing a slope-limi
approach24,5,7 with minmod-limiting on the slopes of the
primitive variables. The time-integration is explicit with
two-step Runge–Kutta method. This code was extensiv
tested and the test results were compared with results f
other codes. The code was previously used for resis
MHD simulations of interacting hot filaments in
tokamak.25

For our present simulations, we use the Lax–Friedri
numerical flux function,24,26,27 which is simple and robust
Contact and tangential discontinuities are not perfectly w
resolved due to the relatively high numerical dissipation
these waves, but shocks are well resolved in a steady
calculation. We did not use Roe’s scheme28 although this
scheme in theory could resolve shocks and, especially,
gential discontinuities much better. We have found seve
problems while trying to apply this scheme to our simu

FIG. 5. Detail of the stretched structured simulation grid. The cylinder is
shown, but is located to the right. We show density contours of the c
verged solution. The shocks are generally well resolved.
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tion. Roe’s scheme suffers from various instabilities, like t
carbuncle-instability,29 and in consequence of these instab
ties, a steady state solution could not be obtained with
scheme. Using the Lax–Friedrichs scheme, we obtained
vergence of more than eight orders of magnitude in the no
of the density residual.

We carefully checked if the results we obtained do n
contain numerical artifacts or features dependent on the
merical resistivity. We did many simulations with grids o
different cell sizes and we obtained uniform grid conve
gence to the solution shown in Fig. 2. We also did simu
tions on uniform grids and grids with a different accumu
tion of points than in the grid of Fig. 5, and refineme
studies using these different grids resulted in grid conv
gence to the same solution of Fig. 2. The fully consistent a
complete physical interpretation of all the features in the
lution to be presented in the next section, gives further c
fidence that the features present in our solution are real
physically meaningful.

We use a projection scheme30,26 to keep the¹–B50
constraint satisfied. After every time step a small correct
is added to the magnetic field, resulting in a solution sche
that guarantees¹–B50 up to machine accuracy in the cho
sen discretization.

B. Invariants and constraints

The problem considered in this paper has several in
esting invariants and constraints,1 which we can use for the
interpretation of the results and the performance assess
of the numerical method. The solution is in a steady sta
meaning that fluid element paths are stationary curves, ca
streamlines. For a smooth flow, the entropy remains cons
for a fluid element, so the streamlines have to coincide w
entropy contours. At shocks, however, the entropy increa
If viB in the inflow ~meaning that the electric field is zero!,
then this property will be conserved throughout the wh
flow, also through shocks. IfviB everywhere, then the stag
nation enthalpy,

hs5
gp

~g21!r
1

v2

2
, ~4!

is constant on streamlines, also across shocks. As the inc
ing flow is uniform, the stagnation enthalpy should rema
constant over the whole simulation domain. IfviB every-
where, then the normal Alfve´nic Mach number becomes in
dependent of the direction:

MA~u!5
v~u!

B~u!/Ar
5

v

B/Ar
. ~5!

This means that the Alfve´nic Mach number is isotropic and
can easily be determined and plotted, greatly facilitating
determination of MHD shock types. The RH relations for t
shock on the stagnation streamline are simple and can
solved easily,1 resulting in downstream quantitiesp51.64,
r52.77, vx50.542 and s50.300. In the next section
we will show that the numerical solution reproduces the
quantities.
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FIG. 6. Detail of the solution in the
half plane above the stagnation stream
line. We show Alfvénic Mach number
contours~piling up in the shocks! and
magnetic field lines~coming in hori-
zontally on the left!. The dashed line is
a contour where the Alfve´nic Mach
number exactly equals one. This infor
mation together with the refraction o
the field lines serves to identify the
shocks as fast, hydrodynamic and in
termediate~see the text!.
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As v and B are both constrained to lie in thexy plane,
linear Alfvén waves oscillating out of thexy plane as a sepa
rate fundamental mode, can not be present in the simul
flow. However, intermediate shocks can in principle
present, because of the highly nonlinear interactions in
flow with shocks.

IV. INTERPRETATION OF THE SIMULATION
RESULTS

In this section we will show our simulation results
detail. We will show how the type of all arising MHD dis
continuities can be clearly determined. For the identificat
of shock parts we refer to the lettering labels of Fig. 1c.

