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Introduction.

Let p(u) be a Weierstrass elliptic function satisfying @ '(u)?=4pw)?>—1. Let
{:=e?"/> Then g(u) has a property @(—C{u)=Cg(u). If b is an element of Z[{], the
integer ring generated by {, we have a b-multiplication formula of g(u). If b is a prime
element and b=1mod 3, the b-multiplication formula is of the form

P 1+ --+b)
(bgo(u)‘m"”/z + 4+ 1)2 i

(0.1) | go(bu)=

and all the coefficients belong to Z[({]. (These facts seem to be already known to
Eisenstein [6]). Therefore the product of the roots { (1)} except for 0 of the numerator
is equal to +b, and the product of reciprocals of the roots {g(u)} of the denominator
is equal to b2. So we have factorization of » or 52 in an extended integer ring of Z[{].
Analogous fact is known for a function gp(u) satisfying g '(4)? =4p(u)® — p(u).

By using these facts essentially, the cubic and quartic Gauss sums were deeply
investigated (see [12] and [13]). So it seems natural for us to expect the existence of
formulae analogous to (0.1) for curves of higher genus. A remarkable formula was
discovered by D. Grant for the curve of genus two defined by y2=x5+1/4 ([9]).

The purpose of this paper is to generalize his formula. Let C be a curve of genus
g (=1) defined by y?=f(x), where f(x) is a polynomial of degree 2g+ 1. Let J denote
the Jacobian variety of the curve C, and 1 : C =, J the canonical embedding. We identify
J with a complex torus C?/A where A is a lattice of C?%. Let u=(u,, - - ", u,) be the
canonical coordinate system of C? and ¢(u) a meromorphic function on C#%/A. We
assume that ¢(u) satisfies @(—u)= — @(u), because the Abelian functions @(u) we treat
in this paper are odd or even functions. In the below, we denote by x(u) and y(u) the
values of x-coordinate and y-coordinate, respectively, at « such that uez(C). Then the
restriction to 1(C) of the map u+ @(bu) gives an algebraic function. Hence @o1 has a
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rational expression of x(u) and y(u). Since x(—u)=x(u) and y(—u)= — y(u), we have an
expression
V()P(x(u))
0.2 b=~
0.2 o(bu) 00()

with polynomials P(X) and Q(X). Here we do not mention the irreducibility of right-
hand side of the expression. We regard (0.2) as a generalization of (0.1). We also call
such formula a b-multiplication formula. However, our aim is, as mentioned about (0.1),
to find a nice Abelian function ¢@(u) such that every root of its numerator P(X) (or its
denominator) is an algebraic integer and the product of the roots gives a factorization
of b or of a product of conjugates of b, in a certain integer ring.

The author found several such functions ¢(u) in the family of polynomials of
hyperelliptic g-functions constructed by H. F. Baker ([2], [3] and [4]) as Grant did,
because the author believes all the roots of P(X) and Q(X) or all of their reciprocals
are algebraic integers. We will prove that the numerator of the complex multiplication
formula of each our function has required properties. Our functions ¢(v) are Abelian
functions associated to the following curves: curves of genus two defined by y2=x°+1/4
(Grant’s case) and by y?=x°—x, and those of genus three defined by y?=x7+1/4 and
by y2=x7—x (see Theorems 6.1.6, 6.2.5, 7.1.6 and 7.2.5, respectively). Unfortunate-
ly it is generally unknown the existence of such nice functions. So the author do not
explain how to find such functions.

In Section 1, we recall the fundamental facts about hyperelliptic functions from
[2], [3] and [4]. We introduce a well-tuned theta series o(u) called the sigma function,
and define Abelian functions called (hyperelliptic) g-functions as second derivatives of
log o(u). They are nice generalization of sigma function and g-function of Weierstrass.
So our function ¢(u) is a rational function of a(u) and its (higher) derivatives. Dividing
its numerator and denominator by certain power of o(u) or of its derivative yields the
expression just obtained by rewriting (0.2) in terms of o(z) and its derivatives. In this
expression, the denominator is the so-called psi function. We can prove the psi function
is a polynomial of x(¥) or polynomial of x(u) multiplied by y(u) when u e (C).

Now we have a rational expression of P(x(u)) in terms of a(u), o(bu), and their
derivatives. We investigate P(x(u)) by using Taylor expansions of ¢(u). Such expansions
are given by using differential equations of the sigma function after investigation of
singularity of the theta divisor. Let u=Pye1(C) be a point such that x(Py)=0. For
each of our curves such point P, is a torsion point in J. For instance, in the case of
g@(u) used in (0.1), a point P, such that @(Py)=0 is (1 —{)-torsion. Suppose P, be a
c-torsion point for a non-trivial endomorphism ¢. Assume beEnd(J), the ring of
endomorphisms of J, satisfies #= 1 modc? in End(J). Then we can obtain very explicitly
first several terms of the Taylor expansion of &(u) at the image of co and P, of C by
the embedding :. This expansion at oo gives the expansion of ¢(bu) on 1(C) at 1{o0).
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Hence we can determine the highest term of P(X).

The most difficult part is to give the Taylor expansion of a(bu) at u=P,. Since
o(bu)=o(b(u— Py)+ Py +(b—1)P,) and (b—1)Pye A by the assumption of b, we may
first use the expansion of a(v+ P,) at v=0. However, we need an explicit relation of
the leading coefficients of expansions of a(v + Py) and o(bv + P,) at v=0. We can express
a(P,) as a special value of exponential of the linear form associated with the translational
formula. The final form of the expansion of a(bu) at u= P, is obtained in Part IT by
using this expression. Thus we can determine the lowest term of P(X) by this expansion.
Grant determines the lowest term of P(X) for the curve y?>=x>+1/4 by induction on
b. Since the author can not generalize such induction to other curves, he determmes it
by using the Taylor expansion at P,.

In Sections 6 and 7, we prove the main results for our curves of genus two and
three, respectively. As an instruction, we give proofs of original formulae for elliptic
curves in Section 5 by the method of ours.

We do not discuss the integrality of the coefficients of P(X) in this paper. For the
curve y2=x°+1/4, the integrality of the coefficients of P(X) is essentially proved by
Grant (see [17]), and for the curve y2=x7° —x, such thing seems to be proved similarly.
The author is now preparing tools to investigate the coefficients for curves of genus
three. ‘

If we use most of the results up to Section 4, we can investigate lower and higher
terms of the polynomial expression in terms of x(u) of the numerator of an arbitrary
Abelian function which is a polynomial of Baker’s @-functions. Furthermore, if we
take a 2-torsion point @, instead of P, (then y(Q,)=0) and y instead of x, we can find
many Abelian functions such that their coefficients have similar properties like the above
¢(u). The reason that the author does not discuss such minor formulae is that he wants
to find a formula which gives a non-canonical way to give certain power-root of b or
of a product of conjugates of & as a partial product as in [12] and [13].

CoNvVENTION. We denote, as usual, by Z, Q, R and C the ring of rational
integers, the field of rational numbers, the field of real numbers and the field of complex
numbers, respectively. The imaginary unit is denoted by i. For a variety V, the global -
sections of a sheaf & on V is denoted by I'(V, #). The sheaf associated to a divisor
D is denoted by (D). In an expression of the Laurent expansion of a function, the
symbol (d°(z,, - -, z;,)=n) means the terms of total degree at least » with respect to
the variables z;, - - -, z;. When the member of variables or the least total degree are
clear from the context, we simply use the symbol (d°>n) or the dots - -+~

For cross references, we indicate a formula as (1.2.3), and each of Lemmas,
Propositions, Theorems and Remarks as 4.5.6 for example.
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I. Hyperelliptic Abelian Functions and Theta Divisor

In this part we treat fundamentals of the theory of hyperelliptic functions.

Generalities.

1.1. Differential forms and period matrices. Let C be a smooth projective model

of a curve of genus g > 0 defined over C whose affine equation is given by y2 =f(x), where

f(x)=:10+/11x+112x2+ Tt +Azg+1x29+1 .

In this paper, we keep the agreement A,,,,=1. We use, however, the letter 4,,,, too
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when this notation makes easy to read an equation of homogeneous weight (for example,
1.5.1 below). The roots of the equation f(x)=0 are denoted by '

(1.1.1) C1,81,Ca, 8y, " * ", Cpy Gy, C

according to their positions (cf. Figure 1). We denote by oo the point of C at infinity.
It is known that the set of
. =14
w“’:=x X (j=1,"',g)
2y
makes a basis of the vector space I'(C, Q1), where Q! is the sheaf of differential forms
of the first kind (see [13, p. 3.77]). Let

297J
"(j):zi Z (k+1_j)j'k+1+jxkdx (J=1--,9),
2y k=;
which are differential forms of the second kind without poles except at oo (see [2,
p. 195, Ex. i] or [3, p. 314]). We fix generators «@, B® (i=1, - - -, g) of the fundamental
group of C such that their intersections are o+ aP=p".gV=0, @ gP=4;; for
i,j=1, - -+, g as illustrated in Figure 1.

4 -
I’ I‘ 4 ‘\ ‘\
* 0 (e L0 (¢, @, 0\ (c, 0)

AW
FiGURE 1
As usual we let
1 1 1) ... 1
fan@® - [, o® fgmw( ) fgmw( )
w'= : I ,  w'i= : I
j‘a(”w(y) e L(mw(g) j‘ﬂmw(y) NN j‘ﬂmw(g)

be the period matrices. Then the modulus of Cis given by Z:=w’~ '@”. The lattice of
periods is denoted by A, that is

Ai=w''[Z Z - Z]+o"[Z Z --- Z] (cCY.
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We also introduce the matrices of quasi-period:

Iael)’?(l) T L,(,m‘”
ni= e ,  nli= : .
[ann® - [ 0@ fpnn® - [ pun®

1.2. The Jacobian variety, the theta divisor. Let J be the Jacobian variety of the
curve C. We identify J with the Picard group Pic®(C) of the linearly equivalent classes
of divisors of degree zero of C. Let Sym?(C) be the g-th symmetric product of C. Then
we have a birational map

jﬁm”m o @
B

Sym?(C) — Pic°(C)=J
(Py, =+, P)r>theclassof Py + -+ P,—g-o0.
As an analytic manifold, J is identified with C%/A. We denote by x the canonical
mapC?—C?9%A=J. We embed C into J by 1: Qr— Q— 0. Let & be the theta divisor,

that is, the divisor of J determined by the set of classes of the form P,+---+
P, i—(g—1)-w.

1.3. The hyperelliptic sigma Function o(u). We let

t t L
S I U T | L_'lgg-1 1 o
o -—[77 7]’ o= [TT 7] and ‘5-“[5]'

For a and b in (3 Z)?, we let

9[ ‘; ](z)=.9[ : ](z - Z)

= Y exp2ri{}(n+a)Z(n+a)+(n+a)z+b)}] .

neZ¢
Then the hyperelliptic sigma function on C? associated with C is defined by
Fu)=exp(—3un’'w’ 1 'w)I[6](w’ " ''u; Z)
up to a multiplicative constant. We fix the constant as follows:

LeMMA 1.3.1. (1) The lowest terms of the Taylor expansion of 6(u) at u=0 contain
the term yu,uy * * - u, if g is odd, or yuyus - - - u,_, if g is even, with a non-zero constant
y independent of uy, ‘- -, u,;

(2) The function 6(u) is an odd function if g=1,2 mod4, and is an even one if
g=3,0 mod4;

(3) The divisor of &(u) is the pull-back of @ by the map x : C*>C?/A=J.

Proor. For a proof of (1), see [3, p. 353]. The statements (2) and (3) are given
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i [15, p. 3.97, p. 3.100], Proposition 6.3(c), respectively. [
In this paper, we make the following normalization: we let
7 o(u): =7 16(u).

The constant y in ‘1.3.1 for curves of genus two is studied in [7]. For more details on
o(u), we refer the reader to [1] and [3].

1.4. Hyperelliptic Abelian functions o). Forj k,---,re{l,---, g}, let

J
)=o), =G,
(1.4.1) “i “i

2 G,
@) = — Oua, 00 loga(u), g (1) =6_uj k... 1) .

Then the functions g;,...(u) are Abelian functions on the Jacobian variety J of C. We
call each of these functions, simply, a g-function when we talk about their uniform
properties. In the genus one case, the function g,,(u) is essentially the Weierstrass
elliptic function.

Let (u,, - - -, u,) be the system of variables of o(u). Then we can find a set of g
points {xy, ¥;), - * -, (x,, ¥,) on C such that

(x1,y1) . (xg, ¥4} .
(14.2) _uf=f w“’+---+j o (j=1"9)

with certain paths of integrals. In this situation, the g@-functions are characterized as
follows ([3, p. 377]).

LEMMA 1.4.1.  Assume that the variables uy, ", u, of o(u) depend on g variable
points (xq, y1), =, (x4, ¥,) of C by the equation (1.4.2). Let

g 4 .
F(X,,Xy)= Z X{X(hpj i (X + X))+ 24,)) .
=0

Then the functions g(u) are characterized by the equations

: i i Sé’jk(u)x,"‘lx’ﬂ:' F(x,, x5) =2y, ys ,

i=1k=1 ’ (x, —x,)*

g a
x? ——j;l @i u)x; " 1=0

SJor v, s=1, -+, g with r#s. Especially, the functions g,;(u) are defined over the field
QAg, * 5 Aggs 1), and (=17, (u) is the elementary symmetric function of degree
g—ij+1lofx,, -, x,
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For more details on g-functions, we refer the reader to [2] and [3].
By Lemma 1.3.1(3), we know that

(1.4.3) puwell, 020)), puwelll,0(30), pM)el(,0(46)),

where I'(J, @(n®)) denotes the functions on J having poles, only along @, with at most
n-th order.

