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Complex manifolds with
split tangent bundle

Arnaud Beauville

Abstract. Let X be a compact Kähler manifold. We ask whether any direct sum de-
composition TX = ⊕

i∈I
Ei of its tangent bundle comes from a splitting of the universal

covering space of X as a product
∏
i∈I

Ui , in such a way that the given decomposition

TX = ⊕
i∈I

Ei lifts to the canonical decomposition TΠUi
=⊕

i
TUi

. We prove that this is

the case when X is a Kähler-Einstein manifold or a Kähler surface, and discuss a general
conjecture.
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Introduction

The theme of this note is to investigate when the tangent bundle of a compact
complex manifold X splits as a direct sum of sub-bundles. This occurs typically
when the universal covering space X̃ of X splits as a product

∏
i∈I

Ui of manifolds

on which the group π1(X) acts diagonally (that is, π1(X) acts on each Ui and its
action on X̃ =

∏
Ui is the diagonal action g.(ui) = (gui) ): the vector bundles ∗

TUi
on X̃ are stable under π1(X) , hence the decomposition T

X̃
=⊕

i
TUi

descends

to a direct sum decomposition of TX . For Kähler manifolds, we ask whether the
converse is true, namely whether a direct sum decomposition of the tangent bundle
TX gives rise to a splitting of the universal covering. We will show that this is
indeed the case in three different situations:

a) X admits a Kähler-Einstein metric;
b) TX is a direct sum of line bundles of negative degree;
c) X is a Kähler surface.
In case a) the properties of Hermite-Einstein metrics imply that the tangent

bundle splits as a direct sum of hermitian sub-bundles; we then conclude with a

* Throughout the paper we will abuse notation and write TUi
instead of pr∗i TUi

.
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holonomy argument (a slightly less precise statement appears already in [Y]). Case
b) is a small improvement of a uniformization result of Simpson [S]. To treat case
c) we use the classification of surfaces and some simple remarks about connections.
The result in this case is actually an easy consequence of the paper [KO], where
the authors classify surfaces with a holomorphic conformal structure – this turns
out to be closely related to the question we are studying here. However we found
simpler and more enlightening to give an independent proof rather than extracting
from [KO] the pieces of information that we need.

In § 2 we give examples which show that the Kähler assumption, as well as some
integrability assumptions, are necessary, and we propose a general conjecture.

1. Kähler-Einstein manifolds

Theorem A. Let X be a compact complex manifold admitting a Kähler-Einstein
metric. Assume that the tangent bundle of X has a decomposition TX =⊕

i∈I
Ei .

Then the universal covering space of X is a product
∏
i∈I

Ui of complex mani-

folds, in such a way that the decomposition TX =⊕
i∈I

Ei lifts to the decomposition

TΠUi
=⊕

i∈I
TUi

; the group π1(X) acts diagonally on
∏
i∈I

Ui .

Proof. (1.1) A Kähler-Einstein metric on X is a Hermite-Einstein metric on the
vector bundle TX , that is a hermitian metric whose curvature endomorphism,
contracted with the Kähler form ω , is scalar (a good reference for the properties
of Hermite-Einstein metrics that we will use is [K]). By theorem V.8.3 of [K], the
hermitian bundle TX is the direct sum of a family (Fj)j∈J of ω-stable, hermitian
vector bundles having the same slope as TX . These bundles are preserved by
the Levi-Civita connection, hence the holonomy representation of X is the direct
sum of a family of representations corresponding to the Fj ’s. By the De Rham
theorem, the universal covering space of X splits as a product

∏
j∈J

Uj , such that

the decomposition TX = ⊕
j∈J

Fj pulls back to the decomposition TΠUj
= ⊕

j∈J
TUj .

(1.2) We observe that the fact that the group π1(X) preserves the decomposi-
tion TΠUj

= ⊕
j∈J

TUj
implies that it acts diagonally on

∏
j∈J

Uj . Let indeed γ be an

automorphism of
∏

Ui ; for j ∈ I , put γj = prj ◦γ . The condition γ∗TUj
= TUj

means that the partial derivatives of γj in the directions of Uk for k 6= j vanish,
hence γj((ui)i∈I) depends only on uj , which gives our claim.

