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ABSTRACT

Many networks such as the Internet have been found to possess scale-free and small-world network
properties reflected by so-called power law distributions. Scale-free properties evolve in large complex
networks through self-organizing processes and more specifically, preferential attachment. New nodes
in a network tend to attach themselves to other vertices that are already well-connected. Because traffic
is routed mainly through a few highly connected and concentrated vertices, the diameter of the network
is small in comparison to other network structures, and movement through the network is therefore
efficient. At the same time, this efficiency feature puts scale-free networks at risk for becoming
disconnected or significantly disrupted when super-connected nodes are removed either unintentionally
or through a targeted attack or external force.

The present paper will examine and compare properties of telecommunications networks for both
the United States and Europe. Both types of networks will be examined in terms of their network
topology and specifically whether or not they are scale-free networks to be further explored by
identifying and plotting power law distributions. Next, economic, political and cultural factors may be
used to explain differences in network structures between the United States and Europe. In addition, the
paper will identify data and modeling tools that are needed to facilitate further cross-Atlantic
comparative studies of communications networks.
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1. Introduction

Network connectivity has increasingly become a major research issue. With the advent of the World
Wide Web and the Internet, complex network formations have emerged that call for a thorough
functional and geographic analysis. In recent years several contributions have emerged at the
intersection of geography and network analysis (see inter alia Barabasi and Albert, 1999; Albert and
Barabasi, 2000; Amaral et al., 2000; Gorman and Kulkarni, 2000; Malecki and Gorman, 2001; Rinaldi
et al., 2001; Malecki, 2002; Barthelemy, 2003; Gorman and Kulkarni, 2004). Such studies address the
position of nodes (e.g., cities, hubs) as well as the diffusion patterns of flows in complex networks,
with due emphasis on route length, nodal clustering, and power law and exponential connectivity
distributions. Most complex networks appeared not to have a random formations, but a locally
organized structure of nodes or clusters, leading to ‘small worlds’ (cf. Watts and Strogatz, 1998). Such
‘small worlds’ in complex networks tend to have a heavy tailed connectivity distribution (with an
inverse relationship between the number of nodes and the number of connecting links), in contrast to a
random distributions (with an exponentially declining probability to find highly connected nodes). In
the case of incremental growth in a complex network, new nodes tend to be more likely to connect with
existing well-linked nodes. Consequently, hubs tend to reinforce themselves. Such networks are often
coined ‘scale-free networks’.

This paper compares the distribution and connectivity properties of two telecommunications
networks, the physical fiber network of North America and the pan-European fiber optic network.
There are five sections to the paper following the introduction. The first provides a historical
perspective of telecommunications deployment in each region along with a description of the
regulatory and institutional frameworks that have contributed to these trends. Section three discusses
complex network theory and the methodology used in this study to compare the United States and
Europe in terms of network connectivity. The results of the empirical investigations are presented in

Section four and concluding remarks and directions for future research in Section five.

2. Europe and the United States: Comparing Development and Deregulation Policies

2.1. Preface
The nations of Europe, on average, lag the United States in terms of telecommunications deployment

and market development, although this is changing, as Europe transitions to a more competitive
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regime. This section provides a historical perspective of these trends focusing on how the institutional
and regulatory frameworks have evolved in the two regions, establishing a base from which the

findings of the empirical analysis can be interpreted.

2.2. Telecommunications Networks in the United States and the Role of Deregulation

The telecommunications revolution was initiated by deregulation of the telecommunications industry,
which turned state-subsidized monopolies into private market competitors. Private firms, even before
regulation, had supplied advanced telecommunication services, but deregulation has moved the vast
majority of the world’s telecommunication networks into private control (OECD, 2002). Privately
operated networks in a competitive environment will respond mainly to market pressures of supply and
demand (Gillespie and Robins, 1989). The largest network of interconnected privately operated
networks is the Internet, and, as a result, it is a largely unregulated system into which corporate
networks have connected (Schiller, 1999). Crandall (1997) argues that deregulation is a key ingredient
for the successful growth of advanced telecommunication services like the Internet, “the case for
government support and direction of telecommunication infrastructure investment remains very weak”
(Crandall, 1997, p.161). In fact, the Federal Communication Commission’s (FCC) official status for the
Internet is as an unregulated network (Oxman, 1999).

