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Abstract
This paper considers computing partial eigenpairs of differential eigenvalue problems
(DEPs) such that eigenvalues are in a certain region on the complex plane. Recently,
based on a “solve-then-discretize” paradigm, an operator analogue of the FEAST
method has been proposed for DEPs without discretization of the coefficient opera-
tors. Compared to conventional “discretize-then-solve” approaches that discretize the
operators and solve the resulting matrix problem, the operator analogue of FEAST
exhibits much higher accuracy; however, it involves solving a large number of ordi-
nary differential equations (ODEs). In this paper, to reduce the computational costs,
we propose operation analogues of Sakurai–Sugiura-type complex moment-based
eigensolvers for DEPs using higher-order complex moments and analyze the error
bound of the proposed methods. We show that the number of ODEs to be solved can
be reduced by a factor of the degree of complex moments without degrading accu-
racy, which is verified by numerical results. Numerical results demonstrate that the
proposed methods are over five times faster compared with the operator analogue
of FEAST for several DEPs while maintaining almost the same high accuracy. This
study is expected to promote the “solve-then-discretize” paradigm for solving DEPs
and contribute to faster and more accurate solutions in real-world applications.
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1 Introduction

This paper considers solving differential eigenvalue problems (DEPs)

Aui = λiBui, λi ∈ � ⊂ C (1)

with boundary conditions, where A and B are linear, ordinary differential operators
acting on functions from a Hilbert space H and � is a prescribed simply connected
open set. This type of problems appears in various fields such as physics [1, 2] and
materials science [3–5]. Here, λi and ui is an eigenvalue and the corresponding eigen-
function, respectively. We assume that the boundary � of � is a rectifiable, simple
closed curve and that the spectrum of (1) is discrete and does not intersect �, while
only m finite eigenvalues counting multiplicities are in �. We also assume that there
are eigenfunctions of (1) that form a basis for the invariant subspace associated with
λi ∈ �.

A conventional way to solve (1) is to discretize the operators A and B and solve
the resulting matrix eigenvalue problem using some matrix eigensolver, e.g., the
QZ and Krylov subspace methods [6]. Fine discretization can reduce discretization
error but lead to the formation of large matrix eigenvalue problems. Owing to par-
allel efficiency, complex moment-based eigensolvers are practical choices for large
eigenvalue problems such as Sakurai–Sugiura’ s approach [7] and FEAST eigen-
solvers [1]. This class of eigensolvers constructs an approximation of the target
invariant subspace using a contour integral and computes an approximation of the tar-
get eigenpairs using a projection onto the subspace. Because of the high efficiency of
parallel computation of the contour integral [2, 3], which is the most time-consuming
part, complex moment-based eigensolvers have attracted considerable attention.

In contrast to the above “discretize-then-solve” paradigm, a “solve-then-
discretize” paradigm emerged, motivated by mathematical software Chebfun [8].
Chebfun enables highly adaptive computation with operators and functions in the
same manner as matrices and functions. This paradigm has extended numerical lin-
ear algebra techniques in finite dimensional spaces to infinite-dimensional spaces
[9–14]. Under the circumstances, an operator analogue of FEAST was recently
developed [15] for solving (1) and dealing with operators A and B without their dis-
cretization.1 On one hand, the operator analogue of FEAST exhibits much higher
accuracy than methods based on the traditional “discretize-then-solve” paradigm.
On the other hand, a large number of ordinary differential equations (ODEs) must
be solved for the construction of invariant subspaces, which is computationally
expensive, although the method can be efficiently parallelized.

1An algorithm of a FEAST-like eigensolver for solving DEPs (1) without the discretization of the operators
A and B was demonstrated in 2013 in the online document of Chebfun [8].
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In this paper, we propose operation analogues of Sakurai–Sugiura’s approach for
DEPs (1) in the “solve-then-discretize” paradigm. The difference between the oper-
ator analogue of FEAST and the proposed methods lies in the order of complex
moments used: the operator analogue of FEAST used only complex moments of
order zero, whereas the proposed methods use complex moments of higher order. The
difference enables the proposed methods to reduce the number of ODEs to be solved
by a factor of the degree of complex moments without degrading accuracy. The pro-
posed methods can be extended to higher dimensions in a straightforward manner for
simple geometries.

The remainder of this paper is organized as follows. Section 2 briefly introduces
the complex moment-based matrix eigensolvers. In Section 3, we propose operation
analogues of Sakurai–Sugiura’s approach for DEPs (1). We also introduce a subspace
iteration technique and analyze an error bound. Numerical experiments are reported
in Section 4. The paper concludes with Section 5.

We use the following notations for quasi-matrices. Let V = [v1, v2, . . . , vL],W =
[w1, w2, . . . , wL]:CL → H be quasi-matrices, whose columns are functions defined
on an interval [a, b], a, b ∈ R. Then, we define the range of V by R(V ) = {y ∈ H |
y = V x, x ∈ C

L}. In addition, the L × L matrix X, whose (i, j) element is Xij =
(vi, wj )H, is expressed asX = V HW . Here, V H is the conjugate transpose of a quasi-
matrix V such that its rows are the complex conjugates of functions v1, v2, . . . , vL.

2 Complexmoment-basedmatrix eigensolvers

The complex moment-based eigensolvers proposed by Sakurai and Sugiura [7] are
intended for solving matrix generalized eigenvalue problems:

Axi = λiBxi , A, B ∈ C
n×n, xi ∈ C

n \ {0}, λi ∈ � ⊂ C,

where zB − A is nonsingular in a boundary � of the target region �. These eigen-
solvers use Cauchy’s integral formula to form complex moments. Complex moments
can extract the target eigenpairs from random vectors or matrices.