In Fig. 2 we show a global view of the converged bo
shock solution. The uniform flow comes in from the left. W
clearly see the dimple in the central part of the shock fro
confirming this particular aspect of the Steinolfson a
Hundhausen9 analysis. However, behind the leading sho
front, we see a rich structure of several other shocks w
intricate field line refractions. The leading shock front~com-
posed of fast and intermediate shocks! is followed by a sec-
ond shock front. The refraction of the field lines~away from
the shock normal! above point B of Fig. 1c shows that th
part of the shock front is a fast shock.

In Fig. 6 we show a detail of the flow in the half plan
above the stagnation streamline. D–E is a fast shock w
By,1 almost vanishing upstream, so it is almost a f
switch-on shock. E–F is a 1–4 hydrodynamic intermedi
shock.~It could be slightly concave-inward and thus not
the hydrodynamic type at locations on the front away fro
point F, but this is hard to tell at the resolution of our sim
lations. At point F, the shock is definitely of the hydrod
namic type.! E–G is an intermediate shock, because it clea
contains the dashedMA51 contour~showing that the flow
goes from super-Alfve´nic to sub-Alfvénic upon passing
ed
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through the shock!, and because the field lines are flippe
over the normal. In Sec. V B it will be shown that shoc
E–G is a 152–354 intermediate shock.D–G–H–I is an
intermediate shock with an upstream Alfve´nic Mach number
~slightly! greater than one, and with magnetic field lines th
are flipped over the normal. At various places along
shock front, the upstream intermediate Mach number
proaches one and the downstream magnetic field beco
almost normal to the front, meaning that the shock is close
a 253–4 slow switch-off shock at those places. The int
mediate shock is thus of the 2–4 type, close to a 253–4
slow switch-off shock. E–H is a tangential discontinuit
Other tangential discontinuities are stretching out fro
points D, G and H along the streamlines to infinity. E–F
very reminiscent of a Mach stem as it occurs in Hydrod
namic shock reflection.31 A priori the point E could lie on the
stagnation streamline, in which case this point would b
singular point on this streamline where four shock branc
interact. In such a situation, the stagnation streamline wo
not be a shock normal. In such a hypothetical singular po
the¹–B50 constraint could be satisfied if the jump inBy in
they direction is exactly the same~with opposite sign! as the
jump in Bx in thex direction. A solution with such a singula
point is found for the simulation on a grid with low spati
resolution. With sufficient resolution, however, the sho
part E–F appears, reducing the singularity to three branc
interacting in point E. An interaction point where fou
branches meet seems thus to be avoided. This may be a
general feature of MHD shock interaction, at least for so
types of shocks.

In Fig. 7 we show a detail of the region close to th
‘‘nose’’ point B. The shock at point B is a 1–253 fast
switch-on shock, because the tangential field componen
switched on, and because the downstream Alfve´nic Mach
number equals one.B–C–D is anintermediate shock, be
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cause it clearly contains the dashedMA51 contour, and be-
cause the field lines are flipped over the normal. Shock
C–D is of the 1–3 type, which can be merged continuou
with the fast 1–253 switch-on shock in point B.

In Fig. 8 we show plots of the variables along the sta
nation streamline. The first feature we encounter when we
from left to right is a discontinuity which corresponds to t
hydrodynamic shock at point F. The jumps of the dens
pressure, velocity and entropy agree well with the jum
calculated from the RH relations in Sec. III B. The fa
Alfvénic, and slow Mach number all jump from above one
under one, indicating a 1–4 intermediate shock. The m
netic field does not show a jump consistent with a pur
hydrodynamic shock.

FIG. 7. Detail of the solution close to the ‘‘nose.’’ We show Alfve´nic Mach
number contours and magnetic field lines. The dashed line is a con
where the Alfvénic Mach number exactly equals one. This information
gether with the refraction of the field lines serves to identify the shocks
fast and intermediate~see the text!.
–
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Going further to the right, we see that we pass throug
rarefaction to reach a constant state. This slow rarefac
converges the flow slightly towards the stagnation strea
line. Although the flow near the stagnation line may app
to be close to a 1D flow in Fig. 6, the flow is, in fact, 2D
various places along the stagnation line. In Fig. 8d we p
]By /]y ~thin line!, indicating that the flow is 2D in this
rarefaction region. The density decreases in the main di
tion of the converging flow on the stagnation line, becau
the velocity (vx) is increasing and¹•(rv)50. Bx is not
significantly influenced by the increasingvx because the field
is aligned to the flow. However,Bx increases along the flow
because of the 2D effect of converging flow in they direction
perpendicular to the stagnation line. This flow compon
causes the field lines to converge towards the stagnation
as can be seen in Fig. 8d:]Bx /]x balances]By /]y such that
¹–B50.