The exception to Internet’s lack of regulation is “last mile” access that provides services like
broadband to homes. “Last mile” infrastructure is predominantly owned by regional monopolies, either
the regional Bell telephone companies or regional cable television provider. In some areas of the
United States the regional monopolies have been forced to share or unbundle their network
infrastructure to allow competitors to offer broadband service to the home. The current policy debate
over whether to completely open these markets to unfettered competition (i.e. open access)
(Bittlingmayer and Hazlett, 2002), or limit broadband provision to only the regional monopolies,
focusing regulation on encouraging monopolies to provide access to underrepresented areas (Kalakota
et al., 2002), continues. The debate has taken the form of legislative actions, like the proposed Tauzin-
Dingall Bill, which would limit broadband provision to only the regional monopolies. Some have
prognosticated that wireless local loop solution could be the solution to the “last mile” dilemma, but
this too depends on public policy actions' that make electro-magnetic spectrum available for new

technologies to broadcast over (Economist, 2003).

' More radical policy strategies call for the deregulation of spectrum allocation where spectrum is treated as property,
allowing the owner to use their frequency for whatever application they see best fit, or most profitable (Economist, 2003).
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In the current deregulated market, where demand is greatest, telecommunications will be supplied,
resulting in geographic biases. The principal bias is locations with agglomerations of population and
economic activity will be disproportionately supplied telecommunications services and infrastructure
(Gasper and Glaeser, 1998; Moss, 1998; Malecki, 2002). This suggests that communication innovations
propagate a core-periphery effect of IT, where a more refined spatial division of “information labour”
has developed (Hepworth, 1987, p. 157). The agglomeration of demand and skilled labor is the basis of
the opposing argument: that we will not see communication technologies causing the “end of
geography” or the decentralization of economic activity. The fundamental question separating the two
arguments is whether the core (large urban areas) or the periphery (rural and small urban areas) will
grow and develop as a result of the telecommunications and IT revolution, and at what rate each will

grow.

2.3. Telecommunications Networks in Europe and the Liberalization

The picture of telecommunications networks in Europe is rather different from the one depicted for the
United States. Although now developing at a higher speed, Europe is still several steps behind the US
in the development of advanced systems of telecommunications infrastructures and services. The
deployment of physical infrastructure in Europe has been slowed down by several factors, such as
institutional frameworks determined by intra- and inter-country regulations, in contrast to the United
States, where an earlier deregulation in 1996 allowed for faster development, which was also pushed by
rapidly rising demand.

Europe is now beginning to catch up. Just between July 2003 and January 2004, broadband users
grew by 32%, reaching a total of 23.2 million users. The overall growth since the month of July 2002
was 152% (Balbi, 2004). By 2007, 62 million broadband users are expected to be located in Europe and
40% of households in Europe — in particular Western Europe — are estimated to be equipped with high-
speed connections (INA, 2004). Such impressive figures will require extensive investments for the
deployment of capable, sophisticated and integrated networks all over Europe. Recently, the
development of these infrastructures advanced at different paces across countries in Europe. Table 1
shows the recent development of Internet hosts and users in European countries between 2000 and
2001, as long as the values of several economic, social and technological variables. Over the short
period of a year, Internet users and hosts increased in most of the listed countries, often at rates

between +50 and +100%. While the values of the Education Index (see UNDP, 2002 for details) seem



to suggest that the most educated countries enjoy higher levels of Internet penetration, variables such as
per capita GDP do not show a clear common pattern if compared with the Internet-related variables.

If one considers the European network in terms of Internet infrastructure, one can observe that there
are clear differences between Europe and the US in terms of Internet network infrastructure. Several
studies have been carried out on this phenomenon. For example, Gorman (2002) has calculated the
alpha and gamma indices, among others, for Europe and the United States, to measure the network’s
redundancy and interconnectivity, respectively’. Gorman’s findings show a 51% redundancy for the
United States in 2000, while Europe only had a 28% redundancy rate. It is important to underline,
though, how Europe has progressed, by improving its index from 3% in 1998 to 28% in 2000. Europe
shows a lower value for the interconnectivity gamma index compared to the United States. The gamma
index value for Europe is 26.2%, while the US score a 55%. Since the gamma index has previously
been shown to be correlated to economic development,® the low value observed for Europe has to be
explained by complementary or different factors. A major factor in this setting is regulation, or, perhaps
more precisely, lack of deregulation (Gorman, 2002).

In the framework of the 1998 liberalization of the telecommunications industry, the European
Commission laid down a set of key requirements for the operators to meet and the National Regulatory

Authorities (NRAs) to enforce. These requirements are related in particular to:

e control of retail prices;
e control of access prices;

e Universal Service Obligation (USO).

? The alpha index is calculated as the ratio between the number of loops observed over a network and the maximum possible
number of loops in the given network. The gamma index is instead computed as the ratio between observed and theoretical
maximum number of nodes belonging to the given network. See, between others, Haggett and Chorley (1969) for more
details on network indices.