We denote the kth order complex moment by

Mk = 1

2π i

∮
�

zk(zB − A)−1Bdz,

where π is the circular constant, i is the imaginary unit, and � is a positively oriented
closed Jordan curve of which� is the interior. Then, the complex momentMk applied
to a matrix V ∈ C

n×L serves as a filter that stops undesired eigencomponents in
the column vectors of V from passing through. To achieve this role of a complex
moment, we introduce a transformation matrix S ∈ C

n×LM

S = [S0, S1, . . . , SM−1], Sk = MkV, (2)

where V ∈ C
n×L and M − 1 is the largest order of complex moments. Note that

L and M are regarded as parameters. The special case M = 1 in S reduces to
FEAST [1, (3)]. Thus, the range R(S) of S forms the eigenspace of interest (see, e.g.,
[16, Theorem 1]).
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Practical algorithms of the complex moment-based eigensolvers approximate the
contour integral of the transformation matrix Ŝk � Sk of (2) using a quadrature rule

Ŝk =
N∑

j=1

ωjz
k
j (zjB − A)−1BV,

where zj , ωj ∈ C (j = 1, 2, . . . , N) are quadrature points and the corresponding
weights, respectively.

The most time-consuming part of complex moment-based eigensolvers involves
solving linear systems at each quadrature point. These linear systems can be inde-
pendently solved so that the eigensolvers have good scalability, as demonstrated in
[2, 3]. For this reason, complex moment-based eigensolvers have attracted consider-
able attention, particularly in physics [1, 2], materials science [3–5], power systems
[17], data science [18], and so on. Currently, there are several methods, including
direct extensions of Sakurai and Sugiura’s approach [19–25], the FEAST eigensolver
[1] developed by Polizzi, and its improvements [2, 26, 27]. We refer to the study
by [23] and the references therein, for relationship among typical complex moment-
based methods: the methods using the Rayleigh–Ritz procedure [19, 21], the methods
using Hankel matrices [7, 20], the method using the communication avoiding Arnoldi
procedure [24], FEAST eigensolver [1], and so on.

3 Complexmoment-basedmethods

In the “solve-then-discretize” paradigm, an operator analogue of the FEAST method
was proposed [15] for solving (1) without requiring discretization of the operators
A and B. The operator analogue of FEAST (contFEAST) is a simple extension of
the matrix FEAST eigensolver and is based on an accelerated subspace iteration only
with complex moments of order zero (see Algorithm 1). In each iteration, contFEAST
requires solving a large number of ODEs to construct a subspace. In this study, to
reduce computational costs, we propose operator analogues of Sakurai–Sugiura-type
complex moment-based eigensolvers: contSS-RR, contSS-Hankel, and contSS-CAA
using complex moments of higher order.

Algorithm 1 contFEAST method.
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3.1 Complexmoment subspace and its properties

For the differential eigenvalue problem (1), spectral projectors Pi and P� associated
with a finite eigenvalue λi and the target eigenvalues λi ∈ � are defined as

Pi = 1

2π i

∮
�i

(zB − A)−1Bdz, P� =
∑
λi∈�

Pi = 1

2π i

∮
�

(zB − A)−1Bdz, (3)

respectively, where �i is a positively oriented closed Jordan curve in which λi lies and
contour paths �i and �j do not intersect each other for i �= j (see [28, pp.178–179]
for the case of B = I). Here, spectral projectors Pi satisfy

PiPj = δijPi

where δij is the Kronecker delta.
Analogously to the complex moment-based eigensolvers for matrix eigenvalue

problems, we define the kth order complex moment as

Mk = 1

2π i

∮
�

zk(zB − A)−1Bdz, k = 1, 2, . . . , M − 1 (4)

and the transformation quasi-matrix as

S = [S0, S1, . . . , SM−1], Sk = MkV (5)

for k = 0, 1, . . . , M − 1, where M − 1 is the highest order of complex moments and
V : CL → H is a quasi-matrix. Here, L is a parameter. Note the identity Pi = M0
for � = �i . Then, the range R(S) has the following properties.

Theorem 1 The columns of S defined in (5) form a basis of the target eigenspace
X� corresponding to �, i.e.,

R(S) = X� = R

⎛
⎝∑

λi∈�

Pi

⎞
⎠ , (6)

if rank(S) = m, where m is the number of eigenvalues, counting multiplicity, in � of
(1).

Proof Cauchy’s integral formula shows

Mk =
∑
λi∈�

λk
i Pi .

Therefore, from the definitions of S and Sk , the quasi-matrix S can be written as

S =
⎡
⎣∑

λi∈�

PiV ,
∑
λi∈�

λiPiV , . . . ,
∑
λi∈�

λM−1
i PiV

⎤
⎦

= P�

∑
λi∈�

[
PiV , λiPiV , . . . , λM−1

i PiV
]
,

which provides (6) if rank(S) = m.
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Remark 1 Theorem 1 shows that the target eigenpairs of (1) can be obtained by using
a projection method onto R(S).

Theorem 2 Let S0 and S be defined as in (5). Then, the range R(S) and the block
Krylov subspace

KM(C, S0) = R([S0, CS0, . . . , CM−1S0])
are the same, i.e.,

R(S) = KM(C, S0), (7)
where

C =
∑

|λi |<∞
λiPi .

Here, Pi is defined in (3). Moreover, the eigenvalue problem of linear operator C
Cui = λiui (8)

has the same finite eigenpairs as Aui = λiBui .

Proof The quasi-matrix Sk is written as

Sk =
∑
λi∈�

λk
i PiV =

⎛
⎝ ∑

|λi |<∞
λiPi

⎞
⎠ ∑

λi∈�

λk−1
i PiV

=
⎛
⎝ ∑

|λi |<∞
λiPi

⎞
⎠

k ∑
λi∈�

PiV = CkS0,

which provides (7). Hence, the eigenspace of C and that of (1) are the same.

Remark 2 Theorem 2 shows that several techniques for block Krylov subspace can
be used to form R(S) and the target eigenpairs of (1) can be obtained by solving (8).

Theorems 1 and 2 are used to derive methods in Section 3.2 and provide an error
bound in Section 3.3.

3.2 Derivations of methods

Using Theorems 1 and 2, based on the complex moment-based eigensolvers, SS-RR,
SS-Hankel, and SS-CAA, we develop complex moment-based differential eigen-
solvers for solving (1) without the discretization of operatorsA and B. The proposed
methods are projection methods based on R(S), which is a larger subspace than
R(S0) used in contFEAST (Algorithm 1).