(1.3) The bundles Fj are indecomposable, and we can assume that each Ei is
indecomposable. By the Krull-Remak-Schmidt theorem, we can identify J to I
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in such a way that Fi is isomorphic to Ei for every i ∈ I . We want to compare
the decompositions TX =⊕

i∈I
Ei and TX =⊕

i∈I
Fi .

Lemma 1.3. If Hom(Fi, Fj) 6= 0 for some distinct indices i, j in I , the bundles
Fi and Fj are isomorphic and admit a holomorphic connection.

In particular, all Chern classes of Fi vanish.

Proof. Since Fi and Fj are stable with the same slope, our hypothesis implies that
Fi and Fj are isomorphic ([K], 7.11 and 7.12); this is equivalent to the existence
of an isomorphism ϕ : TUi

→ TUj
compatible with the actions of π1(X) .

Recall that if f : T → S is a holomorphic map between two manifolds, and E
a vector bundle on S , the bundle f∗E carries a canonical relative flat connection
∇T/S : f∗E → f∗E ⊗ Ω1

T/S , characterized by the property ∇T/S(f∗s) = 0 for ev-
ery local holomorphic section s of E ; if moreover f is equivariant with respect
to a group Γ acting on T , S and E , the connection ∇T/S is Γ-equivariant.
Applying this to the projection

∏
i

Ui → Ui we obtain for each k 6= i a partial,

π1(X)-equivariant, connection ∇k : TUi
→ TUi

⊗ Ω1
Uk

. Similarly we have for each
k 6= j a partial connection ∇′

k : TUj
→ TUj

⊗ Ω1
Uk

. Put ∇i = (ϕ⊗ 1)−1 ◦∇′
i ◦ϕ ;

then
∑

k∈I ∇k is a connection on TUi which is π1(X)-equivariant, and therefore
descends to a connection on Fi . ut

(1.4) Let i ∈ I . If Fi does not admit any holomorphic connection, it follows
from the Lemma that the only sub-bundle of TX isomorphic to Fi is Fi itself,
hence Ei = Fi .

Now assume that Fi has a holomorphic connection. Since Fi has the same
slope as TX , this can only occur if c1(X) = 0 . According to the structure theorem
for manifolds with c1 = 0 ([B2], thm. 1), the set I splits into two subsets J and
K , such that Ui is isomorphic to a vector space for i ∈ J and is compact for
i ∈ K ; the vector bundle Fi has trivial Chern classes if and only if i ∈ J . Put
F = ⊕

j∈J
Fj ; according to Lemma 1.2 we have Ej ⊂ F for j ∈ J . We saw already

that Ek = Fk for k ∈ K , hence ⊕
j∈J

Ej = F .

Put V =
∏
j∈J

Uj , M =
∏

k∈K

Uk . There exists a complex torus A with univer-

sal covering V and a finite étale covering π : A×M → X (loc. cit.). We have
π∗F = TA ; the decomposition F = ⊕

j∈J
Ej pulls back to a decomposition of the

trivial bundle TA , which corresponds to a decomposition V = ⊕
j∈J

Vj of V into

vector subspaces. The splitting X̃ =
∏
j∈J

Vj ×
∏

k∈K

Uk has the requested properties.

ut
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2. Discussion of the conjecture

Let us first show that the Kähler assumption is necessary.

(2.1) Hopf manifolds
Let T = diag(α1, . . . , αn) be a diagonal matrix, with n ≥ 2 and 0 < |αi| < 1

for each i . The cyclic group TZ generated by T acts freely and properly on
Cn {0} ; the quotient X is a compact complex manifold, called a Hopf man-
ifold. For each non-zero complex number θ , denote by Lθ the flat line bundle
associated to the character of π1(X) = TZ mapping T to θ ; in other words, Lθ

is the quotient of the trivial line bundle (Cn {0})×C by the action of the

automorphism (T, θ) . By construction we have TX =
n
⊕

i=1
Lαi , but the universal

covering space Cn {0} of X is clearly not a product. Note that all direct sums
⊕

j∈J
Lαj , for J ⊂ [1, n] , are integrable sub-bundles of TX .

