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Abstract: In the background of all human thinking—acting and reacting are sets of connections
between different neurons or groups of neurons. We studied and evaluated these connections using
electroencephalography (EEG) brain signals. In this paper, we propose the use of the complex
Pearson correlation coefficient (CPCC), which provides information on connectivity with and without
consideration of the volume conduction effect. Although the Pearson correlation coefficient is a widely
accepted measure of the statistical relationships between random variables and the relationships
between signals, it is not being used for EEG data analysis. Its meaning for EEG is not straightforward
and rarely well understood. In this work, we compare it to the most commonly used undirected
connectivity analysis methods, which are phase locking value (PLV) and weighted phase lag index
(wPLI). First, the relationship between the measures is shown analytically. Then, it is illustrated by
a practical comparison using synthetic and real EEG data. The relationships between the observed
connectivity measures are described in terms of the correlation values between them, which are,
for the absolute values of CPCC and PLV, not lower that 0.97, and for the imaginary component of
CPCC and wPLI—not lower than 0.92, for all observed frequency bands. Results show that the CPCC
includes information of both other measures balanced in a single complex-numbered index.

Keywords: EEG; functional connectivity; phase locking value; weighted phase lag index; complex
Pearson correlation coefficients

1. Introduction

A human brain contains on average about 100 billion (1011) neurons connected by
about 100 trillion (1014) synapses. The neurons are anatomically organized in different
spatial regions and functionally interact over different time points [1]. In this work, elec-
troencephalography (EEG) was used to record neuron activity. EEG is an electrophysiologi-
cal monitoring method for observing neurophysiological changes related to postsynaptic
activity in the neocortex, i.e., a method for recording the electrical activity of the brain [2].
Monitoring brain activity using this method provides high temporal resolution. This prop-
erty makes EEG one of the most suitable monitoring methods for non-invasive detection
of neurons’ interactions inside the brain and, consequently, for detection of information
transmission within the same brain regions and between different brain regions [3]. Brain
connectivity analysis is generally divided into two types: structural and functional. Track-
ing the direction of fibers between different brain regions or within a brain region is called
structural connectivity analysis [4]. The most suitable recording methods for determining
structural connectivity are magnetic resonance imaging (MRI) [5] and diffusion tensor
imaging (DTI) [6]. On the other hand, functional connectivity analysis can be defined as an
analysis of the amount of information transmitted between brain regions or within a brain
region. This type of connectivity analysis is usually divided into two groups: undirected
and directed. Undirected connectivity measures evaluate the degree of connectivity, while
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directed connectivity measures evaluate the degree and direction of connectivity between
observed brain regions. In this paper, we focus on undirected connectivity measures. Dif-
ferent cognitive tasks require different information flows within a brain area or between
different brain areas. This is due to the fact that neuronal oscillations are background
mechanisms essential for dynamic cooperation in the brain [7–12].

The most suitable methods for monitoring brain activity to determine functional
connectivity are magnetoencephalography (MEG) and electroencephalography (EEG) due
to their good temporal resolutions [13].

Different types of measures can be used to determine functional connectivity, such as
phase synchronization, generalized synchronization measures, linear temporal correlation,
etc. [14–16]. In this paper, we focus on undirected phase synchronization measures. The
most often used measures are the phase locking value (PLV) [17,18] and the weighted phase
lag index (wPLI) [19]. The main difference between these two measures is the ability to
avoid the effect of volume conduction.

The PLV index is based on phase differences of signals from two EEG channels. For
a set of N time points, it calculates an average of N unit vectors that represent the phase
difference between the signals of both channels. The PLV value of zero represents no
connection between the observed signals’ regions and the maximum PLV value of one
represents a perfect connection. Although very widely used, a drawback of the PLV
measure is the tendency to be biased towards higher values due to volume conduction [17].

The phase lag index (PLI) was designed as a solution to avoid the misinterpretation of
volume conduction as a connectivity component [17]. Volume conduction reflects in the
appearance of signal components with phase differences closer to 0 or±π. PLI avoids them
by only considering the number of samples with positive and negative phase differences.
Only if the number of samples in one group, i.e., positive or negative, is predominant then
PLI gets value close to one. This cancels out the components with phase angle distributions
centered at 0 and ±π.

The extended version of the PLI is the weighted phase lag index (wPLI [19]). The wPLI
measure adds weighting of samples by the imaginary component of the cross-spectral
density. Because the real component of cross spectral density is not considered, samples
where the phase differences are close to 0 or ±π have no contribution to the connectiv-
ity estimation and signal components that may arise due to volume conduction have
no influence.

