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Abstract 

A low-cost Fabry Perot open resonator is used to measure the 

complex permittivity of flat sheets of dielectric materials in the 

X-band. The method is based on the measurement of the 

resonant frequency shift of the fundamental mode, described 

by the Gaussian beam theory. Instead of spherical mirrors, 

conventionally used for open resonators, the cavity is formed 

by parabolic reflectors, originally intended for satellite 

communications, reducing the production costs. A technique to 

improve the sample alignment is introduced, and to validate the 

results of the parabolic cavity, the relative permittivity and loss 

tangent of three different samples are measured. 

1 Introduction 

For many applications, knowledge of substrate material 

properties is key, such as in antenna design or electronic 

devices design [1]. For dielectric materials, the most important 

parameters are its relative permittivity (εr) and loss tangent (tan 

δ), which are often unknown at the frequency of interest or 

calculated with an unknown uncertainty. Most standard 

measurement techniques used for characterizing materials are 

destructive or require an expensive setup. In this paper, a low-

cost solution is proposed to extract the relative permittivity and 

loss tangent in the X-band by using an open cavity resonator. 

The advantage is that instead of spherical mirrors, which need 

to be manufactured with high production cost, the cavity is 

formed by identical parabolic mirrors, generally used for 

satellite communications and already available on the market 

at low cost.  

Two types of open resonator are conventionally used for 

material characterization: the hemispherical resonator [2], 

formed by one spherical mirror and one plane mirror, and 

confocal resonator, with two spherical mirrors [3]. In the first 

case, the sample to characterize is placed on top of the planar 

mirror and, in the second case, in the middle of the cavity. This 

paper is focused on the use of parabolic mirrors in a confocal 

configuration. Since the goal is the characterization of solid 

dielectric materials, the confocal configuration is preferred 

because it avoids the airgap between the plane mirror and the 

sample, which causes larger errors proportional to the 

frequency [4]. Three different samples were used to test the 

experimental setup: RO4003C, RO4835 and a sample of FR4, 

whose complex permittivity provided by datasheet was used as 

reference. A further validation is obtained by using two 

standard non-resonant methods as comparison: the two-

microstrip line method and the two-layer stripline method [5]. 

This paper describes, in section two, the setup to obtain the 

material properties and the theory used to derive the parameters 

from a measurement. In section three the measurements results 

are provided and the uncertainty analysis applied. Section four 

discusses the results obtained and the comparison with respect 

to the spherical structure. Finally, section five concludes the 

work. 

2 Theory 

An open resonator can be realized with different geometries, 

like, for example, hemispherical, concentric or confocal [6]. 

The most straightforward open resonant cavity is formed by 

two curved mirrors aligned in front of each other. In all 

geometries listed above, propagation of the fundamental 

TEM0,0,q mode in the cavity is described using the scalar 

Gaussian beam theory [7]. It implies that the fundamental 

mode propagates with a Gaussian intensity profile (as 

illustrated in Figure 1). Although many higher order TEM 

modes could be supported inside the cavity, we only consider 

the resonant frequency of the TEM0,0,q mode, which can be 

calculated for an empty cavity with [8]: 

 

𝑓𝑟,𝑒 =  
𝑐

2𝐷
{𝑞 + 1 + 

1

𝜋
𝑎𝑟𝑐𝑜𝑠 (1 − 

𝐷

𝑅0

)} (1) 

 

where c is the speed of light, D the distance between the 

reflectors, R0 the radius of curvature, and q the axial mode 

number.  