(2.2) Integrability conditions
Let X be a compact Kähler manifold. If a decomposition TX =⊕

i∈I
Ei is as-

sociated as above to a splitting X̃ ∼=
∏
i∈I

Ui of the universal covering space of X ,

the vector bundles Ei and their direct sums ⊕
i∈J

Ei , for every subset J of I ,

are integrable (that is, stable under the Lie bracket). It is easy to produce exam-
ples where the tangent bundle splits into non-integrable factors: take for instance
X = A×P1 , where A is an abelian surface. Let (U, V ) be a basis of H0(A, TA) ,
and S, T two vector fields on P1 which do not commute. The vector fields U + S
and V + T span a (trivial) rank 2 sub-bundle of TX , supplementary to TP1 , but
not integrable.

In view of the above examples the natural conjecture is the following:

(2.3) Let X be a compact Kähler manifold such that TX =⊕
i∈I

Ei , each sub-bundle

⊕
i∈J

Ei , for J ⊂ I , being integrable. Then the universal covering space of X is iso-

morphic to a product
∏
i∈I

Ui , in such a way that the given decomposition TX =⊕
i∈I

Ei

lifts to the canonical decomposition TΠUi
=⊕

i
TUi .

In the case when all the Ei ’s are line bundles and X is projective, this con-
jecture has just been proved by S. Druel [D].

In the situations a), b), c) considered here it turns out that the integrability is
automatic. One may ask whether this holds whenever the canonical bundle KX

is nef.
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3. Simpson’s uniformization result

The following lemma ∗ , which is a variation on the Baum-Bott theorem [B-B], will
allow us to slightly improve Simpson’s result:

Lemma 3.1. Let X be a complex manifold, and E a direct summand of TX . The
Atiyah class at(E) ∈ H1(X, Ω1

X ⊗ End(E)) comes from H1(X, E∗ ⊗ End(E)) . In
particular, any class in Hr(X, Ωr

X) given by a polynomial in the Chern classes of
E vanishes for r > rk(E) .

Proof. Write TX = E ⊕ F ; let p : TX → E be the corresponding projection. For
sections U of E and V of F over some open subset of X , put DV U = p([V,U ]) .
This expression is OX -linear in V and satisfies the Leibnitz rule DV (fU) =
fDV (U) + (V f)U , so that D is a F -connection on E [B-B]: if we denote by
D1(E) the sheaf of differential operators ∆ : E → E , of degree ≤ 1 , whose symbol
σ(∆) is scalar, this means that D defines an OX -linear map F → D1(E) such
that σ(DV ) = V for all local sections V of F . Thus the exact sequence

0 → End(E) −→ D1(E) σ−→ TX → 0

splits over the sub-bundle F ⊂ TX ; therefore its extension class at(E) ∈
H1(X, Ω1

X ⊗ End(E)) vanishes in H1(X, F ∗ ⊗ End(E)) , hence comes from
H1(X, E∗ ⊗ End(E)) . The last assertion follows from the definition of the Chern
classes in terms of the Atiyah class. ut

We denote as usual by H the Poincaré upper half-space.

Theorem B. Let X be a compact Kähler manifold, with Kähler class ω . As-
sume that the tangent bundle TX is a direct sum of line bundles L1, . . . , Ln with
ωn−1. c1(Li) < 0 for each i . Then the universal covering space of X is Hn , and
the decomposition TX = ⊕Li lifts to the canonical decomposition THn = (TH)⊕n .

Proof. Lemma 3.1 gives c1(Li)2 = 0 for each i , hence c1(X)2 − 2c2(X) = 0 . Then
Cor. 9.7 of [S] shows that the universal covering space of X is Hn . The assertion
about the compatibility of decompositions is not explicitly stated in loc. cit., but
follows from the proof; or we can apply Theorem A. ut

4. The surface case

Theorem C. Let X be a compact complex surface. The tangent bundle of X
splits as a direct sum of two line bundles if and only if one of the following occurs:

* F. Bogomolov reminded me that this lemma appears already in his IHES preprint
Kählerian varieties with trivial canonical class (1981).
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(a) The universal covering space of X is a product U × V of two (simply-
connected) Riemann surfaces and the group π1(X) acts diagonally on U × V ;
in that case the given splitting of TX lifts to the direct sum decomposition
TU×V = TU ⊕ TV .