There are several other undirected connectivity measures, such as coherence, imagi-
nary part of coherence, mutual information, etc., but for the purposes of this article, we
limit our analysis to only those two most common ones, i.e., PLV and wPLI. They comple-
ment one another, providing connectivity estimation with and without consideration of
the volume conduction effect. As an alternative, we propose a complex Pearson correla-
tion coefficient (CPCC), which in a single unique measure provides information of both
connectivity components.

The rest of the article is structured in the following way. In Section 2, we propose
the complex Pearson correlation coefficient as a novel measure of undirected channel
connectivity, review the PLV and wPLI measures, and analytically show their relationships
to CPCC. In section three, the relationship is demonstrated with practical experiments,
using synthetic and real EEG signals. We end the paper with a discussion and conclusion.

2. Methods

In this section, we define the proposed complex Pearson correlation measure (CPCC)
and show its analytical relationship with PLV and wPLI connectivity measures.

2.1. Complex Pearson Correlation Coefficient as a Measure of Undirected Connectivity

Various types of complex correlation calculations are used in the literature [20], and in
different research fields, such as geophysics [21], radar systems [22], optics [23], etc. In this
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section, we propose the use of complex Pearson correlation coefficient for EEG connectivity
analysis.

Pearson’s linear correlation coefficient (r) is the most commonly used linear correlation
coefficient. It is a statistical measure of the degree to which variables change their values
in relation to each other, or in other words, expresses the level to which two variables are
linearly related. It is defined as follows:

r(x1, x2) =
∑N

n=1(x1,n − x1)(x∗2,n − x∗2)√
∑N

n=1(x1,n − x1)2 ∑N
n=1(x∗2,n − x∗2)

2
. (1)

Here, N is the number of samples, x1 and x2, are the series being analyzed, {.}
represents mean values of observed series, and {.}∗ is the complex conjugate operator (if
the values in series are complex). The resulting r ranges from−1 (indicating perfect negative
correlation) to +1 (indicating perfect positive correlation). A zero value is an indicator of no
linear signal relationship. Assuming that EEG signals for the analysis should be pre-filtered,
which removes DC signal components, the equation can be simplified:

r(x1, x2) =
∑N

n=1 x1,n · x∗2,n√
∑N

n=1 |x1,n|2 ·
√

∑N
n=1 |x2,n|2

. (2)

The numerator in the Equation (2) can be understood as a time-averaged temporal
estimation of sample relationship, while the denominator is a weighting factor to obtain
the desired range from −1 to 1. Let us first focus to the numerator. For two oscillatory
signals represented as series of real values, the temporal relationship estimation is also an
oscillatory signal. Consequently, the temporal contribution of a single time step does not
have any direct meaning and at least one period of signal samples need to be averaged
to become informative. To improve temporal meaningfulness of the estimation, analytic
signal representations can be used instead of real valued ones. Analytic signal sample
is a complex number that adds an imaginary part indicating the oscillatory nature of
the signal to its existent real valued part. Thus, in addition to a real signal value, the
analytic signal sample includes the information of signal instantaneous amplitude and
instantaneous phase, which can be represented as a vector in a complex plane. Because
basic sinusoidal oscillatory signal keeps the instantaneous amplitude constant over time
while its instantaneous phase increases linearly, these vectors are also called phasors. For
two phase-locked signals the phase difference is constant and the numerator of Equation (2)
gets constant over time, too. Its real value represents the dot product of the phasors, while
its imaginary part equals the size of the cross product. Altogether the product of two
phasors of two analytic signals is analogous to the cross spectral density for the stationary
or quasi-stationary signals. The denominator of Equation (2), needed for scaling, relates
to the power of both signals. The final result when using analytic signals is the complex
Pearson correlation coefficient (CPCC):

CPCC = r(xa,1, xa,2), (3)

where xa denotes analytic signals.
The analytic signal representation is defined only for narrow frequency band signals.

In such cases analytic signals can be computed from real ones by adding imaginary part
equal to the Hilbert transform (HT) of the original signal:

xa(t) = x(t) + iHT(x(t)), (4)

where HT (x(t)) represents the Hilbert transform of x (real signal) and xa(t) is an analytic
signal, as explained in [17]. With HT we obtain a phasor influenced by all the frequencies
in the observed narrow band. Phasors can also be obtained using the discrete Fourier
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transform, where one phasor presents each frequency component, but only stationary,
without temporal dimension. HT provides this additional temporal perspective, which
enables analysis of non-stationary signals. Because EEG signals are non-stationary, in
this paper we limit to the analysis of their narrow band pre-filtered components with the
analytic form obtained using HT.