 

 
Figure 1. Sketch of the resonant cavity with parabolic dishes. 
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When the dielectric sheet of thickness 2t  is placed at the center 

of the cavity, the resonant frequency shifts proportionally to 

the refractive index n. Applying boundary conditions to the 

discontinuity inside the cavity (air – dielectric) [8], [9], the 

following transcendental equation is obtained to calculate the 

refractive index n and, consequentially, for dielectric materials 

the relative permittivity 휀𝑟 =  𝑛2, depending on whether the 

mode is symmetric [4], [8]: 

 
1

𝑛
cot(𝑛𝑘𝑠𝑡 − Φ𝑡) = tan(𝑘𝑠𝑑 −  Φ𝑑) (2) 

 

or antisymmetric: 

 
1

𝑛
tan(𝑛𝑘𝑎𝑡 −  Φ𝑡) = − tan(𝑘𝑎𝑑 − Φ𝑑) (3) 

 

where: 

Φ𝑡 = tan−1 (
2𝑡

𝑛𝑘𝑤0
2),  (4) 

 

Φ𝑑 = tan−1 {
2

𝑘𝑤0
2 (𝑑 +  

𝑡

𝑛2
) } −  tan−1 (

2𝑡

𝑛2𝑘𝑤0
2), (5) 

 

and: 

𝑘𝑤0
2 = 2 √{(𝑑 +

𝑡

𝑛2
) (𝑅0 − 𝑑 − 

𝑡

𝑛2
)} (6) 

 

In Equations (2) and (3), ks and ka are the free-space phase 

constant of the symmetric and antisymmetric modes 

respectively equal to 𝑘 = 2𝜋𝑓𝑟,𝑓/𝑐, with fr,f the resonant 

frequency of the filled cavity. 

Calculation of the loss tangent is based, instead, on the 

measurement of the quality factor Q, of the empty cavity Q0 

and the loaded cavity Ql. The decrease of the quality factor of 

the resonator is proportional to the loss tangent of the inserted 

dielectric material [4] that can be calculated as follows [8]: 

 

tan 𝛿 =  
1

𝑄𝑒

∆𝑡 + 𝑑

∆𝑡 + (
1

2𝑘
) sin 2(𝑘𝑑 − Φ𝑑)

 (7) 

where: 

 

∆𝑠=
𝑛2

𝑛2sin2(𝑛𝑘𝑠𝑡 −  Φ𝑡) +  cos2(𝑛𝑘𝑠𝑡 − Φ𝑡) 
 (8) 

  

∆𝑎=
𝑛2

𝑛2cos2(𝑛𝑘𝑎𝑡 −  Φ𝑡) +  sin2(𝑛𝑘𝑎𝑡 −  Φ𝑡) 
 (9) 

 

for symmetric and antisymmetric modes respectively. The 

quantity 1/Qe is equal to: 

 
1

𝑄𝑒

=
1

𝑄𝑙

− 
1

𝑄𝑑

  (10) 

where: 

𝑄𝑑 = 𝑄0

2(𝑡∆ + 𝑑)

𝐷(∆ + 1)
 (11) 

 

is the quality factor for the same cavity, containing a sample 

with  the same thickness and permittivity, but loss-free. 

To apply the Gaussian beam approximation, sample 

dimensions need to be larger than the beam waist of the 

fundamental mode, whose radius is given by [6]: 

 

𝑤2(𝑥) = 𝑤0
2 [1 + (

𝜆𝑥

𝜋𝑤0
2)

2

] (12) 

where: 

𝑤0 
2 =

2

𝑘
√𝐷(𝑅0 − 𝐷) (13) 

 

is the beam waist radius at x=0, considering the origin of the 

Cartesian coordinate system at the center of the cavity. 

The Gaussian beam theory assumes that the equiphase surfaces 

of the beam are convex. This means that the sample should 

have a convex shape to match the phase front of the beam 

instead of the flat shapes of our samples. As shown in [2], this 

error can be compensated by adding to the thickness the 

amount δt equal to: 

𝛿𝑡 =
𝑤(𝑡)2

4𝑅(𝑡)
 (14) 

Where w(t) and R(t) are respectively the beam radius and the 

radius of curvature of the phase front at x = t. 

3 Measurement setup and Results 

Investigation of the open parabolic resonator has been divided 

into two parts. Common open resonators are usually designed 

by using spherical mirrors. Therefore, before proceeding to the 

realization of setup, the possibility to use parabolic instead of 

spherical reflectors is investigated first. 

3.1 Simulations 

The software used for the simulations was CST Microwave 

Studio® [10]. Because the simulation model is many times 

larger than the wavelength, the time-domain solver was 

considered the most suitable for this purpose.  