* Among others, Kansky (1963) and Garrison (1968) demonstrated the correlation between economic development and the
gamma index.



Table 1 — Social, economic and technological variables for selected European Countries.

List of Total Population (M) Online Population Internet Hosts per Internet Hosts per Internet Users per Internet Users per
Countries 2001 1999-2002 10k inhab. 2001 10k inhab. 2000 10k inhab. 2001 10k inhab. 2000
Austria - 3550000 400.51 595.01 3194.1 2585.89
Denmark 5.37 3230000 1045.38 626.6 4471.77 3658.52
Estonia 1.43 429700 356.92 284.25 3004.59 2720.96
Finland 5.20 2690000 1707.25 1022.53 4302.83 3722.95
Germany 82.36 30200000 294.58 248.05 3642.54 2917.6
Italy 58.02 19250000 117.28 177.97 2757.76 2303.75
Netherlands 16.1 9280000 1634.77 1015.55 3291.72 2439.47
Norway 4.53 2460000 673.82 1009.31 5962.9 4905.24
Portugal 10.3 3600000 239.28 62 3494.13 2494.11
Sweden 8.91 5740000 825.14 670.79 5162.74 4558.29
Switzerland 7.22 3410000 730.74 364.39 4040.17 2962.22
United Kingdoms 60.08 34000000 371.37 280.75 3995.01 3011.75
Average 23.59 9819975 699.75 529.77 3943.36 3190.06
Median 8.91 3575000 537.17 479.70 3818.78 293991
United States 285.93 165750000 3714.01 2928.32 4995.10 4506.96
Total Internet

Bandwidth Technology Achievement GDP per capita R&D Expenditure as %  Human Development Education

(Mbps) 2002 Index 1999 (PPPUS$) 2000  of GNP 1990-20001Index (HDI) Value 2000 Index 2000

Austria 17729 0.544 26765 1.6 0.926 0.96
Denmark 43456 - 27627 1.9 0.926 0.98
Estonia 517 - 10066 0.8 0.826 0.95
Finland 7820 0.744 24996 - 0.930 0.99
Germany 207669 0.583 25103 23 0.925 0.97
Italy 35771 0.471 23626 1.0 0.913 0.94
Netherlands 173154 0.630 25657 2.0 0.935 0.99
Norway 21638 0.579 29918 1.7 0.942 0.98
Portugal 3522 0.419 17290 0.6 0.880 0.94
Sweden 60349 0.703 24277 3.8 0.941 0.99
Switzerland 40057 - 28769 2.6 0.928 0.94
United Kingdoms 238074 0.606 23509 1.8 0.928 0.99
Average 70813 0.587 23967 1.8 0.917 0.97
Median 37914 0.583 25050 1.8 0.927 0.98
United States 273770 0.733 34142 2.5 0.939 0.98

Sources: ITU, NUA, Packet Geography, UNDP.



The second and third requirements are of particular importance in the context of our research.
Control over access prices is, in fact, to a certain degree, a regulation of the interconnection market.
The prices for leased lines contribute to determining the willingness, by an incoming operator, to invest
capital in infrastructure or rent lines. Leasing lines in Europe is still much more expensive than in the
United States, although prices are slowly moving in agreement with international rates.* This effect
may be due to the emerging competition in recent years. Perhaps the 1998 liberalization contributed to
this trend, which was the intention of the European policy-makers. In addition to interconnection and
interoperability conditions, the development of telecommunications networks is influenced by factors
such as the possibility of building up alternative technology platforms and acquiring infrastructures and
essential facilities (Cave and Crandall, 2001).

In addition, the requirement regarding USO consists of the obligation to serve every customer at the
same price.” This requirement influences the ability of operators to offer lower prices to preferred/more
convenient areas or customers.

Some have suggested that price regulation should be assigned to a centralized European
telecommunications authority. This issue has been discussed since the early 90’s, but the creation of
such an institution would require a loss of powers by the NRAs, which are, in many countries, under
control of the government. Most of all, a change in the European Treaty would be needed, which would
then require ratification, often via a referendum, by all the member countries (Bergman et al., 1998;
Cave and Crandall, 2001). On the other hand, a central authority would be able to deal with conflicts
between NRAs and European regulators, and would complement EU policies.® This trend goes in the
opposite direction of the United States, where some discussions have been going on about a possible
elimination of the United States’ FCC.