In practice, we numerically deal with operators, functions, and the contour
integrals. The contour integral in (4) is approximated using the quadrature rule:

Ŝ = [Ŝ0, Ŝ1, . . . , ŜM−1], Ŝk =
N∑

j=1

ωjz
k
j (zjB − A)−1BV, (9)
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where zj , ωj ∈ C (j = 1, 2, . . . , N) are quadrature points and the corresponding
weights, respectively. As well as contFEAST, we avoid discretizing the operators,
but we construct polynomial approximations on the basis of the invariant subspace
by approximately solving ODEs of the form

(zjB − A)yi,j = Bvi, i = 1, 2, . . . , L, j = 1, 2, . . . , N (10)

with boundary conditions. Note that the number of ODEs to be solved does not
depend on the degree of complex moments M .

For real operatorsA and B, if quadrature points and the corresponding weights are
set symmetric about the real axis, (zj , ωj ) = (zj+N/2, ωj+N/2), j = 1, 2, . . . , N/2,
we can halve the number of ODEs to be solved as follows:

Ŝk = 2
N/2∑
j=1

Re
(
ωjz

k
j (zjB − A)−1BV

)
. (11)

As another efficient computation technique for real self-adjoint problems, we can
avoid complex ODEs using the real rational filtering technique [29] for matrix
eigenvalue problems. Using the real rational filtering technique, quasi-matrix S

is approximated by (9) with the N Chebyshev points of the first kind and the
corresponding barycentric weights,

zj = γ + ρ cos

(
(2j − 1)π

2N

)
, ωj = (−1)j sin

(
(2j − 1)π

2N

)
, (12)

for j = 1, 2, . . . , N , where γ and ρ are the center and radius of the target interval.
Note that zj , ωj ∈ R for j = 1, 2, . . . , N .

3.2.1 ContSS-RRmethod

An operator analogue of the complex moment-based method using the Rayleigh–Ritz
procedure for matrix eigenvalue problems [19, 21] is presented. Theorem 1 shows
that the target eigenpairs of (1) can be obtained by a Rayleigh–Ritz procedure based
on R(S), i.e.,

SHASt i = θiS
HBSt i ,

where (λi, ui) = (θi, St i ). We approximate this Rayleigh–Ritz procedure using an
H-orthonormal basis of the approximated subspace R(Ŝ). Here, to reduce compu-
tational costs and improve numerical stability, we use a low-rank approximation of
quasi-matrix Ŝ based on its truncated singular value decomposition (TSVD) [10], i.e.,

Ŝ = [US1, US2]
[

�S1 O

O �S2

] [
WH

S1
WH

S2

]
≈ US1�S1W

H
S1,

where �S1 ∈ R
d×d is a diagonal matrix whose diagonal entries are the d largest

singular values such that σd/σ1 ≥ δ ≥ σd+1/σ1 (σi ≥ σi+1, i = 1, 2, . . . , d)

and US1 : Cd → H and WS1 ∈ C
LM×d are column-orthonormal (quasi-)matrices

corresponding to the left and right singular vectors, respectively.
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Thus, the target problem (1) is reduced to a d-dimensional matrix generalized
eigenvalue problem

UH
S1AUS1t i = θiU

H
S1BUS1t i ,

where the approximated eigenpairs are computed as (̂λi , ûi ) = (θi, US1t i ). The
procedure of the contSS-RR method is summarized in Algorithm 2.

Algorithm 2 contSS-RR method.

3.2.2 ContSS-Hankel method

An operator analogue of the complex moment-based method using Hankel matrices
for matrix eigenvalue problems [7, 20] is presented. Let μk ∈ C

L×L be a reduced
complex moment of order k defined as

μk = 1

2π i

∮
Ṽ Hzk(zB − A)−1BV dz = Ṽ HSk

with Ṽ : CL → H. We also define block Hankel matrices

H<
M =

⎡
⎢⎢⎢⎣

μ1 μ2 · · · μM

μ2 μ3 · · · μM+1
...

...
. . .

...
μM μM+1 · · · μ2M−1

⎤
⎥⎥⎥⎦ , HM =

⎡
⎢⎢⎢⎣

μ0 μ1 · · · μM−1
μ1 μ2 · · · μM

...
...

. . .
...

μM−1 μM · · · μ2M−2

⎤
⎥⎥⎥⎦ ,

which have the following property.

Theorem 3 If rank(HM) = rank(H<
M) = m, where m is the number of eigenvalues

in � of (1), then the nonsingular part of a matrix pencil zHM −H<
M and z−P� have

the same spectrum, where P� is defined in (3).

Proof The complex moment μk can be written as

μk = Ṽ HP�Sk = Ṽ HP�C1P�Sk−1 = · · · = Ṽ HP�CkP�S0,

where C is defined in Theorem 2. Letting

S̃ =
[
Ṽ , CHṼ , . . . , (CH)M−1Ṽ

]
,
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the block Hankel matrices are written as

H<
M = S̃HP�CP�S, HM = S̃HP�S,

which proves Theorem 3.

Theorem 3 shows that the target eigenpairs of (1) can be computed via a matrix
eigenvalue problem:

H<
Myi = θiHMyi .

Note that from the equivalence

H<
Myi = θiHMyi ⇔ (P�S̃)HC(P�S)yi = θi(P�S̃)H(P�S)yi,

this approach can be regarded as a Petrov–Galerkin-type projection for (8), which
has the same finite eigenpairs as Aui = λiBui . In practice, block Hankel matrices
H<

M and HM are approximated by block Hankel matrices Ĥ<
M and ĤM whose block

(i, j) entries are μ̂i+j+1 and μ̂i+j , respectively, where

μ̂k =
N∑

j=1

Ṽ Hzk
jωj (zjB − A)−1BV = Ṽ HŜk,

for k = 1, 2, . . . , 2M − 1. To reduce computational costs and improve numerical
stability, we use a low-rank approximation of ĤM based on TSVD, i.e.,

ĤM = [UH1, UH2]
[

�H1 O

O �H2

] [
WH

H1
WH

H2

]
≈ UH1�H1W

H
H1,

where �H1 ∈ R
d×d is a diagonal matrix whose diagonal entries are the d largest

singular values such that σd/σ1 ≥ δ ≥ σd+1/σ1 (σi ≥ σi+1, i = 1, 2, . . . , d) and
UH1, WH1 ∈ C

LM×d are column-orthonormal matrices corresponding to the left and
right singular vectors, respectively.