 

 
(a) 

 
(b) 

Figure 2. (a) Image of the cavity in CST and, (b) picture of 

the setup in laboratory. 
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Figure 3. Simulation of the S21: parabolic vs. spherical cavity 

resonances. 

 

Two empty cavities are simulated first with parabolic reflectors 

(see Figure 2a) and then an equivalent cavity with spherical 

reflectors. In the first case, the parabolic reflectors have a 

curvature approximately described by equation y = 0.01086x2 

(in cm), with a diameter of 60 cm. They are fed by two 

waveguides WR-90 (8.2 GHz – 12.4 GHz) and excited through 

an iris of diameter 9.5 mm. A sketch of the simulated setup is 

shown if Figure 1.  

In order to reduce the simulation time, the frequency range is 

reduced to 8.5-10 GHz, enough, however, to study the behavior 

of the two geometries.  

For the simulation of the spherical cavity, an approximate 

radius of curvature that better follows the parabolic profile is 

calculated. It results in being 46 cm, approximately two times 

the focal point of the parabolic reflector. The diameter of the 

reflectors and the iris are chosen the same as the previous case, 

equal to 60 cm and 9.5 mm respectively. The results of both 

simulations are displayed in Figure 3. It shows the transmission 

coefficient S21 of the spherical and parabolic cavity zoomed on 

the range -15 dB to -50 dB. Compared to the measured S21, the 

resonant frequencies are slightly different. This is due to a 

computational limit for the number of mesh cells.  The 

convergence test performed did not give a definitive number of 

mesh cells, but, for our purpose, it was enough to establish the 

similarity of the result between parabolic and spherical 

reflectors. Since the cavities are simulated in their confocal 

region (distance equal to the radius of curvature) in both cases, 

only the resonances related to the fundamental modes TEM0,0,q 

are visible. The transverse modes TEM0,1,q and TEM1,0,q 

associated to the q-th axial mode move out at half way between 

the q and q+1 modes. The TEM0,2,q and TEM2,0,q move out to 

coincide with the TEM0,0,q+2 modes [7]. The confocal situation 

simulated shows a slight difference in the resonant peaks 

between spherical and parabolic cavity, due to the different 

geometries. This difference can be solved by calculating the 

exact equivalent radius of curvature of the parabolic reflector 

by using Equation (10), with q, D and fr,f fixed. The simulation 

results indicate that, despite the difference between parabolic 

and spherical geometries at this wavelength, the behavior of 

the two cavities is similar, allowing the use of parabolic instead 

of spherical reflectors.  

3.2 Setup and Experiments 

The setup used for the experiments is shown in Figure 2b). The 

parabolic reflectors have the same dimensions of the simulated 

ones, with a diameter of 60 cm. They are connected to two 

waveguides WR-90 where the power is coupled to the cavity 

through two iris of 9.5 mm. The waveguides are then connected 

to a vector network analyzer (VNA) to measure the S21 

parameter. For alignment purpose, the reflectors are installed 

on linear stages that permit shifts with 10μm accuracy in the x-

direction (see Figure 1). A rotation system allows movements 

of the reflectors in the range of 4° in elevation and azimuth. In 

the center, a stage with foam on it, out of the Gaussian beam 

region, is used as sample holder. The distance D is equal to 46 

cm and calculable from the distance between two resonant 

peaks associated to the fundamental modes by the equation 

[11]: 

 

𝐷 =  
𝑐

2∆𝑓
 (15) 

  

In Equation (15) we need to take into account that the speed of 

the light in the medium is equal to c = c0/n, where c0 is the 

speed of the light in the vacuum and n is the refractive index of 

the medium (air in this case).  

In Figure 4, the measured S21 of the empty cavity is shown. In 

the frequency range 8.5 GHz – 12.5 GHz, 12 resonant peaks 

with a spacing of 300 MHz are present. Each resonant peak is 

associated to symmetric and asymmetric fundamental modes. 