Despite the issues discussed above, the liberalization process was, until now, surprisingly
successful, as progress has been made in several fields. A number of telecommunications operators
have, in fact, been privatized, and access barriers for the telecom market have been eliminated, by
liberalizing entry. Prices have also dropped, in particular, beginning in 1997. On the other hand, the

deployment of infrastructure is still limited and tends to agglomerate near important business centers,

* Cave and Crandall (2001) hypothesize the existence of a community of interest may have delayed the decrease in line
leasing prices. Such a behavior might have been possible by the lack of deregulation in the matter and the financial barriers
for the entry in the market.

> In detail, the USO requirement consists of 3 dimensions: a) universal geographical coverage; b) geographical averaging of
tariffs; c) basic telecom service provided at affordable price (Cave and Crandall, 2001).



e.g., Frankfurt or Brussels. An important policy concern are long-term commitments have to be
favored, in order to facilitate the deployment of new broadband infrastructures. Moreover, Bergman et
al. (1998) stress how the promotion of innovation is tied to such long-term commitments. The financial
needs associated with investments in infrastructures are one of the reasons for the trend directed
towards the agglomeration of firms in strategic or financial alliances (see, e.g., Allen, 1996). In fact,
because of the large volume of customers required to make the connection to a new network profitable,
large and global operators “are the main target group for direct fibre optic connections” (Pehrsson,
2001, p. 203). In an analysis of the United Kingdom’s and Sweden’s telecommunications markets,
Pehrsson notes, in fact, the perception of deregulation and the capital needed for investments in
infrastructure are important barriers to the entrance of new operators.

Finally, in summary the above discussion recalls that the development of a competitive
telecommunications market is a strategic landmark in the growth of the networks. In this context, the
concept of scale-free network came recently to the fore, by showing the potential of long-term
correlations, expressed by power law distributions (Reggiani and Schintler, 2005). The emergence of
scale-free phenomena in telecommunication networks might be, therefore, tied to the efficiency of the
liberalization process and its enforcement.

The next section will briefly describe the scale-free properties, which essentially evolve in large
complex networks through self-organized processes and, more specifically, preferential attachment.
The subsequent Section 4 will then illustrate the empirical findings emerging from the scale-free
approach, with reference to the analysis of US and European telecommunications data. The potential
factors that might have caused networks to grow following different patterns and trends will be

outlined in this framework.

3. Scale-Free Networks and Power Law Distributions

For the majority of the 20™ century the absence of detailed topological data for complex networks left
random network models (Erdos and Renyi) as the most widely used method of network simulation
(Barabasi, 2001). As computing power increased and real world network data began to become
available, several empirical findings emerged. Three network characteristics frequently resulted from

the analysis of complex networks (Albert and Barabasi, 2002, pp. 48—49):

® Alternative approaches have been proposed, such as a self-regulation regime to be set between the NRAs, or, as a middle-
of-the-way approach, a two-tier regulation, in which the European Commission, the NRAs, telecommunications operators
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1. Short average path length
2. High level of clustering

3. Power law and exponential degree distributions.

Short average path length indicates that the distance between any two nodes on the network is
short; they can be reached in a few number of hops along edges. Clustering occurs when nodes locate
topologically close to each other in cliques that are well connected to each other. Lastly, the frequency
distributions of node connectivity, called degrees, often follow power laws or exponential distributions.

In a power law distribution there is an abundance of nodes with only a few links, and a small but
significant minority that have a very large number of links (Barabasi, 2002). It should be noted that this
is distinctly different from the models developed by Erdos and Renyi (1960) (ER) or Watts and
Strogatz (1998) (WS); the probability of finding a highly connected vertex in the ER and WS models

»7 (Barabasi and

decreases exponentially, so that “vertices with high connectivity are practically absent
Albert, 1999, p. 510). The reason, according to Barabasi and Albert, was that their model added another
perspective to complex networks, incorporating network growth; the number of nodes does not stay
constant as in the WS and ER model. The Barabasi-Albert (BA) models added growth over time and
the idea that new vertices attach preferentially to already well-connected vertices in the network.
Barabasi and Albert (1999) formalized this idea in “Emergence of Scaling in Random Networks”.
They stated that in a complex network like the World Wide Web the probability P(k) that a vertex in
the network interacts with k other vertices decays as a power law following P(k) ~ k¥ where the power
law exponent is equal to three. When studying real world scale-free networks, empirical results have
ranged from 2.1 to 4 (Barabasi and Albert, 1999). While the model set up by Barabasi and Albert
produces an exponent of three, they demonstrate how the model can be altered to produce results other

than three for different network conditions. The BA model is based on three mechanisms that drive the

evolution of graph structures over time to produce power law relationships (Chen et al., 2001, p. 5):

e Incremental growth — Incremental growth follows from the observation that most networks

develop over time by adding new nodes and new links to an existing graph structure.

and manufacturing firms, consumer unions and other relevant agents are involved (Bergman et al., 1998).