1.5. Algebraic relations for g@-functions. Here we recall relations among the
functions g,;(u) and @, (w).

PrOPOSITION 1.5.1. Let @jy:=4g,,(w) and gp,;:=gp,u) for simplicity. The
following equations hold for g=1, 2 and 3:

(1) $3333—6033=24sA,+446§033+44:03,,

(2) ©93332— 603303, =363, +24,(30 31— £22),

(3) 93331 69031033=46§3,— 2473,

(4) 93322403 26033022=2As03;,+ 468031 — 24702,

(5) 9332126033021 — 48032031 =245,

(6) @P3311— 4031 —2033011=24,

(7) 3222 603,022=—3A4; = 243033 +44,03, +4As3,— 64,0, ,,

(8) 32214032021 2031022= —241A;+ 44,005, — 24,

(9) 932114931021 — 2032011 = —4hoh, +2430;,,

(10) 311160319011 =340033— 24103, +44,034,

(1) @232 — 603, = —8AA6+24345—64,4,

— 124,033 +443032+4440,:, + 45032, — 12460, + 12A,

(12) 92221 6§02:021= —4A146—8Aoh7— 6414033 +4A3003, + 42405, — 2250014,

(13)  ©2211— 4031 =262 11= —8AoAs — 80§33 — 241035+ 44,03, +2430,,,

(14)  ©2111—6021011= —24oAs — 83, + 24,3031 — 922) +4420,,,

(15) P1111— 6071 = —4hods+2412;, +440(4003, —3022) +44, 002, +41,044,

where

A=03:021— 031022+ 03— @331 -

These equations are presented under the convention that if g=1 or 2 then A, with i>2g+1
and g-functions whose suffix contain j bigger than g are all zero.

Note that when g=1 the equation (15) above is a well-known equation derived
from g '(u)* =4f(p(u)). We refer the reader to [4] for the proof of this proposition.

1.6. The algebraic addition formulae. Here we present algebraic addition
formulae which express each function g, (u+v) as a rational function of {;;(u)},
{#2:(0)}, {n;W)} and {@,;©)} with 1<h<g, 1<i<gand 1<j<g.

ProPOsSITION 1.6.1. &(u+ v)a(u—v)/(c(w)’a(v)?) can be expressed as a polynomial in
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the g(g+ 1) functions {p ()} and {p,;(v)} with coefficients in Q.
For a proof of this proposition we refer the reader to [3].

CoroLLARY 1.6.2. Each function ;.. (u+v) has a rational expression in terms
of the functions {p (W}, {0V}, {@n;W} and {@,;;(0)} with coefficients in Q(4q, - -,
Agg+1) ‘

PrROOF. After logarithmically differentiating the expression of 1.6.1 by u; and v,
respectively, by adding the obtained two equations, we have a rational expression of
5) d . .
2 5 o, logo(v) in the functions {,;(w)}, {:;(v)}, {@w;(W)}
and {;(v)}. We operate 6/0u; to this expression. Then we have a rational expression
of ,;(u+v) in the functions {p;;(W)}, {9:;j()}, {Pn;W}, {940}, (P}, {05},
{®ijum(1)} and {©(v)}. We can obtain the desired expression by using the equations
in 1.5.1. [J

logo(u+v)—4 ai logo(u)—4
u;

U;

1.7. Geometry of the theta divisor. To make clear the subsequent argument,
we define and fix the local parameter ¢ at each point P of C by

x —x(P) if P is an ordinary point ,
(1.7.1) t=< Yy _if P is a branch point different from oo,
1//x if P=oo.

Here we call P a branch point if y(P)=0 or oo, and an ordinary point otherwise.

We determine the singular locus of the theta divisor @ by using certain matrix
attached to a positive divisor of C. Here our argument is based on [5, pp. 85-86]. For
a point P of C, let ¢ be the local parameter defined above. We denote by P, the point
of C such that the value of ¢ at P, is . Then we define for ueI'(C, 21)

D#(P)"_-W L

t=0

Since u is a holomorphic form, D'u(P) takes finite value at every point P. Let D:=
>i_.n;P; be a positive divisor. We define by B(D) the matrix with g rows and
degD:=3Y n; columns whose (i,n, + - - - +n;_, + D-entry is D'w)(P;). This matrix B(D)
informs us of singularity of @ in J at the point determined by the divisor D —(deg D)co.
For per(C, '), we can find uniquely c,, -+, ¢,€ C such that u=c,0M+ - - +¢,0?.
In this situation, the three statements

(1) pel(C,QY-D)),

(2) D'u(P;)=0 for all j and / with 1 <j<k and 0</<n, and

(3) BD)Tey - ¢, ]="T0---0]
are equivalent. So dimI'(C, ¢(D))=g—rankB(D). The Riemann-Roch theorem states
dimI(C, ¢(D))=degD—g+ 1 +dimI'(C, 2'(—D)). Hence
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(1.7.2) dimI'(C, ®(D))=degD+1—rankB(D).
However, by [1, p. 190, (4.5)], the singularity of @ is known as follows.

LemMma 1.7.1. The singular locus of @ is the points determined by the elements of
{Pi+ - +P,_y—(g— oo |dimI(C, OPy+ - - +P,_,))>1}.

By (1.7.2), dimI'(C, ®(D))=1 if and only if rank B(D})=degD. So we can determine
the singular locus of @ by calculating rank B(D). The result is

Lemma 1.7.2. (1) If g=2, @ is non-singular.
(2) If g=3, O has only one non-singular point at the origin O=(0, - - -, 0).

Proor. We first show (2). For two points P, and P,, we calculate B(D) and its
rank in each case that P, = P, or P, # P,, and that each P; is co, a branch point different
from oo, or an ordinary point. Then we see rank B(D) is 1 only when P, =P, = oo and
is 2 (=deg(P, + P,)) otherwise. According to 1.7.1 and the statement above this lemma,
we conclude the assertion (2). The assertion (1) is shown by a similar explicit calculation
of B(P) for each point P. []

2. Taylor and Laurent expansions.

In this section, we give lower terms of the Taylor expansion of a(u) at each point
on the curve C.

2.1. Taylor expansion of o(u) at O. Let O=(0, ---,0)eC".

ProposITION 2.1.1. (1) Ifg=1, then the Taylor expansion of a(u) is of the following
Jorm:

ouy=u+(d°=1).
(2) If g=2, then the Taylor expansion of a(u) is of the following form:
oW=u, +2Au}—Liui+d° =5, (As=1).

(3) 1If g=3, then the Taylor expansion of a(u) is of the form

A A A A
a'(u)=u1u3-—u22—?Ouf—?lufuz—lzufuzz—-%ulug_?“uz“
24 A A A A
— 32 u13u3__35—u2?u3_76u22u32+?6ulug——31u2u33+(d026), (11,7:]) ,

and the coefficient of the term uf is 1,/45.

Proposition 2.1.1 will be used in Sections 5, 6 and 7. The last statement about a
term of degree six is used only in 3.2.3.
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Proor or 2.1.1. (1) is well-known. The proof of (2) was given by Baker,
and is reproduced in [7, pp. 129-130]. Let us prove (3). Since o(—u)=o0(u), the terms
of odd total degree vanish. From [3, p. 353], we know that the constant term vanishes,
and the form of terms of second order is u,u; —u2. Hence 7,,(0)#0, g3,(0)#0 and
the other partial derivatives of second order vanish. The method to compute the terms
of higher degree is essentially the same as in the proof of (2) in [7]. We set u=0, after
operating 02/0u,0u; or 8?/0u? to the equations, of o(x) and its partial derivatives,
obtained from (6), (8) and (11) of 1.5.1 by multiplying ¢(x)?. Then we have the following
SiX equations:

(GZA)31(0)= —303311(0), (02A)3,(0)=033,,(0),
(62A)3,(0)= _%/14 +(=1502222+0322,)0), (6248)32(0)=(063311 —20632,X0),
(GZA)22(0)=4)~4+(%02222+2°'3221)(0) s (UZA)22(0)= _%14_%02222(0) .

These equations yield 6,,,,(0)= —84,, 63,,,(0)=0633,,(0)=0. Furthermore, we rewrite
the leftover eleven equations in 1.5.1 by ¢(u) and its partial derivatives by the definition
of gp-functions. Multiplying ¢(u)? to, for instance, the equation obtained from 1.5.1(1)
yields

03333(W)0(W) + 46 333(U)03(U) — 03;3(u)°
=225470(u)? + 426(03(W)* — 033(Wa (W) + 44 (0 3(1)o (1) — 0 3, (o (W) .

After operating 02/0u? on this, by plugging u=0, we have
(2.1.1) —03333(0)5,,(0)=0.

Since 6,,(0)#0, we obtain ¢3333(0)=0. This shows that the term of u$ vanishes.
Similarly, the leftover equations (2), (3), (4), (5), (7), (9), (10), (12), (13), (14) and (15)
of 1.5.1 give rise to the coefficients of the terms of w,u3, uu3, uiu?, uuu?, ulu,,
ufuyuy, uius, w3, uiuz, uu, and uf, respectively. We can show 6333333(0)= 164, by
operating 8*/3u$ on the equation 1.5.1(1) multiplied by a(u)?. ]

2.2. Taylor expansion of o(u) at each point of C other than O.

PROPOSITION 2.2.1. Let P be an arbitrary point of x~ '1(C) different from points in
A. Then the following statements hold. '

(1) If g=1 then o(P)#0.

(2y If g=2 then o,(P)#0 and o,(P)= —x(P)o,(P). Furthermore the partial
derivatives at P of third degree are written by ones of first and second degree as in the
Jollowing:

2 3

2 2
Py=(3 031011 3 03301,0, 3 03101 3 021023071 -
6111(P)= - 3 -
o, 2 o3 o3 o3
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2

3
"22"‘ 24,0, +44,0, —34, 7L 32, 7L —3,15 )(P)
Gy 0'2 02
0'220'11 031 0220310 1 0'220'1 o} 3
0112(P)= - ;- t+— +;~30'1+/l4“—+}~5 P),
b p) g3 4 0'2 G, Uz

0,,0 1 62,0 a2
0122(P)= ( 22 21“ 22 1—"14.01—'1 )(P),

g3 G2

3
0,22(P)= (4 ik +1402+)~50'1)(P)-

]

(3) If g=3 then 04(P)=0, g,(P)#0, 6,(P)= —x(P)o,(P) and (6*A)P)=(A,63/
6,0 P). Furthermore, the partial derivatives at P of third degree are written by ones of
first and second degree as in the following form:

2
021911 _i 0220119, 0219, 021022‘71 3 of0¢

c1(P)=| =3 -3 +3 —24
111( ) ( 0_2 2 G'% 0_22 0_23 4 0_2 10-2
a2 o ot 3 3 o6
+4120’1 —313 3}..4 311 +3A‘6 A-, —;)(P) s
o, o3 a3 65 4 o3
1 0,0 o? 05,050 1 63,062
114(P)= ( 22911 | 921 932 il 1,0 223 1 + 4.0,
2 o, Gy o3 4 o3
o? o3 ot 01
+l4 +'15 ’16 )(P)
o, 0'2 0'2 az
G0 1 a2,0 ol ol af
6122(P)=( e —140'1—}“5—4'/16 12 ;)(P)
g3 4 o, P g3 g3
' 3 2 2 3
0222(P)=( +i4a'2 + A0, —3/16 LI 34, —)(P)
4 o, ag; 0'2
G3,G O3,
0113(P)=(£’1*)(P), G123(P)= ( 32 21 )(P)
g, g,
03,0 o} G3,0 o?
0'133(P)=( 3221 —17—1)(1’), 0'223(P)=(&—2'{7—1)(P)’
) g3 gy a3 _
‘7322
a233(P)= — 4,0, J(P). a333(P)= —24,0,(P).
2
Proor. The assertion (1) is well-known. We show (3). Since
] 0,0, — 01,0 X1X.X
_l(p)__lzz___L(p)_—_ P12 (P)= 17273 = —x(P),
g, — 03,0 22 — XXy —X3X3—X3X| |x,=x;=w

x3 =x(P)
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o
72(p)= (P)=222 (p)= -0,
02 03— 03,06 22 T XXy Xp X3 — X3Xy nisx s
and P#0 it must be ¢,(P)=05(P)=0 and so o,(P)#0 by virtue of 1.7.2. We get
033(P)=0 by setting u= P in the equation which is obtained from 1.5.1(1) by writing
it in terms of o(u) and its partial derivatives and multiplying it by a(u)?. Hence

(2.2.1) 035(P)=0.
We note that A(u)e I'(J, 0(20)) by (6), (8) or (11) of 1.5.1. So we get
(2.2.2) (61032)(P)=(0,03)(P)

by plugging u= P in the equation

3 _ 2 2 2
(0°A)u)y=(030,0,1—0,0,03,+0G36,0,,+0303; —2030,03,+0630,, —0{033
2
+06320,10—0310,,0+03,0—0,,0330)u).

Here we have used (2.2.1), 65(P)=0 and o(P)=0. The rest of our proof are also done
by repeating the same operation as above. Though the facts (2.2.1), (2.2.2) and a,(P)#0
are used often in the following, we do not mention it in the proof when they used. The
equation 1.5.1(6) gives rise to

(2.2.3) (6 *A)P)=A,(a7/a,)(P}.

Then the equations (8) and (11) of 1.5.1 give rise to the formulae for ¢5,,(P) and 6,,,(P)
by (2.2.3). The equations (3) and (15) of 1.5.1 are not necessary here. The leftover
equations (2), (4), (5), (7), (9), (10), (12), (13) and (14) of 1.5.1 give rise to the formulae
for 0333(P), 0332(P), 0331(P), 0322(P), 6311(P), 6321(P), 03,,(P) and o,,,(P), respectively.
The assertion (2) is obtained by similar calculations. []

2.3. The Laurent expansions of analytic coordinates on C. There are two different
coordinates which identify a point of x !i(C) or i(C), the analytic coordinate
u=(u;, ** -, u,) and a pair of solution (x, y) of the algebraic affine equation defining C.
This subsection is used to make relate these coordinates. If uex ™ *1(C) and w(u) = i(x, y),
then, by (1.4.2),

ey '
(2.3.1) u,—=j o?  (j=1,-,9)

with certain paths of integrals.
LemMma 2.3.1. The Laurent expansion of x(u) and y(u) at u= O on the pull-back
k™ '(C) of C to C? are

1
x(u)=;~2—+(d°(ug)2 —1), yu= —-;2:—+1—+(d°(ug)2 —2g).

) g
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Proor. We take t=1/,/x as a local parameter at O along k™ 'i(C). If  is in
x~'1(C) and sufficiently near O, we agree to that t, u=(u,, - - -, u,) and (x,y) are
coordinates of the same point on C. Then

J‘(x.y) x9~ 1dx J‘(x,y) x~ 324y
u = -
e 2y o 21+ Ag(1/X)+ - - +Ao(1/x 297 1)

t 43, -2 3
=f t2—£(d°/i 1);”=—t+(d°(t)22).