Connectivity measures estimate the relationship between two signals and this can
be performed using the CPCC. The in-phase signals have high real CPCC part and zero
imaginary part. On the other hand, imaginary component represents the relationship
between signals with the phase lag of ±π/2. Thus, the connectivity of two brain regions
can be estimated considering both parts of the complex CPCC value for the corresponding
EEG signals, by computing its absolute value (absCPCC). In such a case the obtained value
should be related to the PLV value. When the volume conduction effect needs to be avoided,
only the imaginary component shall be used (imCPCC). Such estimation is expected to be
related to the wPLI value.

2.2. Phase Locking Value PLV and Its Relation to CPCC

Phase-locking value (PLV) is calculated based on the phase differences of the two
analytical signals [17,18]:

PLVx1,x2 =

∣∣∣∣∣ 1
N

N

∑
n=1

ei(∆φx1,n ,x2,n )

∣∣∣∣∣. (5)

In Equation (5), ∆φ represents the phase difference and N represents the number of
samples. The instantaneous phase difference is defined as:

∆φx1,n ,x2,n = φx1,n − φx2,n , (6)

where φx1,n and φx2,n stand for the phase angles at n-th sample. In order to obtain instan-
taneous phases, analytical signals need to be computed, using (HT). Computation of PLV
can be visualized by creating a set of N unit vectors corresponding to N time samples, see
Figure 1. Phase angles of those vectors are equal to phase differences between the two EEG
signals for samples from 1 to N. All the N unit vectors representing phase differences are
averaged to obtain PLV.

Figure 1. Visualization of averaging used in calculation of the PLV. The PLV is computed from unit
vectors representing instantaneous phase differences.

The high value of PLV is obtained when the vectors are well clustered, which means
that the phase difference between the two EEG channels is mostly constant for all the
time samples On the other hand, when the phase difference between the two channels is
changing with time, the unit vectors are scattered, which results in low PLV value.

The lack of this measure is its tendency to falsely over-estimate the connectivity level
due to the volume conduction. The reason is that the volume conduction enables a signal
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from a single source to be measured on both EEG electrodes under consideration, which
results in a zero-phase difference over a larger time interval, leading to a larger PLV value.

In order to prove our assumption that the absolute value of the complex Pearson cor-
relation is related to the PLV index, the Equation (2) can be rewritten in the following way:

absCPCCx1,x2 = |r(x1, x2)| =
|∑N

n=1 Ax1,n · Ax2,n · e
i∆φx1,n ,x2,n |√

∑N
n=1 A2

x1,n
·
√

∑N
n=1 A2

x2,n

, (7)

where Ax represents the instantaneous amplitude of a complex signal.
Comparing Equations (5) and (7), we can see that the PLV is related to the absCPCC,

but scales the contributions of instantaneous phases with instantaneous amplitudes:

|∑N
n=1 Ax1,n · Ax2,n · e

i∆φx1,n ,x2,n |√
∑N

n=1 A2
x1,n
·
√

∑N
n=1 A2

x2,n

♦ 6=
∣∣∣∣∣ 1

N

N

∑
n=1

ei(∆φx1,n ,x2,n )

∣∣∣∣∣, (8)

absCPCC is therefore a weighted version of PLV.

2.3. Weighted Phase Lag Index wPLI and Its Relation to CPCC

The PLI and wPLI measures of connectivity address the volume conduction problem.
Let us first present the PLI measure, as a transitional step towards a more refined weighted
PLI measure (wPLI). The PLI is defined as [17]:

PLIx1,x2 =

∣∣∣∣∣ 1
N

N

∑
n=1

sign(Im(Sx1,n ,x2,n))

∣∣∣∣∣, (9)

where N is the number of samples. In the original definition [24], Sx1,n ,x2,n is the cross-
spectral density of the observed signals defined by Fourier transform. In [17], PLI was
defined using analytical signals obtained by HT and the cross-spectral density is defined as:

Sx1,n ,x2,n = |Ax1,n | · |Ax2,n |e
i(φx1,n−φx2,n ), (10)

where Ax1,n and Ax2,n are the instantaneous amplitudes of the observed signals x1 and x2
at sample n. Based on Equation (9) and as shown in , Computation of PLI is illustrated in
Figure 2. All unit vectors that represent phase differences are first divided into two subsets:
those with positive, and those with negative imaginary part. Then, the difference of subsets’
sizes is divided by the number of all vectors N, and its absolute value equals the PLI.