This means that the dielectric material can be characterized in 

a discrete number of twelve points corresponding to 12 

resonant peaks, within the range from 8.5 to 12.5 GHz. When 

the dielectric material is placed inside the cavity, the resonant 

peaks shift proportionally to the refractive index of the material 

to lower frequencies, with a larger shift in case of symmetric 

axial mode. The larger shift is probably due to the intensity of 

the field being maximum for symmetric modes (node at the 

center of the cavity) and minimum for asymmetric modes 

(antinode at the center of the cavity), as illustrated in Figure 5, 

increasing or decreasing the effect of the perturbation by the 

sample. Because of the difference in shifts, it is suggested to 

use thick samples with asymmetric modes and thin samples 

with symmetric modes for more accurate results [4].  

  

 
Figure 4. Resonance peaks associated to different values of q 

in an empty cavity. 

TEM0,0,29 

TEM0,0,30 

TEM0,0,31 

TEM0,0,32 
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(a)                                             (b)  

Figure 5. (a) Sketch of the resonant cavity in the case of a 

symmetric longitudinal resonant mode with antinode in the 

center of the cavity and, (b) the same cavity in the case of an 

antisymmetric mode with a node in the center of the cavity. 

 

Three different samples were used: RO4003C, RO4350B 

and a sample of FR4. RO4003C and RO4350B materials of 

Rogers Corporation are hydrocarbon/ceramics laminates 

designed for high frequency applications, providing, as 

described in their datasheet, constant dielectric properties 

and low losses in a wide frequency range. The relative 

permittivity εr, according to the datasheet, is equal to 3.55 

and 3.66 respectively in the frequency range 8 – 40 GHz and 

the loss tangent tan δ, at 10 GHz, is equal to 0.0027 and 

0.0037 respectively.     

Experiments were carried out on samples with a size of 

120x90 mm and with a thickness equal to 1.52 mm for the 

Roger materials and 100x60 mm with thickness equal to 

1.35 mm for the FR4 material.  

Care must be taken to ensure that the dimension of the 

samples is large enough to neglect electric fields scattering 

from the edges out of the resonator increasing the losses of 

the open resonator [2]. As a rule of thumb, in order to get 

appropriate results, it is proposed to use samples with a 

minimum size equal to 2.5 times the diameter of the 

Gaussian beam [12]. Results of the measured S21 are shown 

in Figure 6, where we can see how the shift related to the 

symmetric mode located at 9.018 GHz is more significant 

than the shift of the asymmetric mode located at 9.346 GHz.  

This property of the resonant cavity is also used as reference 

for the alignment of the sample at the center of the cavity.  

 

 
Figure 6. Shifts of the symmetric (at 9.018 GHz) and 

antisymmetric (at 9.346 GHz) modes of the cavity loaded with 

a RO4003C sample. 

 

 

Moving the sample inside the cavity in the axial direction (x-

axis), the peak will shift to the higher frequency if the sample 

moves to the antinode, to the lower frequency if the sample is 

moving to the node. The peak reaches its minimum frequency 

when it is at the node of the symmetric longitudinal mode and, 

therefore, at the center of the cavity.  

The new resonant frequencies are now used for the extraction 

of the relative permittivity. By entering the new frequency 

value in Equation (2) for symmetric and in Equation (3) for 

antisymmetric modes, it is possible to calculate the refractive 

index n and thus the relative permittivity εr. 

For our experiments, because of the small sample thickness, 

only symmetric modes are used for the characterization. 

Results of the calculated relative permittivity εr are shown in 

Table 1. 

 

f (GHz) 9.018 9.67 10.33 10.99 11.64 12.3 

εr(RO4003C) 3.549 3.539 3.571 3.555 3.519 3.549 

εr(RO4350B) 3.717 3.668 3.693 3.686 3.686 3.668 

εr(FR4) 4.422 4.36 4.341 4.302 4.249 4.244 

Table 1. Measured relative permittivity (εr) for RO4003C, 

RO4350B, FR4 with t=1.52 mm, t=1.52 mm and t=1.35 mm 

respectively, at the resonant frequency of the symmetric 

modes. 

