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Abstract— According to the well-known loop shaping method
for the design of controllers, the performance of the controllers
in terms of step response, steady-state disturbance rejection
and noise attenuation and robustness can be improved by
increasing the gain at lower frequencies and decreasing it at
higher frequencies and increasing the phase margin as much as
possible. However, the inherent properties of linear controllers,
the Bode’s phase-gain relation, create a limitation. In theory, a
complex-order transfer function can break the Bode’s gain-
phase relation; however, such transfer function cannot be
directly implemented and should be approximated. This paper
proposes a reset element and a tuning method to approximate a
Complex-Order Controller (CLOC) and, through a simulation
example, shows the benefits of using such a controller.

I. INTRODUCTION

The increasing demands for speed and accuracy from the
high-tech industry, especially in the field of precision motion
control, has pushed the linear controllers to their inherent
limitations, namely - Bode’s gain-phase relationship and
waterbed effect [1]–[3]. The well-known limitations pose a
trade-off between tracking and steady-state precision on one
side and bandwidth, stability margins and transient response
properties on the other.
From the perspective of the loop-shaping technique, the
industry-standard method for controller design in the fre-
quency domain, one needs to break this gain-phase rela-
tionship to break the trade-off. This was first recognized
in complex order derivatives used in the third generation
CRONE technique [4], [5]. However, such a derivative
which can potentially show a negative gain slope with a
corresponding positive increasing phase, is unfortunately not
practically implementable in the linear domain. Existing
attempts in the literature for approximating such behaviour
resulted in unstable poles, non-minimum phase zeros or poor
approximation of gain behaviour among other issues [6], [7].
The impossibility of achieving implementable complex-order
behaviour in linear systems has made researchers and in-
dustries interested in nonlinear control methods that are
industry-compatible in design and implementation. One such
interesting concept is reset control, which was first intro-
duced by Clegg [8]. In [9], [10], a method to approximate
Complex-Order Controllers (CLOC) using reset control is
introduced, which consists of multiple reset states, which
makes the system become unnecessarily complicated and
can potentially deteriorate the precision performance of the
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system.
Based on Describing Function (DF) analysis, it is established
that the reset integrator proposed by Clegg reduces the phase
lag of the integrator by 52◦. Although this already breaks
the Bode’s gain-phase relation for linear control systems,
there are concerns while using Clegg’s Integrator (CI) in
practice, namely, the accuracy of DF approximation, limit-
cycle, etc. [11]. In order to address the drawbacks and exploit
the benefits, the idea was later extended to more sophisticated
elements such as “First-Order Reset Element” [12], [13]
and “Second-Order Reset Element” [14] or using Clegg’s
integrator in the form of PI+CI [15] or resetting the state to a
fraction of its current value, known as partial resetting [16].
One of the recent studies introduces a new reset element
called “Constant-in-Gain, Lead-in-Phase” (CgLp) [17]. DF
analysis of this element shows that it can provide broadband
phase lead while maintaining a constant gain. Such an
element is used in the literature to replace some part of
the differentiation action in PID controllers as it will help
improve the precision of the system according to the loop-
shaping concept [17]–[20]. Despite the fact that the analysis
and designs are focused on describing functions without tak-
ing higher-order harmonics into account, significant tracking
and steady-state precision improvements are reported.
The main contribution of this paper is to propose a reset
controller to approximate a complex-order transfer function.
This reset controller is based on the CgLp structure with a
shaped reset signal. The CgLp which is used has only one
resetting state, which reduces the complications of multiple
resetting states. The shaping filter and its tuning method for
the reset signal will be introduced to tune the slope of gain
and phase as in a complex-order transfer function. This paper
also shows the benefits of using such a reset controller in
step responses and steady-state precision over a linear PID
controller in simulation.
The remainder of the paper is organized as follows: Section
II introduces the preliminaries of the study. Section III will
introduce the reset element to approximate the complex-
order transfer function. Section IV will show an illustrative
example and, finally, paper will be closed with conclusions
and future work tips.