Going further to the right, we pass a region where t
flow is uniform. The flow becomes 2D again as we approa
the stagnation point at the cylinder, as can be seen in Fig
This is no surprise, because, in general, every stationary s
nation point flow is necessarily 2D due to the requiremen
mass conservation@¹•(rv)50#. Indeed, a stagnation poin
can clearly not be reached by means of a stationary 1D fl
~neither a shock nor a continuous flow!, because a 1D flow
can not bringrvx down from a finite value to a value of zer
at the stagnation point.

As a clear example of a stationary 2D stagnation po
flow, we show in Fig. 9 how a stagnation point is reached
a traditional single-front MHD bow shock flow, which i
obtained by choosing the inflow velocity outside of th
switch-on region@Eq. ~3!#: r51, p50.2, vx52, vy50, Bx

51, andBy50 at the inflow, resulting in inflow Mach num
bersMA52 andM52 A3 ~b50.4!. The stagnation point is
reached in a continuous~constant-entropy! 2D compressive

ur

s

followed
tagnation
s

FIG. 8. Plots of the variables along the stagnation streamline. From left to right, the uniform incoming flow first jumps in the hydrodynamic shock,
by a slow rarefaction, which brings the flow back to uniform. Close to the cylinder we pass the intermediate shock. The flow is then brought to the s
point in a continuous diverging compression. The variation of]By /]y in ~d! ~thin line, axis on the right! shows that the flow is effectively 2D at variou
locations on the stagnation line.
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diverging flow region behind the shock front.
In our simulation, the 2D stagnation point flow is com

plicated by the presence of intermediate shockD–G–H–I.
Figure 2 shows that point I lies very close to the cylinder.
this region very close to the cylinder we expect the 2D st
nation point flow. Because this region is extremely sm
compared to the dimensions of the other features in
simulation, we have a comparatively low numerical reso
tion in this region. Moreover, the curvature of the interm
diate shock front at point I is very large and may even
singular, which makes the post-shock flow 2D and com
cates the interpretation of the shock as a 1D shock.

All these complications make the interpretation of t
simulation results near the cylinder quite difficult. Howev
we can propose the following possible interpretation for
variation of the flow variables near the cylinder in Fig. 8.

The location of the small jump in entropy in Fig. 8
close to the cylinder can reasonably be identified with
point I of Fig. 6, where the intermediate shockD–G–H–I
intersects the stagnation line. This entropy jump is locate
a finite distance from the cylinder, which means that ther
a small but finite standoff distance between the shock and
cylinder. In the small constant-entropy region between po
I and the cylinder, we can expect a continuous 2D stagna
point flow analogous to the flow in Fig. 9. The variation
r, vx and Bx close to the cylinder in Fig. 8 appears to b
consistent with the continuous variation of these quantitie
the stagnation point flow of Fig. 9.

Although not conclusively proven, this interpretation

FIG. 9. Simulation of a MHD flow with a single-front bow shock~inflow
Mach numbersMA52 andM52 A3, andb50.4). ~a! Flow near the cyl-
inder.~b! Stagnation line variables. Behind the shock, the flow variables
brought to their stagnation point values in a continuous compressive div
ing flow. Bx is dashed,vx dotted,s dash–dotted andr full.
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the flow near the cylinder in Fig. 8 as a weak shock follow
by a 2D compressive diverging stagnation point flow is re
sonable because it is consistent with the simulation data
because it establishes a clear analogy with less complic
stagnation point flows. It will be interesting to see if futu
simulations with more powerful numerical techniques w
confirm all the details of this interpretation of the high
complicated stagnation point flow.

In Fig. 10 we show plots of some variables along seve
instructive 1D cuts. Figures 10a–c show a cut along
lower dotted line cutting the leading front in Fig. 6 under
angle ofu513.82 degrees. The dotted line is a part of a r
through the center of the cylinder. First we cross the f
shock. Then the intermediate shock brings the Alfve´nic
Mach number from above one to under one. Figures 10
show a cut along the upper dotted line cutting the lead
front in Fig. 6 (u529.25). Again we cross the fast shoc
first. Then we cross the intermediate shock, with the
stream Alfvénic Mach number close to one. Figures 10g
show a cut along the lower dotted line cutting the lead
front in Fig. 7 (u547.66). We cross only one shock, whic
is of the intermediate type, because it brings the Alfve´nic
Mach number from above one to under one. Figures 10
show a cut along the upper dotted line cutting the lead
front in Fig. 7 (u553.40). We cross the same intermedia
shock.