(b) X is a Hopf surface, with universal covering space C2 {0} . Its fundamen-
tal group is isomorphic to Z⊕ Z/mZ , for some integer m ≥ 1 ; it is gen-
erated by diagonal automorphisms (x, y) 7→ (αx, βy) with |α| ≤ |β| < 1 , and
(x, y) 7→ (λx, µy) where λ and µ are primitive m-th roots of 1 .

As a corollary, for Kähler surfaces we see that any direct sum decomposition of
the tangent bundle gives rise to a splitting of the universal covering, as announced
in the introduction.

(4.1) Before starting the proof we will need a few preliminaries. From now on we
denote by X a compact complex surface; we assume given a direct sum decomposi-
tion Ω1

X
∼= L⊕M . By lemma 3.1 (or by [B-B]) the Chern class c1(L) ∈ H1(X, Ω1

X)
belongs to the subspace H1(X, L) , and similarly for M . As a consequence, we
get:

(4.2) L2 = M2 = 0 , and therefore c2
1(X) = 2 L.M = 2c2(X) .

The following consequence is less obvious.

Proposition 4.3. Let C be a smooth rational curve in X . Then C2 ≥ 0 .

Proof. Put C2 = −d and assume d > 0 . Since H1(C,OC(d + 2)) = 0 , the exact
sequence

0 → OC(d) −→ Ω1
X |C −→ Ω1

C → 0

splits, providing an isomorphism Ω1
X |C

∼= OC(d)⊕OC(−2) . Thus one of the line
bundles L or M , say L , satisfies L|C ∼= OC(d) . Consider the commutative
diagram

H1(X, L) −−−−−→ H1(X, Ω1
X)y

y
H1(C,L|C) −−−−−→ H1(C,Ω1

C) ;

since d > 0 we have H1(C,L|C) = 0 ; thus c1(L) goes to 0 in H1(C,Ω1
C) , which

means d = 0 , a contradiction. ut

(4.4) We shall come across situations where the vector bundle Ω1
X = L⊕M

appears as an extension

0 → P −→ Ω1
X

p−→ Q → 0
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of two line bundles P and Q . In that case,
– either the restriction of p to one of the direct summands of Ω1

X , say M , is
surjective; then the exact sequence splits, Q is isomorphic to M and P to L ;

– or the restriction of p to both L and M is not surjective; then there exists
effective (non-zero) divisors A and B , whose supports do not intersect, such
that L ∼= Q(−A) , M ∼= Q(−B) and P ∼= Q(−A−B) ; the exact sequence does
not split.

In particular, if Hom(P,Q) = 0 , the exact sequence splits.

(4.5) Finally we will need some classical facts about connections (see [E]). Let
p : M → B be a smooth holomorphic map between complex manifolds, whose
fibres are isomorphic to a fixed variety F . A connection on p is a splitting of the
exact sequence

0 → p∗Ω1
B −→ Ω1

M −→ Ω1
M/B → 0 ,

that is a sub-bundle L ⊂ Ω1
M mapping isomorphically onto Ω1

M/B ; the connection
is flat (or integrable) if dL ⊂ L ∧ Ω1

M (this is automatic if B is a curve). In that
case the group π1(B) acts on F by complex automorphisms, and M is the fibre
bundle on B with fibre F associated to the universal covering B̃ → B , that
is the quotient of B̃ × F by the group π1(B) acting diagonally; the splitting
Ω1

M = p∗Ω1
B ⊕ L pulls back to the decomposition Ω1

B̃×F
= Ω1

B̃
⊕ Ω1

F .

5. Proof of Theorem C

(5.1) Kodaira dimension 2
If κ(X) = 2 , the canonical bundle KX is ample by Prop. 4.3. The Aubin-

Calabi-Yau theorem implies that X admits a Kähler-Einstein metric; we can
therefore apply Theorem A.