Then, the target problem (1) is reduced to a d-dimensional standard matrix
eigenvalue problem of the form

UH
H1Ĥ

<
MWH1�

−1
H1 t i = θi t i ,

where the approximated eigenpairs can be computed as (̂λi , ûi) = (θi, ŜWH1�
−1
H1 t i ).

The procedure of the contSS-Hankel method is summarized in Algorithm 3.

3.2.3 ContSS-CAAmethod

An operator analogue of the complex moment-based method using the communica-
tion avoiding Arnoldi procedure for matrix eigenvalue problems [24] is presented.
Theorem 2 shows that the target eigenpairs of (1) can be obtained by using a block
Arnoldi method with R(S) = KM(C, S0) for (8), which has the same finite eigen-
pairs as Aui = λiBui . In this algorithm, a quasi-matrix Q : C

LM → H whose
columns form an orthonormal basis of R(S) = KM(C, S0) and a block Hessen-
berg matrix TM = QHCQ are constructed, and the target eigenpairs are computed by
solving the standard matrix eigenvalue problem

TM t i = θi t i .
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Algorithm 3 contSS-Hankel method.

Therefore, we have (λi, ui) = (θi, Qt i ).
Further, we consider using a block version of the communication-avoiding Arnoldi

procedure [30]. Let S+ = [S0, S1, . . . , SM ] : CL(M+1) → H be a quasi-matrix. From
Theorem 2, we have

CS = S+D1, D1 =
[

OL,LM

ILM

]
.

Here, based on the concept of a block version of the communication-avoiding Arnoldi
procedure, using the QR factorizations

S+ = Q+R+, S = QR,

where Q = Q+(:, 1 : LM), R = R+(1 : LM, 1 : LM), the block Hessenberg matrix
TM is obtained by

TM = QHS+D1R
−1

= QHQ+R+D1R
−1

= [ILM, OLM,L]R+D1R
−1

= R+(1 :LM, L + 1 : LM + L)R−1.

In practice, we approximate the block Hessenberg matrix TM by

T̂M = R̂+(1 :LM, L + 1 : LM + L)R̂−1,

where
Ŝ+ = [S0, S1, . . . , SM ] = Q̂+R̂+, Ŝ = Q̂R̂,

are the QR factorizations of Ŝ+ and Ŝ, respectively, Q̂ = Q̂+(:, 1 : LM), and R̂ =
R̂+(1 :LM, 1 :LM), and use a low-rank approximation of Ŝ based on TSVD, i.e.,

Ŝ = Q̂R̂ = Q̂[UR1, UR2]
[

�R1 O

O �R2

] [
WH

R1
WH

R2

]
≈ Q̂UR1�R1W

H
R1,

where �R1 ∈ R
d×d is a diagonal matrix whose diagonal entries are the d largest

singular values σd/σ1 ≥ δ ≥ σd+1/σ1 (σi ≥ σi+1, i = 1, 2, . . . , d) and UR1, WR1 ∈
C

LM×d are column-orthonormal matrices corresponding to the left and right singular
vectors of R̂, respectively.
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Then, the target problem (1) is reduced to a d-dimensional matrix standard
eigenvalue problem of the form

UH
R1T̂MUR1t i = θi t i .

The approximate eigenpairs are obtained as (̂λi , ûi ) = (θi, Q̂UR1t i ). The coefficient
matrix UH

R1T̂MUR1 is efficiently computed by

UH
R1T̂MUR1 = UH

R1R̂+(1 :LM, L+1 :LM+L)WR1�
−1
R1 .

The procedure of the contSS-CAA method is summarized in Algorithm 4.

Algorithm 4 contSS-CAA method.

3.3 Subspace iteration and error bound

We consider improving the accuracy of the eigenpairs via a subspace iteration tech-
nique, as in the matrix version of complex moment-based eigensolvers. We construct
Ŝ

(
−1)
0 via the following iteration step:

Ŝ
(ν)
0 =

N∑
j=1

ωj (zjB − A)−1BŜ
(ν−1)
0 , ν = 1, 2, . . . , 
 − 1 (13)

with the initial quasi-matrix Ŝ
(0)
0 = V . Then, instead of Ŝ in each method, we use

Ŝ(
) constructed from Ŝ
(
−1)
0 by

Ŝ(
) = [Ŝ(
)
0 , Ŝ

(
)
1 , . . . , Ŝ

(
)
M−1], Ŝ

(
)
k =

N∑
j=1

ωjz
k
j (zjB − A)−1BŜ

(
−1)
0 . (14)

The orthonormalization of the columns of Ŝ
(ν)
0 in each iteration may improve the

numerical stability.
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Now, we analyze the error bound of the proposed methods with the subspace iter-
ation technique as introduced in (13) and (14). We assume that B is invertible and all
the eigenvalues are isolated. Then, we have

(zB − A)−1B =
∞∑
i=1

1

z − λi

Pi ,

where Pi is a spectral projector associated with λi s.t. PiPj = δijPi [28, VII Section
6]. We also assume that the numerical quadrature satisfies

N∑
j=1

ωjz
k
j

{ �= 0, (k = −1)
= 0, (k = 0, 1, . . . , N − 2)

.

Under the above assumptions, for k = 0, 1, . . . , M − 1, the quasi-matrix Ŝ
(
)
k can be

written as

Ŝ
(
)
k =

N∑
j=1

zk
j (zjB − A)−1BŜ(
−1)

=
∞∑
i=1

⎛
⎝ N∑

j=1

ωjz
k
j

zj − λi

⎞
⎠
⎛
⎝ N∑

j=1

ωj

zj − λi

⎞
⎠


−1

PiV

=
∞∑
i=1

λk
i

⎛
⎝ N∑

j=1

ωj

zj − λi

⎞
⎠




PiV

= CkF
V ,

where

F =
∞∑
i=1

fN(λi)Pi , fN(λi) =
N∑

j=1

ωj

z − λi

.