II. PRELIMINARIES

This section will discuss the preliminaries of this study.
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A. General Reset Controller

The general form of a SISO reset controllers used in this
study is as following:

∑
R

:=


ẋr(t) = Arxr(t) +Bre(t), if e(t) 6= 0

xr(t
+) = Aρxr(t), if e(t) = 0

u(t) = Crxr(t) +Dre(t)

(1)

where Ar, Br, Cr, Dr denote the state space matrices of the
Base Linear System (BLS) and reset matrix is denoted by
Aρ = diag(γ1, ..., γn) which contains the reset coefficients
for each state. e(t) and u(t) represent the input and output
for the reset controller, respectively.

B. Describing Functions

Describing function analysis is the known approach in
literature for approximation of frequency response of non-
linear systems like reset controllers [21]. However, the DF
method only takes the first harmonic of Fourier series
decomposition of the output into account and neglects the
effects of the higher-order harmonics. This simplification can
be significantly inaccurate under certain circumstances [19].
The “Higher-Order Sinusoidal Input Describing Function”
(HOSIDF) method has been introduced in [22] to provide
more accurate information about the frequency response of
nonlinear systems by investigation of higher-order harmonics
of the Fourier series decomposition. In other words, in this
method, the nonlinear element will be replaced by a virtual
harmonic generator.
Per definition, describing functions are calculated for si-
nusoidal inputs. Thus, assuming e(t) = sin(ωt), HOSIDF
method was developed in [23], [24] for reset elements
defined by (1) as follows:

Hn(ω) =


Cr(jωI −Ar)−1(I + jΘ(ω))Br +Dr, n = 1

Cr(jωnI −Ar)−1jΘ(ω)Br, odd n > 2

0, even n ≥ 2

Θ(ω) = −2ω2

π
∆(ω)[Γ(ω)− Λ−1(ω)]

Λ(ω) = ω2I +Ar
2

∆(ω) = I + e
π
ωAr

∆ρ(ω) = I +Aρe
π
ωAr

Γ(ω) = ∆−1ρ (ω)Aρ∆(ω)Λ−1(ω)

(2)

where Hn(ω) is the nth harmonic describing function for
sinusoidal input with the frequency of ω. It has to noted that
according to [21], the convergence and asymptotic stability of
reset elements in open-loop is guaranteed when |λ(Aρ)| < 1,
where λ(Aρ) stands for eigenvalues of the matrix Aρ.

C. Describing Functions with Shaped Reset Signal

In a conventional reset element, the reset condition is
based on the input to the reset element, i.e., e(t). However,
one can use a signal other than the input for reset condition.
Denoting the reset signal as xrl(t), the reset condition will
change to xrl(t) = 0. This paper creates a reset signal by
filtering e(t) and thus named shaped reset signal. Assuming

e(t)

xrl(t)

Aρ

u(t)∑
R

(a) A conventional reset element. Arrow indicates the resetting action. The
resetting action is determined by xrl(t) which is equal to e(t), i.e., the
resetting condition is xrl(t) = e(t) = 0.

e(t)

xrl(t)

Aρ

u(t)

Shaping
Filter

SF (s)

∑
R

(b) A reset element with shaped reset signal. Arrow indicates the resetting
action. The resetting action is determined by xrl(t) which is not equal to
e(t), i.e., the resetting condition is xrl(t) = 0.

Fig. 1: A conventional reset element vs. a reset element with shaped reset
signal.

e(t) = sin(ωt) for HOSIDF analysis purposes, the reset
instants will be tk = kπ

ω . However, if one creates xrl(t)
such that it has ϕ phase shift compared to e(t), or in other
terms

∑
R

:=


ẋr(t) = Arxr(t) +Bre(t), if sin(ωt+ ϕ) 6= 0

xr(t
+) = Aρxr(t), if sin(ωt+ ϕ) = 0

u(t) = Crxr(t) +Dre(t),
(3)

it means that the reset instants will become tk = kπ+ϕ
ω ,

while maintaining the input, e(t). In this case, the HOSIDF
will change to [24]:

Gϕn(ω) =


Cr(Ar − jωI)

−1
Θϕ(ω)

+ Cr(jωI −Ar)−1Br +Dr, n = 1

Cr(Ar − jωnI)
−1

Θϕ(ω), odd n > 2

0 even n ≥ 2

Θϕ(ω) =
−2jωejϕ

π
Ω(ω) (ωI cos(ϕ)−Ar sin(ϕ)) Λ−1(ω)B

Ω(ω) = ∆(ω)−∆(ω)∆−1ρ (ω)Aρ∆(ω).
(4)

The above indicates that first and higher-order describing
functions can be changed by shaping the reset signal. Fig. 1
shows a conventional reset element vs. a reset element with
shaped reset signal. It has to be noted that for xrl(t), only
zero-crossings matter and thus, ideally, its gain does not have
any effect on the system.

D. Hβ condition

Hβ condition [16], despite its conservativeness, has gained
attention among different criteria for stability of reset control
systems [11], [25], [26], because of simplicity and frequency
domain applicability. In [27], the Hβ condition has been
reformulated such that the frequency response functions of
the controllers and the plant can be used directly. This



method especially includes the case where the reset element
is not the first element in the loop.

E. Frequency Response of sα+jβ

A derivative of complex order can be defined in a variety
of ways [28]–[30], but it is commonly indicated by the
operator Dα+jβ . It makes no difference which one is utilized
for the purpose of this paper, as long as the Laplace transform
of a derivative of order α + jβ ∈ C generates a complex
power of the Laplace variable s:

L
[
Dα+jβf(t)

]
= sα+jβL [f(t)] (5)

The initial conditions for Laplace are also irrelevant for
this paper, since the frequency response of the the simplest
corresponding complex-order transfer function is under con-
sideration, i.e., G(s) = sα+jβ . The frequency response is
given by [9]:

G(jω) = jαωαjjβωjβ

=
(

cos
απ

2
+ j sin

απ

2

)
ωα

× e−
βπ
2 (cos(β logω)

+ j sin(β logω))

(6)

20 log10 |G(jω)| = 20 log10

Ä
ωαe−

βπ
2

ä
= 20α log10 ω + 20 log10 e

− βπ2
(7)

argG(jω) = ∠
{(

cos
απ

2
+ j sin

απ

2

)
×[cos(β logω) + j sin(β logω)]}

=
απ

2
+ β log(10) log10 ω

(8)

When α < 0 and β > 0, the frequency response will
show a negative gain slope and a positive phase slope,
for which there is no practical implementation method in
linear domain. However, such frequency response is highly
desirable especially in precision motion control since one can
for example increase the bandwidth of the system without
sacrificing the phase margin [10].

III. APPROXIMATING THE COMPLEX-ORDER BEHAVIOUR
USING CGLP

G(s) = sα+jβ is a complex-order transfer function that
may be written as G(s) = sαsjβ . A large literature exists on
approximation sα for any non-integer α ∈ R, with CRONE
approximation being one of the more well-known methods.
The novelty, on the other hand, resides in the approximation
of sjβ . According to (6) to (8), for β > 0, such transfer
function should show a constant gain behaviour while having
a positive phase slope of β log(10).
CgLp is a reset element that shows a DF behaviour similar to
required. This element creates a unity gain with phase lead
in a desired range of frequencies. CgLp can be created using
a reset first-order lag filter

∑
R, a.k.a. FORE, in series with

a corresponding linear first-order lead filter D(s) having the
same cut-off frequency as given below.∑

R
=
��

��
�*
γ

1

s/ωr + 1
, D(s) =

s/ωrκ + 1

s/ωf + 1
(9)
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Fig. 2: The concept of using combination of a reset lag and a linear lead
element to form a CgLp element. The figure is from [17].