In Fig. 11 we show plots of some variables along t
vertical dotted line in Fig. 6. Where the pressure jumps
the first time, we pass through the tangential discontinuity~a
little more smeared out than the shocks!, as is proved by the
continuity of the total pressure here. The next jump is
intermediate shock, with an upstream Alfve´nic Mach number
close to one.~This profile is a little smeared out because w
cross it under a large angle!.

V. DISCUSSION

In this section we will discuss how topological con
straints lead inevitably to the complicated solution for a b
shock flow in the switch-on regime that we have found in o
simulation results. We will then discuss the presence of
termediate shocks in our simulation results and investiga
some of the shocks present in our simulation results can
related to the nonconvexity of the MHD equations.

A. Topological problem for a concave-inward bow
shock

In this section we discuss the topological problem o
concave-inward shock solution for a flow in the switch-
regime, along the lines of the ideas of Steinolfson a
Hundhausen.9,10

Suppose a uniform field-aligned magnetized flow with
flow velocity lying in the switch-on region@Eq. ~3!# is ob-
structed by a perfectly conducting cylinder. A bow sho
will result. If the magnetic field were absent, a hydrodynam
bow shock would have the classical well-known conca
inward ~to the cylinder! geometrical shape~Fig. 1a!. For a
MHD bow shock in the switch-on regime, such a geometry
physically not admissible. Because of symmetry, the m

e
g-
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FIG. 10. Alfvénic Mach number~a!, ~d!, ~g!, ~j!, pressure~b!, ~e!, ~h!, ~k! and magnetic field~c!, ~f!, ~i!, ~l! along various cuts through the simulation doma
~a!–~c! Cut along the lower dotted line cutting the leading front in Fig. 6.~The lower axis shows the distance to the center of the cylinder.! We pass the fast
shock, and then the intermediate shock followed by a rarefaction.~d!–~f! Cut along the upper dotted line cutting the leading front in Fig. 6. We pass the
shock, and then the intermediate shock.~g!–~i! Cut along the lower dotted line cutting the leading front in Fig. 7. We cross the intermediate shock.~j!–~l! Cut
along the upper dotted line cutting the leading front in Fig. 7. We cross the intermediate shock.
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netic field line which coincides with the stagnation strea
line @stretching horizontally from infinity to the stagnatio
point (v50) at the cylinder; line F–I in Fig. 1c# has to be a
straight line. In other words, on this line, the field is n
deflected by the shock. At the point where a shock fr
crosses this line, the shock is necessarily of the hydro
namic type. Away from this point along the shock front, t
shock has to be a fast MHD shock, with the field refrac
away from the normal~Figs. 1a and 4a! in order to have the
post-shock flowing plasma drape around the cylinder. As
move along this fast shock front closer and closer to
intersection of the front with the stagnation line, the u
stream tangential component of the magnetic field goe
zero. But when the upstream velocity lies in the switch-
region, the downstream tangential component of the m
netic field does not vanish as we approach this intersec
point, resulting in a switch-on shock with a finite turnin
-

t
y-

d

e
e
-
to
n
g-
n

angle u, as illustrated in Fig. 1a. Clearly, approaching t
stagnation line from its two sides along the fast shock fro
would lead to two switch-on shocks of opposite deflectio
This means that there is a discontinuity between the
physical states on the two sides of the stagnation field l
Such a discontinuity is not physically justified, so the a
sumed concave-inward shock geometry needs to be mod
to avoid the discontinuity.