Figure 2. Visualization of averaging used in calculation of the PLI. The PLI is computed from unit
vectors representing instantaneous phase differences.

Therefore, if there is a predominant positive or negative phase difference throughout
the observed time interval, then the obtained value of PLI will be close or equal to 1. On
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the contrary, PLI which equals 0 is obtained when half of the phase differences are negative
and the other half of them are positive.

The weighted phase lag index (wPLI) is an improved version of the phase lag index
connectivity measure. The unit vectors of phase differences from PLI are now scaled
with instantaneous amplitudes of both signals [19]. In other words, wPLI is obtained by
weighting PLI with the imaginary part of the cross spectral density:

wPLIx1,x2 =

∣∣∣∣∣
1
N ∑N

n=1 |Im(Sx1,n ,x2,n)|sign(Im(Sx1,n ,x2,n))

1
N ∑N

n=1 |Im(Sx1,n ,x2,n)|

∣∣∣∣∣. (11)

By expressing the cross spectral density from Equation (10) using the complex conju-
gate operator, the wPLI can be rewritten as follows:

Sx1,n ,x2,n = x1,n · x∗2,n. (12)

wPLIx1,x2 =

∣∣∣∣∣
1
N ∑N

n=1 |Im(x1,n · x∗2,n)|sign(Im(x1,n · x∗2,n))

1
N ∑N

n=1 |Im(x1,n · x∗2,n)|

∣∣∣∣∣, (13)

which can be further simplified as:

wPLIx1,x2 =
|∑N

n=1 Im(x1,n · x∗2,n)|
∑N

n=1 |Im(x1,n · x∗2,n)|
. (14)

Now we can show its relationship to the CPCC or more specifically to its imaginary
part, denoted imCPCC:

imCPCCx1,x2 = |Im[r(x1, x2)]|

=
|Im[∑N

n=1 x1,n · x∗2,n]|√
∑N

n=1 |x1,n|2 ·
√

∑N
n=1 |x2,n|2

=
|∑N

n=1 Im(x1,n · x∗2,n)|√
∑N

n=1 |x1,n|2 ·
√

∑N
n=1 |x2,n|2

(15)

Comparing Equations (14) and (15) we see that both measures, wPLI and imCPCC, are
based on the imaginary part of the cross spectral density S in the numerator, and differ
only in scaling in the denominator. The wPLI is scaled using the imaginary part of S only,
while imCPCC with the power of both signals.

2.4. Connectivity Estimation Based on Phase Difference Histograms

In this section, we explain how connectivity reflects in phase difference histograms, to
illustrate the connectivity measures. Although statistical properties of the phase difference
distribution can clearly indicate phase locking of the signals [25], in practice, connectivity
measures are rarely explained in these terms. We will use it to gain better insight into
real connectivity between signals, particularly for the cases where values of connectivity
measures are the highest or most different between each other.

Let us first assume no volume conduction is present. When two signals are not
connected, they change independently and the phase differences are uniformly distributed.
Connectivity between two brain regions reflect in more expressed phase differences of
corresponding signals. The higher the connectivity, the more pronounced the extreme
gets, and the standard deviation of the distribution gets lower, see Figure 3a. The “red”
distribution reflects the highest connectivity and its standard deviation is the lowest. On
the other hand, the “orange” distribution has the highest standard deviation and reflects
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the lowest connectivity. The mean value of the phase distribution equals the average phase
difference, and can have an arbitrary value in the [−π, π] range, and it does not depend on
the connectivity level.

(a) (b)
Figure 3. The relationship between connectivity and phase differences distributions. When volume
conduction is not considered (a) higher connectivity reflects in lower variance, while the mean value is
irrelevant. In the presence of volume conduction (b), it reflects in higher values for phase differences
close to 0 or π, which, therefore, do not (necessarily) indicate connectivity. Connectivity level is
expressed with colors; red is the highest and yellow is the lowest.

If volume conduction is present, certain signal components are included in both of the
signals under consideration. These signal components have a phase difference of 0 or ±π,
but due to noise and signal interference, instantaneous phase differences spread around
these values. These values therefore do not (necessarily) imply higher connectivity. In the
example in Figure 3b, we can expect that distributions with peaks closer to 0± kπ are more
likely to reflect volume conduction and not connectivity. The estimated connectivity is
therefore the highest when the value at 0 and±π is the lowest and the variance the smallest.