From the definitions of C and F , these operators are commutative, CF = FC.
Therefore, we have

Ŝ(
) = F
[V, CV, . . . , CM−1V ]. (15)
Here, fN(λi) is called the filter function; it is used for error analyses of complex

moment-based matrix eigensolvers [16, 23, 26, 27]. Figure 1 shows the magnitude of
the filter function |fN(λi)| for the N-point trapezoidal rule with N = 16, 32, and 64
for the unit circle region �. Here, note that the oscillations at |fN(λ)| ≈ 10−16 are
due to roundoff errors. The filter function has |fN(λ)| ≈ 1 inside �, |fN(λ)| ≈ 0 far
from �, and 0 < |fN(λ)| < 1 outside but near the region. Therefore, F is a bounded
linear operator.

Applying [15, Theorem 5.1] to (15) under the above assumptions, we have the
following theorem for an error bound of the proposed methods.

Theorem 4 Let (λi, ui) be exact finite eigenpairs of the differential eigenvalue prob-
lem Aui = λiBui, i = 1, 2, . . . , LM . Assume that the filter function fN(λi) is
ordered by decreasing magnitude |fN(λi)| ≥ |fN(λi+1)|. We define as an orthogonal
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Fig. 1 Magnitude of the filter functions for the N -point trapezoidal rule for the unit circle region �

projector onto the subspaces R(Ŝ(
)) and the spectral projector with an invari-
ant subspace span{u1, u2, . . . , uLM} by P(
) and PLM , respectively. Assume that
PLMŜ(0) has full rank, where Ŝ0 is defined in (14). Then, for each eigenfunction
ui, i = 1, 2, . . . , LM , there exists a unique function si ∈ K�

M(C, V ) such that
PLMsi = ui . Thus, the following inequality is satisfied:

‖(I − P(
))ui‖H ≤ αβi

∣∣∣∣fN(λLM+1)

fN(λi)

∣∣∣∣



, i = 1, 2, . . . , LM, 
 = 1, 2, . . . ,

where α is a constant and βi = ‖ui − si‖H.

Theorem 4 indicates that, using a sufficiently large number of columns LM in
the transformation quasi-matrix Ŝ such that |fN(λLM+1)|
 ≈ 0, the proposed meth-
ods achieve high accuracy for the target eigenpairs even if N is small and some
eigenvalues exist outside but near the region.

3.4 Summary and advantages over existingmethods

We summarize the proposed methods and present their advantages over existing
methods.

3.4.1 Summary of the proposedmethods

ContSS-RR is a Rayleigh–Ritz-type projection method that explicitly solves (1); on
the other hand, contSS-Hankel and contSS-CAA are a Petrov–Galerkin-type pro-
jection method and block Arnoldi method that implicitly solve (8), respectively.
If the computational cost for explicit projection, i.e., UH

S1AUS1 and UH
S1BUS1 in

contSS-RR, is large, contSS-Hankel and contSS-CAA can be more efficient than
contSS-RR.

Orthogonalization of basis functions is required for contSS-RR (step 3 of Algo-
rithm 2) and contSS-CAA(step 5 of Algorithm 4) for accuracy but not performed
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in contSS-Hankel. This is the advantage of contSS-Hankel regarding computa-
tional costs over other methods. In addition, this is advantageous for contSS-Hankel
when applied to DEPs over a domain for which it is difficult to construct accurate
orthonormal bases in such as triangles and tetrahedra domains.

As well as contFEAST, since solving LN ODEs (10) is the most-time consuming
part of the proposed methods and is fully parallelizable, the proposed methods can
be efficiently parallelized.

3.4.2 Advantages over contFEAST

ContFEAST is a subspace iteration method based on the L dimensional subspace
R(Ŝ0) for (1). Instead, the proposed methods are projection methods based on the
LM dimensional subspace R(Ŝ). From Theorem 4, we can also observe that the pro-
posed methods using higher-order complex moments achieve higher accuracy than
contFEAST, since |fN(λLM+1)| < |fN(λL+1)|. In other words, the proposed meth-
ods can use a smaller number of initial functions L than contFEAST to achieve
almost the same accuracy. Since the number of ODEs to solve isLN in each iteration,
the reduction of L drastically reduces the computational costs.

Therefore, the proposed methods exhibit smaller elapsed time than contFEAST,
while maintaining almost the same high accuracy, as experimentally verified in
Section 4.

3.4.3 Advantages over complex moment-basedmatrix eigensolvers

Methods using a “solve-then-discretize” approach, including the proposed methods
and contFEAST, automatically preserves the normality or self-adjointness of the
problems with respect to a relevant Hilbert spaceH. In addition, the stability analysis
in [15] shows that the sensitivity of the eigenvalues is preserved by Rayleigh–Ritz-
type projection methods with an H-orthonormal basis for self-adjoint DEPs, but
can be increased by methods using a “discretize-then-solve” approach. As well as
contFEAST, contSS-RR follows this result.

Based on these properties, the proposed methods exhibit much higher accuracy
than the complex moment-based matrix eigensolvers using a “solve-then-discretize”
approach, as experimentally verified in Section 4.

4 Numerical experiments

In this section, we evaluate the performances of the proposed methods, contSS-RR
(Algorithm 2), contSS-Hankel (Algorithm 3), and contSS-CAA (Algorithm 4), and
compare them with that of contFEAST (Algorithm 1) for solving DEPs (1). Although
the target problem of this paper is DEPs with ordinary differential operators, here we
apply the proposed methods to DEPs with partial differential operators and evaluate
their effectiveness.

The compared methods use the N-point trapezoidal rule to approximate the
contour integrals. In Sections 4.1–4.4 (Experiments I–IV) for ordinary differential
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operators, the quadrature points for the N-point trapezoidal are on an ellipse with
center γ , major axis ρ, and aspect ratio α, i.e.,

zj = γ + ρ
(
cos(θj ) + αi sin(θj )

)
, θj = 2π

N

(
j − 1

2

)
, j = 1, 2, . . . , N .

The corresponding weights are set as

ωj = ρ

N

(
α cos(θj ) + i sin(θj )

)
, j = 1, 2, . . . , N .

