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In the past few years, the discovery of

small-world and scale-free properties

of many natural and artificial complex

networks has stimulated a great deal

of interest in studying the underlying

organizing principles of various com-

plex networks, which has led to dra-

matic advances in this emerging and

active field of research. The present

article reviews some basic concepts,

important progress, and significant

results in the current studies of vari-

ous complex networks, with emphasis

on the relationship between the

topology and the dynamics of such

complex networks. Some fundamental

properties and typical complex net-

work models are described; and, as an

example, epidemic dynamics are ana-

lyzed and discussed in some detail.

Finally, the important issue of robust-

ness versus fragility of dynamical

synchronization in complex networks

is introduced and discussed.

Index terms—complex network, small-

world network, scale-free network,

synchronization, robustness
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Introduction

C
omplex networks are currently being studied across

many fields of science [1-3]. Undoubtedly, many

systems in nature can be described by models of

complex networks, which are structures consisting of

nodes or vertices connected by links or edges. Examples

are numerous. The Internet is a network of routers or

domains. The World Wide Web (WWW) is a network of

websites (Fig. 1). The brain is a network of neu-

rons. An organization is a network of people.

The global economy is a network of national

economies, which are themselves networks of

markets; and markets are themselves networks

of interacting producers and consumers. Food

webs and metabolic pathways can all be repre-

sented by networks, as can the relationships

among words in a language, topics in a conver-

sation, and even strategies for solving a mathe-

matical problem. Moreover, diseases are

transmitted through social networks; and com-

puter viruses occasionally spread through the

Internet. Energy is distributed through trans-

portation networks, both in living organisms,

man-made infrastructures, and in many physical

systems such as the power grids. Figures 2-4 are

artistic drawings that help visualize the com-

plexities of some typical real-world networks.

The ubiquity of complex networks in sci-

ence and technology has naturally led to a set

of common and important research problems

concerning how the network structure facili-

tates and constrains the network dynamical

behaviors, which have largely been neglected

in the studies of traditional disciplines. For

example, how do social networks mediate the

transmission of a disease? How do cascading

failures propagate throughout a large power

transmission grid or a global financial network?

What is the most efficient and robust architecture for a

particular organization or an artifact under a changing

and uncertain environment? Problems of this kind are

confronting us everyday, problems which demand

answers and solutions.

For over a century, modeling of physical as well as

non-physical systems and processes has been performed

under an implicit assumption that the interaction pat-

terns among the individuals of the underlying system or

process can be embedded onto a regular and perhaps

universal structure such as a Euclidean lattice. In late

1950s, two mathematicians, Erdös and Rényi (ER), made

a breakthrough in the classical mathematical graph theo-

ry. They described a network with complex topology by a

random graph [4]. Their work had laid a foundation of the

random network theory, followed by intensive studies in

the next 40 years and even today. Although intuition

clearly indicates that many real-life complex networks are

neither completely regular nor completely random, the

ER random graph model was the only sensible and rigor-

ous approach that dominated scientists’ thinking about

complex networks for nearly half of a century, due essen-

tially to the absence of super-computational power and

detailed topological information about very large-scale

real-world networks.

In the past few years, the computerization of data

acquisition and the availability of high computing power

have led to the emergence of huge databases on various

real networks of complex topology. The public access to

the huge amount of real data has in turn stimulated great

interest in trying to uncover the generic properties of dif-

ferent kinds of complex networks. In this endeavor, two
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Figure 1. Network structures of the Internet and the WWW. On the Inter-

net, nodes are routers (or domains) connected by physical links such as

optical fibers. The nodes of the WWW are webpages connected by direct-

ed hyperlinks.



significant recent discoveries are the small-world effect

and the scale-free feature of most complex networks.

In 1998, in order to describe the transition from a regu-

lar lattice to a random graph, Watts and Strogatz (WS)

introduced the concept of small-world network [5]. It is

notable that the small-world phenomenon is indeed very

common. An interesting experience is that, oftentimes,

soon after meeting a stranger, one is surprised to find that

they have a common friend in between; so they both cheer:

“What a small world!” An even more interesting popular

manifestation of the “small-world effect” is the so-called

“six degrees of separation” principle, suggested by a social

psychologist, Milgram, in the late 1960s [6]. Although this

point remains controversial, the small-world pattern has

been shown to be ubiquitous in many real networks. A

prominent common feature of the ER random graph and

the WS small-world model is that the connectivity distri-

bution of a network peaks at an average value and decays

exponentially. Such networks are called “exponential net-

works” or “homogeneous networks,” because each node

has about the same number of link connections.

Another significant recent discovery in the field of com-

plex networks is the observation that many large-scale

complex networks are scale-free, that is, their connectivity

distributions are in a power-law form that is independent

of the network scale [7, 8]. Differing from an exponential

network, a scale-free network is inhomogeneous in nature:

most nodes have very few link connections and yet a few

nodes have many connections.

The discovery of the small-world effect and scale-free

feature of complex networks has led to dramatic

advances in the field of complex networks theory in the

past few years. The main purpose of this article is to pro-

vide some introduction and insights into this emerging

new discipline of complex networks, with emphasis on

the relationship between the topology and dynamical

behaviors of such complex networks. 