(5.2) Kodaira dimension 1
If κ(X) = 1 , X admits an elliptic fibration p : X → B . By 4.2 we have

c2(X) = 0 ; this implies that the only singular fibres of p are multiples of smooth
elliptic curves (see [B1], VI.4 and VI.5). For b ∈ B , we write p∗[b] = mb Fb , where
Fb is a smooth elliptic curve; we have mb ≥ 1 and mb = 1 except for finitely
many points. Put ∆ =

∑
b(mb − 1) Fb . We have an exact sequence

0 → p∗Ω1
B(∆) −→ Ω1

X −→ ωX/B → 0 (5.3)

where ωX/B is the relative dualizing line bundle. Since χ(OX) = 0 by Riemann-
Roch, we deduce from [BPV], V.12.2 and III.18.2, that ωX/B is a torsion line
bundle. Since KX = p∗Ω1

B(∆)⊗ ωX/B , the hypothesis κ(X) = 1 implies
Hom(p∗Ω1

B(∆), ωX/B) = 0 , hence the exact sequence (5.3) splits by 4.4: one of
the direct summands of Ω1

X , say M , maps surjectively onto ωX/B .
Let ρ : B̃ → B be the orbifold universal covering of (B, (mb)) : this is a ramified

Galois covering, with B̃ simply-connected, such that the stabilizer of a point b̃ ∈ B̃
is a cyclic group of order mρ(b̃) (see for instance [KO], lemma 6.1; note that because
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of the hypothesis κ(X) = 1 and the formula for KX , there are at least 3 multiple
fibers if B is of genus 0 ). Let X̃ be the normalization of X ×B B̃ . We have a
commutative diagram

X̃
π−−−−−→ X

p̃

y
y p

B̃
ρ−−−−−→ B

where p̃ is smooth and π is étale ([B1], VI.7′ ). The exact sequence

0 → p̃∗Ω1

B̃
−→ Ω1

X̃
−→ Ω1

X̃/B̃
→ 0

coincides with the pull back under π of the exact sequence (5.3); therefore p
admits an integrable connection, given by the subbundle π∗M of Ω1

X̃
. The result

follows from 4.5 and 1.2.

(5.4) Kodaira dimension 0
Assume κ(X) = 0 . By 4.2 and the classification of surfaces, X is either a

complex torus, a bielliptic surface, or a Kodaira surface. Complex tori and biellip-
tic surfaces fall into case (a) of the theorem (a bielliptic surface is the quotient of
a product E × F of elliptic curves by a finite abelian group acting diagonally).

A primary Kodaira surface has trivial canonical bundle and admits a smooth
elliptic fibration p : X → B . Thus the exact sequence (5.3) realizes Ω1

X as an
extension of OX by OX . Since h1,0(X) = 1 , this extension is non-trivial, and it
follows from 4.4 that Ω1

X does not split.
A secondary Kodaira surface admits a primary Kodaira surface as a finite étale

cover, hence its tangent bundle cannot split either.

(5.5) Ruled surfaces
We consider the case when X is algebraic and κ(X) = −∞ . By 4.2 and 4.3,

X is a geometrically ruled surface, that is a projective bundle p : X → B over a
curve. We again consider the exact sequence

0 → p∗Ω1
B −→ Ω1

X −→ Ω1
X/B → 0 ;

since Ω1
X/B has negative degree on the fibres, we have Hom(p∗Ω1

B ,Ω1
X/B) = 0 ,

hence by 4.4 the above exact sequence splits: one of the direct summands of Ω1
X

defines an integrable connection for p . The result follows then from 4.5.

(5.6) Inoue surfaces
We now assume that X is not algebraic and κ(X) = −∞ , so that X is what

is usually called a surface of type VII0 . These surfaces have b1 = h0,1 = 1 and
therefore c2

1 + c2 = 12χ(OX) = 0 ; in our case this gives c2 = 0 in view of 4.2,
and finally b2 = 0 . Moreover we have H0(X, Ω1

X ⊗ L−1) 6= 0 . The surfaces with
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these properties have been completely classified by Inoue [I]: they are either Hopf
surfaces, or belong to three classes of surfaces constructed by Inoue (loc. cit.).

We first consider the Inoue surfaces. The surfaces SM of the first class are
quotients of H×C by a group acting diagonally, hence they fall into case (a) of
the theorem.