 

To further validate the measurement results, two standard 

methods for dielectric material characterization are used: the 

two microstrip line method and the two-layer stripline method 

[5]. The first method is based on the characterization of the 

dielectric material, used as a substrate of two microstrip 

transmission line with different lengths, from the measure of 

the phase difference. The phase difference is then used to 

calculate the effective permittivity (εeff) and, consequently, εr. 

In the second method, instead, the material to be characterized 

is clamped on the top of a microstrip transmission line with 

accurately known characteristics. εeff is calculated from the 

phase difference between the uncovered microstrip line and the 

phase of the microstrip line with the sample clamped on the top 

of it.  Figure 7 shows the comparison between the results 

obtained by using the parabolic resonator and the two 

microstrip line methods for characterizing the RO4003C 

sample. We can see how the results are within the range of 2% 

and, in some points, overlapping. 

For the validation of the other two samples, the two-layer 

stripline method is used. The samples are clamped on the top 

of the microstrip with RO4003C as substrate previously 

characterized. The measurements results for the RO4350B and 

FR4 samples are shown in Figure 7 and Figure 8 respectively. 

We can see a maximum deviation in εr of 0.18 compared to the 

parabolic resonator at the frequency of 10.33 GHz. We assume 

the airgap between the sample and the microstrip introduced an 

error in the final measurements. 

 

f = 9.4028 GHz RO4003C RO4350B FR4 

tan δ 0.0034 0.0048 0.027 

Table 2. Measured values of the loss tangent (tan δ) at 9.4028 

GHz for the RO4003C, RO4350B, FR4 materials. 
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Calculation of loss tangent requires the measurement of the 

quality factor of the empty cavity Q0 and the quality factor of 

the loaded cavity Ql, as previously mentioned in Section 2. 

In order to increase and optimize the quality factor of the 

resonator, a modification to the distance between the reflectors 

is applied. Q0, at the distance of 45.45 cm and at the frequency 

of 9.4063 GHz, is approximately equal to 26000. Table 2 

shows the results for the same samples previously used for the 

calculation of the relative permittivity, pointing out how the 

two Roger materials have less losses than the FR4 sample. For 

the tan δ measurements, the comparison with the two non-

resonant methods used above is not provided, since the 

transmission/reflection methods cannot give accurate results, 

especially for low loss samples [1]. 

3.3 Uncertainty of permittivity measurement 

Accuracy of the relative permittivity measurement, looking at 

Equation (2) and (3), is determined by the uncertainties 

propagation of the resonant frequency, the distance between 

the reflectors and the thickness of the sample. 

The combined uncertainty on the relative permittivity (∆휀𝑟) 

can be approximated, for an open resonator, by propagating the 

individual uncertainties to the permittivity and combining them 

[13] using the root-sum-of-squares: 

 

∆휀𝑟 =  √(
𝛿휀𝑟

𝛿𝑡
∆𝑡 )

2

+  (
𝛿휀𝑟

𝛿𝐷
∆𝐷 )

2

+ (
𝛿휀𝑟

𝛿𝑓𝑟

∆𝑓𝑟 )
2

 (16) 

 

where Δt is uncertainty of the material thickness, ΔD the 

uncertainty of the distance between the reflectors and Δfr the 

uncertainty of the resonant frequency.  Equation (16) assumes 

that all the uncertainties are uncorrelated and all of them have 

Gaussian distribution. Since we do not have information about 

their distributions, we use the Type B Evaluation of Standard 

Uncertainty [14]. For the frequency, a rectangular distribution 

is a more reasonable model, since the probability that the value 

lies in that interval is 100% and equiprobable to be close to the 

center or at the edge of the interval itself. If we divide half of 

its uncertainty interval by √3, we get the standard uncertainty 

of the frequency, which corresponds to a probability of 68.27% 

that the value lies in that interval. But if it is known that the 

values near to the center have higher probability, like in the 

case of thickness and distance, then a Gaussian distribution 

may be a better model. For their conversion in standard 

uncertainty, we need to divide the uncertainty interval by two.  

Now that we have all standard uncertainties of the separate 

uncertainty contributions, we may use the root-sum-of-squares 

to combine them [14].   