3. Results

In this section, we compare the proposed CPCC measures with PLV and wPLI using
synthetic signals and real-life signals from freely available datasets.

3.1. Synthetic Signals from the MRC Brain Network Dynamics Unit (University of Oxford)

In the first experiment, we generated synthetic signals following Mäkinen et al. [26].
The EEG data we generated contained 31 channels from 973 trials, which were concatenated
into a single large signal. This suited our particular purpose, as we analyzed general brain
connectivity independent of specific brain events.

We computed connectivity using the proposed and established methods for different
frequency bands. The connectivity matrices representing the estimated connectivity for
each electrode pair and for all four measures are shown in Figure 4. We can clearly see
strong visual similarities between the proposed measures and the most commonly used
measures, i.e., between PLV and absCPCC, as well as wPLI and imCPCC.

To better compare the connectivity measures, see Figure 5, with scatter plots for
measure pairs PLV to absCPCC and wPLI to imCPCC. Each dot in a scatter plot represents
one electrode pair. The color of the dots depends on the relative density of the dots in the
graph. There are also two lines shown, where the black one represents identity while the
cyan one the best linear fit. High correlation is evident for both connectivity measure pairs,
while the scaling differences depend on the frequency band, most evidently for the PLV to
absCPCC pair. There are some electrode pairs that deviate slightly from the general linear
relationship while the overall correlation of the measures seem to be high.
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(a) (b)

(c) (d)
Figure 4. Connectivity matrices obtained with PLV (a), wPLI (b), absCPCC (c), and imCPCC (d) for
signals generated with [26], for 8–13 Hz frequency band.

To evaluate the relationship between the measures, evident from Figure 5, we com-
puted their correlation. In addition to frequency bands shown in Figure 5, 0.5–4 Hz, 4–8 Hz
and 8–13 Hz, we computed it for 13–18, 18–30, and 35–45 Hz frequency bands. For all the
frequency bands and both pairs, i.e., PLV to absCPCC, and wPLI to imCPCC; the obtained
correlation equaled 0.99, proving the close to perfect relationship between the measures.

Finally, we selected electrode pairs with the highest connectivity values and the
highest ratio between them. Their phase difference distributions are shown in Figure 6.
As expected, the same electrode pair (16–11) had the highest PLV and absCPCC values.
The corresponding phase distribution was centered at the phase angle 0, indicating the
possibility of volume conduction. Similarly, one electrode pair (14–12) had the highest in
both wPLI and imCPCC values. The corresponding phase distribution has a less pronounced
peak off the center. The ratios between PLV and wPLI, as well as absCPCC and imCPCC
values, were the highest when the later ones equalled 0 and the histogram was centered
(electrode pair 15–12). The highest and wPLI to PLV ratio and imCPCC to absCPCC ratio
were obtained when absCPCC equaled imCPCC.

(a) (b)
Figure 5. Cont.
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(c) (d)

(e) (f)
Figure 5. Scatter plots of absCPCC to PLV relationship (left) and imCPCC to wPLI relationship (right).
Each dot represents one electrode pair. Dots are colored according to their relative density. The
black line represents identity, while the cyan one is the best linear fit. Rows correspond to different
frequency bands: (a,b) 0.5–4 Hz; (c,d) 4–8 Hz; (e,f) 8–13 Hz.

(a) (b)

(c) (d)
Figure 6. Phase difference distributions for selected electrode pairs (synthetic signals [26]). Shown are
the distributions corresponding to the highest: (a) PLV and absCPCC values, (b) wPLI and imCPCC
values, (c) ratio between absCPCC and imCPCC values, (d) ratio between imCPCC and absCPCC values.

3.2. Synthetic Signals Generated with the Kuramoto Model

The second set of synthetic signals to test connectivity estimation methods was gen-
erated using the Kuramoto model according to [27]. The reason for using it is that the
relationship between electrodes is defined and known in advance. Twenty-four signals
(channels/electrodes) were generated. The signals form three groups, from 1 to 8, 9 to 16,
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and 17 to 24. They are composed of two signal components, where the first component
is synchronized between all electrodes in a group and the second component is not syn-
chronized and gives a more realistic variability to the signal set. The signals from 17 to 24
are composed of the first components only and due to the high coupling factor (K = 1000),
these signals are synchronized very quickly. As a result of the fast synchronization, these
signals are in phase and can be observed as an example of high volume conduction.