Petrinec and Russell1 suggest that some form of symme
try breaking could solve this problem. The symmetry cou
be broken by relaxing the field-aligned condition, but th
requires a treatment in three dimensions~see Sec. VI!.
Steinolfson and Hundhausen9 propose a solution with a dif-
ferent geometry for the shock front in 2D without the need
break the symmetry. They add a level of complexity by
lowing for a shock front composed of segments of differe
MHD shock types. Based on the analysis of the RH relatio
Then we
FIG. 11. The cut along the vertical dotted line in Fig. 6. We first cross the tangential discontinuity, with a jump in pressure but not in total pressure.
pass the intermediate shock.
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along the shock front, they propose a front that is compo
of fast and intermediate shocks, with physical parame
continuously varying along the front~Fig. 1b!. In such a
topology, the central part of the front has a concave-outw
~‘‘dimpled’’ ! geometry and is composed of two types of i
termediate shocks~1–3 and 1–4!. The 1–4 shock can con
tinuously be linked to the hydrodynamic shock at the st
nation line. The 1–3 shock can be linked continuously to
switch-on shock at the new ‘‘nose’’ of the front. Time
dependent 2D MHD simulations9,10 partially confirmed this
picture~a dimpled shock front is formed!, and dimpled fronts
were also observed in coronagraph images of fast mov
CMEs.9–11 However, Steinolfson and Hundhausen point o
that there remain some problems with this shock topolo
The 1–3 and the 1–4 shock can only be continuously lin
under one specific angle~given the inflow conditions!. This
angle would, for instance, be independent of the shape o
object. This seems to imply that this solution does not ta
into account the specific downstream flow. This is not rea
a surprise, because the analysis is only based on the 1D
relations along the front. Their time-dependent 2D simu
tion results for a uniform upstream field did not fully confir
the shock geometry they proposed from 1D theoret
analysis. In their numerical results they found several f
tures for which they could not provide a clear interpretatio
including traces of slow shocks, an unusual ‘‘tube’’ config
ration near the symmetry line and a possible singular p
where four shock branches would interact.9

Our new simulations of the 2D steady state MHD bo
shock problem in the switch-on regime were carried out w
a high resolution shock capturing numerical technique. T
solution is stationary in time, which greatly facilitates a cle
interpretation. Our simulation results confirm aspects of
Steinolfson and Hundhausen theoretical analysis and cla
many of the unclear features present in their numerical
sults. We show that a steady state solution of the symm
cal bow shock problem does exist in 2D, but our soluti
reveals and explains much richer and more complex phy
not anticipated in the important earlier work of Steinolfs
and Hundhausen. Clearly an additional level of complexity
present: not only do shocks of several different types form
the leading front, but the requirement of continuously va
ing physical parameters along the shock front may not
met. This happens at the interaction points between sh
fronts. These multiple shock fronts are necessary to cha
the flow around the object.

It is conceivable that our results on shock topology
stationary flows in the switch-on regime can also be imp
tant for shock propagation in time-dependent flows in t
regime. Detailed simulations of time-dependent flows in
switch-on regime will be the subject of further research.

B. Intermediate shocks and nonconvexity

There has been much controversy about the physica
istence of intermediate shocks. For a long time, the belief
been accepted that intermediate shocks are unphysica12,13

This belief was based upon approximate analysis of 1D
continuous solutions of the ideal equations, e.g., linear
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bility analysis leading to the concept of ‘‘evolutionarity,
geometrical conditions, nonlinear stability, etc.20 Recently
this belief has been challenged from several points of vie
Intermediate shocks were encountered in 1D and 2D num
cal simulations of the ideal MHD equations22,9,10 and they
were observed in space plasmas.32 The early results on the
inadmissibility of intermediate shocks thus seem not to
valid. These results were obtained in the framework of
classical theory of MHD shocks, which is a discontinui
theory based on analysis of the ideal equations.12,13Recently,
Wu has pioneered a new approach, based on analysis o
MHD Navier–Stokes equations~see Ref. 16 for a review!. In
this dissipative theory, numerical and analytical investigat
of the formation and physical admissibility of 1D intermed
ate shocks shows that intermediate shocks can be forme
wave steepening and can have viscous profiles.14–21Nonpla-
nar problems in dissipative MHD lead to the phenomenon
time-dependent intermediate shocks.14,33,34 Intermediate
shocks described by a scalar nonconvex equation exh
MHD-like behavior, and their admissibility depends on t
ratio of dissipative and dispersive coefficients.16 It was sug-
gested by Wu that the dissipation mechanism for sh
waves has to be taken into account for any system wh
possesses more than two stationary points for its shock s
ture equations and whose shock structure solutions dep
on the dissipation mechanism.16 Since the evolution of inter-
mediate shocks in a dissipative theory may depend on
shock structure, hybrid and kinetic approaches35 do not al-
ways give results consistent with MHD findings.