Hence x(u)=1/ul +(d °(u) = —1) and our assertion is proved. [
Lemma 2.3.2.  Ifuex™ YWC), then the following statements hold.
(1) If g=2 then :
uy=4%u3 +(d°(u;)=4).
(2) Ifg=3 then
uy=4ui +(d°w)26),  up=34ui+(d°(u;)24).
PrOOF. Similar argument as we had in deriving », = —t+(d°(t)=2) in 2.3.1 gives
U, =—33+@°@)=4), u,_,=—-1>+(d°(1)=6).
Hence we have the desired formulae. [

The following lemma gives an expression of the Taylor expansion of the analytic
coordinates with respect to the local parameter y at branch points different from oo
along x~11(C).

LemMma 2.3.3. Let (a,0) be a branch point of C different from oo, that is, f(a)=0,
and let P denote a point of C? such that x(P}=(a, 0). Choose v=(v,, - -, v,) such that
k(v+ P)=1(x, y). Then the Taylor expansion of v; as a function of y is of the following
form:

1 f"(a)
= ' y+ ’
f@"  3f?
_a y 1+af"(a)
f'(a) 3f'(a)®
_ 4,12 y+ a2 +’af "z(a))
fa) 3f"(a)

PROOF. Let g=3. Since f'(a)#0 and y?=f(x)=f"(a)x—a)+

yi+@o(y)=5) if g=1,

1

y +do(yn=5 if g=2,

2P

Y +@d(y)=5  if g=3.

U3

f";a) (x—aft- -,
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1, @
T o

_y*+(d°=6).

Therefore we have

[ x24x
vy = 5
Jo,0) <Y
— 'y 1 f”(a) o 2(_1ﬂ f"(a) 2 do 4)d
uo(‘” F@? oY T )) Fa @ =Y
(Y a® a2 + a*f"(a)) .
_uo(f'(a) +( @ )y T+ 24))‘“’

_ a? + a2+f"(a))
Sfa) 3f'(a)?

The formulae for v, and v, are obtained in the same way. Forg=1org= 2 the formulae
are also shown similarly. [J

yi+d°=9).

3. The translational formula of o(u).

In this section, we discuss the translational formula and the Riemann form of o(u).
We also give a generalization of Weber’s psi function ([20, p. 150] or [19, p. 146]) to
higher genus case. Our generalization of the psi function is based on Grant [9].

3.1. The translational formula of a(u). For ueC? we conventionally denote by

” "

u' and u” such elements of RY that u=w'u’+w”"u”, where w’ and «” are those defined
in Section 1. We define a C-valued R-bilinear form L(,) by L(u, v)="u{n'v’' +n"v") for
u, veC? For / in A, the lattice of periods as defined in Section 1, let

x()=exp2ni('l'6" 170" —=i'l'l"] ,
where 0’ and §” are those defined in Section 1.
LemMA 3.1.1 (the translational formula). The function o(u) satisfies
o(u+)=y(No(w)expLu+1l,1)
for all ue C? and le A.

For a proof of this formula we refer the reader to [2, p. 286].
Let

(3.1.1) E(u, v)=L(u, v)— L(v, u) , (u,veC9).
Then, E(, ) is a C-valued R-bilinear form satisfying E(u, v)= — E(v, u).
LEMMA 3.1.2. The linear form E(,) has the following properties:
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(1) E(iu, v)= E(iv, u),
(2) E(u,v)=2ri(u'v"—"u"v’).
Especially, E(,) is an iR-valued form and 2niZ-valued on A x A.

Proor. Statement (1) is proved in [10, p. 85, Theorem 1.2]. Let us prove (2). In
the theory of curves, it is a basic fact that ‘w’n’ and ‘w”n” are symmetric. So

E(u, v)=L(u, v)— L(v, u)="u(n'v' +n"v")—"v(n'u’ +n"u")
="'w'n’w lu+v"'0"n"w" lu—"w'o'yw " lv—"u
=""w'n' W +Zu")+"v" 0 "n"(Z" 'u’' +u")

— W'y (v +Zv")y—-"uw"w'n"(Z " v +v").

neE MM 1

onw" v

Since ‘w’'n’ and Z are symmetric, it follows that
twlnrz_:tztwl"/:za)"twl—1twlnr=twﬂnl ,

e =1, #_ 1

twunuz=zztwnﬂn=!w w o '7 =tw/nu.
Therefore, by using the symmetricity of ‘w’n’ and ‘w”n"” once more, we have

E(u, U)=tu:tw1r’1vt+tuutwﬂnluf+tultwrnnvu+tuutwnnnvu

t,./t L S

—"v"*o'n’'u’ v

"t 0 n_ i

w'n"u” .

"t [V

w"n'u

[ A

nu
)

The generalized Legendre relation ‘o‘n” —‘w”n’=2=nil, shows our assertion. []

tvilw lv

3.2. Functions y,(u). In this subsection, we review the original and generalized
Weber’s psi functions defined for the (hyper)elliptic curve C. For the case that J has
complex multiplication, we will treat them more extensively in 4.4.

DEerFINITION 3.2.1. Let neZ. We let

‘/’n(u)=%t:—z when g=1,

a(u

|,l/,,(u)=% when g=2 or 3.
o,(u

ProrosiTION 3.2.2. The function y,(u) is a function on C if g=1and on @ if g=2.
In other words, as a function on C=x"Y(C) if g=1 and on x~ (@) if g=>2, it is periodic
with respect to the lattice A. Furthermore \,(u) restricted to uex™ '1(C) is a polynomial
of x(w) if g=1, 2 with n odd or g=3 with n even, and is a polynomial of x(u) multiplied
by y(u) if g=1, 2 with n even or g=3 with n odd.

PrROOF. We follow [9, p. 126, Lemma 1]. We have (—1)*@ =@, because our theta
divisor is comming from a hyperelliptic curve. So n*@ =n?@ ([16, p. 59]). Hence the
function ¢,(u) : = o(nu)/a(w)™ is a trivial theta function. On the other hand, by 3.1.1, we
have a(n(u+ 1) = y(n))a(nu) exp[n>L(u+ 11, I)]. By the definition of y( ), x(nl) is equal to
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x() or 1 if r is odd or even, respectively. So we have ¢, (u+ )= ¢, (u) for all ue C? and
/e A. Hence the first statement for g=1. Now assume g=2 or 3. Because of

' G,,0 —203 4+36,0,,04+0,,,0°%
@22(“)=(_0_—2—“)() @222(u)=( 2 2052 222 )(u)

and of a(u)=0 for all uex '@, we have

¢u) _ o(nu) $n(u) _ o(nu)
n2j2 ar Of m2—3y2 n2
#22(u) a,(u) —3$6:22() 5,5(1) : Cz(’{)
for all ue k(@) if n is even or odd, respectively. Thus ,(u) is a function on &. Hence
the first statement. For uex™'«(C), u=0 if and only if ¢,(4)=0 by 2.2.1. Therefore

¥,(u) has, as a function on C, only pole at u=0. So it must be a polynomial of x(x)
and y(u). The last statement is shown by x(—u)=x(u), }—u)= — y(u) and 1.3.1(3). I

We compute ¥, for n=2, 3 and 4 in 3.2.4 below. To do so we give the following

LemMMmA 3.2.3. Let C be the hyperelliptic curve of genus g (=2) defined in 1.1. Let
P be a point of C different from co. If nPe @ with n=g or g+ 1, then P is a branch point,
that is, y(P)=0.

PrOOF. Since nPe®, we have g—1 points Q,, - - -, @, such that, as divisors,
nP is linearly equivalent to Q,+ - - +Q,_; +(n—g+ L)oo ([15, pp. 3.28-297).

For a point @ of C, we here denote by @ the point (x(Q), —(Q)). We first as-
sume n=g. In this case, there exists a function G on C whose divisor is (@, + - - +
Q,-1+00)—nP. Since P oo, G may not be a constant function. However, there is no
non-constant function whose poles are bounded by a divisor Z , P; such that P;# o
and P; ;éP for every i and j with i#; ([15, pp. 3.30]). Since P;é o0, it must be P =P,
and hence W(P)=0.

Secondly, we assume n=g+ 1. Then there exists a function G on C whose divisor
is (Q+ - +Q,_;+200)—nP. The divisor of the function (x—x(P))/G is Q,+ - - - +
Q;-1—(r—2)P. This function may not be a constant. So, by the same argument as in
the case n=g, we have P= P, and hence y(P)=0. [

Lemma 3.2.4. (1) If g=1 then y,(u)= —2y(u) and if g=2 then Y ,(u)=2y(u).

(2) If g=2or g=3 then Y ;(u)= —8y(u)’.

(3)  If g=3 then y,(u)= 64y(u)*.

ProoF. (1) When g=1, 2.1.1(1) implies

Vo) = a(2u2 _ 2u+(c: 22)4 =i3+ .
oWt +@=z2)* u

Thus 2.3.1 and 3.2.2 imply ¥ ,(u)= —2y(u) for ue C. When g=2, 2.1.1(2) and 2.3.2(1)
imply
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o(2u)  2uy +344,8uf —1A58u3 +(d°=5)
a,(u)* (—ui+(@°=4)*
—2ui+@25) 2

T (—ui+@=24)* ul

Thus 2.3.1 and 3.2.2 imply ¥ ,(u)=2y(u) for ueC.
(2) When g=2, we have

o(3u) _ 3uy +32,27ui —427u3 +(d° = 5) _g 1
o2)° (—uf +(d°=4)° gt
by 2.1.1(2) and 2.3.2(1). Let P=(x(u), y(u)) and assume y3(z)=0. Then we have ¢(3u)=0
because o,(4)=0 if and only if u=0 as seen in 2.2.1(2). So 3Pe@®. By 3.2.3, it must
be P=oo or P=P, This means y(u)=oc or y(u)=—y(u). Hence we have known,
for uex™ '1(C), that ¥ 3(u)=0 is equivalent to y(u)=0. So ¥ ;(u) must be of the form
(3.2.1) U3y rey= — 89 [T (x(w)—x(P))

»pP=0

wZ(u) Iuex' 14C) =

lll3(u) Iuex— 14C) =

by 3.2.2. To determine the product for points P, we look at the vanishing order at each
P such as y(P)=0. Let P=(a, 0). Assume u=v+ Pek ™ '1(C). Then y=y(v+ P) is a local
parameter at P. Since

‘/’3(U+P)ID+PEK-M(C)
o(3(v+P)) o(Bv+P)y(2P)expL(3v+P+P,2P)
- c,(v+ P)° - a,(v+P)°
_ (o (P, +30,(P)v, +(d° = 3)) exp4L(P, PY1+(d°(vy, v2) = 1))
- (02(P)+(d°(v1, ;) = 1))° ’
it follows from the first statement of 2.2.1(2) and 2.3.3 that

l/](U_i-l)) |u+Pex“t(C)=(do(y)23) .

This argument is independent of the choice of a. So the factors of the product in (3.2.1)
contain x(v+P)—a for all @ with f(a)=0. Thus the product must be equal to y(u)>.
Hence y5(u)],_, - oY= —8y(u)’.

When g=3, we have

o(3u)  Qu u;—9u?—815u,ud +3%Zul+ - - -
!/I3(u) luen“l(C)= 9 = A7 .3 .. )9
a,(u) (—2u,—Fuz + )
us+d°us)=28) 8

(—ui + @) =5’ wll

for uex~1y(C) by 2.1.1(3) and 2.3.2(2). Let P =(x(u), y(1)) and assume ¥3(u)=0. Then
we have o(3u)=0 because a,(u)=0 if and only if u=0 as seen in 2.2,1(3). Therefore
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3Pe@. By 3.2.3, it must be P=o0 or P=P. This means y(u)=o0 or y(u)= — pu).
Hence we have known, for ue C, that y5(u)=0 is equivalent to y(u)=0. So ¥ ;(u) must
be of the form

(3.2.2) Va0 |ye- 1= — 8@ T[] (x(w)—x(P))

¥P)=0
by 3.2.2. As in the case g=2, we look at the vanishing order at a point P=(g, 0)e C.
By using the Taylor expansion 2.2.1(3) we have

Yi(v+ P) |v+Pex“11(C)= 2‘3(5)0_:_;)9) = G(3U+P)X(2122i:il;£:;’:+P+P’ 2P
_ B(1(P)o; +05(P)v, +065(P)vs) +(d° 2 3) exp4L(P, PY1 +(d°(vy, vs, v3) > 1)
(@2(P)+(d°(v1, v5, v3) 2 1))°
So 2.3.3 and the first statement of 2.2.1(3) give

Ill3(1)+P) !v+Pex‘ 1,(c)=(do(y)23) .

This argument is independent of the choice of a with f(a)=0. So the factors of the
product in (3.2.2) contain x(v+ P)—a for all @ with f(a)=0. Thus the product must be
equal to y(u)>. Hence W) |, 10 = — 8¥(W)°.

(3) We have

o(4u)  16uu;—16u? —4*Fu,ud +455us + - - -
) (—2u,—Fui+-- )
_ 64ul+(d°(u3)=8) _ 64

T (—ud @) 25 uf?
for uex™ '(C) by 2.1.1(3). Let P=(x(u), y(u)) and assume ,(u)=0. Then we have
o(4u)=0 because g,(u)=0 if and only if u=0 as seen in 2.2.1(3). Hence 4P e A. By
3.2.3, it must be P=oo or P=P. This means y(u)=o0 or yu)= —y(u). Hence we

have shown, for uex~1(C), that y,(u) =0 is equivalent to y(u)=0. So t/14(u) must be of
the form

(3.23) Vo) e =64 T1 (<0 —x(P)

=0

W,;‘_(U) luex (%

by 3.2.2. As in the proof of (2), we look at the vanishing order of y,(u) at a point
P=(a,0)e C. We take y=y(u) as a local parameter at P along k™ '4(C). Let u=v+P on
11(C). We first show that g(dv) =(d°(y(u))> 6). By 2.3.3, we have

> a+af")
AR

v1v3—v%=(1 y+ L y'+(d°>5))(f

3 o.
7y =)
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a L+af" , 2
—\—=y+ - y +(d°25))
(Fr+ e
=(d°(y)=6),
*ﬁvf—ﬁvaz_ﬂzvazz_ﬁvivg
3 3
A 24 A A A A
—?40§+—§£va3——3iv§vs—76v§v§+?6vlv§—77vzv§
=L(_ﬁ)ﬂ_ﬂ£_lzaz+ 2M,a? B Ayad B Aqa*
A NE 3 3 3
j.sa 5 /16a6 1606 /17a 7 ) 4
et Ll + - +(d°=6
3 2 6 3 )Y =0
=(d°(y)=6),

where we simply write f’ and f” instead of f'(a) and f"(a), respectively. By 3.1.1, we have

__o(4v+P)) o(4v)x(4P)expL(4v+2P, 2P)

v+P (o -
o Mot pex-1u0) o,(v+ P)'® ox(v+P)'®

Therefore

ll/4(U+P) Iv+PElc“‘1(C)=(do(y)26) . |

This argument is independent of the choice of a with f(a)=0. So the factors of
the product in (3.2.3) contain x(v+ P)—a for all a, f(a)=0, with multiplicity at least
three. Hence the product must be equal to pu)®. Therefore we have shown
Walt) |, s pex-14c=64y(w)%, and we have established the proof. [

4. Curves of cyclotomic type.

4.1. Automorphisms of C and endomorphisms of J. In this subsection, we treat
the case when the affine equation of the curve Cis given by y?2=x"+1/4 or y2=x"—x
with m and n odd. In this paper we say such a curve to be of cyclotomic type. In the
latter case, if n—1 is a power of 2, then we call such a curve to be of 2-primary
(cyclotomic) type.