Figure 7 shows the connectivity matrices of the observed connectivity measures. It
is visible that the signals are connected within groups and much less between the groups.
The random nature of the generation process could lead to synchronous signals even
between different groups. Looking at the third group of signals, we also see a tendency for
the PLV and absCPCC to include volume conduction as an acceptable contribution to the
connectivity, while wPLI and imCPCC avoid this component.

(a) (b)

(c) (d)
Figure 7. Connectivity matrices obtained with PLV, wPLI, absCPCC, and imCPCC for signals generated
with the Kuramoto model [27].

In Figure 8 is a scatter plot showing the relationship between absCPCC and PLV values
(a) and between the imCPCC and wPLI values (b). A strong linear relationship is evident
for both connectivity estimation method pairs, while the scaling is different.

The correlation between PLV and absCPCC values as well as the correlation between
wPLI and imCPCC equals 0.99, indicating strong similarities between these measures.

The phase difference distributions for signal pairs with the highest connectivity values
and the highest ratio between them are shown in Figure 9. The phase difference distribution
corresponding to the highest PLV and absCPCC values was narrow and centered around
0. It was obtained for two signals from the last group (24–17), which modeled volume
conduction. The highest wPLI and imCPCC values were obtained for signals from the first
group (7–3), with wide distribution centered at π/2 radians. The ratio between the absCPCC
and imCPCC values was the highest when the latter one equaled 0 and the histogram was
centered, indicating possible volume conduction (signal pair 19–18). The highest imCPCC
to absCPCC ratio was, again, obtained when values for both measures were equal, with a
clear peak of the distribution at π/2 radians.
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(a) (b)
Figure 8. Relationships between absCPCC and PLV (a), and wPLI and imCPCC (b), shown as a scatter
plot of values for all signal pairs where signals were generated with the Kuramoto model [27]. The
black line represent the identity while the cyan line shows the best linear fit. The colors of the dots
represent the relative density of the connectivity values.

(a) (b)

(c) (d)
Figure 9. Phase difference distributions for selected synthetic signal pairs generated using the
Kuramoto model [27]. Shown are the distributions corresponding to the highest: (a) PLV and
absCPCC values, (b) wPLI and imCPCC values, (c) ratio between absCPCC and imCPCC values,
(d) ratio between imCPCC and absCPCC values.

3.3. Real-Life Signals

For testing on real-life data, we used the SPIS Resting State Dataset [28], a multimodal
dataset with EEG and forehead EOG signals. In our analysis, we used only EEG signals
from the “eyes closed” (EC) and “eyes open” (EO) states with a duration of 2.5 min, using
256 Hz sampling rate.

Offline preprocessing of the EEG signal was performed in the following sequence
of steps:

1. The raw brain activity data were imported into MATLAB using the EEGLAB toolbox;
2. Electrode positions (also called channel locations) were defined in the software;
3. The data were referenced to average;
4. The data were filtered with a band pass filter limited to 0.5 and 45 Hz;
5. Automatic spectral-based channel suppression (z = 5) was performed using the

EEGLAB “pop rejchan” function;
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6. Artifacts were removed using the ICLabel plugin for EEGLAB (thresholds for removing
components were less than or equal to 0.05 for brain activity and greater than or equal
to 0.9 for artifacts);

7. The data were re-referenced to average;
8. Sub-bands of the EEG signal were extracted (delta 0.5–4 Hz, theta 4–8 Hz, alpha

8–13 Hz, low beta 13–18 Hz, high beta 18–30 Hz, gamma 35–45 Hz).

Figure 10 shows the connectivity matrices for PLV, absCPCC, wPLI, and imCPCC for
both conditions (EC and EO) in the alpha band (8–13 Hz). The similarity between PLV and
absCPCC, as well as between wPLI and imCPCC, is visible, although with some evident
differences, mainly between the latter two. Although the patterns are similar, the color
scaling (based on the highest value) is different.

(a) (b)

(c) (d)

(e) (f)
Figure 10. Cont.
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(g) (h)
Figure 10. Connectivity matrices for the the alpha band (8–13 Hz) of the real-life signals [28] for eyes
closed (EC) and eyes open (EO) states, computed with PLV, wPLI, absCPCC (g), and imCPCC (h).