Most theoretical analysis is done for 1D discontinuitie
Recent theoretical work on translation symmetric station
2D MHD flows23 describes explicit self-similar solutions fo
such flows with fast, intermediate and slow shocks.

Also, most of the new theoretical results on intermedi
shocks have only been confirmed in 1D numerical simu
tions. Intermediate shocks of the 1–3, 1–4, 2–4 and 152–
354 types are clearly identified in our steady state 2D sim
lation results. Based on an analysis of the dissipat
equations in 1D, it has been shown recently that all of th
shocks can have viscous profiles in the planar MH
case.14–21 Our simulation results are thus the first clear co
firmation in two space dimensions of many aspects of
new theoretical results on intermediate shocks.

The Steinolfson and Hundhausen analysis is very in
esting from the perspective of the issue of the physical e
tence of intermediate MHD shocks. It follows from the
analysis of the topology of a planar 2D MHD flow configu
ration that intermediate shocks are necessary ingredien
certain 2D MHD flows. Their analysis was incomplete a
our results show that the flow pattern can be more comp
than they anticipated, but our simulation results confirm t
intermediate shocks are indeed needed to drape a fi
aligned flow around an object in certain parameter regim
In 1D Riemann problems, it could always be argued t
field rotations can be performed by rotational discontinuiti
and that intermediate shocks are thus unnecessary. Bu
driven 2D problems, once the 1D degeneracy has been
moved, the situation seems different. In the flow under c
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sideration, just under the ‘‘nose’’ of the shock front~for
example, point B in Fig. 1c!, intermediate shocks seem to b
topologically inevitable. The hydrodynamic shock on t
stagnation streamline has necessarily to be a 1–4 interm
ate shock.17 These geometrical considerations based on
nar 2D flow configurations seem to be an independent in
cation that MHD intermediate shocks have to exist a
naturally arise in realistic initial value problems, as co
firmed by our simulations. It is very hard to prove rigorous
that a solution with only rotational discontinuities and wit
out intermediate shocks does not exist for the 2D flow pr
lem discussed in this paper. But the above arguments, ma
of a heuristic nature, seem to show that the existence
solution without intermediate shocks is unlikely, and th
intermediate shocks appear naturally.

A scalar nonlinear conservation law is described by

]u

]t
1

] f ~u!

]x
50, ~6!

where f (u) is called the flux function, andl5 f 8(u)
5dx/dt gives the slope of the characteristics~the character-
istic speed! in the xt plane. Equation~6! allows for discon-
tinuous solutions~shocks! that propagate with a speeds de-
termined by the RH relation

s5
f ~ur !2 f ~ul !

ur2ul
, ~7!

whereur andul are the states on the right and the left of t
discontinuity.24 If f (u) is a strictly convex function@mean-
ing that f 8(u) is strictly monotonous, or thatf 9(u) does not
vanish anywhere#, then sP] f 8(ul), f 8(ur)@ . However, if
f (u) is not convex, then there exist statesul andur such that
the shock connectingul with ur has a speed equal to th
characteristic speed in the left or the right state, for instan
s5 f 8(ur)5l r , or s5l r50 in the shock frame. We will cal
such a shock a sonic shock.

The fast and the slow MHD characteristic fields are n
convex.22 So there exist 152–3 shocks, for whichv5cf ~in
the shock frame! upstream, meaning thatl f5v2cf505s.
Another type of sonic shock in MHD is the 2–354 shock,
for which v5cs downstream, meaning thatls5v2cs50
5s. Notice that the term ‘sonic’ is used here in a gene
sense, denoting the condition that the plasma speed eq
any of the MHD characteristic speeds.23

The fact that the flow is sonic upstream or downstre
of the shock, allows for continuous attachment of a sim
wave31 rarefaction of the slow or fast family, moving wit
the same speed as the shock at the point of attachment.
structure of a sonic shock with an attached simple w
rarefaction is called a compound wave.22,24,20 The above
analysis and the definition of a compound wave remain v
in a dissipative context, because even in a dissipative the
shocks that do not depend on time and have a finite ext
have to satisfy the ideal RH relations. Compound wa
naturally arise in the solution of Riemann problems of no
convex systems in the framework of a discontinuity theory24