In the first case, we let { =exp(2ni/m). Then there are automorphisms

[+7]:C>»C, (xy)—(x L)

for j=0, - - -, m—1. Especially, [ +{/ Joo=o00, [ {10, 1/2)=(0, 1/2) and [ —17|(—4~ /™,
0) =(—4— llm’ 0)-
In the second case, we let { =exp(zmi/(n— 1)). Then there are automorphisms
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[(PlC=C, ()= (¥x )
for j=0, ---,n—1. We have [ {/ Joo =00 and [ ¢/7](0, 0)=(0, 0).
In each of the cases, the automorphism extends to an endomorphism
[+ Pyt 4 Py—goos [ £071P + - +[ £ L71P—goo

of Pic°(C), hence, of J, where P, - - -, P, are points of C. We denote by Z[[{]] the
subring of End(J) generated by {[ {/"|}. The ring Z[[ { |] also acts on C? with A being
stable, that is, ad<=A for all xcZ[[{ []. We have obvious relations {1 |=1,
[N =l¢I** 7 and [ —¢/ )= —[¢’'] In each case, since [ +{/ J(C)=1(C), it is
obvious that [ +{/ [@=6.

LEMMA 4.1.1. (1) If C is defined by y*>=x%*11+1/4, then Z[| { |1=Z[X]/
(X*¥+--+X+D) by [ =X

(2) If Cis defined by y>=x2"1—x, then Z[[ { 1=Z[X)/(X¥*+ D) by [{]—X.

Proor. The isomorphism of (1) (resp. (2)) is easily obtained from the action
rC—Kula Uay "7, ug)=(Cu1, Czu29 T Cgug)
(resp' rcw(ul’ Uy, "7, ug))=((culs Csuzs T ng— luy)) . D

Let b be an element of Z[[{|]. In the following, we will investigate the
b-multiplication a(bu) for o(u), and pull-back b*@ of b-multiplication for @. If beZ
then most results of this section are quite simple. However, for our main results, one
of the most important cases would be when 4 is an “imaginary”’ number in Z[[ { [].

4.2. The Riemann form for a curve of cyclotomic type.

DEFINITION 4.2.1. The function o(u)=0c(u; Z) is said to be a normalized theta
function (in the sense of [10, p. 87] or [18, p. 20]) if the form L(u, v) defined in 3.1 is
hermitian, i.e., L{v, u)= L(u, v) where the bar means the complex conjugate. If that is so,

L{u, v) =% [E(iu, v) +iE(u, v)]

for all u, veC¥.

LeMMA 4.2.2. Let ' and n” be the period matrix of differential forms of second
kind as is defined in 1.1. If n'~'n" =Z then o(u) is a normalized theta function.

Proor. By the definition of L(,), L(iu, v)=iL(u, v). We will show that L(x, iv)=
—iL(u, v). Let us define w’ and w”eR? by iw’ " 'v=w'+2Zw". Then —iw’' Tv=w'+Zw".
Since @’ 'v=v'+Zv" and o' lv=v'+ Zv", we have

Ly, ivy=u(n'w’ +n"w)y=un'(W + Zw")=un’(ico’ 1v)
=un’(—iv' + Zv")= —iu(n'v' +n"v")= —iL(u, v).
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Since E(,) is R-valued, we have L(u, v)=L(v, u) by 3.1.2(1) and the relation of L(,) and
E(,) in 4.2.1. Therefore we have the assertion. [

PROPOSITION 4.2.3. If C is of cyclotomic type, then n' " ‘n"=Z. Hence o(u;Z) is
normalized because of 4.2.2.

ProOF. In our case, the differential forms 'V, - - -, n@ defined in 1.1 are

x2g—1 2g-2

dx (2)_(2 3) X dx “e @ — x? dx
2y ’ ’1 - g 2y ’ ’ ﬂ - 2y .

Let C be the curve defined by y?>=x29*'+1/4 (resp. y2=x2%*!—x) and let

(...4—1/(2y+1)'0) (_4—1/(2;;+1)_0)
Ki=f w®, Hi=J n®
(0,1/2) (0,1/2)

1,00 1,0
resp. K;= o, H,= n“’)
0.0) (0,0)

be integrals along the real axis. Then we have

n=(2g—1)

ﬂ(_4—1/(2y+ l)ck’O) (_4—1/(29+ 1)’0)
N T
J(0,1/2) (0,1/2)

P(—4—l/(2y+l)§k,o) (_4—1/(29+1)'0)
i k i 2g—i+ 1)k —ki
'1"’=_( [ g ® =0 D p, =R,
(

J(0,1/2) 0,1/2)
(*({%.0) (1,0)
(resp. w‘”:J. rgk‘lwm=c(2:— mKi i
v (0,0) (0,0)

(0 o [ rr, 0 pee-n+ ok 2i+ 1)k
= [CF Ty ® = @@s=0+ Dy _p(-2i+ Dkpy |
(

v (0,1/2) 0,1/2)

where each of integrals is along the segment with a constant argument. Let us compute

0 (c,0)

=0 i |:lJ> e x=0
. ' @' """" - e
P (c,00 7 INDNC-
. (€1, 0)
@41, 0) @0 (c;, 0) @;,1,0)

FIGURE 2
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the periods matrices #” and " by choosing paths % and 8 as a join of segments of
line in x-plane with constant argx as in Figure 2. Then we are led to the following

relations:
J‘ n(l)_ ' , f n(l)= ' w®
ath Ki alh) B K; P18
for all i and j. Hence
H\ /K, B Hy/Ky
ril= . CU’, nu= . CO”.
H/K, H /K,

So we have ' "= 'w"'=Z. O

For each be Z[[{|] we denote by 5 the involution in Z[[{ |] induced by [/ |=
re
ProrosITION 4.2.4. If C is of cyclotomic type, then
E(bu, v)= E(u, bv) , L(bu, v)=L(u, bv),
for all u, veC? and beZ[[ ¢ 1.

PrOOF. Since [ ('] is an automorphism of A, there exists a matrix M(¢7) with
entries in Z such that

, | ou’
emtwoime)| ¥, |
Since [ ¢’ is an automorphism of C over Q, it induces an automorphism of the
fundamental group of C. Hence 'M({)HIM((’)=1 with I=|: 01 1)"’] and M(CHM ™)
g
=1,,. Thus we have ‘M({/)I=IM((’)" ' =IM({ 7). We define U’ and U” by [{’ |u

=w'U +w"U” or equivalently by [ ] M(C‘)[ ], and let [ ] M~ ’)[ ]

where the letters u’, u”, v” and v” are used under the convention of 3.1. Then 3.1.2(2)
and the above equatlon give

E(¢7 lu, v)=2mi('U"v" ’U”v')=2ni['U”U”]I|: ””]
v

=2mi["u’ "w" M) [U,’,}=2“i[t“” rmee 1)[ ]
v

=2ni[*u’ ‘u ”]II: v

- ] =2mi(w V" —u"V')=E(u,[ ) v) .
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By linearity the proof of the first equation is completed. The second is obtained by the
relation in 4.2.1.

Lemma 4.2.5. If C is of cyclotomic type, then there is je Z such that
a([ ¢ Twy="{lo(u) .

In particular,

(1) If the genus of Cis 1 or 2, that is, C is defined by y?>=y3*+1/4, y>=y3—x,
yi=y>+1/4 or y*=y°—x, then o([ { lu)={o(u);

(2) If Cis defined by y*>=x"+1/4, then o([ { |u)={*o(u);

(3) If Cis defined by y>=x"—x, then o([ { lu)=C{%a(u).

PrOOF. Since [ { [*@ =86, the two functions o([ { u) and o(u) have the same
divisor of zeros. So o([ { |u)/o(u) is an entire function, i.e., a trivial theta function. On
the other hand, by 3.1.1, we have

o[ { Wu+D) _ (V) o) expL & Nu+3D, )
a{u+1) x() o(u) expL(u+11L1) ’
Since x( ) is 1 or — 1, the above quotient is equal to + a([ ¢ Ju)/o(x) by virtue of 4.2.4.

Therefore the function o([ ¢ |u)/o(u) is bounded. In fact, if M is the maximum of absolute
values of this function on the domain

uy uy
u=o'l : |+o’| : ; 0<u;<1, 0<ui<1 for j=1,---g/,
ul ull

g g

then a(| { |u)/a(u)< M for all ue C?. Liouville’s theorem says such function is a constant
function, say o([ ¢ |u)/o(u)=c. Consequently, if {*=1, then
ke o( () o) o) olw _
o) o[ { |u o([¢* 2 ) o[ (¥ Tw)

So ¢={7 for some jeZ. If g is 1, 2 or 3, by looking at the Taylor expansion 2.1.1 at
0, we get the desired formulae. []

The following Lemma is used in 4.2.8 below.

LEMMA 4.2.6. Let C be of cyclotomic type. Let ¢ and b be elements of Z[[{ ]]
such that ¢=c and b=b mod c?. Let P be a point in C? such that cPe A. Then

L(bP, P)=L(P,bP)  mod2miZ .

ProoOF. Since 5—b=0 mod 2, we can write b—b=ac? with acZ[[{|]. Then
E(P,(b—b)P)=E(P, ac’P)=E(¢P, acP)= E(cP, acP)c2niZ by 4.2.1, because of cPe A
and 3.1.2(2). Therefore', by 4.2.1,

! Incidentally, since — E(P, bP)=E(bP, P), we have 2E(P, bP)=0 mod 2rniZ.
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(4.2.1) E(bP, P)=E(P,bP)=E(P,(b—b)P+bP)
=E(P,(b—b)P)+ E(P, bP)=E(P,bP) mod2niZ .
Furthermore, since
(4.2.2) E(i - bP, P)=E(iP, bP)
by 3.1.2(1), we obtain that

L(bP, P)=%(E(i -bP, P)+iE(bP, P))=L(P, bP) mod2niZ .
1

by 4.2.1, (4.2.1) and (4.2.2). [

DerINITION 4.2.7. Let p: {+—{ ! be the complex conjugate. Let T be an element
of Z[Gal(Q)/Q)]. If T+ pT is the norm from Q({) to Q, then T is called a type norm
([11, p. 22]).

LeMMA 4.2.8. Let C be of cyclotomic type.
(1) Let ¢ and b be elements of Z[[{|] such that, as ideals, (c*)=(c) for all

y e Gal(Q(£)/Q) and such that b=1 mod c?. Let P be a point of C? such that cPe A. If
T is a type norm, then for all ve C¥?,

o(bT(v+ P))=6(bTv+ P)exp[3(Nb—DL(P, P)+1L(bTv, (b7 — )P)]x((bT —1)P).
(2) For all veC?,
6(v+[{Po)=0(v+ Po) exp[L(v, ([ 1—1)Po)
+3L(TC1=TE DPo, Po)Ix((C1-1)P).

ProoF. . The assumption on b and ¢ implies #T=1 mod c2. So ()" —1)Pe A and
3.1.1 gives

ebT(v+P)=c(bTv+P+(bT—1)P)
=a(bTv+P)exp(LbTv+ P+ 1bT—1)P, (" —1)P)x(bT—1)P).
Here
LbTv+P+3(bT—1)P,dT-1)P)
=LEGBT+ 1P, (bT—1)P)+ LTy, (bT—1)P)
=3L(bT+1)P,(bT—1)P)+ L(bTo, ®T—1)P)
=1(L("P, bTP)— L(P, P))+ L(bTv,(bT—1)P) mod2miZ by 4.2.6
=3(L(bTTP, P)— L(P, P))+ L(bTv,(bT—1)P) by 4.2.4
=1(Nb—1)L(P, P)+ L(b v, (bT—1)P).

Hence we have (1). The formula (2) is obtained analogously. [
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4.3. Action for the theta divisor. In this subsection, the curve C is still assumed
to be of cyclotomic type. For be Z[[ { [] we denote by 5*@ the pull-back of @ with
respect to the endomorphism b. Therefore x ~!(b*@) is just the divisor of zeros of a(bu),
and E(bu, bv) is the Riemann form associated to this divisor.

The following proposition seems to be true for all C of cyclotomic type. But the
author has no proof of it for 2-primary type (see 4.1) except for the curve defined by
y?=x%—x. We denote by x algebraic equivalence and by ~ linear equivalence.

ProOPOSITION 4.3.1. Assume g=2 and C is not of 2-primary type. Let €,, " -, &,
and b be elements of Z[[{ 1] and l,,1,, - - -, 1, be rational integers. Let p:{+—{"* be
the complex conjugate. If b**P =1+ 1e2+ -+ +1,e2, then

b*O~ly- O+, 2O+ -+ -£*0 .

If C is the curve defined by y?=x%+1/4, 4.3.1 is proved in [9, p. 127, Prop. 1].
We first prove the following lemmas as in [9].

LeMMA 4.3.2. Assume g=2 and C is not of 2-primary type. Let D be a divisor of
J If D=0 and | +{ |*D~ D, then D~O.