Figures 11 and 12 show the relationship between absCPCC and PLV values (left) and
between the imCPCC and wPLI values (right) for all the frequency ranges. Figure 11 shows
the signals recorded with eyes closed (EC state), while Figure 12 is for eyes open (EO
state). We can see that absCPCC and PLV as well as imCPCC and wPLI are positively
correlated in all frequency bands. However, we have to be aware that real-life signals
include multiple signal components with different amplitudes, while the scaling is common
for the whole sequence. This makes the results more scattered in PLV-absCPCC and wPLI-
imCPCC distributions. The relationship between absCPCC and PLV is evident, but with
visible deviation from being perfectly linear due to reduced scaling difference for high
connectivity values. The relationship between imCPCC and wPLI also deviates from linear,
with evident range of scaling differences. The relationships do not seem to be dependent
on the EC/EO state.

(a) (b)

(c) (d)
Figure 11. Cont.
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(e) (f)
Figure 11. Scatter plots of the absCPCC to PLV relationship (left) and the imCPCC to wPLI relationship
(right), for all electrode pairs and for 10 test subjects (EC state). The black line represents the identity,
while the cyan line shows the best linear fit. The colors of the dots represent the relative density of the
connectivity values. Each row is shown for a different frequency band: (a,b) 0.5–4 Hz; (c,d) 4–8 Hz;
(e,f) 8–13 Hz.

(a) (b)

(c) (d)

(e) (f)
Figure 12. Scatter plots of the absCPCC to PLV relationship (left) and the imCPCC to wPLI relationship
(right), for all electrode pairs and for 10 test subjects (EO state). The black line represents the identity,
while the cyan line shows the best linear fit. The colors of the dots represent the relative density of the
connectivity values. Each row is shown for a different frequency band: (a,b) 0.5–4 Hz; (c,d) 4–8 Hz;
(e,f) 8–13 Hz.

To enumerate the linearity of relationships between the connectivity measures, we
show the correlation values between them in Table 1.
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Table 1. Correlation values between compared connectivity measures (real-life signal). Here, rabs and
rim denote r(absCPCC, PLV) and r(imCPCC, wPLI) respectively.

Frequency State-EC State-EO

(Hz) rabs rim rabs rim

0.5–4 0.93 0.86 0.94 0.89
4–8 0.98 0.91 0.97 0.94

8–13 0.98 0.86 0.97 0.91
13–18 0.99 0.94 0.99 0.96
18–30 0.98 0.96 0.99 0.96
35–45 0.96 0.95 0.99 0.95

The correlation between absCPCC and PLV connectivity measures is high for all
frequency bands and both states (EC and EO), with an average of 0.97. Only slightly lower
values are obtained for the correlation between imCPCC and wPLI, with an average of 0.92.
The corresponding p-values for the alternative hypothesis that measures are not correlated
are all smaller than 0.0001 and, thus, well below the significance level of 0.05, which means
that the hypothesis of the correlation between the absCPCC and PLV and between imCPCC
and wPLI is proven for all frequency bands and both states.

Phase difference distributions for real-life signals for electrode pairs with the highest
connectivity values and the highest ratios between them are shown in Figure 13. The
phase difference distributions corresponding to the highest PLV and absCPCC values are
narrow and centered around 0. The highest wPLI and imCPCC values are obtained when
the distribution that is wide, slightly asymmetric, and centered at non-zero phase difference.
The ratio between absCPCC and imCPCC values is the highest when the later one equal
0 and the histogram is centered at ±π radians. The highest imCPCC to absCPCC ratio is,
again, obtained when their values are equal and the histogram is not symmetric around 0.

(a) (b)

(c) (d)
Figure 13. Phase difference distributions for selected electrode pairs (real-life signals [28]). For each
distribution, all four measures are calculated. The figure shows the electrode pair with the highest:
(a) PLV and absCPCC values, (b) wPLI, and imCPCC values, (c) ratio between absCPCC and imCPCC
values, (d) ratio between imCPCC and absCPCC values.
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4. Discussion and Conclusions

In this paper, we shed new light on the Pearson correlation for the EEG connectivity
analysis. We introduced the complex correlation (CPCC) as a measure of brain connectivity.
We compared it to the (currently) most widely used brain connectivity measures, i.e.,
PLV [17,18] and wPLI [19]. The correlation coefficient (CC) has been used before, but
only between the real signals, not the analytic ones, and it was shown that it does not
represent the optimal metric to estimate functional interactions [29]. It equals the real
component of CPCC, while we showed the importance of the absolute value and the
imaginary component of CPCC.