Some Basic Concepts

Although many quantities and measures of complex net-

works have been proposed and investigated in the last

decades, three spectacular concepts—the average path

length, clustering coefficient, and degree distribution—

play a key role in the recent study and development of

complex networks theory. In fact, the original attempt of

Watts and Strogatz in their work on small-world networks

[5] was to construct a network model with small average

path length as a random graph and relatively large clus-

tering coefficient as a regular lattice, which evolved to

become a new network model as it stands today. On the

other hand, the discovery of scale-free networks was

based on the observation that the degree distributions of

many real networks have a power-law form, albeit power-

law distributions have been investigated for a long time in

physics for many other systems and processes. This sec-

tion provides a brief review of these important concepts. 

Average Path Length

In a network, the distance dij between two nodes, labeled

i and j respectively, is defined as the number of edges
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Figure 2. [Courtesy of SCIENCE] A simple “complexity pyra-

mid” composed of various molecular components of cell-

genes, RNAs, proteins, and metabolites [47]. The bottom

of the pyramid shows the traditional representation of

the cell’s functional organization (level 1). There is a

remarkable integration of various layers at both the

regulatory and the structural levels. Insights into

the logic of cellular organization can be gained

when one views the cell as an individual com-

plex network in which the components are

connected by functional links. At the low-

est level, these components form genet-

ic-regulatory motifs or metabolic path-

ways (level 2), which in turn are the

building blocks of functional mod-

ules (level 3). Finally, these mod-

ules are nested, generating a

scale-free hierarchical archi-

tecture (level 4).



along the shortest path connecting them. The diameter D

of a network, therefore, is defined to be the maximal dis-

tance among all distances between any pair of nodes in

the network. The average path length L of the network,

then, is defined as the mean dis-

tance between two nodes, aver-

aged over all pairs of nodes.

Here, L determines the effective

“size” of a network, the most

typical separation of one pair of

nodes therein. In a friendship

network, for instance, L is the

average number of friends exist-

ing in the shortest chain con-

necting two persons in the

network. It was an interesting

discovery that the average path

length of most real complex net-

works is relatively small, even in

those cases where these kinds

of networks have many fewer

edges than a typical globally

coupled network with a equal

number of nodes. This small-

ness inferred the small-world

effect, hence the name of small-

world networks.

Clustering Coefficient

In your friendship network, it is

quite possible that your friend’s

friend is also your direct friend;

or, to put it another way, two of

your friends are quite possibly

friends of each other. This prop-

erty refers to the clustering of the

network. More precisely, one can

define a clustering coefficient C as

the average fraction of pairs of

neighbors of a node that are also

neighbors of each other. Suppose

that a node i in the network has ki

edges and they connect this node

to ki other nodes. These nodes

are all neighbors of node i. Clear-

ly, at most ki (ki − 1)/2 edges can

exist among them, and this

occurs when every neighbor of

node i connected to every other

neighbor of node i. The clustering

coefficient C i of node i is then

defined as the ratio between the

number E i of edges that actually

exist among these ki nodes and the total possible number

ki(ki − 1)/2, namely, C i = 2Ei/(ki(ki − 1)). The clustering

coefficient C of the whole network is the average of C i over

all i. Clearly, C ≤ 1; and C = 1 if and only if the network is
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(a) Food Web (c) Social Network

(b) Metabolic Network (d) Java Network

Figure 3. Wiring diagrams for several complex networks. (a) Food web of the Little Rock

Lake shows “who eats whom” in the lake. The nodes are functionally distinct “trophic

species”. (b) The metabolic network of the yeast cell is built up of nodes—the substrates

that are connected to one another through links, which are the actual metabolic reactions.

(c) A social network that visualizes the relationship among different groups of people in

Canberra, Australia. (d) The software architecture for a large component of the Java

Development Kit 1.2. The nodes represent different classes and a link is set if there is

some relationship (use, inheritance, or composition) between two corresponding classes.

(a) (b)

Figure 4. [Courtesy of Richard V. Sole] Wiring diagrams of a digital circuit (a), and an old

television circuit (b). The dots correspond to components, and the lines, wiring. Concentric

rings indicate a hierarchy due to the nested modular structure of the circuits. 
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Network Size Clustering coefficient Average path length Degree exponent 

Internet, domain level [13] 32711 0.24 3.56 2.1

Internet, router level [13] 228298 0.03 9.51 2.1

WWW [14] 153127 0.11 3.1 γin = 2.1 γout = 2.45

E-mail [15] 56969 0.03 4.95 1.81

Software [16] 1376 0.06 6.39 2.5

Electronic circuits [17] 329 0.34 3.17 2.5

Language [18] 460902 0.437 2.67 2.7

Movie actors [5, 7] 225226 0.79 3.65 2.3

Math. co-authorship [19] 70975 0.59 9.50 2.5

Food web [20, 21] 154 0.15 3.40 1.13

Metabolic system [22] 778 — 3.2 γin = γout = 2.2

Table 1. 
Small-world pattern and scale-free property of several real networks. Each network has the number of nodes N , the clustering coeffi-
cient C , the average path length L and the degree exponent γ of the power-law degree distribution. The WWW and metabolic network
are described by directed graphs.

is globally coupled, which means that every node in the

network connects to every other node. In a completely

random network consisting of N nodes, C ∼ 1/N , which is

very small as compared to most real networks. It has been

found that most large-scale real networks have a tendency

toward clustering, in the sense that their clustering coeffi-

cients are much greater than O(1/N), although they are

still significantly less than one (namely, far away from

being globally connected). This, in turn, means that most

real complex networks are not completely random. There-

fore they should not be treated as completely random and

fully coupled lattices alike.