Proor. We prove by using the dual Abelian variety of J. Since @ gives a principal
polarization of J and D=0, D~ @,— @ for some ucJ, where @, denotes the translation
of @ by u ([16, p. 77, Theorem 1]). Since [{/ |(@)=@, we have [ +{/(O,)=
Oriy1u~0,. Hence [ +{/ lu=u by [14, p. 186, 6.6]. Because n—1 is not a power of
2, there is an integer v such that 1 —[{* | and 2 are coprime in Z[[ { |]J. The above

linear equivalences imply that u is 2-torsion and 1 —[ ¥ |-torsion. Hence u=0 and so
D~0. O

Proor oF 4.3.1. For a divisor D in J, we denote by E,(,) the Riemann form
associated to D which takes values in 27iZ on A x A ([11, p. 68]). Then
E,.g(u, v)= E(bu, bv)= E(bbu, v) (by 4.2.4)
=Eb' ?u, )=E((lo+ g2+ - - - +1.82u,v)
=loE(u, v)+1,E(efu, v)+ - - - +1 E(g2u, v)
=l,E(u, v)+1;E(e u, g,0)+ - - +1,E(e,u, g,0)
=Elo-8+lrs‘;9+~-+I,,-s;9(u’ v).
Thus b*@ [, @ +1, - e¥fO+ - - - +1,- &¥O. Since the both divisors are invariant by the
action | £ |*, 4.3.2 implies they are linearly equivalent. []

For a curve of 2-primary type, the proof above cannot be applied. Here we give
a proof only for the curve defined by y%2=x5—x, for the case g, of 4.3.1 is a certain
special element. Note that, for this curve, the map Z[[ { |]-End(J) is known to be
injective and the image is isomorphic to Z[{] by [ {/ |—{ (see also 6.2).
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PROPOSITION 4.3.3. Assume Cisdefinedby y?>=x>—x. Lete,=1+./2 =1+{—{3
and b be an element of Z[{]. Let p : {+—{ ! be the complex conjugate. If b *? =1, +1,6?
with rational integers l, and 1,, then b*@ ~[,- O +1, - £} 0O.

ProoF. We prove the statement in somewhat extended form. First of all, we note
the following. Let be Z[{] and b=p +q{ +r{?+s{? with integers p, g, r and s. Then
b' "0 =(p®+q’+r?+5*+3(—pq+ps—rs+qr)+(G(pqg—ps+rs—qr)ei .

So, in the expression b'*P =/, + 1,62 for arbitrary be Z[{] with [, and [, €Q, it is
actually 2/, and 2/, € Z. Now let us prove that, for every be Z[{], if 2b1*# =21, 4 21,
then 2(b*@) ~ 2, - @ + 21, - £}@, and if moreover [, [, € Z then (b*O)~Iy- O+, *e}®
by induction with respect to p, g, r and s. In the following we note that [ {/ |*@ =6.
If four or three of p, g, r and s are 0, the statement is trivial. We frequently apply [16,
p. 58, Corollary 2]. We get that

O=1+4+i-)*O~(1+i)*@+(1—-)*@+0*@ -3

=(14+i)*Q+(i+1(—i)*O@—30=2-(1+i)*0@—36.
Hence (14+)*@~2+0 and ({—{>)*@=((1 +i{—{3)*@ ~2+ O. For the pull-back of
1+, from
ef@=1+{-o~1+H*0+(1-e+(-%)*e-30

~A+O)*O+((+1)(—(¥)*O+20-30=2-(1+{)*O -0,
we have 2-(14+40)*@~ —-O+e¥® and (1-0*O=(1+{—-{-0)*O@ ~40 -1 +{)*6O.
These are a part of the desired results since (1 4+¢)'*?=1(—1+¢?). Therefore the
statement is shown for 1 +{3*={3*(1 ), {+{?={(1+i) and {2+ {3 ={(1+{). By using
- these results, we can check easily the statement for 5 with three or four of p, ¢, r and
s being 1. The rest of the proof is completed by induction as follows. If the statement
is true for b and b—{’ then it is true for b+{’. In fact, let b'*?=/,+1,e? and
(b= P=b* P —(TID+ )+ 1 =my+mye?. Then (( b+ =(lo—mo+ 1) +(l, —
myei. Thus b+ 7=Q2l,—my+2)+(2l,—m,)e?. Note that the coefficients
2lo—my+2 and my, 21y —m, and m, are of the same parity. On the other hand,

b*@ ~b+{NH*O+b—-{H*O+0*@—-b*0@—-2-60
yields
(b+{)*@~2-b*O —(b—{)*O+2- O .

So we have

2:(b+(N)*O~2Q2l,—my+2)- O +22l; —my)  e¥O .
Furthermore, if 2l,—my+2 and 2l, —m, € Z, then we have

(B+LY*O~Qly—my+2) O+ (2, —m,) X0 .
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Hence the statement is also true for b+ ‘. Similarly, if the statement is true for b and
b+{’ then it is true for b—{’. Thus we have shown the assertion for all 5. []

4.4. Further generalization of psi functions. Here we construct a generalized
Weber’s psi function.

LemMMA 4.4.1. Let b be an element of Z[[ { |]. Under the notation of 4.3.1 or 4.3.3,
the function

a(bu)

ow)oa(e w)' - - - aleu)"

()=

on CY satisfies

$plu+0)= 1 dp(u)

Jor all ue C? and le A. Here the signature + is independent of u. Moreover if C is not

of 2-primary type or is defined by y>=x5%—x, then

Ppu+)=d,(u)
for all ue CY% and le A.

The author can not follow the proof of [9, Section 3] for C defined by y?=x5+1/4,
Here we give another proof.

PrROOF. As is shown in 4.3.1 or 4.3.3,
E(bu, bv)=1,E(u, v)+1,E(eu, e,v)+ - - - +1,E(e,u, &,0) .
Because of this and i(bu)=b(iu) for all ue C?, we have
Lbu, bv)=I1,L(u, v)+1,L(g,u, ,0)+ - - - +1,L(g,u, &,0) .
'Hence
o(b(u + 1)) = a(bu + bl) = y(bl)o(bu) exp[ L(b(u + 4 1), bl)]
= x(bl)a(bu) exp[loL{u+ %1, I)] exp[!, L(e,(u+ %)), &,])]
- expll,L(e,(u+31), &,1)]
by 3.1.1. On the other hand, we have
o(e;j(u+1)) = x(e)o(e;u) exp[L(e;(u+41), €;1)]

forj=1, ---,nby3.1.1. Since y(A)= + 1 for Ae A, we get ¢, (u+1)= + ¢,(u) for all ue C?
and leA. As ¢ (u+1)/¢py (1) is a meromorphic function, the signature + must be
determined by /. Now we assume that C is not of 2-primary type or the curve defined
by y?=x°—x. Then 4.3.1 and 4.3.3 imply that the divisor of ¢,(u) is the pull-back of
a divisor of a function with respect to the map k: C?—>C?A. Thus we can write
¢y(u) =f(u)e(u), where f(u) is periodic with the periods A and e(u) is a trivial theta function
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with respect to the lattice A (see [10, p. 82]). Then we have e(u+ )= +e(u). As in the
proof of 4.2.5, if M is the maximum of e(u) on the domain

u; uy
u=o'l : |+’ : |; 0<uj<1,0<ui<1 for j=1,---,g 7,
u, u,

then e(u) < M for all ue C?. Thus Liouville’s theorem says that e(u) is a constant function.
Hence the signature must be +. So we have completed the proof. []

Since ¢,(u) has poles along the pull-back of @, we modify it as in [9].
DEFINITION-PROPOSITION 4.4.2. Let be Z[[{]]. Let

!/’b(u)=% if g=1 and
_ a(bu) ) _
= ot - ey T 9T

in the same situation as 4.3.1 or 4.3.2. Then Y (u+1)= +y,(w) for all uex™"1(C) and
le A. Here the signature + is independent of u. Moreover, if C is of genus 1 or not of
2-primary type except the curve defined by y*=x3—x, then

Yulu+ D=y, (w)
for all uex™ Y4(C) and l e A.
The proof is given by a similar fashion as in 3.2.2 by looking at the parity of /.

REMARK 4.4.3. In the rest of this paper we treat only the case ' *?=/,eZ. So
we need not choose {¢;} explicitly. We see that, in this case, ¥,(u) is a polynomial of
x{u) or a such multiplied by y(u) due to 3.2.2.

II. Complex Multiplication Formulae

We mention here conventions for the following three sections. We freely use the
notation of Part I. Let ¢(u) be an element of the ring

QLo (u), ;). P i), £,u0) | Ljk=1,",4g].

Let be Z[[ { []. Then 1.4.1 and 1.6.2 show that @(bu)|
: P(x(u), y(u))

b T

PO eeier™ Gt vt

where P(X, Y) and Q(X, Y)eQ({)[X, Y]. Especially we have shown the assertions
about the coefficients in Theorems 5.1.3, 5.2.3, 6.1.6, and 7.1.6 below.

ue(C) can be CXPI'GSSed as
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From now on we assume C is a curve of cyclotomic type. We fix a special point
P, such that x(P,)=0: if C is defined by the affine equation y2=x2¢*141/4 then P,
is the point (0, 1/2), if C is defined by y?=x29*1 — x then without saying P, is the point
0, 0).

Suppose we have labeled the roots of f(x) as in (1.1.1). Such labels are described
at the beginning of each subsection below. By applying the argument in our proof of
4.2.3, with the same notation, for the integrals along the paths a‘¥) and g, we can
write the entries of w’, ", ', and 7" by K;’s and H/’s.

We choose and fix a point in C? whose image of the map x: C—-C?%A=J is P,
We denote such a point also by P,. Throughout Sections 5, 6 and 7 such a point is
assumed to be given by taking the integral (2.3.1) along the line on which the x-coordinate
is real negative (resp. positive) and the y-coordinate has negative imaginary part or is
real positive if the curve C is defined by y?=x%9*1+1/4 (resp. y2=x29*'—x). Then
the coordinates of [ {/ ]P,’s can be written explicitely, as we describe in each of the
following subsections, in the form [ {7 |P,=w’u’ +w"u” by taking care that the integral
from oo to (—4129* Y _0) (resp. to (1, 0)) along negative (resp. positive) part of the real
axis of x is half of the one along 'Y,

In these sections, we give explicitly the highest and lowest term of P(X, Y) for each
of the special functions ¢@(u).

In Section 5 we write 4, as u, K, as K, and H1 as H.

5. Elliptic curves of cyclotomic type.

5.1. The curve defined by y°=x3+1/4. We here give a version of the product
formula of Eisenstein (see Section 8) for the curve C defined by y?=x3+1/4. According
to 4.1.1(1) the ring Z[[ { [] is isomorphic to the ring Z[{] by [{ ]+—{. So we may
identify Z[[{ ] and Z[{].

Weletc=—4"13 g, =—4713¢ ¢, =—4713¢2 in (1.1.1). Then we have

'=2K({-(?, o"=2K({-1), n'=2H({*-(), n"=2H({(*-1),
and
(5.1.1) Py=K(—{?*+{)—K=31w'+}0".
PROPOSITION 5.1.1. a(P,)® = —exp3L(P,, Py).

Proor. Because of y(P,)=1/2, it is obtained from 3.2.4(1) and (2) that ¢(2P,)=
—a(Py)*. On the other hand, from 3.1.1, we get

0(2Po)=0(—Po+3Po)= —exp[3L(Py, Po)Ja(—Po) =exp[3L(Po, Po)Ja(P,) .

Here we used that o(—u)= —o(u) and that y(3P,)= —1 which is calculated by (5.1.1).
Hence the statement. [J



COMPLEX MULTIPLICATION FORMULAE 411

PROPOSITION 5.1.2. Let b be an element of Z[{]. If b=1 mod (1 —{)?, then
o(b(v+Po) =(— DN DEx((b—1)Po)a(Po)™ ™ to(bv+ Po)(1 +(d° = 1)) .
PrROOF. Since Nb—1=0 mod 3, the statement follows from 4.2.8(1) and
exp[3(Nb—)L(Po, Po)] =a(Po)™ ! |

which is a result of 5.1.1. O3

THEOREM 5.1.3 (Eisenstein). Let beZ[{] and assume b=1 mod (1 —{)?. Then
W(u)? o(bu) is of the form

)

Wo(u)* o (br) = x(1e)
0<jsNb-—

Jj=0mod3

. ? jx(u)j |

with ;€ Q({). Moreover yo=>b and yn,_,=1.
Proor. First, we look at the Laurent expansion at u=0. By 2.1.1(1), we have

&'(bu)* — o"(bu)o(bu)

Pbu),(u)? = e
(14> —=(d°=0)bu+---) 1
= (u+_,_)2Nb =u2Nb+”

Since o(u) is an odd function and has only zeros at ue A by 2.2.1(1), we know that
@(bupy(u)* is a polynomial of x(u). Thus we have @(bu,(u)>=xw™+ --- by 2.3.1.
Secondly, we look at the Laurent expansion at u=P,. Since b— 1 =0 mod (1 —¢)?, by
using 5.1.2, we have

) _ b+ Py)* @b+ Py)
OO0+ PO+ P o+ Po) = T £ T

_= 12N~ DB p((b— 1)P ) a(Po)™ ™ 2a(bv + Pg)? _ pbv+Py) +(d°>1)
o(v+ Py)*N~2g(v + P,) 2 o+ Pg) -

_ o(bv+Py)* bp'(bv+ Py)

T o(v+ Py)? @' (v+Py)

=b+(d°=1)  (since p'(bPo)='(Po)#£0).

+(d°=1) (since o(Py)#0)

Because 2.2.1(1) states the function yr,(u)*@(bu) has only pole at u=0 the coefficient of
the lowest term must be b. Since y,( — {u)? @ ( — Cbu) = { Ny ,(u)? p(bu) because of 4.2.5(1),
the function must be a polynomial of x(1)* multiplied by x(u). [J

S.2. The curve defined by y>=x>—x. Here we assume that the curve C is defined
by y*=x>—x. For this curve the ring Z[[i]] is also isomorphic to the ring Z[i] by
[i"]+>i. So we identify Z[[i ][] and Z[;]. In this subsection, we write u, as #. We let
c¢=1,a,=0, and ¢; = —1, in the notation of 1.1.1. The argument in the proof of 4,2.3
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applied to the integrals along the paths a' and gV gives
w'=2K, w"=2Ki, n'=2H, n"=-2Hi.

As in the previous subsection we take a point in C whose image of the
mapk : C—»C/A=J=Cis P, and denote it also by P,
Similar path as in (5.1.1) gives

(5.2.1) P,=iK—K=—-{o'+i0".

PROPOSITION 5.2.1. o(Po)* =exp[2L(P,, Py)].

Proor. After differentiating the formula of 3.2.4(1), by setting u=P,, we have
—20(Py)*=20'(2P;). On the other hand, we get a(u+2Py)=x(2P,)o(u)exp[L{u+
P,,2Py)] from 3.1.1. After differentiating this, by setting u=0, we have ¢'(2P,)=

—exp(2L(P,, Py)) because of 6'(0)=1 and 6(0)=0. Here we have used the fact
¥(2Py)= —1 which is obtained by (5.2.1). Hence o(P)* =exp[2L(P,y, Po)]. O

PROPOSITION 5.2.2. Let b be an element of Z[i]. If b=1 mod 4, then
a(b(v+ Po))=x((b—1)Po)a(Po)™ " 'o(bv+ Po)(1 +(d° > 1)).