7 Barabasi and Albert’s definition of high connectivity is relative to the number of nodes in the network, and in this context,
it simply means a large proportion on the total connections in the network. The odds of a node having a large proportion on
connections in a network are small enough that they are likely to be “practically absent”.
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e Preferential connectivity — Preferential connectivity expresses the frequently encountered
phenomenon that there is a higher probability for a new or existing node to connect or
reconnect to a node that already has a large number of links (i.e. high vertex degree) than there
is to (re)connect to a low degree vertex.

e Re-wiring — Re-wiring allows for some additional flexibility in the formation of networks by
removing links connected to certain nodes and replacing them with new links in a way that

effectively amounts to a local type of re-shuffling connection based on preferential attachment.

In many ways, hub-and-spoke® airline networks serve as a good practical example of a scale free
network. Hub-and-spoke networks show preferential connectivity to the major airports (hubs) from the
minor airports, while the major hubs are fully interconnected. The major hub airports are small in
number, yet they have the vast majority of the connections in the global airline network. From a
technical perspective, though, airline network connectivity distributions do not quite fit a power law;
they have an exponential cut off, because there is a physical constraint of the number of planes an
airport can handle, preventing a complete power law fit. (Amaral et al., 2000). A large literature is now
available on hub-spoke network. See, for example, Oum et al., 1995; Wojahn, 2001; Bowen, 2002.

There have, though, been other opinions on how complex networks should be classified; Amaral et
al.(2000) argue that scale-free networks are a sub-class of small world networks. An exact delineation
of where small world and scale-free networks diverge is still somewhat fuzzy in the literature, but the
area of study is still evolving. It can be safely said that the two are inter-related and that generally
speaking scale-free networks exhibit the clustering and short average path length of small world
networks, but not all small world networks exhibit the power law distribution of scale-free networks.

The next section investigates the emergence of scale-free characteristics in the US and European
telecommunications networks, by looking at the distribution of fiber optic connections between cities

of the data set.

¥ In hub-and-spoke networks, traffic is directed towards few major hubs or transfer facilities, which serve as
interconnections between more peripheral points of the network. Therefore, traffic does not move anymore directly from
origin to destination. This type of network aims to “minimize the transportation cost plus the cost of hub operation.”
(Ballou, 2004, p. 595).
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4. The Empirical Applications to US and European Communication Networks

4.1. Preface

The United States and Europe differ quite considerably in terms of the connectivity of their
telecommunications networks — i.e., as seen in previous studies of their comparative graph theoretical
indices of connectivity (Gorman 2002). This section presents the results of the analysis conducted to
examine each regions network properties, including a cluster analysis to group cities within each region
in terms of connectivity properties. Section 4.4 briefly discusses some of the cultural, economic,
political and technological factors that have likely contributed to these differences, although a more

rigorous examine of this is warranted.

4.2. Empirical Findings for the European Networks

This section describes the results of our analysis of European telecommunications networks. It will
show that the European data mirror two different types of statistical distributions, viz. an exponential
and a power law distribution, and verify how the statistical fit changes when splitting our data in
several clusters.

The data set used in the analysis is fiber optic cable deployed and owned by pan-European
networks in 209 cities, distributed over 25 countries. A summary of the data set can be found in Annex
A, Table Al. Only networks operating in more than one country are considered here, therefore
excluding domestic networks. Only international links are considered and no redundancy within
networks is assumed in this case.” The data set dates back to the third quarter of 2001, thus it is fairly
current. But unfortunately, it was not possible to capture the latest European trends that we outlined
above. In particular, the significant increases in the demand of broadband connections (a 152% increase
observed between July 2002 and January 2004) may have prompted new investments and new
characteristics of the European telecommunications networks. On the other hand, considerable over-
capacity emerged in 2000/2001, as a result of over-speculation in network-building. Consequently,
much of the recent broadband-related growth in demand will have been using fibre that had been
installed up to 2001, but that had not necessarily been lit, due to the overcapacity problem. It is,

therefore, clear that more recent data are a main need in the analysis of telecommunications networks.

? No information on interconnection is available from this data set. A ranking of the most connected cities in terms of
redundant links shows a mostly similar set of cities, if compared to the top ranks of physical connections (see Rutherford et
al., 2004, Table 3).
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It is noteworthy that two variables are available in our data set (represented in Figure 1). The
networks variable refers to the number of pan-European networks present in each city of the data set,
while the connections variable is the number of other European cities linked to each city in the data set
via the network. For example, the city of Hamburg has links (connections) to 200 different European

cities. These links are provided by 21 networks that are in place.
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Figure 1 — Pan-European fiber optic networks (planned or in place)

Source: Rutherford et al. (2004, Figure 1). Copyright of map is with KMI Research, used by permission.