The surfaces S
(+)
N,p,q,r;t of the second class are quotients of H×C by a group

which does not act diagonally. This action leaves invariant the vector field ∂/∂z
on C , which therefore descends to a non-vanishing vector field v on X . This
gives rise to an exact sequence

0 → KX
i(v)−→ Ω1

X

i(v)−→ OX → 0 ,

which does not split since h1,0(X) = 0 . We have H0(X, K−1
X ) = 0 , for instance

because X contains no curves; we infer from 4.4 that Ω1
X does not split.

The surfaces S
(−)
N,p,q,r of the third class are quotients of certain surfaces of the

second class by a fixed point free involution; therefore their tangent bundle does
not split either.

(5.7) Primary Hopf surfaces
It remains to consider the class of Hopf surfaces, which are by definition the

surfaces of class VII0 whose universal covering space is W := C2 {0} . We con-
sider first the primary Hopf surfaces, which are quotients of W by the infinite
cyclic group generated by an automorphism T of W . According to [Ko], § 10,
there are two cases to consider:
a) T (x, y) = (αx, βy) for some complex numbers α, β with 0 < |α| ≤ |β| < 1 ;
b) T (x, y) = (αmx + λym, αy) for some positive integer m and non-zero complex

numbers α, λ with |α| < 1 .
As in 2.1, we denote by Lθ , for θ ∈ C , the flat line bundle associated to the

character of π1(X) mapping T to θ . In case a) we find Ω1
X = L−1

α ⊕ L−1
β , so the

tangent bundle splits.
Let us consider case b). The form dy on W satisfies T ∗dy = α dy , hence

descends to a form dy in H0(X, Ω1
X ⊗ Lα) ; similarly the function y descends to

a non-zero section of Lα . We have an exact sequence

0 → L−1
α

dy−→ Ω1
X −→ L−m

α → 0 .

Since Lα has a nonzero section, the space Hom(L−1
α , L−m

α ) is zero for m > 1 .
Hence if Ω1

X splits, we deduce from 4.4 that the exact sequence splits. This means
that there exists a form ω ∈ H0(X, Ω1

X ⊗ Lm
α ) such that ω ∧ dy 6= 0 . Then ω ∧ dy

is a generator of the trivial line bundle KX ⊗ Lm+1
α , hence pulls back to c dx ∧ dy

on W , for some constant c 6= 0 . Therefore the pull back ω of ω to W is of
the form c dx + f(x, y)dy for some holomorphic function f on C2 . The flat line
bundle Lm

α carries a flat holomorphic connection ∇ ; the 2-form ∇ω , which is a
global section of KX ⊗ Lm

α
∼= L−1

α , is zero. This implies dω = 0 , so the function
f(x, y) is independent of x ; let us write it f(y) . Now the condition T ∗ω = αmω
reads αf(αy) + cλmym−1 = αmf(y) . Differentiating m times we find f (m) = 0 ,
then differentiating m− 1 times leads to a contradiction. ut
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(5.8) Secondary Hopf surfaces
A secondary Hopf surface X is the quotient of W by a group Γ acting freely,

containing a central, finite index subgroup generated by an automorphism T of
the above type. We assume that Ω1

X splits. The primary Hopf surface Y = W/TZ

is a finite étale cover of X , so Ω1
Y also splits; it follows from (5.7) that T is of

type a), and that Γ does not contain any transformation of type b). According to
[Ka], § 3, this implies that after an appropriate change of coordinates, the group
Γ acts linearly on C2 .

We claim that Γ is contained in a maximal torus of GL(2,C) . This is clear if
α 6= β , because T is central in Γ . If α = β , the direct sum decomposition of Ω1

X

pulls back to a decomposition Ω1
Y = L−1

α ⊕ L−1
α (5.7), which for an appropriate

choice of coordinates comes from the decomposition Ω1
W = OWdx⊕OWdy . Since

Γ must preserve this decomposition, it is contained in the diagonal torus.
Thus we may identify Γ with a subgroup of (C∗)2 ; since it acts freely on W ,

the first projection Γ → C∗ is injective. Therefore the torsion subgroup of Γ is
cyclic, and we are in case (b) of the theorem. ut
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