Here, for real problems, we used (11) to reduce the number of ODEs to be solved. In
Section 4.5 (Experiment V) for partial differential operators, we used the real rational
filtering technique (12) to avoid complex partial differential equations (PDEs). For
the proposed methods, we set δ = 10−14 for the threshold of the low-rank approxi-
mation. In all the methods, we set V : CL → H to a random quasi-matrix, whose
columns are randomly generated functions represented by using 32 Chebyshev points
on the same domain with the target problem.

Methods were implemented using MATLAB and Chebfun [8]. ODEs and PDEs
were solved by using the “\” command of Chebfun. All the numerical experiments
were performed on a serial computer with the Microsoft (R) Windows (R) 10 Pro
Operating System, an 11th Gen Intel(R) Core(TM) i7-1185G7@ 3.00GHz CPU, and
32GB RAM.

4.1 Experiment I: proof of concept

For a proof of concept of the proposed methods, i.e., to show an advantage of the pro-
posed method in the “solve-then-discretize” paradigm over a “discretize-then-solve”
approach in terms of accuracy, we tested on the one-dimensional Laplace eigenvalue
problem

− d2

dx2
ui = λiui, ui(0) = ui(π) = 0. (16)

Note that the true eigenpairs are (λi, ui) = (i2, sin(ix)), i ∈ Z+. We computed four
eigenpairs such that λi ∈ [0, 20].

First, we apply standard “discretize-then-solve” approaches for solving (16) in
which the coefficient operator is discretized by a three-point central difference. The
obtained matrix eigenvalue problem of size n is

1

h2

⎡
⎢⎢⎢⎢⎣

2 −1

−1
. . .

. . .
. . .

. . . −1
−1 2

⎤
⎥⎥⎥⎥⎦u(n) = λ(n)u(n), h = π

n + 1
, (17)

and its eigenvalues can be written as

λ
(n)
i =

(
2 − 2 cos

(
iπ

n + 1

))(
n + 1

π

)2

. (18)
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Note that we have limn→∞ λ
(n)
i = i2. We computed the eigenvalues using (18)

with increasing n. We also applied SS-RR [21] with (L, M, N) = (3, 2, 16) to the
discretized problem (17) for each n.

The absolute errors of approximate eigenvalues computed by the “discretize-
then-solve” approaches are shown in Fig. 2. The errors decrease with increasing n;
however, the errors turn to increase at n ≈ 105 when using (18) due to rounding error
and n ≈ 106 for SS-RR due to quadrature and rounding errors. The error reaches a
minimum approximately 10−8 and 10−10 when using (18) and SS-RR, respectively.

Next, we apply contSS-RR with (L, M, N) = (3, 2, 16) to (16). Here, we
set (γ, ρ, α) = (10, 10, 1) for the contour path. The obtained eigenvalues and
eigenfunction are shown in Table 1 and Fig. 3, respectively. In contrast to the
“discretize-then-solve” approach, the proposed method achieves much higher accu-
racy (absolute errors are approximately 10−14), which shows effectiveness of the
“solve-then-discretize” approach over the “discretize-then-solve” approach. This is
one of the greatest advantages of the proposed method over complex moment-based
matrix eigensolvers.

These results demonstrate that the proposed methods work well for solving DEPs
without discretization of the coefficient operator.

4.2 Experiment II: parameter dependence

We evaluate the parameter dependence of contSS-RR with the subspace iteration
technique and contFEAST on the convergence. We computed the same four eigen-
pairs λi ∈ [0, 20] of (16) using the same (γ, ρ, α) = (10, 10, 1) for the contour path
as used in Section 4.1. We evaluate the convergence of contSS-RR with (L, N) =
(4, 4) varying M = 1, 2, 3, 4 and with (M, N) = (1, 4) varying L = 4, 8, 12, 16,
and contFEAST with N = 4 varying L = 4, 8, 12, 16.

We show the residual history of each method in Fig. 4(a)–(c) regarding residual
norm ‖ri‖H = ‖Aûi − λ̂iBûi‖H. The convergences of contFEAST and contSS-RR
withM = 1 are almost identical and improve with an increase inL (Fig. 4(a) and (b)).

Fig. 2 Absolute error of eigenvalue of “discretize-then-solve” approaches for the Laplace eigenvalue
problem (16)
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Table 1 True and obtained eigenvalues of the contSS-RR method for the Laplace eigenvalue problem (16)

True eigenvalue Obtained eigenvalue Absolute error

1.0 0.999999999999997 3.00 × 10−15

4.0 4.000000000000006 6.22 × 10−15

9.0 9.000000000000020 1.95 × 10−14

16.0 16.000000000000011 1.07 × 10−14

We also observed that, in contSS-RR, increasing M also improves the convergence
to the same degree as increasing L (Fig. 4(c)).

We also show in Fig. 4(d) the theoretical convergence rate obtained from The-
orem 4, i.e., maxλi∈�|fN(λLM+1)/fN(λi)|, and the evaluated convergence rate of
each method, i.e., the ratio of the residual norm between the first and second itera-
tions. Although, in contSS-RR, increasing L indicates a slightly smaller convergence
rate than increasing M , both evaluated convergence rates are almost the same as the
theoretical convergence rate obtained from Theorem 4.

These results demonstrate that the proposed method with M ≥ 2 achieves fast
convergence even with a small value ofL. This contributes to the reduction in elapsed
time, which will be shown in Section 4.3.

4.3 Experiment III: performance for real-world problems

Next, we evaluate the performances of the proposed methods without iteration
(
 = 1) and compare them with those of contFEAST and the “eigs” function [31]
in Chebfun for the following six eigenvalue problems: two for computing real outer-
most eigenvalues, two for computing real interior eigenvalues, and two for computing
complex eigenvalues.

Fig. 3 Obtained eigenfunction of the contSS-RR for the Laplace eigenvalue problem (16)
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Fig. 4 Convergence for the Laplace eigenvalue problem (16)

• Real Outermost: Mathieu eigenvalue problem [32]:

(
− d2

dx2
+ 2q cos(2x)

)
u = λu, u(0) = u(π/2) = 0

with q = 2. It has only real eigenvalues. We computed 15 eigenpairs correspond-
ing to outermost eigenvalues λi ∈ [0, 1000].