where ωrκ = κωr, κ is a tuning parameter accounting for a
shift in corner frequency of the filter due to resetting action,
and [ωr, ωf ] is the frequency range where the CgLp will
provide the required phase lead [17]. The arrow indicates
the resetting action as described in (1), i.e., the element’s
state is multiplied by γ when the reset condition is met.
While the gain of the reset lag element and the linear lead
cancel each other to create a unity gain, a phase lead is
created due to reduced phase lag in the reset lag filter
compared to its linear counterpart. The concept is presented
in Fig. 2.
Fig. 2 shows that within a range of frequency, CgLp shows
a unity gain and a positive phase slope resembling the
frequency response of sjβ . Although one can tune the phase
slope by tuning γ (since decreasing γ increases the created
phase lead), the range of achievable slopes and the range of
frequencies for which the slope is constant are limited.
An approach to gain more freedom in shaping the positive

phase slope in the CgLp element is to shape the phase of the
reset element without affecting the gain. In [31] a method
called “Phase Shaping” is presented to shape the phase of
a reset controller. The method is based on the fact that
according to (4), one can shape the first and higher-order
describing function of a reset element by changing ϕ. In [31],
the objective of changing ϕ is achieved through putting a
shaping filter on the input signal of the reset element while
maintaining the reset signal the same.
However, in this paper, the objective is achieved by using the
shaping filter on the reset signal itself, as depicted in Fig. 1b.
In this configuration, one can see that

ϕ = ∠SF (jω). (10)

If
∑
R is a FORE as presented in (9), and by defining

ψ := −ϕ− tan−1
Å
ω

ωr

ã
, (11)

one can conclude the following points, following the same
logic and procedure as presented in [31]:
• If

ϕ = −tan−1
Å
ω

ωr

ã
⇒ ψ = 0, (12)



then in the steady-state, the resetting action will not
affect the output since the resetting action will happen
when the output of the base linear system (BLS) is
already zero. Thus, the x(t) = x(t+) = 0 at the time of
reset. In this case, all the higher-order harmonics will
be zero because the system is completely acting linear
in steady-state, and obviously, the phase advantage from
the resetting action disappears. Furthermore, if one uses
such an element to form a CgLp, the element’s phase
will remain at zero, as the linear lead will cancel out
both gain and phase of the reset element.

• As ψ → −90◦, the resetting action will create its
benefit, and the reset element will provide more phase
advantage.

• The phase advantage created by the reset element is
dependent on ωr, γ and ψ, and for frequencies larger
enough than ωr, i.e., ω > 10ωr, it only depends on γ
and ψ.

According to the points mentioned above, for each value
of γ ∈ [−1, 1], one can shape the reset element’s phase
advantage and, thus, the CgLp’s phase by shaping ψ. In
other words, by designing the shaping filter, SF (s), one
can achieve the desired phase slope for the CgLp.

IV. DESIGN OF THE SHAPING FILTER

Let

SF (s) = Q(s)K(s) and K(s) =
1

s/ωr + 1
. (13)

Thus according to (10) and (11),

ψ = −∠SF (s)− tan−1
Å
ω

ωr

ã
= −∠Q(s). (14)

Now shaping ψ and thus the phase advantage of CgLp has
been reduced to shaping the ∠Q(s).
The requirements for SF (s) can be categorized into three
regions:

• At the lower frequency region, which is critical for sinu-
soidal tracking and disturbance rejection performance,
the higher-order harmonics should be reduced as much
as possible [18], [19], [31], [32]. Meaning that ψ and
thus ∠Q(s) should remain as close as possible to 0◦.

• At cross-over frequency region that will be presented
as [ωl, ωh], ∠Q(s) should increase to 90◦ for CgLp to
create phase advantage. Moreover, the increase slope
should be tuned for CgLp to maintain a positive phase
slope of β log (10).

• At higher frequency region, the gain of SF (s) should
have a negative slope to attenuate the high-frequency
content of reset signal and thus avoid excessive reset
action due to noise. It has already been taken care of
by the presence of K(s).