Degree Distribution

The simplest and perhaps also the most important char-

acteristic of a single node is its degree. The degree ki of a

node i is usually defined to be the total number of its con-

nections. Thus, the larger the degree, the “more impor-

tant” the node is in a network. The average of ki over all i

is called the average degree of the network, and is denot-

ed by < k >. The spread of node degrees over a network

is characterized by a distribution function P(k), which is

the probability that a randomly selected node has exact-

ly k edges. A regular lattice has a simple degree sequence

because all the nodes have the same number of edges;

and so a plot of the degree distribution contains a single

sharp spike (delta distribution). Any randomness in the

network will broaden the shape of this peak. In the limit-

ing case of a completely random network, the degree

sequence obeys the familiar Poisson distribution; and the

shape of the Poisson distribution falls off exponentially,

away from the peak value < k >. Because of this expo-

nential decline, the probability of finding a node with k

edges becomes negligibly small for k >> < k >.In the past

few years, many empirical results showed that for most

large-scale real networks the degree distribution deviates

significantly from the Poisson distribution. In particular, for

a number of networks, the degree distribution can be bet-

ter described by a power law of the form P(k) ∼ k−γ . This

power-law distribution falls off more gradually than an

exponential one, allowing for a few nodes of very large

degree to exist. Because these power-laws are free of any

characteristic scale, such a network with a power-law

degree distribution is called a scale-free network. Some

striking differences between an exponential network and a

scale-free network can be seen by comparing a U.S.

roadmap with an airline routing map, shown in Fig. 5.

The small-world and scale-free features are common to

many real-world complex networks. Table 1 shows some

examples that might interest the circuits and systems

community (for example, the discovery of the scale-free

feature of the Internet has motivated the development of

a new brand of Internet topology generators [9-12]).

Complex Network Models

Measuring some basic properties of a complex network,

such as the average path length L, the clustering coeffi-

cient C , and the degree distribution P(k), is the first step

toward understanding its structure. The next step, then,

is to develop a mathematical model with a topology of

similar statistical properties, thereby obtaining a plat-

form on which mathematical analysis is possible.
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Regular Coupled Networks

Intuitively, a globally coupled network has the smallest

average path length and the largest clustering coefficient.

Although the globally coupled network model captures the

small-world and large-clustering properties of many real

networks, it is easy to notice its limitations: a globally cou-

pled network with N nodes has N(N − 1)/2 edges, while

most large-scale real networks appear to be sparse, that is,

most real networks are not fully connected and their num-

ber of edges is generally of order N rather than N2.

A widely studied, sparse, and regular network model is

the nearest-neighbor coupled network (a lattice), which

is a regular graph in which every node is joined only by a

few of its neighbors. The term “lattice” here may suggest

a two-dimensional square grid, but actually it can have

various geometries. A minimal lattice is a simple one-

dimensional structure, like a row of people holding

hands. A nearest-neighbor lattice with a periodic bound-

ary condition consists of N nodes arranged in a ring,

where each node i is adjacent to its neighboring nodes,

i = 1, 2, · · · , K/2, with K being an even integer. For a large

K , such a network is highly clustered; in fact, the cluster-

ing coefficient of the nearest-neighbor coupled network is

approximately C = 3/4.

However, the nearest-neighbor coupled network is not

a small-world network. On the contrary, its average path
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Figure 5. [Courtesy of A.-L. Barabási] Differences between an exponential network—a U.S. roadmap and a scale-free network—an air-

line routing map. On the roadmap, the nodes are cities that are connected by highways. This is a fairly uniform network: each major

city has at least one link to the highway system, and there are no cities served by hundreds of highways. The airline routing map dif-

fers drastically from the roadmap. The nodes of this network are airports connected by direct flights among them. There are a few

hubs on the airline routing map, including Chicago, Dallas, Denver, Atlanta, and New York, from which flights depart to almost all

other U.S. airports. The vast majority of airports are tiny, appearing as nodes with one or a few links connecting them to one or sev-

eral hubs. 



length is quite large and tends to infinity as N → ∞. This

may help explain why it is difficult to achieve any dynam-

ical process (e.g., synchronization) that requires global

coordination in such a locally coupled network. Does

there exist a regular network that is sparse and clustered,

but has a small average path length? The answer is Yes. A

simple example is a star-shaped coupled network, in

which there is a center node and each of the other N − 1

nodes only connect to this center but not among them-

selves. For this kind of network, the average path length

tends to 2 and its clustering coefficient tends to 1, as

N → ∞. The star-shaped network model captures the

sparse, clustering, small-world, as well as some other

interesting properties of many real-world networks. There-

fore, in this sense, it is better than the regular lattice as a

model of many well-known real networks. Clearly, though,

most real networks do not have a precise star shape.