The resolution of the measured frequency is 100 kHz, obtained 

with 4000 point in a frequency span of 400 MHz. For the 

distance, an uncertainty of ±10 μm is given by the stages on 

which the reflectors are assembled and the sample thickness is 

measured with an accuracy approximately ±5μm. Converted 

into standard uncertainty, these intervals become ±28.87 KHz 

for the frequency, ±10 μm for the distance and ±5 μm for the 

thickness. Δt represents the uncertainty whit the highest 

contribution  in the calculation of the εr standard uncertainty. 

  
Figure 7. RO4003C relative permittivity measured by the two 

microstrip line methods and the parabolic resonator, for which 

the Standard uncertainty (Δεr) is also shown using errorbars 

 

 
Figure 8. RO4350B relative permittivity measured by the two 

layer stripline line methods and the parabolic resonator, for 

which the Standard uncertainty (Δεr) is also shown using 

errorbars. 

 

 
Figure 9. FR4 relative permittivity measured by the two layer 

stripline line methods and the parabolic resonator, for which 

the Standard uncertainty (Δεr) is also shown using errorbars. 

 

The standard uncertainties of εr, corresponding to a 68.27% 

confidence interval, calculated by Equation (16) at the 

frequency of 9.018 GHz (approximately the same at the other 

frequencies), are listed in Table 3. It shows that the 

uncertainties in our measurements setup are approximately 

0.7% and, for each sample, they are illustrated in Figure 7, 8, 9 
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using errorbars. The Standard uncertainty can be converted in 

Expanded uncertainty by multiplying it by 1.96, which defines 

an interval having level of confidence of approximately 95% 

[14]. This would result in an expanded uncertainty of ±0.0474, 

±0.0513 and ±0.0645 for RO4003C, RO4835B and FR4 

respectively, with a 95% confidence interval.  

These results are obtained by using our instrumentation 

available in the laboratory, but it can certainly be improved 

using more accurate instruments, for example, in the 

measurement of the sample thickness. 

 

Standard 

Uncertainties 

RO4003C RO4835B FR4 

Δt (μm) 

ΔD(μm) 

±5 

±10 

±5 

±10 

±5 

±10 

Δfr (KHz) ±28.87 ±28.87 ±28.87 

Δεr (p = 68.27%) ±0.0242 ±0.0262 ±0.0329 

Table 3. εr Standard Uncertainty calculated from the 

uncertainties propagation of thickness, resonant frequency and 

distance at the frequency of 9.018 GHz. 

4 Discussion 

The results provided above indicate that the open resonator 

technique, using parabolic reflectors, can produce accurate 

results. The further validation, performed by using two 

standard methods (two microstrip transmission line and two-

layer stripline), shows similar results especially in the case of 

the two microstrip line method. The comparison with two layer 

stripline method shows a difference that, we believe, is due to 

the airgap between sample and microstrip which introduced an 

error in the measurements. 

The low cost of the cavity (made by two parabolic reflectors 

easily fundable in the market) makes this setup a good solution 

to characterize materials, with the advantage to be non-

destructive method (compared to, for example, the two 

microstrip line technique showed in Section 3), which in many 

cases is desirable for engineered materials companies.  

5 Conclusion 

In this paper a low-cost Fabry-Perot open cavity resonator for 

material characterization is presented. The well-known 

Gaussian beam theory is applied to an open cavity resonator 

composed of two parabolic reflectors, normally used for 

satellite television broadcasting. A comparison between 

spherical and parabolic reflectors is carried out in simulation, 

allowing the use of parabolic reflectors and thus reducing the 

cost for the design of an open resonator. The test of the setup 

is performed by using three different materials, and material 

positioning accuracy is improved using a new technique. An 

uncertainty analysis, based on our instrumentation, is 

performed. It shows that the Standard uncertainty of the 

measurement system is approximately 0.7%, which is achieved 

in part thanks to the improvement of the sample positioning 

inside the cavity. The thickness uncertainty has the most 

relevant impact, but this can be improved in case of more 

accurate instruments for the measurement of the material 

thickness.  
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