We showed that the imaginary part of the complex Pearson correlation (imCPCC) is
closely related to the wPLI measure and that the absolute value of the complex Pearson
correlation absCPCC is closely related to PLV. The relationships are proven analytically
and numerically, on two types of synthetic signals [26,27] and on real-life EEG signals [28].
Analytically, the differences are only in the denominators that are normalizing the measures
to the [0, 1] interval. Numerically, high correlations between the results obtained with
related measures are shown. For synthetic signals, the correlation level is for all frequency
bands equal to 0.99. The scaling differences are evident for absCPCC to PLV relationship,
and differ for different frequency bands. The connectivity results for real-life signals show
more differences and the measures are less correlated, but still with an average correlation
of 0.97 for absCPCC to PLV relationship and 0.92 for the imCPCC to wPLI relationship.
Real-life signals consist of more components, which originate in different sources, are
related through different neural paths, and include different (although similar) frequencies.
Even when limiting frequency bandwidths, they are more information-rich than simulated
signals. Connectivity could be understood as a portion of signal components that affects
two distinct electrode signals, but can vary with time. All of this reflects in more complex
phase difference histograms and more complex scatter-plotted relationships between the
measures.

Based on the results shown in this paper, and the fact that connectivity measures are
currently typically analyzed relatively, we conclude that PLV can be replaced with absCPCC
and wPLI with imCPCC. Moreover, the absCPCC and imCPCC measures are defined as two
components of the the same CPCC measure and are, therefore, related, while PLV and wPLI
are not. This enables comparison of the connectivity components that may be affected
by volume conduction and those which are certainly not. The imaginary component of
CPCC can only be lower or equal to the absolute CPCC value due to the excluded real
CPCC component, which depends on signal components that may result from volume
conduction. It can be expected that the true connectivity may also yield in-phase signals
of two electrodes, which makes them indistinguishable from volume conduction. Similar
to wPLI, imCPCC scales the components, such that ones more likely arise from volume
conduction have lower influence. Thus, the estimated connectivity deviates from the true
one, but CPCC provides the upper and lower boundary, with absCPCC and imCPCC
respectively. Neuroscientists sometimes have a practice of calculating both the PLV and
wPLI (or PLI) and then interpreting the results [29–32] because the PLV method, unlike the
wPLI, does not take into account the influence of volume conduction. With the proposed
CPCC measures, they can get additional information, related to the ratio of both connectivity
components. As such, the CPCC measure could be used for various neurology related
studies. Such studies include the EEG-based brain mechanism of sleep stages, which is
important for sleep quality assessment and disease diagnosis [33]. By averaging over the
trial set, the proposed measures could also be used as a solution to improve the prediction
results of the phases of the synchronization and desynchronization tasks [34]. The potential
application of CPCC also lies in the assessment of mental stress levels using functional
connectivity as a parameter [35,36] and in the diagnosis dyslexia [37]. In addition, the
proposed measures could be used as parameters for the evaluation of simulated EEG data
based on the theory of functional connectivity of the brain [38].
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The next valuable property of the proposed CPCC measure is that it can be computed
as a summation of temporal sample contributions. This enables the measure to reveal
temporal changes of connectivity and opens a new direction for further research. This
can be especially useful for analyzing human brain networks in auditory and visual
tasks [39,40] and is also promising for assessing motor skills [41]. This also allows us
to observe changes in the organization of brain network connectivity over time using
well-known measures from complex network graph theory [42].

The CPCC measure has an advantage in the computational complexity. In our ex-
periments the computation of absCPCC and imCPCC was 65% to 179% faster than the
computations of PLV and wPLI.

Finally, the computation of the correlation of two analytic signals is easy to implement
and already available in most of the statistical and signal analysis tools.

Following the above discussion—we can state that the newly proposed CPCC connec-
tivity measure, with absCPCC and imCPCC as its components, could replace PLV and wPLI
measures, accelerate the computation of brain connectivity, and provide further information
about brain processes. The data, code, and instructions for replicating the study presented
in this article are freely available at https://github.com/zsverko/Code_CPCC.git (accessed
on 10 January 2022).
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absCPCC absolute value of complex Pearson correlation coefficient
CPCC complex Pearson correlation coefficient
DTI diffusion tensor imaging
EC eyes closed
EEG electroencephalography
EO eyes open
HT Hilbert transform
imCPCC imaginary component of complex Pearson correlation coefficient
MEG magnetoencephalography
MRI magnetic resonance imaging
PLV phase locking value
PLI phase lag index
wPLI weighted phase lag index
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