ProOF. Since b=1 mod4, we have Nb=1 mod4. The statement follows from
4.2.8(1) and

exp[$ (Nb—1)L(P,, Po)]=0(Po)™ !
which is given by 5.2.1. O

THEOREM 5.2.3 (Eisenstein). Let beZ[i] and assume b=1 mod4. Then
W4 (u)? o(bu) is of the form

Y pbw)=xw) D, y;xwy

0<j<Nb-—1
j=0mod 2

with y;€ Q(i). Moreover yo=b* and y_,=1.
PROOF. As in the proof of 5.1.3 we have that g@(bu)f,(u)>=1/u*+---, that
@(bu(u)? is a polynomial of x(u) with coefficients in Q(i), and that g@(bu)f,(u)*=

x(u)N®+ - - -. For the Laurent expansion at u= P, since b—1=0 mod 4 and g(u) has a
double order zero at P,

2
P 1o ST
_ x(b—- 1)P)26(Po)2N0 = 26(bv+ P,)? _p(bv+Py)
o(v+ PO)ZNb = 26(0 +'P0)2 o0+ Py)
oo+ P b2p"(bu+ Po)
"~ o(+Po)* @ (v+Py)

+(@°=1) (by 5.2.2)

+(@d°=1)  (since a(Py)#0)
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=b2+(d°=>1) (since ' (bPy)=g'(Py) #0).

Since ,(iu)? p(ibu)=(— 1Ny, (u)? p(bu) because of 4.2.5(1), the function must be a
polynomial of x(u)*> multiplied by x(u). [

6. Genus two curves of cyclotomic type.

6.1. The curve defined by y?=x°+1/4. Now let us consider Grant’s original case.
So the curve C is defined by y>=x°+1/2. According to the isomorphism of 4.1.1(1)
the ring Z[[ {"[] can be identified with Z[{] by [{]+ ¢. The endomorphism [ —¢/7] on
C? is described as
(6.1.1) I——m(ul, up)=(—{%uy, —{u,).
We let c=—4715 a,=—47Y5 ¢/ =—4715¢2 qa,— _47USL3 o = —4715¢4 in
(1.1.1). Then we have
' — [ 2K (=% 2K,((—C?) :|

L 2K,((—C%)  2K,(L* %
o | 2K(—1+0—=02 403 2K, ((~-1) ]

T 2Ky (— 14040 2K 1)
,7,=(2H1(c2—4) 2H1(c4—c3)]
| 2H,({* (% 2H,(*-0) 1
g | FHA=1H00-0407) 2H1(c4—1)}
| 2H(—1403 ¢+ 2H,(3—1) ]

The point P, is

6.1.2) P0=|:K1(C_C2+€3—C4)—'K1 ]zw,[z/s ]+w,,[ 1/5]_
Ky((*—(*+{—¢)—K, 1/5 1/5

Then [ ¢{/7]P, are given by (6.1.1) as follows:

[ (K~ +3=0—1) ] i —3/5] [1/5]
Po,= —m' " ,
[e15, | 2K =04+ -3 —1) w_—4/5 e 1/5
[ OPK -2+ 83— —1) [ 2/5 1/5
I—CZ Po= ! =w' :l'*‘ ”l: j[,
6.13) ! L K2 =403 —1) @ | 1/5 @ —4/5
e3P ='C3K1(C—-C2+cs—c4-1)‘=w,’ —3/5}@,,[1/5]
"Lk -rtre-r-n 1 L1 /5]
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o (:4K1(c—52+c3—c4—1)}= [ 2/5] ,,[1/5]
€ WP"'[cf’Kz(c:’-—c“+c—c3—1) L —as)™ Lus )

Now let us compute the Taylor expansion at u= P, explicitly. Since
’ - 1 V 14 0
(6.1.4) ({1-DPs=w I: 1]+w [0]
by (6.1.2) and (6.1.3), we have x(([ { |—1)P,)=1. After substituting this to 4.2.8(2) and
differentiating it by v,, by setting v= 0, we have
62 WPo)=0(Po)exp LT C 1- L DPo, Po) ,
since o(Py)=0. Because of 4.2.5(1) and 0,(P,)#0 (see 2.2.1(2)), it must be

exp 3 L1 DPo, Po)=L*.
Therefore 4.2.8(2) gives rise to

(6.1.5) o(v+ [ 1Poy={*a(v+Po)exp[L(v, ([ { ]—1Po)] .

After operating §2/du;du; to (6.1.5), by setting v=0, we have

(6.1.6) a:’,y'(l_‘:_|Pc))=C"ra'ij(PoH'‘7:'(130)('_'1'11'_’751J;')§4‘*'‘371‘(100)(‘_’1'1:'““".'éi)‘:‘t

by (6.1.4). For the case i=j= 1,'(6.1.6) is of no use because o,(P,)=0. But 2.2.1 gives
011(Po)=2/A0,(Po)=0,(Py). Set i=1 and j=2 in (6.1.6), then g,,(Po)=2H,(*+
{40 5(P,). By a similar fashion, we get ¢,,(Po)=4H,({*+{%)0o,(P,). Although these

explicit values are unnecessary to prove 6.1.6 below, we mention this here to make 6.1.1
below clean. The Taylor expansion at O is given by 2.1.1(2). Thus we have arrived at

PrOPOSITION 6.1.1. Assume C is defined by y2 = x>+ 1/4. Let P, be the point whose
coordinate is given by (6.1.2). Then

(D oW=u,—%u3 +d°=5),
1 2 'J"22 2 )’12 3
(2) U(U‘*'Po):o'z(Po)(vz +j"1 +)’12”11’2+——2—Uz +—2—1’1

4 2
where 1, =2H,({*+(*) and y,, =4H,({*>+ ().

2 N 2
+(7ﬁ+~~——y12 )01202+ y”;u v,v2 +% U23+(d°23)) >

PROPOSITION 6.1.2. 6,(P,)° =exp3L(Py, Py).

Proor. Because of y(Pg)=1/2, it is obtained from 3.2.4(1) and (2) that
6(2P,) =0 5(Po)*, 6(3P,)=0,(P,)°. On the other hand, from 3.1.1, we get
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0(3Po)=0(—2P¢+5Po)= —exp[3 L(P,, Py)]o(2P) .

Here we used that o( —u)= — a{u) and that y(5P,)= 1 which is given by (6.1. 2) Therefore
we obtain

—az(PQ)9= _ﬁXP[%L(Po, Po)]oa(Po)*
and hence the statement. D

We denote by 7 the element of Gal(Q({)/Q) such that {*={2. Then 141 is a type
norm (see 4.2.7) in Z[Gal(Q(¢ )/Q)] .

LEMMA 6.1.3. IfbeZ[{], then y(b*** ' — PN =1

Proor. If Nb is odd, the statement is trivial. So we assume Nb& is even. For /e A,
it is easily verified from the definition that the value x(!} is determined only by I mod 2.
By the assumption on b, we may write b* **" ' =(a,{ + a,{ 2 + a0 + a,L 1 —¢) + 1. Since
2 is a prime in Z[{}, we have b=0 mod2 and hence 5! '=0 mod2. By simple
calculation, we see that a; =a,=1 mod2 and a,=a,=0 mod 2. Therefore

KO = 1Po) =+ N1 = Po)= (= >+ —(HPg) =1

because of 4 _
(c—c2+c3—c4)Po=w'[ _f]m"[ : ]

which is obtained from (6.1.3.). [
PROPOSITION 6.1.4. Let b be an element of Z[{]. If b=1 mod(1 —{)?, then -
o0 T 0+ P))=05(Po) T x0T = Db v+ P)(1+(d°2 1))
Proor. The statement follows from 4.2.8(1) and .
~ exp[F(Nb—1)L(Py, Po)]=0,(Po)™* ™!
which is given by 6.1.2. O

LemMMA 6.1.5. Let ¢(u) denote the function (93, — 9,28 11 ). Then

(M o = *o(w),
(2) eWel(J, 0(30)), .
(3) the Taylor expansions of o(u)’p(u) at O and P0 are of the form

o) @(u)=2u, +(d°(uy, uy)=2) and
. v+ Pol’@(v + Po) = 0,(Po)*(— 1 +(d°(,, v,) = 1)) .
Proor. (1) follows from 4.2.5 and the definition of @-functions. (2) follows from

(o*@)u)= — 02(U)20'1 1(u)— Ui(“)zazz(u) + 20’1(“)?2(“)@2(“) +a, 2(“)20(?‘) .
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The statement (3) is easily derived from the equation above and 6.1.1. O

THEOREM 6.1.6 (Grant [9]). Let ou):=(pi—0::4211)w). Let beZ[{] and
assume b=1 mod(1 —{)2. Then Yy «.- ()3 (b ** 'u) is of the form

Ypee @3 T ) =2y0) Y, y;x(w)
0<i<3masy

with every y;€ Q({). Moreover, y3pp—1,=(—1)"b'** and y,= —1.

Proor. First, we look at the Laurent expansion at #= 0. By 6.1.5(3) and 6.1.1(1),
we have

Wy (Wb 7 'u) luex- 10
o(b1* " udp(b ') 261 YU, +(d(uy) 2 2)
PR ED C(—uR+(dou) =)W

[\Nept+1 1 . 1\Neyptt+1 —1 1 )30 .
=(=1"2 u SN 1 +ooe=(=1 uj \u? +

=(—1)N02b"* Lp(u)(x(u)>*™* ~ V) + “lower terms of power of x(u)>”) .

Here we used 2.3.1 and the fact that the above function is a polynomial of x(«) multiplied
by y(u), which is deduced from that this function is odd and ¢, has only zeroes at ue A
by the first statement of 2.2.1(2). Secondly, we look at the Laurent expansion at
u=P, (x(Py)=1(0, 1/2)). Since b=1 mod(1 —{)? we have b** ! =1 mod(1 —{)?2. Because
of (1—={)PyeA and ¢(u) being periodic, we have @b '(v+ Po))=@(b'** v+ P,).
Consequently, 6.1.4, 6.1.1, 6.1.5 and 6.1.3 imply
Yo+~ v+ Po) (b 7T (v+ Po)) |u+Poer 14C)
_o(b" T 04 Po)) (b T v+ Py))
ay(b! T (v + PP v+ Poek = 1(C)
a2(Pof’ ™ Va(b' ** v+ Po)>p((b" T —1)Po)*(1 +(d°(v,) = 1))(b " ** 'v+ Py)
[o2(* ¥ o+ Pody((b! ° " — DPo)1 +(d°(v) 2 1)
_ o.2(1_')0)3(Nb— 1)0'2(P_01)3(__ 1 +(d0(v1)2 1)) x((b P+g-1 - 1)P0)3(1 —Nb)
O'Z(b 1+¢ U+Po)3Nb
=—14+(d°(vy)=1)= —2pw)(1 +(@d°(x(1)=2)) .

Furthermore, since
Wpiee (T = P00 7 T = )= — 2™ " 2 (W) 7 ')
by 4.2.5(1), the function must be a polynomial of x(x)®> multiplied by y(u). [

6.2. The curve defined by y2=x>—x. We treat here the other genus two curve
C defined by y2=x3—x. The ring Z[[ { |] can also be identified with Z[{] by 4.1.1(2).
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The endomorphism [ —£77] acts as
r_Cj_](uls u2):(_‘:ju1, _Csjul)
because | { JoV={w? and [{ Jo®P={?w'?. We let c=1, a,=i, c;,=—1, a,= —i,
¢, =0, in (1.1.1). In this case
o = [ —2K,{® 2K,(*-0) :I
| —2K,0 2K,((°-{7)
.| 2K =E+1)  2K,(—(+1D) :|

T 2k, =3+ 1) 2K (=3 +1)
[ 2 2H1(c‘>—c7)]

| omr7 2H,E—09)
L [ 2H@ =T 41) 2H,(—07+1)
"oy 2H2(—§5+1)]

Our choice of P, in C? gives

6.2.1) PO:[KI(C—-CM?)—KI ]=w,[ —1/2 ]+w,,[ —1/2],
‘ K,({*—(%+0)—K, 0 0

and

(K~ 403 -1) ] ,[1/2] ,,[—1/2]
6.2.2 P,= = 1-
€2 Tk [C3K2(53—C"+C—1) “Lid™ L o

Then our arguments go in parallel with the previous subsection. Instead of (6.1.4) we
derive

(6.2.3) (rc’|—1)Po=w'[ i ]+w”|:g]

from (6.2.1) and (6.2.2), and then

(6.2.4) a(v+[ {7 1Po)={ a(v+ Po)exp[L(v, ([ { 1—1P)]
and

(6.2.5) ij(rCWPo) = C60'ij(Po)+ o (Po)ny;+ 'léj)cﬁ +0;(Po)ny; +15:)C°

instead of (6.1.5) and (6.1.6), respectively. Then we have o,,(Py)=H,(—1—
(/2 —Di)ox(P,) and ,,(Po) = 2H (-1 +J2 + I)O'Z(PO) From 2.2.1(2) we have 6,,(P;) =
2,/456,(Py)=0. Thus, we arrive at

PROPOSITION 6.2.1. Assume C is defined by y*>=x°>—x. Let Py be the point whose
coordinate is given by (6.2.1). Then
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1) o(w)=u;—4u;+(d°=5),
— Y22 2 1 3 )’122 2
2) (v + Po)=0,(Po)v, + 7,010, +T v _?01 +TU1 v,
2
$ 1202 0024 o2t @02 3)),

2
where yy,=H (—1—(/2 — 1)) and y,, =2H,(—1+/2 +i).
PROPOSITION 6.2.2. 0,(Po)*=exp2L(P,, P,).

Proor. Take y=y(u) as a local parameter at P, along x~'1(C). By 3.2.2(1), we
have 2y(u)o,(u)* = o(2u). After differentiating this with respect to y, by setting u= P,
we get 20,(Po)*=20,(2P,) because of y(P,)=0 and ¢(2P)=0 which is led from the fact
2P,e A. Similarly, by differentiating o(u+2Py)=y(2Py)o(u)exp L(u+ P,, 2P,) with
respect to u, and setting u= P, we get ¢,(2P,) =exp 2L(P,,P,) because 6(0)=0,¢,(0)=1
and y(2P;)=1 where the last is obtained from (6.2.1) and the definition of y( ). Hence
the statement. [

We denote by t the element of Gal(Q({)/Q) such that {*={3. Then 1 +7 is a type
norm (see 4.2.7) in Z[Gal(Q(¢)/Q)].