In order to achieve a Q(s) with tunable phase slope, one
may refer to [33], where it introduces a variation of CRONE
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(a) Frequency response of s0.4j and its DF approximation using CgLp in
the range of [1, 10] rad/s. N =M = 4, ζ = 3.72 and η = 21.37.
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Fig. 3: A conventional reset element vs. a reset element with shaped reset
signal.

approximation as follows

Q(s) =

∏M
n=1

Ä
1 + s

ωzn

ä
∏N
n=1

Ä
1 + s

ωpn

ä
ωzj+1 = ζωzj , j = 1, 2, . . . ,M − 1

ωpi+1 = ηωpi, i = 1, 2, . . . , N − 1

(15)

where the slope of phase within the range of approximation
is

S =
π

2

1

log10 ζ
− π

2

1

log10 η
rad/decade (16)

Although S is directly related to β, a numerical optimization
problem should be solved to find η and ζ for a desired β. For
approximation to happen in the range of [ωl, ωh], one should
choose ωz1 = ωp1 = ωl and choose N and M accordingly
to cover the whole range of frequencies.

V. COMPLEX-ORDER TAMED DIFFERENTIATION

One possible application of a complex-order function is
to use a complex-order tamed differentiation element instead
of linear tamed differentiator [2] in motion control. For this
purpose, without loss of generality, consider a mass system



r(t) y(t)e(t)
1
s2

Plant

+

−
kp
(
1 +

ωi
s

)
IntegratorÇ s

ωd
+ 1

s
ωt
+ 1

å
sjβ

Tamed
Differenatiator

(a) Control loop for position control of a mass system. For PID, β = 0 and
for CLOC β = 0.3.

e(t)

γ

u(t)1
s/ωr+1

Q(s)

s/ωr+1

Shaping
Filter

s/ωrκ+1
s/ωf+1

s
ωd
+ 1

s
ωt
+ 1

(b) Block diagram for approximating

( s
ωd

+ 1

s
ωt

+ 1

)
sjβ . Approximation will

be done in the range of [ωl, ωh].

Fig. 4: Block diagram for closed-loop control of a mass system using integer
and complex-order tamed differentiator and approximation of complex-order
tamed differentiator using reset control.
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Fig. 5: The Bode diagram of PID and the DF of CLOC.

controlled using a control loop presented in Fig. 4. Following
the steps below, one can design a CLOC

1) Choose ωc.
2) Set ωd = ωc/1.5, ωt = 1.5ωc and ωi = ωc/10.
3) Choose the range of frequencies where the positive

slope phase should be present and set ωl and ωh
accordingly.

4) Choose β.
5) Find ζ and η using (4), (8) and (16) through optimiza-

tion.
6) Choose M and N s.t. according to (15), ωzM ≥ ωh

and ωpN ≥ ωh.
7) Set ωr = ωl and ωf = 10ωh.
8) Choose γ ∈ (−1, 1) s.t. the required phase margin is

achieved. If not achievable, go to step 4 and correct β
accordingly.

Step 2 ensures that the BLS is stable as a necessary condition
for Hβ . It has to be noted that according to waterbed effect,
increasing the band of linear differentiation will reduce the
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Fig. 6: Open-loop Bode diagram of PID and HOSIDF of CLOC including
plant.

steady-state precision of the system. It can be concluded from
waterbed effect. Therefore, the band should be minimum
only to stabilize the BLS.

As an illustrative example, two controllers will be com-
pared, one with integer-order tamed differentiator, i.e., PID
and one with complex-order tamed differentiator, i.e., CLOC.
For cross-over frequency, ωc = 100 Hz is chosen, and
following the rule of thumb presented in [2] for tuning PID,

ωi = ωc/10, ωd = ωc/2.5, ωt = 2.5ωc, β = 0. (17)

Following the steps for designing a CLOC, the following
parameters has been tuned for CLOC

ωi = ωc/10, ωd = ωc/1.5, ωt = 1.5ωc, β = 0.3.
(18)

For the approximation of complex-order tamed differentiator,
following parameters have been tuned