After having ranked the data set by connection, we can observe that the decay in the number of
connections is gradual, in particular after the first major cities of the list. The most connected cities in
the data set are Hamburg and, second, London, while the least connected cities are five cities served by
only five connections each. Moreover, in a rank order of the data set of cities computed by number of

networks, Hamburg and London are still at the top of the list. If we compute instead subtotals for each
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of the 25 countries, the United Kingdom is at the top, followed by France and Germany. These three
nations have an overall number of connections that is much higher than every other country in Europe.
Considering the number of connections per capita, we can note instead that relatively small countries,
such as Luxembourg and Denmark, are at the top of the list, either because of their relevant
geographical position or because of higher diffusion of telecommunication technologies.

The presence in the top ranks of cities that are not considered to be between the most important in
Europe — see for example Hamburg, which is topping the list — is due to the role that these cities
acquired. They are, in fact, important gateways for providing large amounts of bandwidth in Europe.
Some cities, like Prague or Copenhagen, also act as the main “door” through which more peripheral
regions are connected and provided with bandwidth (Rutherford et al., 2004).

Once the data set has been ranked according to one variable, the aim is to analyze how the variable
is distributed over the data set. Figure 2 shows, on a log-log scale, the distribution of the number of
connections over the European telecommunications network. The graph shows that the data mostly fit
an exponential distribution, resulting in a R? value of 0.73. If we investigate the existence, in our data
set, of a power law distribution, then, again on a log-log scale, there is a straight line. The R? referring
to a power law distribution for the connection variable is equal to 0.43, while the exponent for the
resulting function is 0.54. In addition, the distribution of the networks variable shows an exponential
distribution as well, reaching a R? value of 0.97.

The results illustrated above show a network that seems to be missing scale-free properties, which
are associated with a power law distribution (see, e.g., Albert and Barabasi, 2002). A slightly different
twist is given to these results by splitting our dataset in separate clusters. We have, therefore,
computed, according to the values of the two available variables, five clusters out of the complete data
set. A hierarchical-associative method was used in order to compute the clusters, namely the one of the
most remote neighbor (or complete linkage) (see, e.g., Anderberg, 1973; Hatigan, 1975). The furthest
neighbor computations result in more homogeneous clusters, which are computed by means of
aggregation. The algorithm iteratively computes the Euclidean distance between the furthest members
of two clusters, which are initially composed by single cities, and aggregates the two clusters

minimizing this measure.'’ The iterations stop when the ideal number of clusters is found. This

' The Euclidean distance is computed as:

) 1/2
2
d;j:{Z(xik_x_/k) } >
k=1
where 1,j identify two clusters and i # j, and k is the number of variables, which, in our case, are networks and connections.
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corresponds to the maximization of the objective function, which is the incremental distance computed

between the clusters after each aggregation.
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Figure 2 — The distribution of connections in European cities.

Table 2 presents the results obtained for the five clusters and shows the values of the coefficients
for both an exponential distribution and a power law distribution fitting the data. The first cluster
observed, containing the 21 best-connected cities, better fits a power law distribution than an
exponential distribution. The value of the power law exponent is equal to 0.99 and therefore much
higher than the one for the complete data set (0.43). A map of the cities belonging to the first cluster is
presented in Annex A, Figure Al. It is interesting to note that the 21 cities belonging to the first cluster
also correspond, aside for only 4, to the top European cities for estimated total bandwidth of backbone
connectors (Rutherford et al., 2004, reported in Annex A). The cities excluded by the first clusters are,
anyway, between the first cities of the second cluster. The two lists seem, therefore, to be consistent to

a certain degree.
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In contrast to the first cluster, the remaining four clusters confirm a better fit to exponential
distributions. One objective here is to understand why the most connected cities show results that are
different from the overall ones. Because of a reduced number of cases analyzed, it is clear that any
judgment on this cluster should be given with caution, but one is still able to give an interpretation of
this result. As previously explained in the description of the European telecommunications networks,
infrastructure development often concentrated in the proximity of important business centers, which
would allow for larger economies of scale for entering or reinvesting operators. The results observed
for the first cluster of data seem to suggest that new adoption patterns and development are taking place
— and are starting, as expected — from the bigger metropolitan centers, which are the nearest group to
scale-free behavior. The evolution of this cluster over time would, with the presence of updated data,

allow for a confirmation of this centrifugality hypothesis.