For MHD, they were first observed in the numerical soluti
of planar 1D MHD Riemann problems.22
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However, the admissibility of the intermediate shoc
encountered in compound waves was questionable.22 Both
for the scalar16 and the MHD case, the above analysis
based on the nonconvexity of the ideal flux function—is
complete and has to be supplemented with an admissib
study using the dissipative equations.14–21 Analysis in the
dissipative framework shows clearly when sonic shocks
admissible and when they occur with attached rarefaction
solutions of Riemann problems.15,16 Such analysis also
shows that compound waves are just one of the many p
sible wave combinations that may appear in the solution
Riemann problems,15,16when they are analyzed in the appr
priate dissipative context, especially for nonplanar con
tions, and depending on the dissipation mechanism. C
pound waves thus play a less central role than one wo
conclude from a discontinuity theory. The combination o
sonic shock with an attached simple wave rarefaction i
compound wave is, however, not uncommon in a planar s
ation, as compound waves are admissible wave combinat
present in the Myong and Roe20,21 analytical solution of
some planar MHD Riemann problems. For the planar c
which they treat, Myong and Roe relate the occurrence
compound waves to the inadmissibility of 2–3 underco
pressive intermediate shocks, for which the compou
waves—with embedded sonic intermediate shocks—
substitutes.20,21

It is thus interesting to look for the presence of 152–3
and 2–354 sonic intermediate shocks in our 2D simulatio
results, as they are a manifestation of the nonconvex na
of the equations, and to study the rarefactions that may
attached to them.

Let us first consider the hydrodynamic intermedia
shock on the stagnation streamline. It is followed by a sl
rarefaction~Figs. 8!, but Figs. 8f–h show clearly that th
flow is not sonic where the rarefaction is attached to
shock. This shock is thus not of the sonic type, and in t
example, the rarefaction is a 2D effect, as noted before
serves to bring the Alfve´nic Mach number from its down-
stream value lower than one to a value close to one, ne
sary for the shock at point I.

Intermediate shock C-D~Figs. 10h–i! is followed by a
rarefaction, contrary to intermediate shock B–C~Figs.
10k–l; the different behavior of the post-shock magne
field is striking!. ShockD–G–H–I seems to be followed by
a rarefaction as well~Figs. 10e–f and Fig. 11d!. For all of
these structures, the flow is, however, not sonic where
rarefaction is attached to the shock.

Finally intermediate shock E–G remains to be inves
gated. This shock is followed by a clear rarefaction and p
ceded by another~weak! rarefaction~Figs. 10b–c and Fig.
12a!. A detailed analysis of the speeds along the solid l
normal to shock E–G in Fig. 6 learns that the intermedi
shock is a 152–354 shock, as the downstream normal slo
Mach number and the upstream normal fast Mach num
are both equal to one~Figs. 12b–c!. The flow is thus sonic
on both sides of the shock. This is a clear manifestation
the nonconvexity of the MHD equations in a steady state
flow. It has been shown recently by Myong and Roe20,21 that
this type of 152–354 shock is admissible and can b
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present in the analytical solution of planarxt Riemann prob-
lems, embedded in a doublext compound wave. The station
ary 2D rarefaction–shock–rarefaction structure of our sim
lation result could be more closely related to this doublext
compound wave, if the steady state rarefactions are sim
waves and not merely 2D effects similar to the rarefact
following the hydrodynamic shock on the stagnation line.
investigate this, it would be interesting to compare the ch
acteristic structure of this 2D stationary structure in thexy
plane to the characteristic structure of the double compo
wave in thext plane, which has simple wave rarefaction
This has to be investigated using characteristic analysi
the steady state MHD equations and remains a topic for
ther study.

VI. CONCLUSION

In this paper we have presented a detailed descriptio
an illuminating example of MHD shock interaction, whic
may have applications in low-b space plasmas. Our resul
show that a highly complicated steady state solution ex
for the model problem of a 2D symmetrical bow shock flo
in the switch-on regime. When the flow speed of the inco
ing field-aligned flow lies in the switch-on region, a seco
shock front forms, trailing the leading fast front. The resu
ing bow shock solution differs in two fundamental wa
from the classical picture of a bow shock~Fig. 1a!. The new
bow shock flow is composed of several consecutive inter
ing shock fronts, instead of a single bow shock front. F
thermore, segments of different MHD shock types a
present in the flow, in contrast to a flow with only fa
shocks. Physical parameters vary discontinuously al
shock fronts where those fronts interact. These are inter
ing results on MHD shock interaction in a 2D flow.