• Real Outermost: Schrödinger eigenvalue problem [33, Chapter 6]:

(
− �

2m

d2

dx2
+ V (x)

)
u = λu, u(−1) = u(1) = 0

with a double-well potential V (x) = 1.5, x ∈ [−0.2, 0.3], where we set �/2m =
0.01. It has only real eigenvalues. We computed 19 eigenpairs corresponding to
outermost eigenvalues λi ∈ [0, 10].

• Real Interior: Bessel eigenvalue problem [34]:

(
x2 d2

dx2
+ x

d

dx
− α2

)
u = −λx2u, u(0) = u(1) = 0

with α = 1. It has only real eigenvalues. We computed 11 eigenpairs correspond-
ing to interior eigenvalues λi ∈ [500, 3000].
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• Real Interior: Sturm–Liouville-type eigenvalue problem:(
− d2

dx2
+ x2

)
u = λ cosh(x)u, u(−1) = u(1) = 0,

which is used in [15]. It has only real eigenvalues. We computed 12 eigenpairs
corresponding to interior eigenvalues λi ∈ [200, 1000].

• Complex: Orr–Sommerfeld eigenvalue problem [35]:{
1

Re

(
d2

dx2
− α2

)2 − iα
[
U
(

d2

dx2
− α2

)
+ U ′′

]}
u = λ

(
d2

dx2
− α2

)
u,

u(−1) = u(1) = 0

with α = 1 and U = 1 − x2. We solved two cases with Re = 1000 and Re =
2000. They have complex eigenvalues. We computed 18 eigenpairs for Re =
1000 and 28 eigenpairs for Re = 2000 shown in Fig. 5.

Tables 2 and 3 give the contour path and values of parameters for each problem. The
“eigs” function in Chebfun with parameters k and σ computes k closest eigenvalues
to σ and the corresponding eigenfunctions. We set the parameters k and σ to the
number of input functions L of contFEAST in Table 3 and the center of contour path
γ in Table 2, respectively.

Figures 6 and 7 show the residual norms ‖ri‖H = ‖Aûi − λ̂iBûi‖H for each
problem and Fig. 8 shows the elapsed times for each problem. In Fig. 8, “Solve
ODEs,” “Orthonormalization,” “Matrix Eig,” and “MISC” denote the elapsed times
for solving ODEs (10), orthonormalization of the column vectors of Ŝ, construction
and solution of the matrix eigenvalue problem, and other parts including computation
of the contour integral, respectively.

First, we discuss the accuracy of the presented methods. For the real outermost
and interior problems (Fig. 6), the residual norms of contFEAST decrease with more
iterations reaching ‖ri‖H ≈ 10−10 at 
 = 3 for the target eigenpairs. ContSS-RR
and contSS-CAA demonstrate almost the same high accuracy (‖ri‖H ≈ 10−10) as

Fig. 5 Eigenvalues computed by the “eigs” function in Chebfun for the Orr–Sommerfeld eigenvalue
problem
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Table 2 Contour path and the number of target eigenpairs

Problem Contour path # eigs

γ ρ α m

Mathieu 500 500 0.1 15

Schrödinger 5 5 0.1 19

Bessel 1750 1250 0.1 11

Sturm–Liouville 600 400 0.1 12

Orr–Sommerfeld (Re = 1000) −0.4 − 0.6i 0.5 1.0 18

Orr–Sommerfeld (Re = 2000) −0.4 − 0.6i 0.5 1.0 28

contFEAST with 
 = 3; on the other hand, contSS-Hankel shows lower accuracy
than the others except for the Bessel eigenvalue problem. The residual norms for the
eigenvalues outside the target region tend to be large depending on the distance from
the target region. The experimental results exhibit a similar trend for both outermost
and interior problems.

For the complex problems (Fig. 7), the residual norms of contFEAST stagnate at
‖ri‖H ≈ 10−7 for Re = 1000 and ‖ri‖H ≈ 10−6 for Re = 2000 in 
 = 2. ContSS-
RR achieves almost the same accuracy as contFEAST; on the other hand, SS-Hankel
and contSS-CAA are less accurate than contFEAST and contSS-RR.

Next, we discuss the elapsed times of the methods (Fig. 8). For the complex
moment-based methods, most of the elapsed time is spent on solving the ODEs.
The total elapsed time of contFEAST increases in proportion to the number of itera-
tions 
. Although contSS-RR and contSS-CAA account for larger portions of elapsed
time for orthonormalization of the basis functions of R(Ŝ) because they use a larger
dimensional subspace (Section 3.4.2), the proposed methods exhibit much less total
elapsed times than contFEAST. The proposed methods are over eight times faster

Table 3 Parameters

Problem Parameters

contSS contFEAST

L M N L N 


Mathieu 5 8 16 20 16 1–3

Schrödinger 5 8 16 20 16 1–3

Bessel 5 8 16 15 16 1–3

Sturm–Liouville 5 8 16 15 16 1–3

Orr–Sommerfeld (Re = 1000) 10 8 32 20 32 1–3

Orr–Sommerfeld (Re = 2000) 20 8 32 40 32 1–3
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Fig. 6 Residual norm for real outermost and interior problems
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Fig. 7 Residual norm for complex problems

than contFEAST with 
 = 3 for real problems and over four times faster than cont-
FEAST with 
 = 2 for complex problems, while maintaining almost the same high
accuracy.

We also compare the performance of the proposed methods with that of the “eigs”
function in Chebfun. As shown in Fig. 8, the “eigs” function is much faster than
the proposed methods and contFEAST. On the other hand, Figs. 6 and 7 show that
the “eigs” function exhibits significant losses of accuracy in several cases (‖ri‖H ≈
10−5 for the Bessel eigenvalue problem, ‖ri‖H ≈ 10−4 for the Orr–Sommerfeld
eigenvalue problems with Re = 1000, and ‖ri‖H ≈ 10−2 for the Orr–Sommerfeld
eigenvalue problems with Re = 2000) and is unrobust in accuracy relative to the
complex moment-based methods.