Table 2 — The exponent and coefficient values for the exponential and power law functions fitting the number of
connections in European telecommunications networks.

Number of| Number |Exponential Exponential| PowerLaw Power Law
Clusters | of Nodes | Coeff. R’ Coeff. R’
1 21 0.0056 0.8458 0.0459 0.9866
2 48 0.0057 0.9924 0.8405 0.8405
3 70 0.0057 0.9439 0.1042 0.6390
4 35 0.0106 0.9080 0.1072 0.6581
5 35 0.0552 0.8164 0.5368 0.5473
Totals 209 0.0111 0.7346 0.5356 0.4291

4.3. Empirical Findings for the United States Communication Networks
Data on the North American long haul fiber optic infrastructure was collected for 2003, from Platts Inc.
TelcoMap GIS product. The data set covers over forty different physical fiber providers in North
America, and contains a route confidence level for the geographic accuracy of right of way routings.
Figure 3 shows the backbone network by fiber density for the United States. The diagram illustrates
that there are areas, within the United States, that are very well-connected, and most of these points are
located within or near major population centers. Also there are large densities of physical fiber
connecting the major metro demand centers.

In order to get a sense of the connectivity distribution of the US long haul fiber network, a novel
GIS-based technique was implemented. One of the difficulties in examining physical fiber networks is

determining what is a link and what is a node in the network. When very dense networks, like the
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North American one, are examined, it can be exceedingly difficult. While the physical location data can
be very specific, it is impossible to know what parts of the fiber are nodes for interconnection or
routing or even who is leasing the fiber and how it is being utilized. Just because two fiber lines cross
in physical space, it does not imply that there is an operational routing node located there. Further,
there can be hundreds of operational network utilizing any one fiber right of way. To circumvent this
problem, an operation was executed in GIS, to calculate the number of fiber lines intersecting with
metropolitan statistical area, providing a proxy of the number of fiber lines originating from the area.
The fiber connectivity for every metropolitan area above 50,000 people was then rank ordered and
plotted to determine the distribution. The results of the analysis demonstrate that the US fiber link
network follows an exponential distribution, similarly to the European equivalent. Figure 4 shows the
exponential distribution for the United States. It can be seen that the model has a very good fit, as
indicated by the R? of 0.98. In the case of power law distribution fitting, the R? value is 0.81, while the
exponent is 1.33, which would suggest a steep slope and significant divide between the most and least
connected nodes in a network (from an economic perspective this would indicate a high Gini
coefficient'"), according to the literature on complex networks. Regarding the distribution of fiber
links, it can be noted that the most connected cities of the data set show values lying above the
estimated curve for an exponential distribution. This evidence might imply that bigger — or more
connected — cities are now developing faster than the others. A similar phenomenon has already been
observed for IP backbone infrastructure (Gorman and Kulkarni, 2000; Moss and Townsend, 2000).
Clusters for the US data on the number of links, consisting of 326 cities/metropolitan areas, turned
out to be rather different from the ones developed for Europe. Whether by using population (in addition
to the number of links) in order to aggregate the cities, or by not using it, only two clusters are
proposed. The difference in the resulting clusters stands in the number of cities belonging to the first
cluster. When population is also considered, the first clusters enlarges, from comprising only New
York, to embracing Los Angeles and Chicago. Additional analyses, utilizing Ward’s hierarchical
clustering method'?, showed that two different clusters can be obtained. The first cluster comprises the
top 13 cities in terms of links. Consequently, the second cluster contains the remaining 313 cities. The
small size of the first cluster does not allow us to thoroughly examine its connectivity distribution, as

R? values for both exponential and power law distributions show high values.

"' The Gini index is a measure of inequality in distributions. The index measures the extent to which the distribution of a
given variable differs from a perfectly equal distribution. The index can assume values ranging from 0 (perfect equality) to
100 (perfect inequality). The most common use of the Gini index is for measuring income inequality.