Random Graphs

At the opposite end of the spectrum from a completely

regular network is a network with a completely random

graph, which was studied first by Erdös and Rényi (ER)

about 40 years ago [4].

Try to imagine that you have a large number (N >> 1)

of buttons scattered on the floor. With the same probabil-

ity p, you tie every pair of buttons with a thread. The result

is a physical example of an ER random graph with N nodes

and about pN(N − 1)/2 edges (Fig. 6). The main goal of

the random graph theory is to determine at what connec-

tion probability p a particular property of a graph will

most likely arise. A remarkable discovery of this type was

that important properties of random graphs can appear

quite suddenly. For example, if you lift up a button, how

many other buttons will you pick up thereby? ER showed

that, if the probability p is greater than a certain threshold

pc ∼ (ln N)/N , then almost every random graph is con-

nected, which means that you will pick up all the buttons

on the floor by randomly lifting up just one button.

The average degree of the random graph is

< k >= p(N − 1) ∼= pN . Let Lrand be the average path

length of a random network. Intuitively, about < k >Lrand

nodes of the random network are at a distance Lrand or

very close to it. Hence, N ∼< k >Lrand , which means that

Lrand ∼ ln N/ < k >. This logarithmic increase in average

path length with the size of the network is a typical small-

world effect. Because ln N increases slowly with N , it

allows the average path length to be quite small even in a

fairly large network. On the other hand, in a completely

random network, for example in your friendship network

(say it is completely random), the probability that two of

your friends are friends themselves is no greater than the

probability that two randomly chosen persons from your

network happen to be friends. Hence, the clustering coef-

ficient of the ER model is C = p =< k > /N << 1. This

means that a large-scale random network does not show

clustering in general. In fact, for a large N , the ER algo-

rithm generates a homogeneous network, where the con-

nectivity approximately follows a Poisson distribution.

Small-World Models

As pointed out above, regular lattices are clustered, but

do not exhibit the small-world effect in general. On the

other hand, random graphs show the small-world effect,

but do not show clustering. Thus, it is not surprising to

see that the regular lattice model and the ER random

model both fail to reproduce some important features of

many real networks. After all, most of these real-world

networks are neither entirely regular nor entirely random.

The reality is that people usually know their neighbors,

but their circle of acquaintances may not be confined to

those who live right next door, as the lattice model would

imply. On the other hand, cases like links among Web

pages on the WWW were certainly not created at random,

as the ER process would expect.

Aiming to describe a transition from a regular lattice to

a random graph, Watts and Strogatz [5] introduced an

interesting small-world network model, referred to as WS

small-world model. The WS model can be generated as

follows (Fig. 7).
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p = 0 p = 0.1

p = 0.15 p = 0.25

(a) (b)

(c) (d)

Figure 6. Evolution of a random graph. Given 10 isolated

nodes in (a), one connects every pair of nodes with proba-

bility (b) p = 0.1,(c) p = 0.15 and (d) p = 0.25, respectively.



WS Small-World Model Algorithm

1) Start with order: Begin with a nearest-neigh-

bor coupled network consisting of N nodes

arranged in a ring, where each node i is adjacent to

its neighbor nodes, i = 1, 2, · · · , K/2, with K being

even.

2) Randomization: Randomly rewire each edge

of the network with probability p; varying p in such

a way that the transition between order (p = 0) and

randomness (p = 1) can be closely monitored.

Rewiring within this context means shifting one end of

the connection to a new node chosen at random from the

whole network, with the constraints that any two different

nodes cannot have more than one connection between

them, and no node can have a connection with itself. This

process introduces pN K/2 long-range edges, which con-

nect nodes that otherwise would be part of different neigh-

borhoods. Both the behaviors of the clustering coefficient

C (p) and of the average path length L(p) in the WS small-

world model can be considered as a function of the

rewiring probability p. A regular ring lattice (p = 0) is high-

ly clustered (C (0) ∼= 3/4) but has a large average path

length (L(0) ∼=
N

2K
>> 1). It is found that, for a small prob-

ability of rewiring, when the local properties of the network

are still nearly the same as those for the original regular

network, and when the clustering coefficient does not dif-

fer subsequently from its initial value (C (p) ∼ C (0)), the

average path length drops rapidly and is in the same order

as the one for random networks (L(p) >> L(0)) (Fig. 8).

This result is actually quite natural. On the one hand, it is

sufficient to make several random rewirings to decrease

the average path length significantly. On the

other hand, several rewired links cannot

crucially change the local clustering proper-

ty of the network. 