ωl = 0.10.5ωc, ωh = 100.5ωc, ωr = ωl, ωf = 10ωh,

N = M = 8, ζ = 3.314, η = 7.714, γ = 0. (19)

TThe above parameters ensure that the positive slope of
the phase happens from half a decade before the cross-over
frequency to half a decade after.
Fig. 5 shows the Bode diagram of the PID controller without
plant and DF of CLOC. The figure clearly shows that using
a complex-order tamed differentiator in CLOC, the same
phase margin as PID is achieved with a lower positive gain
slope around the omega, which resulted in higher gain at
frequencies below bandwidth and lower gain at frequencies
higher than bandwidth compared to PID. Thus, a better
steady-state sinusoidal tracking and disturbance rejection and
noise attenuation are expected according to the loop-shaping
technique.
Open-loop frequency analysis of the two systems in Fig 6.
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Fig. 9: Sinusoidal tracking error of CLOC and PID for r(t) = sin(2πt).

also reveals some helpful information. In addition to re-
vealing the higher-order harmonic contents of the output of
the CLOC system, it can be seen that at 12 Hz, where ψ
crosses zero line, higher-order harmonics show a notch-like
behaviour, and their magnitude will be zero. It also shows
that the positive gain of ψ created a positive phase slope for
CgLp. It should be noted that the discrepancy between the
slope of ψ and the phase of CLOC at the beginning and the
end of [ωl, ωh], is because [ωd, ωt] is smaller than [ωl, ωh].
The step response of the CLOC and PID for bandwidth of
50 Hz, 100 Hz and 200 Hz has been obtained using the
Simulink environment of Matlab and depicted in Fig. 7. It
should be noted that bandwidth change has been created
only through changing kp, and no other parameter has been
changed. This figure reveals that CLOC shows a lower
overshoot in all cases than PID even when two controllers
have the same phase margin. It can be explained through the
reset nature of the CLOC. As it is expected from Fig. 6, when

bandwidth changes from 100 Hz to 200 Hz, the phase margin
of PID will be reduced and thus, its overshoot increases,
while the phase margin of CLOC increases and thus, its
overshoot reduces. When bandwidth is changed to 50 Hz,
both controllers lose phase margin and show an increase
in overshoot; however, CLOC still shows a lower overshoot
than PID even when its phase margin is lower than PID.
The sensitivity plot of the control system can be used to
validate the improvement in steady-state performance. How-
ever, because reset control systems are nonlinear, therefore,
sensitivity plots for them must be estimated; the sensitivity
plot obtained using the DF approximation may not beac-
curate [23]. In order to compute the sensitivity plot more
precisely, a series of simulations for tracking sinusoidal
waves with different frequencies were performed, and the
‖e(t)‖2
‖r(t)‖2was shown for bothcontrollers in Fig. 8.
As it was expected, because of the higher open-loop gain
at lower frequencies (see Fig. 6), CLOC shows a lower
tracking error compared to PID and also a lower peak
of sensitivity. At last, to see the steady-state time-domain
results, the sinusoidal tracking performance of the controllers
for r(t) = sin(2πt) is depicted in Fig. 9.

VI. CONCLUSIONS

This paper introduced a reset controller based on the
structure of a CgLp with a shaped reset signal, which could
approximate a complex-order transfer function. For this
purpose, a shaping filter for the reset signal was designed,
which could alter the DF of the reset controller to achieve
the negative gain slope along with a positive phase slope.
Furthermore, a tuning method was introduced to tune the
gain slope and, more importantly, phase slope. In order
to illustrate the possible improvements of using such a
controller, a comparison between CLOC and PID was made
in frequency and time domain. It was shown that CLOC
could achieve the same phase margin as PID with a weaker
linear tamed differentiator and showed a lower overshoot
even with the same phase margin as PID. The weaker linear
tamed differentiator also facilitated the CLOC to show higher
gain in lower frequencies, thus showing a lower sinusoidal
tracking error.
Implementation of the proposed controller in practice in the
presence of noise and disturbance for a more general plant
can be a follow-up for this study.
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