This kind of flow may be present in space plasm
However, our simulations are done for specific parame
and in the symmetrical field-aligned 2D case, so we have
investigate how general these effects are and if they will a
be present in 3D situations. We have found that the fl
topology is retained when we slightly change the plasmb
and the Mach number of the incoming flow. If we want
break the symmetry and relax the condition on field-align
flow by allowing for a finite angle between the incomin
velocity and magnetic field, we have to consider the 3D id
MHD problem of a stationary flow around a sphere, beca

FIG. 12. The cut along the solid line normal to the intermediate shock E
in Fig. 6. The intermediate shock is preceded and followed by rarefac
regions. The normal fast Mach number equals one where the upstream~left!
rarefaction is attached to the shock. The normal slow Mach number eq
one where the downstream rarefaction is attached to the shock. The
mediate shock is thus a 152–354 shock.
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in a 2D flow the magnetic flux can not be carried around
cylinder without reconnection when the flow is not fiel
aligned. In this case the flow will lose some of its symm
tries and the stationary solution may be different, but th
will still be a position on the shock surface where the u
stream magnetic field is perfectly normal to the bow sho
surface.1 The switch-on singularity would apply at such
point, which may be expected to lead to shock format
effects similar to what has been described in this paper. S
3D simulations will be the subject of further research. P
liminary results for simulations we have carried out of
field-aligned bow shock flow around a sphere in axial sy
metry show that similar shock formation phenomena occ

Our simulation results clearly confirm that planar inte
mediate MHD shocks can exist and naturally arise in
MHD bow shock flows in the switch-on regime. Intermedia
shocks are essential components of a bow shock struc
that channels the field-aligned flow around an obstacle.
termediate shocks of the 1–3, 1–4, 2–4 and 152–354 types
are clearly identified in our steady state 2D simulation
sults. Based on analysis of the dissipative equations in 1D
has been shown recently that all of these shocks can h
viscous profiles in the planar MHD case.14–21Our simulation
results are thus the first clear confirmation in two space
mensions of many aspects of the new theoretical results
intermediate shocks. One of the intermediate shocks is
ceded and followed by rarefaction regions with the particu
property that the normal plasma velocity is equal to a norm
characteristic speed at the points where the rarefactions
attached to the shock. This result constitutes the first c
occurrence of a 152–354 shock in 2D simulations. The
presence of this shock is a manifestation in 2D of the n
convex nature of the MHD equations.22,20,21Recently it has
been shown that this type of shock, embedded in a doubxt
compound wave, is present in the analytical solution of so
planar one-dimensional MHD Riemann problems.20,21

Our simulations are simple in setup because the inco
ing flow is uniform and the obstructing object is a perfec
conducting cylinder. The resulting flow, however, contain
wealth of interacting MHD shocks and discontinuities. T
symmetrical 2D steady state bow shock problem is well
fined. These properties make this problem a challenging n
test case for ideal MHD codes.

Evidence for the shock interaction effects found in o
simulations should be searched for in observations of sp
plasmas. Bow shocks preceding planets in a low-b environ-
ment are obvious candidates.4 Time-dependent shock propa
gation phenomena may show similar shock interaction
fects. Field-aligned flow is probably a rather goo
approximation when CMEs propagate along open magn
field lines out of the low-b inner corona of the sun. Corona
graph observations of fast CMEs seem to show the dim
effects that were found by Steinolfson and Hundhausen9–11

and that are also present in our simulations. The separa
of the V-shaped shock front~Fig. 2! from the leading front
divides the downstream flow into two distinct lobes sep
rated by a density depletion in the V-shaped region. T
feature provides a possible explanation for the double-lo
appearance of some observed fast CMEs. Examination
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time sequences of CMEs in white light11 seems to show tha
this double-loop appearance in many cases does not orig
in the form of the CME low in the corona, but does devel
in the course of the CME propagation in the outer coro
This evolution is suggestive of the possible time-depend
formation of the V-shaped shock complex found in our sim
lation. Further investigation of existing data or new obser
tions with higher resolution may reveal the detailed featu
of our simulation results in coronagraph observations of
CMEs. Furthermore,in-situ satellite observations36 could re-
veal consecutive passage of fast and intermediate sho
which could be part of a flow topology similar to the topo
ogy of our simulation results.
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