The small-world model can also be

viewed as a homogeneous network, in

which all nodes have approximately the

same number of edges. In this regard, the

WS small-world network model is similar to

the ER random graph model. The work on

WS small-world networks has started an

avalanche of research on new models of

complex networks, including some variants

of the WS model. A typical variant was the

one proposed by Newman and Watts [23],

referred to as the NW small-world model

lately. In the NW model, one does not break

any connection between any two nearest

neighbors, but instead, adds with probabil-

ity p a connection between a pair of nodes.

Likewise, here one does not allow a node to

be coupled to another node more than once, or to couple

with itself. With p = 0, the NW model reduces to the origi-

nal nearest-neighbor coupled network, and if p = 1 it

becomes a globally coupled network. The NW model is

somewhat easier to analyze than the original WS model

because it does not lead to the formation of isolated clus-

ters, whereas this can indeed happen in the WS model. For

sufficiently small p and sufficiently large N , the NW model

is essentially equivalent to the WS model. Today, these

two models are together commonly termed small-world

models for brevity.

The small-world models have their roots in social net-

works, where most people are friends with their immedi-

ate neighbors, for example neighbors on the same street
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Rewiring of Links
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Regular Small-World Random

(a) (b) (c)

Figure 7. (a) In this completely regular friendship network, people are friends

with only their 4 nearest neighbors. The network is highly cliquish, and any 2

people are on average many degrees apart. (b) In this small-world network,

people still know 4 others on average, but a few have distant friends. The net-

work is still highly cliquish, but the average degree of separation is small. (c)

In this random network, everyone still knows 4 others on average, but friends

are scattered: few people have many friends in common, and pairs are on

average only a few degrees apart.
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Figure 8. [Courtesy of NATURE] Average path length and

clustering coefficient of the WS small-world model as a func-

tion of the rewiring probability p [5]. Both are normalized to

their values for the original regular lattice  (p = 0). 



or colleagues in the same office. On the other hand, many

people have a few friends who are far away in distance,

such as friends in other countries, which are represented

by the long-range edges created by the rewiring proce-

dure in the WS model, or by the connection-adding pro-

cedure in the NW model.

Scale-Free Models

A common feature of the ER random graph and the WS

small-world models is that the connectivity distribution of

the network is homogenous, with peak at an average value

and decay exponentially. Such networks are called expo-

nential networks. A significant recent discovery in the field

of complex networks is the observation that a number of

large-scale complex networks, including the Internet,

WWW, and metabolic networks, are scale-free and their

connectivity distributions have a power-law form.

To explain the origin of power-law degree distribution,

Barabási and Albert (BA) proposed another network

model [7,8]. They argued that many existing models fail

to take into account two important attributes of most real

networks. First, real networks are open and they are

dynamically formed by continuous addition of new nodes

to the network; but the other models are static in the

sense that although edges can be added or rearranged,

the number of nodes is fixed throughout the forming

process. For example, the WWW is continually sprouting

new webpages, and the research literature constantly

grows since new papers are continuously being pub-

lished. Second, both the random graph and small-world

models assume uniform probabilities when creating new

edges, but this is not realistic either. Intuitively, webpages

that already have many links (such as the homepage of

Yahoo or CNN) are more likely to acquire even more links;

a new manuscript is more likely to cite a well-known and

thus much-often-cited paper than many other less-known

ones. This is the so-called “rich get richer” phenomenon,

for which the other models do not account.

The BA model suggests that two main ingredients of

self-organization of a network in a scale-free structure are

growth and preferential attachment. These point to the

facts that most networks continuously grow by the addi-

tion of new nodes, and new nodes are preferentially

attached to existing nodes with large numbers of connec-

tions (again, “rich get richer”). The generation scheme of

a BA scale-free model is as follows:

BA Scale-Free Model Algorithm

1) Growth: Start with a small number (m0) of

nodes; at every time step, a new node is introduced

and is connected to m ≤ m0 already-existing nodes.

2) Preferential Attachment: The probability �i

that a new node will be connected to node i (one of

the m already-existing nodes) depends on the

degree ki of node i, in such a way that �i = ki/
∑

j kj.

After t time steps, this algorithm results in a network

with N = t + m0 nodes and mt edges (Fig. 9). Growing

according to these two rules, the network evolves into a

scale-invariant state: The shape of the degree distribution

does not change over time, namely, does not change due

to further increase of the network scale. The correspon-

ding degree distribution is described by a power law with

exponent −3, that is, the probability of finding a node

with k edges is proportional to k−3.

Numerical results have indicated that, in comparison

with a random graph having the same size and the same

average degree, the average path length of the scale-free

model is somewhat smaller, and yet the clustering coeffi-

cient is much higher. This implies that the existence of a

few “big” nodes with very large degrees (i.e., with a very

large number of connections) plays a key role in bringing

the other nodes of the network close to each other. How-

ever, there is today no analytical prediction formula for

the average path length and the clustering coefficient for

the scale-free model. The BA model is a minimal model

that captures the mechanisms responsible for the power-

law degree distribution. This model has some evident lim-

itations when compared with some real-world networks.

This observation has in effect spurred more research on

evolving networks, with the intention to overcome limita-

tions such as those of the BA model. A summary of these

models is given by Albert and Barabási [2].