PROPOSITON 6.2.3. Let b be an element of Z[({]. If b=1 mod 4, then
o(b T (w+Py)=a,(Po)N " la(b v+ Po)14+(d°=1)).

Proor. By the assumption, b'**—1=0 mod4 and hence (b'**—1)P,e24. So
x((b'**—1)Py)=1. Moreover Nb— 1=0 mod 4 and 2P, € A. Then the statement follows
from 4.2.8(1) and

exp[3(Nb—1)L(P,, Po)]=0,(Po)""~!

which is given by 6.2.2. [0

LEMMA 6.2.4. Let o) :=(}#1:22:—60%)0 111+ 3 (01112 —6011912)0222)1).
Then it has the following properties.

1) o W=C0(w),
(2) eel(, 0(50),
(3) the Taylor expansions of a(u)’@(u) at O and P, are of the form

o) p(u)=u3 + c ui +cou u, +(d°(uy, uy)=4)

for some constants ¢, and ¢, ,
a0+ Po)’ @+ Po) = 05(Po)°(1+(d*(vy, )= 1)) .
Proor. (1) follows from 4.2.5(1) and the definition of go-functioris. Since

(Y (92222 — 602 Xu)=(— 022220 +40,,,0,—363,)u),
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oW’ 1,()=(—207+30,0,,6—0,,,0°)u),
W) (21112~ 60 1101 W=(—0411,0+36,,,0,+0,1,0,—30,,0,,)1),
0(U)*©222(U) =(— 2063 +306,0,,0 — 05,0 *)u)
the statement (2) holds. The Cexpansion in 6.2.1(1) gives '

(— 022220 +4033,0, —363,)(1)
=—(d°2Yu +@°23))+H—2+d°= D)X —ui +(d° = 4)) — 3(—2u, +(d° > 3))?
= —4us +cjui +chuu, +(d°=4) for some constants c| and cj,

(—207+ 30'10'1170'—0'11102)(11[)
=—214+@d°21)*+31+@d° = ))d°=3)d° = 1)—(d° = 3)d° = 1)*
=—=24d°=2),

(— 0'11120""30'1120'1_30'1110'2 30'11“12)(“)
=—@d°21)u,+d°=3)+3d°=22)d° =+ (d°=2)d° =2)— 3(d°>3)(d°>3) :
=d°=2), :

(=203 +30,0,,0 —0,2,0%) 1)
=—=2d°=2P+3d°=22d° = 1)d°=1)—(d°=0)d° =1 =(d°>2).

Therefore
g’ ou)=u2 +cu? +cuu, +(d°=4)
for some constants ¢, and c,. Similarly, 6.2.1(2) gives

(—203+36,0,,6—0,1,62) v+ Py)
=0,(Po)’ [ ~2d°=2P +3(d°=2)(d° = 1)d° > 1)—(d° = 0)d°=1)*]=(d°>2),
(—011120+361120,+6,,,6,—306,,6,)(v+ Py)
=0,(Po)* [—(d°=20)d° = 1)+ 3(d° =0)(d°=2)
+{(=24+@° 1)1 +(d°=1)—3(d°=1)d°=0)]=0,(Po)*(—=2+(d°=1),
(—263 +30,0,,0—0,,,62)v+Py)
=0,(Po)’[—2(14+(d° = 1)) +3(1+@d° > 1))d°=0)(d° = 1)—(d° = 0)(d° > 1)?
=03(Po)’(=2+(d°=1)).
Hence 6(u)’@(v+ Po)=0,(Po)*(1+(d°>1)). This is (3). [ :
THEOREM 6.2.5. Let @(u) be asin 6.2.4. Let be Z[{] and assume b=1 mod 4. Then
Wy +)° @b T u) is of the form
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Voo 00" W)= T px(uy

with y;€ Q(0). Moreover, ys—, =02 " and y,=1.

Proor. We follow the same arguments as in the proof of 6.1.6. We look at the
Laurent expansion at u= 0. By 6.2.4(3) and 6.2.1(1), we have

o.b1+tu5 b1+tu _b1+t2tu2+ dou 24
Uy P11y = T OB (67T +(d () 24)

0 5(12)>N? T (—ui (@) =)
=b2(t+1) 1 +_._zb2(t+1)(_1_)5Nb_1+..,
uzl()Nb—Z u22

=bh2+ Dx(u)>N 1 4 “lower terms of power of x(u)”,

since the above function is even and so a polynomial of x(u). Then we look at the
Laurent expansion at u= P, (x(P,)=1(0, 0)). Since b=1 mod4 and so b**'=1 mod 4,
we have @(b!**(v+ Py))= (b * v+ P,). Therefore, 6.2.3, 6.2.1 and 6.2.4 imply
W+ 0+ Po)l*@(b ! 0+ Pol |, 4 poer- 140y

_ab 1 v+ Po) (b v+ Po))

o+ P P

_ (P> Va(b o+ Po)°x((b ! T — 1)Po)°(1 +(d°(v) 2 1))p(b ' **v + Py)

- 62(Po)*™ (1 +(d° = D)xl(b **— 1)Po)*™

_ 03(Po)’ ™7 Vg (Po)*(1+(d°(v) 2 (b T° = 1)Pg)> ™™

- o2(Po)*™(1+(d°> 1)

=x(b' T = 1)P)* TN +(d°(vy) 2 1))=1+(d°(x(u)) = 2) .
Here the last equality follows from the fact that 5'**—1 is divisible by 4 and so
x((b'**—1)P,)=1. According to 4.2.5(1),

Yool [ L T3B! L Ty =L3CN " Dy ()3 (b + ),

and hence the function must be a polynomial of x(u)*. [

7. Genus three curves of cyclotomic type.

7.1. The curve defined by y2=x"+1/4. Let us treat the genus three case. First
example is the curve C defined by y2=x"+1/4. As in Sections 5 and 6 the ring Z[[ ¢ |]
is isomorphic to Z[{]. Then [ —¢’ | acts as

r—Cj_I(ul, “2)=(—‘Cju1, —C?'juz, —C3ju3) .

We let c=__4—1/7’ a1=_4—1/7c’ c1=_4—1/7c2’ az=_4—1/7C3’ c2=_4—1/7c4, as;=
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— 4773 cy=—47Y7¢5 in (1.1.1). Then

[ 2K,((° (% 2K, 2K,(-07)
w'=| 2K*—{) 2K, ((°-{) 2K2(C2—C4)],

L 2K5((—0%) 2K,(L7—0%) 2K4(°—(°)
2K+ - 2K -0+ - 2K,
w"=| 2K(* =L+ =L+ L7 —1) 2K,((° L4+ (7 -1) 2K2(C2—1):|,

L 2K (=03 + =00+ 07— 1) 2K5((2—(°+(7—1) 2K 1)

[ 2H,({*-{%) 2H,((*-(?) 2H,((°-07)
n'={ 2H,({*—{%) 2H({-{°) 2Hz(55—€3):|,
L 2H5((°~{?) 2Hi((*—(%) 2H5(*-0)

[ 2H,((P=H =0+ 2H, (- + -1 2H,((°-1)
n'={ 2H,((*=C°+{—=03+(°—1) 2H,((—-¢3+(°—1) 2H2(C5—1)].
L 2H(( =P+ =L+ 1) 2H4(CP -+ {4 —1) 2H (1)

The point P, in C3 is given by

K-+~ 04+ 7 =LK, 3/7 1/7
(7.1.1)  Po| K{?—(*+(°—(+0°—07)—K, |=0']| 2/7 |+o”| 1/7 |.

K=o+ 2 =P+ —-(H—K; 1/7 1/7
Then
 —4/77] - 1/7 3/7 1/7
[(Po=w'l —=5/7 |+w”| 1/7 ] rC2—|P0=w’|: 2/7 ]+w” 1/7 ]
| —6/7 ~1/7 1/7 —6/7
_ [ —4/7 7] - 1/7 : 3/7 1/7
(7.1.2) (3 Po=w'l —5/7 |+w” 1/7} rc4‘lpo=w'[2/7:|+w"[ —6/7],
L 1/7 L 1/7 1/7 1/7

—4/7 1/7 3/7 —6/7
j‘::S'lp(,:w'[ 2/7 ]+w”|:1/7:|, |_C6_|P0=w’|:2/7:|+w”|: 1/7 ]
1/7 1/7 1/7 1/7

To compute the Taylor expansion at u=P,, we again follow the arguments in 6.1.
Instead of (6.1.4) we have

-1 0
(7.1.3) (rC_l—I)Pozw’[—l:l+w”|:0:|
-1 0

which is given by (7.1.1) and (7.1.2), and then
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(7.1.4) o(v+[ { 1Po)={(2a(v+ Py)exp[L(v, ([ {1 —1)Py)]
and
(7.1.5) Uij(rg—u)o)=440'.','(})0)+0'i(Po)(—’11j_’15j“'13j)52

+0;(Pol—nti—nzi—n3:)C >
instead of (6.1.5) and (6.1.6), respectively. Then we have
011(Po)=2./2005(Po)=05(P0)#0,  05(Po)=2H (—L3+{*+{%)0,(Py),
G22(Po)=4H({* +{+{3)aa(Py) 013(Po)=0,
023(Po)=2H,(—{? + > +{*a,(Po), | 0'33(P0) 0.
Since the Taylor expansion at O is given by 2.1.1(3), we have obtained the following.

PrROPOSITION 7.1.1. Assume C is defined by y* =x7 + 1/4. Let P, be the point whose
coordinate is given by (7.1.1). Then

M o) =uyus —uz —fzuf —uu3 +(d°>6),

(2) 0(U+Po)=az(Po)(Uz+ ; of +y1200,+ }’2 v3 +(y%—%)vl

Y22 ?12 712722 Yzz 723
+ _+ v + v +__ + v v
( 3 ' ) iU, ! 0v; 3 U3 | 13

+ 922712010203+ V22Y230503 + Y: 003 — é vi+(d°=4),
where yy, =2H (—(>+{*+(°), y2=4H,({*+{+(°) and y23=2H2(7—C2+‘C5+C4).
PROPOSITION 7.1.2. 0,(Py)" =expZL(Py, Py).
ProoFr. Because of y(Py)=1/2, it is obtained from 3.2.4(2) and (3) that
0(3Po)=0,(P)° and  a(4Po)=0,(P,)'®,
respectively. On the other hand, from 3.1.1 we get
06(4Py)=0(—3Ps+7Py)= —exp[3L(P,, Po)]6(3P,) .

Here we have used that a( —3P,)=a(3P,) and (7.1.1) which implies y(7P,)=1. Therefore
we obtain

02(P0)16=CXP[%L(P0, Po)]o'z(Po)g
and hence the statement. [

We denote by 7 the element of Gal(Q({)/Q) such that {*={>. Then 1+ is a type
norm (see 4.2.7) in Z{Gal(Q({)/Q)].
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LeMMA 7.13. IfbeZ[{], then y(b*** " = )P 1=1.

Proor. The proof is almost the same as that of 6.1.3. We may assume Nb is
even. By the assumption on b, we may write b* """ "* T =(a,{ +a,{ > + a0’ +al* +
asl®+agl ®¥1 —{)+1 with integers a;. Since 2 is a prime in Z[{], we have b=0 mod 2
and hence b+ '** =0 mod2. Then we see a, =a;=as=1mod2 and a,=a,=as=0
mod 2. Therefore

(BT P =0((+ P+ —L)Pg)
==+ =+ P =Py =1

‘ -3 1
(C—CZ+C3—C4+€5—C6)P0=w’|: —2}%}"[ 1]
~1 1

which is obtained from (7.1.2). O
PROPOSITION 7.1.4. Let b be an element of Z[{]. If b=1 mod(1 —{)?, then

G(b1+t—‘+t‘2(U+P0))
=x((B" T T = DP)oy (PN (b T T 04 Po)(1+(d° = 1))

because of

Proor. ' The statement follows from 4.2.8 and
exp[$(Nb—1)L(P,, Py)]= UZ(PO)Nb— !
which is given by 7.1.2. [

LeMMA 7.1.5. Let @(u):=(p %, — 922011 (u). Then
(1) (¢ w={%0w),
(D ewell, 0(30)),
(3) the Taylor expansions of a(u)*p(u) at O and P, are of the form
| o(u)’ @(u)=2u3 +(d°(uy, uy, us)=4)  and
a0+ Po)>p(v+ Po)= — 02(Po)* (1 +(d°(vy, v3, v3) = 1)) .
The proof is similar to that of 6.1.5 and we omit the details.

THEOREM 7.1.6. Let @(u)=(p2,— 9,24 11Xu) as above. Let be Z[{] and assume
b=1 mod(1—{)2.
(1) If Nb is odd, then @yi+o-1+--2(u)>@(b*** 'u) is of the form

Wpevemteem2u) (b1 77T ) =23 u) > ypluy
0j59(Nb—1)/2
Jj=0mo

with y;,€ Q. Moreover, youp—1y, =b2 """ and yo= —1.
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(2) If Nb is even, then @yi.-1+--2w)3@(b' " 'u) is of the form

Ypr e tee2u)Pe(b T )= > ¥y

0<j<(9Nb—2)/2
j=0mod7

with y;€ Q((). Moreover, yonp— 22 =202 """ and yo= —1.