"2 For details on Ward’s clustering method see Ward (1963) or more recently, El-Hamdouchi and Willett (1986).
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Figure 3 — The backbone network by bandwidth density for the United States

Singularly, the cities comprised in the first cluster do not correspond to the top 13 cities in terms of
population. While several major cities and metropolitan areas belong to the cluster, we should note the
presence of relatively minor areas, such as Fort Lauderdale-West Palm Beach, El Paso, or Bridgeport.
This occurrence can be explained by the geographical characteristics of such cities. Due to the planar
nature of fiber networks, these cities are gateways on the road to major end-of-the-line locations,
which, for this reason, enjoy a larger number of links. For example, El Paso is an important routing hub
between the large Los Angeles and Dallas markets. While El Paso does not have a large demand itself
it is an important geographic location routing wise. When examining the security of an infrastructure
most often prominent impetus is placed on the largest cities, but as this analysis points out smaller but
geographically strategic cities are also important to consider. This also illustrates a critical difference
between the analysis of logical networks like the Internet and physical networks like fiber optic cable.
In an Internet network Dallas and Los Angeles would have a direct connection to each other and El
Paso would be a minor location. Based on the number of logical Internet connections El Paso is 47",
but ranks 7" in physical fiber. Bridgeport is even more dramatic as a routing point between New York

lth

City and Boston — ranking 214" in logical Internet connections and 117 in physical fiber connections.

The difference between planar and non-planar networks is not only seen in connectivity distributions,
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but also which places in those distributions are important. Also it reinforces the fact that any one

connectivity distribution can represent a wide variety of real world topologies.
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Figure 4 — The distribution of fiber links in US cities

4.3. A Comparison of the Results Obtained for the US and Europe
Differences between the United States and Europe in terms of the distribution properties of their
telecommunications networks can be explained by technological, economic, cultural, and policy
factors, all of which are very much intertwined. As noted in Table 1, the U.S. leads Europe in terms of
some of the variables that reflect these factors — i.e., GDP per capita, Human Development Index,
Education Index and R&D expenditures. Further, there is a greater spatial disparity between these
factors in Europe, whereas in the United States they are relatively uniform across metropolitan areas.
The exception is rural areas, although they are not considered in this analysis.

Europe has also historically had an institutional framework that one may argue has contributed to

vast spatial disparities in the deployment of telecommunications infrastructure. Access costs, along
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with a slow approval process, hinder free access into the market. These same forces have prevented the
telecommunications network in Europe from evolving according to the factors that are necessary
ingredients for the emergence of power law distributions: rewiring, incremental growth and preferential
attachment.

While these institutional and economic differences have a clear effect on the development of IP
networks seen in previous studies (Schintler et al. 2003, Gorman and Kulkarni 2004) they do not seem
to influence the distribution of fiber cable links, which we observed in Sections 4.1-2. The reason for
the uniform results found in this paper might lie in the planar nature of fiber connection networks. The
deployment of such networks requires large fixed costs, which are an obstacle to the development of

competition as fast and dynamic as the one observed for IP networks.

5. Conclusions

The analysis evokes some interesting questions that might be the focus of further investigations. A
more rigorous analysis of some of the factors that have led to differences between the US and Europe
in terms of their telecommunications networks is recommended. In particular, further study is needed to
explore how cultural, political, economic and technological factors hinder the processes necessary for
the development of a network that has power law distribution properties. This could either be done
mathematically, using statistical models or simulation, or through case studies, perhaps examining
some of the nations in Europe that represent outliers in the analysis. It may also be interesting to
explore how the clusters identified in this paper have evolved over time, as the market expanded in the
US and Europe, and to utilize alternative clustering methods to verify the consistency of the results

presented in this paper.
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Annex A

Table A1 — A summary of the data set for European cities, showing the subdivision in clusters.

Clusters|City Country Networks Connections Fitting Function

5 Hamburg Germany 21 200

g Power Law
=S Bristol United Kingdom 12 172

5 Koebenhavn Denmark 12 170
. E Exponential
™ < IBilbao Spain 7 130

5 Luxembourg Luxembourg 4 125

‘%’ . ... . ... Exponential
I Basingstoke |United Kingdom 3 86

5 Herning Denmark 3 84
. z2 .. e . “es Exponential
<+ O Regensburg |[Germany 1 54

5 Frederikshavn Denmark 3 37
: E . e . . Exponential
‘< Napoli Italy 1 5

Table A2 — Top European cities in estimated total bandwidth of Internet backbone links
Estimated Total
City Bandwidth (Gbps)
London 31.00
Paris 30.25
Frankfurt 30.25
Dusseldorf 29.75
Hamburg 26.50
Amsterdam 23.25
Zurich 18.50
Berlin 17.50
Munich 17.50
Lyon 17.25
Strasbourg 16.50
Brussels 16.00
Madrid 15.75
Copenhagen 15.50
Marseille 15.00
Stuttgart 13.75
Cologne 13.50
Hannover 13.25
Milan 12.25
Stockholm 11.75
Leipzig 11.50
Geneva 11.50

Source: Rutherford et al. (2004, Table 4).
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Figure A.1 — The map of the 21 cities belonging the first cluster (see Table Al).
Source: Vinciguerra (2004).
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