Recently, Milo et al. [24] defined the so-called “net-

work motifs” as patterns of interconnections occurring in
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Figure 9. A scale-free network of 130 nodes, generated by

the BA scale-free model. The five biggest nodes are shown in

red, and they are in contact with 60% of other nodes (green).



complex networks at numbers that are significantly high-

er than those in completely random networks. Such

motifs have been found in networks ranging from bio-

chemistry, neurobiology, ecology, to engineering. This

research may uncover the basic building blocks pertain-

ing to each class of networks.

Achilles’ Heel of Complex Networks

An interesting phenomenon of complex networks is their

“Achilles’ heel”—robustness versus fragility. For illustra-

tion, let us start from a large and connected network. At

each time step, remove a node (Fig. 10). The disappear-

ance of the node implies the removal of all of its connec-

tions, disrupting some of the paths among the remaining

nodes. If there were multiple paths between two nodes i

and j, the disruption of one of them may mean that the

distance dij between them will increase, which, in turn,

may cause the increase of the average path length L of

the entire network. In a more severe case, when initially

there was a single path between i and j, the disruption of

this particular path means that the two nodes become

disconnected. The connectivity of a network is robust (or

error tolerant) if it contains a giant cluster comprising

many nodes, even after a removal of a fraction of nodes.

The predecessor of the Internet—the ARPANET—was

created by the US Department of Defense, by its

Advanced Research Projects Agency (ARPA), in the late

1960s. The goal of the ARPANET was to enable continuous

supply of communications services, even in the case that

some subnetworks and gateways were failing. Today, the

Internet has grown to be a huge network and has played

a crucial role in virtually all aspects of the world. One may

wonder if we can continue to maintain the functionality of

the network under inevitable failures or frequent attacks

from computer hackers. The good news is that by ran-

domly removing certain portions of domains from the

Internet, we have found that, even if more than 80% of the

nodes fail, it might not cause the Internet to collapse.

However, the bad news is that if a hacker targeted some

key nodes with very high connections, then he could

achieve the same effect by purposefully removing a very

small fraction of the nodes (Fig. 11). It has been shown

that such error tolerance and attack vulnerability are

generic properties of scale-free networks (Fig. 12) [25-28].

These properties are rooted in the extremely inhomoge-

neous nature of degree distributions in scale-free net-

works. This attack vulnerability property is called an

Achilles’ heel of complex networks, because the mytho-

logical warrior Achilles had been magically protected in

all but one small part of his body—his heel.
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Epidemic Dynamics in Complex Networks

For one specific example, the AIDS propagation network

is quite typical. When AIDS first emerged as a disease

about twenty years ago, few people could have predicted

how the epidemic would evolve, and even fewer could

have been able to describe with certainty the best way of

fighting it. Unfortunately, according to estimates from the

Joint United Nations Programme on HIV/AIDS (UNAIDS)

and the World Health Organization (WHO), 21.8 million

people around the world had died of AIDS up to the end

of 2000 and 36.1 million people were living with the

human immunodeficiency virus (HIV) by the same time. 

As another example, in spite of technological progress

and great investments to ensure a secure supply of elec-

tric energy, blackouts of the electric transmission grid are

not uncommon. Cascading failures in large-scale electric

power transmission systems are

an important cause of the cata-

strophic blackouts. Most well

known is the cascading series of

failures in power lines in August

1996, leading to blackouts in 11

US states and two Canadian

provinces. This incident left

about 7 million customers with-

out power for up to 16 hours, and

cost billions of dollars in total

damage. There is an urgent need

for developing innovative

methodologies and conceptual

breakthroughs for analysis, plan-

ning, operation, and protection of

the complex and dynamical elec-

tric power networks. In yet anoth-

er example, the ILOVEYOU computer virus spread over

the Internet in May 2000 and caused a loss of nearly 7 bil-

lion dollars in facility damage and computer down-time.

How do diseases, jokes, and fashions spread out over

the social networks? How do cascading failures propagate

through large-scale power grids? How do computer virus-

es spread out through the Internet? Serious issues like

these are attracting much attention these days. Clearly,

the topology of a network has great influence on the over-

all behavior of an epidemic spreading in the network.

Recently, some researchers have started to study such

spreading phenomena, for example on small-world and

scale-free networks [29-34].

A notable attempt of Pastor-Satorras and Vespignani

[31-32] was to study both analytically and numerically a

large-scale dynamical model on the spreading of epi-

demics in complex networks. The standard susceptible-

infected-susceptible (SIS) epidemiological model was

used for investigation. Each node of the network repre-

sents an individual, and each link is a connection along

which the infection can spread from one individual to

some others. It is natural to assume that each individual

can only exist in one of two discrete states—susceptible

and infected. At every time step, each susceptible node is

infected with probability υ if it is connected to at least

one infected node. At the same time, infected nodes are

cured and become again susceptible with probability δ.

They together define an effective spreading rate, λ = υ/δ.