Proor. First, we look at the Laurent expansion at u=0. By 7.1.5(3) and 7.1.1(1),
we have

(7.1.6) Ypivemtee2w)@b W) o)
B a_(b1+:-'+:—1u)3¢(b1 +r—‘+t—1u) B 2(b1+t_l+'"2)2tu§+(d°24)
B a4 (u)*™® C(—2u,—tu+(@° =5
_ b2 T2 4 (d0 2 4) 1

= __1Nb2b2(t+1+r“) 4.
(—u33+(d°25))3Nb ( ) u39Nb-2

This function is odd or even and o, has only zeroes at ue A by the first statement of
2.2.1(3), and accordingly is a polynomial of x(x) multiplied by y(u) or a polynomial of
x(u), respectively. If Nb& is odd, then the last of (7.1.6) is

b ide-1) _1( 1 )9(Nb—1)/2
=2b S 4o

uy \uj
=2y(u)(b2 1T Dx(y)° ™0~ 12 4 “lower terms of power of x(u)”’)

by 2.3.1 and 2.3.2. Similarly, if N4 is even, then the last of (7.1.6) is

26+ 141-1) 1 (O9Nb—2)/2
=2b T T - + -

u3

=2p2EH 17 Do) ONB=202) 4 “]ower terms of power of x(u)” .
Secondly, we look at the Laurent expansion at u=P, (x(P;)=10, 1/2)). Since b=1
mod(1 —¢)? we have 51 **7"**"*=1 mod(1 — {)?. Because of (1 —{)P, € A and ¢(u) being

periodic, we have @b ' ¥ 't w4+ Po) =T Yy 4 P,). Therefore, 7.1.3, 7.1.1,
7.1.4 and 7.1.5 imply

(7.1.7)
ll’b‘*‘—l+‘_z(v+P0)3(p(b1+r_l+r_2(v+PO))|v+Poex—‘l(C)
B O_(b1+rl+t—2(v+P0))3(p(b1+r'l+t"2(v+Po))
O.Z(bl+r-l+:-2(v+P0) 3Nb v+ Poex - H(C)
={02(Po)* ™~ Va(b +* 7 p 4 Po)p((b ! T T T — )PP (1 +(d°(v,) 2 1))
(P(bl+r“+t‘zv+P0)}/{a.2(b1+t—‘+t—2(v+Po)3Nbx((b1+t‘1+t‘2_ 1)P0)3Nb}
i G2(Po)*™* Vg ,(Po) (—1+(d°(v,) = 1))
a2(Po)*™(1+(d° 2 1))

(by 7.1.3)
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1+ (@) > 1)={ —29(u)1+(d°(x)=1)) if Nbisodd,
o —1+{d°(x(u))=1) if Nb is even .

Furthermore, since

'J’b‘*”_i*f_z(l__CTu)(D(bl +t‘1+r“2|"_c"|u)=(_ 1)Nb¢bl+t_1+t'_z(u)(p(b1+t‘1+t—2u)

by 4.2.5(2), the function must be a polynomial of x(u)” if Nb is even, or a such multiplied
by y(u) if Nb is odd. [

7.2. The curve defined by y2=x7 —x. Second example of genus three is the curve
C defined by y?=x7—x. The ring Z[[ { |] is isomorphic to the ring Z{{1® Z[{] by
[~ # @’ by 4.1.1(2). The endomorphism [£77] acts such as

(721) rcjj(uI?uZ! u3)=(cjula ijuZ’ Csju3)
because [{ Jo?={wY for j=1,2,3. We let c=1, a,={3, c;=C* a,=(% c,=(5,
ay,={1 ¢c;=0, in (1.1.1).
As in the previous subsections, we have
[ —2K,(* 2K,((*-(%) 2K, (*-0)
w'=| —2K,{* 2K,(+¢?) 2K, (—1-¢% |,
L —2K30 2K3(—(-07) 2K5(—(*=0%)

[ 2K (=040 -0+ 2K (P-4 2K1(—C+1):'
"= 2K, 0 2K(—E3+1) |,
L 2K (=020 =00+ 2K(— P00 00+ 2K5(—LP+1)
[ 2H,{ 2H(—{?+(0%) 2H(-P+09)
n'=| 2H,{® 2H)(—{?—(%) 2H,(—1+(3) :|
L 2H,{%  2H,({*+(7) 2H,((?+0)

[ 2H ({243 =4+ 0%+ 1) 2H((P—¢*+¢°+1) 2H((P+1)
n"= 2H, 0 2H,(E3+1) |.
L 2H((* P4+ 2H(— 03+ 0P4E+1) 2HG(E+)

Furthermore,
K -2+ —0*+ %) —K, —1/2 —-1/2
(7.22) Py=| K,((*+1-0*—1+03)~K, |=w’ 0  |+w” 0 .
K@+ + 0P+ 02+ 0)— K, 0 0
and, by (7.2.1),
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(K (—14+0-02+03=0*+(°~1)
(7.2.3) FC‘IP0=[ CK (1403 +1-03—1423—1) ]

CK(-1-04+ 04+ + 02+ 0-1)

1/2 —1/2
=w’[ 1 j|+w"l: 0 :I
1 0

Let us compute the Taylor expansion at u= P explicitly. Again, the method is the
same as in 6.1. In a similar fashion as we derived (6.1.4), (6.1.5) and (6.1.6), we have

1 0
(7.2.4) (¢]— 1)P0=a)’[ 1 :l+w”l: 0 ] ,
—1 0

(7.2.5) o +[{ |1Po)={3a(v+ Po)exp[L(v, ([ { |—1)Py)],

and

(7.2.6) Gf,-(l_C—lPo) =‘:30'ij(Po)+0'i(Po)(’7;‘1 +'I}2 + 11}3)(3 +G'j(Po)('T{1 +ni; +’71’3)Ca s

respectively. Then
711(Po)=0, 612(Po)=H,(—1—(2—/3))o,(P,)
0,:(Po)=H,(—1—1i)o,(P,), 0,3(Po)=0,
023(Po)=H,(—1=(/3 +2Do,(Po),  033(Pe)=0.

Thus we arrive at

PrOPOSITION 7.2.1. Assume C is defind by y>=x" —x. Let P, be the point whose
coordinate is given by (7.2.1). Then

(1) o(u)=u us—ui —iyuf —3uu3 +(d°=6),
_ Y22 > 1 3
) (v +Po)=06,(Po)| v3+7420,0; +Tvz + 7130103 +'}’230203_?”1
?122 Y12Y22 ?%2
+ 4 viv, + U103 + 712723010203 +Tv§
2
+ yzf” v§v3+——y:3 vzvf——;v§’+(d°24)) ,

Where 'y12=H1(_ 1 _(2_\/§)i), 'yZ2=H2(—1_‘i) Clnd ')’23=H1(‘— 1 _"(\/?'{'Z)i).
" PROPOSITION 7.2.2. a,(P,)® =exp4L(P,, P,).
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_ Proor. Take y=y(u) as a local parameter at P, along ™~ '1(C). By 3.2.4(2), we
have 8y(u)o,(1)° = a(3u). Operating d>/dy? to this and setting u= P, we get

(7.2.7) 270-1 1 1(3P0) + 60-2(3P0) = ‘—‘480'2(1)0)9
because of y(P,)=0 and 2.3.2(3). Moreover, we have the equation
(7.2.8) o(u+3Py)=x(2Po)o(u+ Py)exp L(u+ Py + Py, 2P,)

given by 3.1.1. Operating 03/0u? to (7.2.8) and putting u=0, we get o,,,(3P,)=
—04111(Po)exp2L(P,, P,) because of ¢(0)=0, ¢,(0)=1 and x(2P,)=1. Similarly,
differentiating (7.2.8) with respect to u, and setting u=0, we get

(7.2.9) a,(3Po)=05(Py)exp4L(P,, P,) .
Summing up (7.2.7), (7.2.8) and (7.2.9), we arrive at the statement. [

We denote by 7 the element of Gal(Q({)/Q) such that {*={>. Then I + 1 is a type
norm (see 4.2.7) in 21 Gal(Q()/Q)].

PROPOSITION 7.2.3. Let b be an element of Z[[ { 1. If b=1 mod 8, then
(b1 v+ Py))=0,(Po)N " lo(b 1 o+ PoX1 +(d°>1)).

ProOF. Note that 2P e A. By the assumption, '**—1 is divisible by 8. So
x(b1*°—1)Py)=1. Moreover Nb—1 is divisible by 8. The statement follows from 4.2.8
and

exp[% (Nb—1)L(Py, Py)] =0'2(P0)Nb—1
which is given by 7.2.2.
LemMMA 7.2.4. Let

@) =[32(0222:— 6030111 +HP1112—6011022)022211) .
Then it has the following properties.

(M) o ¢ =C0m),
2 eWell, 0(50),
(3) the Taylor expansions of o(u)’p(u) at O and P, are of the form

o(u)’ p(w) = —u3 +(d°(uy, uy, u3)=5),
o+ P o+ Po)=0Po)*(—1+(d°(vy, v5, v3)2 1)) .
Proor. (1) follows from 4.2.5(3) and the definition of g-functions. Since
T(U)* (92222 — 6§30 1) =(— 022220 +40,,,6, ~303,) ),
oo, 1 (W)=(—263+30,6,,0—0,,,0),

0'(”)2(@1112_650115032)(5‘):(_0'11120'4”301120'1“0'1110'2_3‘7110'12)(“) ,
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0(u)*§0222(0) =(—203 +36,0,,6 — 06,20 %)w),
the statement (2) holds. The expansion in 7.2.1(1) gives

(— 022220 +463326,—303,)w)

— —(d°22Md° > 2)+ M > 2(d° 2 2)—H(— 2+ (d°=2)> =124+ (d°22),

(=203 +36,6,,6—0,,,6%Xu)
= 2{uy+(d° > 3)P +3(d° > 1(d° = 2(d° 2 2)— (d° = 1)d° 2 2
= —2ui+(d°>4),

(—0611126+30,,,0,—0116,—36,,0;,)(1)
(@2 00d° 2 2)+3(d° = 1)d° 2 1) +(@° = 0)d° = 1)— 3(d° 2 2)(d° = 2)
=(d°=2),

- (—263 430,030 — 033,06 *Nu)
= —2d°>1)P +3(d° = 1)d° > 1)(d° > 2) —(d° 2 3)d° 2 22 =(d° 2 3) .
Therefore o(u)’ p(u)= —u3 +(d° = 5). Similarly, 7.2.1(2) gives

(—263+36,0,,6—0,,,6%)v+Py)

(@2 1P +3(d°2 1) 1> 1) —(d° 2 0(d° = 1) =(d°>2),

(—04111260+30,120,+01,116,—301,0,:)v+Py)
=0,(P,°[—(d°=0)d°>1)+3(d°=0)d°>1)

(1 +(@° = D)1 +(d° > 1)) — 3(d° = 1Yd° = 0)]
=0,(Pe)’(1+(d°21)),

(—2034+36,0,,6—06,,,0) v+ Py)

— 0, (Po) [ — 21 +(d° > 1)) + 3(d° > 0)d° > OXd° = 1) — (d° = O)d° = 1)?]
=0,(Po)*(—2+(d°=1)).
Hence a(w)’p(v+ Py)=0,(Py)°(1 +(d° =1)). So (3) is proved. O
THEOREM 7.2.5. Let @(u) be as in 1.2.4. Let be Z[[ { 1] and assume b=1 mod 8.
Then @y +(u)’@(b' " ) is of the form

Yy sa(t)’ @b u)= > y;x(uy
i 0<j<(15Nb—3)/2
j=0modé

with y,€ Q((). Moreover ¥ snp—3,2=b>""" and y,=1.

ProoF. The proof is almost the same as that of 6.2.5. First, similarly as in 6.2.5,
we have
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g b1+tu 5 b1+ru) _(b1+z)3ru3+(d0(u )24
1/ +r(u)5¢(bl+tu) L,E,c—l,(c): ( ) qzilb = 3 : ° : 5)Nb
6 2(u) (= 2u;—duz +(d°(u3) = 4))
s 1 3t 1) 1 (15Nb—3)/2
— t+1 [P T PR

= b3+ D(x(u)!15Nb~3)2 4 “lower terms of power of x(u)”) .
Secondly, since b=1 mod 8, we have "' =1 mod 8. Because of 2P, € A and ¢(u) being
periodic, we have @(b' v+ Py))= (b **v+ P,). Consequently, 7.2.3, 7.2.1 and 7.2.4
imply
Yoi+v+ Po) (b " (v + Py)) |v+Poex‘ 14(C)
_ (b T+ Po) (b (v + Py))
a,(b! T v+ Py))°N v+ Poex~ 14(C)
_ 6a(Po)* ™" Va(b "+ Po)*(1 +(d°(v)) = 1))p(b ' * v+ Py)
N a2(Po)*NH(—1+(d°=1)
_ az(Po)s(Nb—l)o'z(Po)s(l +(d°(vy) = 1))
- 02(Po)*™(1 +(d° 2 1)
= —1+@°() 2 1)= — 1 +([d°x@)=1).

Furthermore, since Yuivo[| —C )b [ —{ Tu)= — {3~y (u)®p(b **u) by
4.2.5(3), the function must be a polynomial of x(u)®. [

8. Some remarks and comments.

1. As is mentioned in the beginning of Part II, in each formula in 5.1.3, 5.2.3,
6.1.6, 6.2.6, 7.1.6 and 7.2.6, the coefficients of the right hand side, which side is a
polynomial expression in x(u) and y(u), are contained in the field Q({). Furthermore we
can prove that the coefficients of the right hand side of each formula of 5.1.3 and 5.2.3
are contained in Z[e?"/*] and Z[i], respectively. The coefficients of the right hand side
of the formula in 6.1.6 are also contained in Z[e?"/%] (see [9] or [17, p. 46]). For each
of the other three formulae, its coefficients seem also to be contained in the ground
integer ring. '

2. Theorem 5.1.3 implies
[1 xP)=(—1)"*"1p.

Peb*(@)o,
1-0Po#0
/£1

Theorem 5.2.3 implies
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]._[, .x(P)=(_1)Nb—1b2.
Peb*(©)o,
(1+iPo+*0

/x1

These are versions of the product formula of Eisenstein.

3. Theorem 6.1.6 (Grant’s formula) implies

e -1
I1 X{P)=—m,
PeiC) (' + ¢~ Yyro) blte
2P+0
T+ 1

where - denotes an intersection of cycles in J. In fact, the cycle 1(C)- (b ** )*(@)o
contains only five 2-torsion points (—4'°¢/,0) with j=0, ---,4 (see [9, p. 131]).
Theorem 6.2.6 also implies that the product of roots x(u) of the right hand side of the
formula of 6.2.6 is equal to 1/52**?. Similarly Theorem 7.1.6 states that the product
of roots x(u) of the right hand side of the formula in 7.1.6 is equal to + 1/p2¢*+1+=™h
or +1/2b26+*1+:" D and Theorem 7.2.6 states that the product of roots x(u) of the right
hand side of the formula above is equal to 1/6*?*9, These are generalizations of the
product formula of Eisenstein.

4. The polynomial of x(u) in the right hand side of each of the formula of 5.1.3
and 5.2.3 is known to be irreducible over the ground ring when 4 is a prime element.
It is unknown whether the other polynomials of 6.1.6, 6.2.6, 7.1.6 and 7.2.6 are
irreducible.

5. The roots of each polynomial of x(u) generate a finite algebraic extension over
the ground field. For the genus one case, such extensions are known to be abelian.
Contrarily, the extensions in higher genus cases seem not to be abelian but to have very

large Galois groups. For Grant’s original formula, some numerical examples are given
in [17].
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