4.4 Experiment IV: parallel performance

As demonstrated in Section 4.3, the most time-consuming part of the complex
moment-based methods is the solutions ofLN ODEs (10). Since theseLN ODEs can
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Fig. 8 Elapsed time for each problem

be solved independently, the methods are expected to have high parallel performance.
Here, we estimated the strong scalability of the methods by using the following

performance model. We assume that the elapsed time T
(j)

ODE for solving ODEs (10)
depends on the quadrature point zj but is independent of the right-hand side Bvi . We
also assume that the elapsed time TQP for other computation at each quadrature point
is independent of the quadrature point zj . In addition, we let Tother be the elapsed
time for computation of other parts in each method, respectively. The LN ODEs are
solved in parallel by P processes, computations at quadrature points are parallelized
in min(P, N) processes, and other parts are computed in serial.
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Then, using the measured elapsed times T
(j)

ODE, TQP, and Tother, we estimate the
total elapsed time Ttotal(P ) of each method in P processes as

Ttotal(P ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

max
p=1,2,...,P




⎛
⎝ ∑

j∈Jp

LT
(j)

ODE + TQP

⎞
⎠+ Tother (P ≤ N),

max
j=1,2,...,N


�LN/P �T (j)

ODE + TQP + Tother (P > N),

where Jp is the index set of quadrature points equally assigned to each process p

and �·� denotes the ceiling function.
We estimated the strong scalability of methods for solving the Orr–Sommerfeld

eigenvalue problem with Re = 2000. We used the same parameter values as in
Section 4.3. Figure 9 shows the estimated time and strong scalability of methods.
This result demonstrates that all the methods exhibit highly parallel performance.
The proposed methods, especially contSS-Hankel, are much faster than contFEAST
even with a large number of processes P , although contFEAST shows slightly better
scalability than the proposed methods.

4.5 Experiment V: performance for partial differential operators

The complex moment-based methods can be extended to partial differential operators
in a straightforward manner in which L PDEs are solved regarding each quadrature
point.

Here, we evaluate the performances of the proposed methods without iteration
(
 = 1) and compare them with that of contFEAST for two real self-adjoint
problems:

• 2D Laplace eigenvalue problem:

− �

2m

(
∂2

∂x2
+ ∂2

∂y2

)
u = λu

Fig. 9 Estimated time and strong scalability for Orr–Sommerfeld eigenvalue problem with Re = 2000
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Table 4 True and obtained eigenvalues of the contSS-RR method for the 2D-Laplace eigenvalue problem

True eigenvalue Obtained eigenvalue Absolute error

2.0 1.999999999999963 3.73 × 10−14

5.0 4.999999999999198 8.02 × 10−13

5.0 4.999999999999917 8.34 × 10−14

8.0 7.999999999999917 8.34 × 10−14

in a domain [0, π ] × [0, π ] with zero Dirichlet boundary condition. The true
eigenvalues are i2x + i2y with ix, iy ∈ Z+. We computed 4 eigenpairs, counting
multiplicity, corresponding to λi ∈ [0, 9]. Note that the target eigenvalues are
2, 5, and 8, where the eigenvalue 5 has multiplicity 2.

• 2D Schrödinger eigenvalue problem:

[
− �

2m

(
∂2

∂x2
+ ∂2

∂y2

)
+ V (x, y)

]
u = λu

Fig. 10 Residual norm for 2D problems
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Fig. 11 Elapsed time for 2D problems

in a domain [−1, 1] × [−1, 1] with a potential V (x) = 0.1(x + 0.4)2 + 0.1(y −
0.8)2 and zero Dirichlet boundary condition, where we set �/2m = 0.01. We
computed 5 eigenpairs corresponding to λi ∈ [0.15, 0.4].

For both problems, we set (L, M, N) = (2, 4, 24) for the proposed methods and
(L, N) = (6, 24) for contFEAST.

Table 4 gives the obtained eigenvalues of contSS-RR for the 2D Laplace eigen-
value problem. In addition, residual norms ‖ri‖H = ‖Aûi − λ̂iBûi‖H for each
problem are presented in Fig. 10 and the elapsed times for each problem are presented
in Fig. 11.

We observed from Table 4 and Fig. 10 that, as in the case of ordinary differential
operators, the proposed methods work well for solving DEPs with partial differential
operators even for a non-simple case (2D-Laplacian eigenvalue problem). In addi-
tion, the proposed methods exhibit much lower elapsed times than contFEAST (see
Fig. 11), although the elapsed times for orthonormalization of the column vectors of
Ŝ and construction of the matrix eigenvalue problem are relatively larger than the
cases of ordinary differential operators in Section 4.3.

4.6 Summary of numerical experiments

From the numerical experiments, we observed the following:

• As well as contFEAST, the proposed methods in the “solve-then-discretize”
paradigm exhibit a much higher accuracy than the “discretize-then-solve”
approach for solving DEPs (1).

• Using higher-order complex moments improves the accuracy as well as increas-
ing the number of input functions L.

• Thanks to the higher-order complex moments, the proposed methods are over
eight times faster for real problems and more than four times faster for complex
problems compared with contFEAST while maintaining almost the same high
accuracy.

718 Numerical Algorithms (2023) 92:693–721



5 Conclusion

In this paper, based on the “solve-then-discretize” paradigm, we propose opera-
tion analogues of the Sakurai–Sugiura’s approach, contSS-Hankel, contSS-RR, and
contSS-CAA, for DEPs (1), without discretization of operators A and B. Theoreti-
cal and numerical results indicate that the proposed methods significantly reduce the
number of ODEs to solve and elapsed time by using higher-order complex moments
while maintaining almost the same high accuracy as contFEAST.

As well as contFEAST, the proposed methods based on the “solve-then-discretize”
paradigm exhibit much higher accuracy than methods based on the traditional
“discretize-then-solve” paradigm. This study successfully reduced the computa-
tional costs of contFEAST and is expected to promote the “solve-then-discretize”
paradigm for solving differential eigenvalue problems and contribute to faster and
more accurate solutions in real-world applications.

This paper did not intend to investigate a practical parameter setting, round-
ing error analysis and parallel performance evaluation. In future, we will develop
the proposed methods and evaluate the parallel performance specifically for higher
dimensional problems. Furthermore, based on the concept in [36], we will rigorously
evaluate the truncation error of the quadrature and numerical errors in the pro-
posed methods and investigate a verified computation method based on the proposed
methods for differential eigenvalue problems.
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