The updating can be performed with both parallel and

sequential dynamics. The main prediction of the SIS

model in homogeneous networks (including lattices, ran-

dom graphs, and small-world models) is the presence of

a nonzero epidemic threshold, λc > 0. If λ ≥ λc, the infec-

tion spreads and becomes persistent in time; yet if λ < λc,

the infection dies out exponentially fast (Fig. 13 (a)).

It was found [31-32] that, while for exponential net-

works the epidemic threshold is a positive constant, for a

large class of scale-free networks the critical spreading

rate tends to zero (Fig. 13(b)). In other words, scale-free

networks are prone to the spreading and the persistence

of infections, regardless of the spreading rate of the epi-

demic agents. It implies that computer viruses can spread

far and wide on the Internet by infecting only a tiny frac-

tion of the huge network. Fortunately, this is balanced by

exponentially small prevalence and by the fact that it is

true only for a range of very small spreading rates

(λ << 1) that tend to zero.

Synchronization in Complex Dynamical Networks

A survey of recent literature reveals that networks of cou-

pled dynamical systems have received a great deal of atten-

tion from the nonlinear dynamics community, mainly due to

the fact that they can exhibit many complex and interesting

dynamical phenomena, such as Turing patterns, auto-
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waves, spiral waves, and spatiotemporal chaos. Also, these

networks are important in modeling many large-scale real-

world systems. 

In the past decade, special attention has been focused

on the synchronization of chaotic dynamical systems. For

the same reason, many scientists have started to consider

the synchronization phenomenon in large-scale networks

of coupled chaotic oscillators. These networks are usually

described by systems of coupled ordinary differential

equations or maps, with completely regular topological

structures such as chains, grids, lattices, and globally cou-

pled graphs. Two typical settings are the discrete-time cou-

pled map lattice (CML) [35] and the continuous-time cellu-

lar neural (or more generally, nonlinear) networks (CNN)

[36]. The main advantage of these simple architectures is

that it allows one to focus on the complexity caused by the

nonlinear dynamics of the nodes without worrying about

additional complexity in the network structure; and anoth-

er appealing feature is the ease of their implementation by

integrated circuits.

The topology of a network, on

the other hand, often plays a crucial

role in determining its dynamical

behaviors. For example, although a

strong enough diffusive coupling

will result in synchronization within

an array of identical nodes [37], it

cannot explain why many real-

world complex networks exhibit a

strong tendency toward synchro-

nization even with a relatively weak

coupling. As an instance, it was

observed that the apparently inde-

pendent routing messages from dif-

ferent routers in the Internet can

easily become synchronized, while

the tendency for routers towards

synchronization may depend heavi-

ly on the topology of the Internet

[38]. One way to break up the

unwanted synchronization is for

each router to add a (sufficiently

large) component randomly to the

period between two routing mes-

sages. However, the tendency to

synchronization in the Internet is so

strong that changing one determin-

istic protocol to correct the syn-

chronization is likely to generate

another synchrony elsewhere at the

same time. This suggests that a

more efficient solution requires a

better understanding of the nature

of the synchronization behavior in such complex net-

works as the Internet.

Recently, synchronization in different small-world and

scale-free dynamical network models has been carefully

studied [39-45]. These studies may shed new light on the

synchronization phenomenon in various real-world com-

plex networks.

A Typical Dynamical Network Model

Consider a typical dynamical network consisting of N

identical linearly and diffusively coupled nodes, with

each node being an n-dimensional dynamical system

(e.g., a chaotic system). The state equations of this net-

work are described by

ẋi = f(xi) + c
N

∑

j=1

aijŴxj, i = 1, 2, · · · , N. (1)

In this model, xi = (xi1, xi2, · · · , xin)
T ∈ ℜn are the state

variables of node i, the constant c > 0 represents the cou-
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pling strength, and Ŵ ∈ ℜn×n is a constant 0 − 1 matrix

linking coupled variables. If there is a connection between

node i and node j (i 	= j), then aij = aji = 1; otherwise,

aij = aji = 0 (i 	= j). Moreover, aii = −ki, where ki is the

degree of node i. The coupling matrix A = (aij) ∈ ℜN×N

represents the coupling configuration of the network. 

Dynamical network (1) is said to be (asymptotically)

synchronized if

x1(t) = x2(t) = · · · = xN (t) = s(t), as t → ∞, (2)

where s(t) ∈ ℜn is a solution of an isolated node, i.e.,

ṡ(t) = f(s(t)). Here, s(t) can be an equilibrium point, a

periodic orbit, or a chaotic attractor, depending on the

interest of the study. 

Consider the case that the network is connected in

the sense that there are no isolated clusters. Then, the

coupling matrix A = (aij)N×N is a symmetric irreducible

matrix. In this case, it can be shown that λ1 = 0 is the

largest eigenvalue of A with multiplicity 1 but all the

other eigenvalues of A are strictly negative. Let λ2 < 0

be the second-largest eigenvalue of A. It has been

proved [40, 41] that the synchronization state (2) is

exponentially stable if 

c ≥

∣

∣

∣

d̄/λ2

∣

∣

∣

, (3)

where d̄ < 0 is a constant determined by the dynamics of

an isolated node and the inner linking structural matrix Ŵ.

(In fact, d̄ can be more precisely characterized by the Lya-

punov exponents of the network [46].)

Given the dynamics of an isolated node and the inner

linking structural matrix Ŵ, the synchronizability of the

dynamical network (1) with respect to a specific coupling

configuration A is said to be strong if the network can syn-

chronize with a small value of the coupling strength c. The

above result implies that the synchronizability of the

dynamical network (1) can be characterized by the sec-

ond-largest eigenvalue of its coupling matrix. 

The second-largest eigenvalue of the coupling matrix of a

globally coupled network is −N, which implies that for any

given and fixed nonzero coupling strength c, a globally cou-

pled network will synchronize as long as its size N is large

enough. On the other hand, the second-largest eigenvalue of

the coupling matrix of a nearest-neighbor coupled network

tends to zero as N → ∞, which implies that for any given and

fixed nonzero coupling strength c, a nearest-neighbor coupled

network cannot synchronize if its size N is sufficiently large.

Synchronization in Small-World Networks

Consider the dynamical network (1) with NW small-world

connections [41]. Let λ2sw be the second-largest eigenval-

ue of the network coupling matrix. Figures 14 (a) and (b)

show the numerical values of λ2sw as a function of the

adding probability p and the network size N , respectively.

It can be seen that, for any given coupling strength c > 0:

(i) for any N > |d̄|/c, there exists a critical value p̄ such

that if p̄ ≤ p ≤ 1 then the small-world network will syn-

chronize; (ii) for any given p ∈ (0, 1], there exists a critical

value N̄ such that if N > N̄ then the small-world network

will synchronize. These results imply that the ability to

achieve synchronization in a large-size nearest-neighbor

coupled network can be greatly enhanced by just adding a

tiny fraction of distant links, thereby making the network

become a small-world model. This reveals an advantage of

small-world networks for achieving synchronization, if

desired (Fig. 15).

Synchronization in Scale-Free Networks

Now consider the dynamical network (1) with BA scale-

free connections instead [42]. Figure 16 shows that the

second-largest eigenvalue of the corresponding cou-

pling matrix is very close to −1, which actually is the

second-largest eigenvalue of the star-shaped coupled

network. This implies that the synchronizability of a
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scale-free network is about the same as that of a star-

shaped coupled network (Fig. 17). It may be due to the

extremely inhomogeneous connectivity distribution of

such networks: a few “hubs” in a scale-free network play

a similar (important) role as a single center in a star-

shaped coupled network.

The robustness of synchronization in a scale-free

dynamical network has also been investigated, against

either random or specific removal of a small fraction f

(0 < f << 1) of nodes in the network. Clearly, the

removal of some nodes in network (1) can only change

the coupling matrix. If the second-largest eigenvalue of

the coupling matrix remains unchanged, then the syn-

chronization stability of the network will remain

unchanged after such a removal. It was found that even

when as many as 5% of randomly chosen nodes are

removed, the second-largest eigenvalue of the coupling

matrix remains almost unchanged; therefore the ongoing

synchronization is not altered. On the other hand,

although the scale-free structure is particularly well-suit-

ed to tolerate random errors, it is also particularly vul-

nerable to deliberate attacks. In particular, it was found

that the magnitude of the second-largest eigenvalue of the

coupling matrix decreases rapidly, almost decreases to

one half of its original value in magnitude, when only an

f ≈ 1% fraction of the highly connected nodes was

removed. At a low critical threshold, e.g., f ≈ 1.6%, the

eigenvalue abruptly changes to zero, implying that the

whole network was broken into isolate clusters; therefore

the ongoing synchronization will be completely

destroyed. Similarly, it is believed that the error tolerance

and attack vulnerability of synchronizability in scale-free

networks are rooted in their extremely inhomogeneous

connectivity patterns.

Conclusions

In the past few years, advances in complex networks have

uncovered some amazing similarities among such diverse

systems as the Internet, cellular neural networks, meta-

bolic systems, and even the community of Hollywood

movie stars. In particular, significant progress has been

made on the effects of network topology on network

dynamical behaviors. However, this has been seen as

only the tip of a giant iceberg and there remain important

problems and technical challenges with regard to model-

ing, analysis, control, and synchronization of complex

dynamical networks. 

Today, we are building increasingly integrated and

interconnected networks for information, energy, trans-

portation, commerce and the like. The critical nature of

these networks raises concerns about the risk and impact

of system failures, and makes it imperative for us to bet-

ter understand the essence of such complex networks.

This calls for greater effort in the design and operation of

all kinds of large-scale and complex dynamical networks,

so as to provide better analysis and prediction of various

potential issues. The ultimate goal is to maximize the net

potentials that can better benefit our human society.

Achieving this understanding requires intensive

advanced research—the research that will develop a

solid scientific foundation for further study of real-world

complex dynamical networks and new methodologies for

their construction and utilization. The complex issues

that we are facing everyday, from cell biology to power

systems to communication networks, demand break-

through ideas and revolutionary techniques. It has

become a great challenge and also provided a great

opportunity for scientists and engineers at this very

beginning of the twenty-first century.
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