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Abstract

Strong correlations—cooperative behavior due to many-particle interactions—are omnipresent

in nature. They occur in electrolytic solutions, dense plasmas, ultracold ions and atomic gases

in traps, complex (dusty) plasmas, electrons and excitons in quantum dots and the quark–gluon

plasma. Correlation effects include the emergence of long-range order, of liquid-like or

crystalline structures and collective dynamic properties (collective modes). The observation

and experimental analysis of strong correlations are often difficult, requiring, in many cases,

extreme conditions such as very low temperatures or high densities. An exception is complex

plasmas where strong coupling can be easily achieved, even at room temperature. These

systems feature the strongest correlations reported so far and experiments allow for an

unprecedented precision and full single-particle resolution of the stationary and

time-dependent many-particle behavior.

The governing role of the interactions in strongly correlated systems gives rise to many

universal properties observed in all of them. This makes the analysis of one particular system

interesting for many others. This motivates the goal of this paper which is to give an overview

on recent experimental and theoretical results in complex plasmas including liquid-like

behavior, crystal formation, structural and dynamic properties. It is expected that many of

these effects will be of interest also to researchers in other fields where strong correlations play

a prominent role.

(Some figures in this article are in colour only in the electronic version)

This article was invited by Gordon Baym.
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1. Introduction

This paper is devoted to recent developments in complex

(dusty) plasmas—concerned with the realization of strongly

correlated behavior of mesoscopic or macroscopic particle

ensembles. We will use the term ‘correlated behavior’ as a

synonym for deviations from the trivial ideal gas behavior.

The origin of correlations is the interactions between the

particles missing (by definition) in an ideal gas, and a typical

Hamiltonian has the form

H =
N

∑

i=1

p2
i

2m
+

N
∑

i=1

U(ri) +
1

2

N
∑

i �=j

V (|ri − rj |), (1)

whereU is a general external potential and we restrict ourselves

to systems with distance-dependent pair interactions.

Correlations have a profound effect on the arrangement

of the particles in momentum and coordinate space. While

in an ideal gas (V ≡ 0) in thermodynamic equilibrium

the momentum distribution is given by a Maxwellian

(Fermi or Bose function, in the quantum case), the

momentum distribution of a non-ideal quantum system may be

substantially different leading to enhanced population of high-

momentum states and long tails, see e.g. [1] and references

therein. In contrast, in a classical system the momentum

distribution is always Maxwellian. However, both in classical

and quantum systems, much more striking is the effect of

correlations on the spatial arrangement of particles. While

in an ideal gas the particle positions are independent (the

probability g(r) to find two particles at a distance r is

independent of r), in a correlated system the pair distribution

g(r) exhibits strong modulations. This is caused by strong

interactions3 which favor certain distances of neighboring

particles (attractive potential) or suppress close encounters

(repulsive potential). This non-trivial spatial arrangement of

particles will be in the focus of this review. We will entirely

concentrate on classical systems since, so far, in dusty plasma

experiments quantum effects are not accessible. Nevertheless,

the observed strong correlation phenomena are expected to be

of—at least qualitative—relevance also for quantum systems.

The strength of correlations is conveniently measured

by the coupling parameter, Ŵ = 〈|V |〉/〈K〉, the ratio of

the mean interaction energy to the kinetic energy K , see

equation (2). Using the parameter Ŵ, the universal trends in

all correlated systems can be highlighted and quantified: ideal

gas-like behavior occurs for Ŵ ≪ 1, liquid-like short-range

3 Spatial modulations of particles may also be caused by spin statistics, but

this will not be considered here.

order for Ŵ � 1 and crystalline long-range order for Ŵ �

100. While the precise values are different for classical and

quantum systems and depend on the system dimensionality, the

form of the interaction potential and the external potential U ,

many correlation phenomena are observed in all many-particle

systems, independent of their specific nature. This makes the

analysis of correlation effects in one system very interesting

also for other fields of physics. This is particularly true also

for complex plasmas. These systems not only allow one

to produce the strongest correlations known today (Ŵ values

exceeding 1.000 have been realized), but they also allow for

an unprecedented accuracy of analysis. As we will show in

this review, many quantities such as crystal structure, pair

distribution function, normal modes and even single-particle

trajectories can be directly observed in the experiment with

full time resolution, making this field an ideal test case for

theoretical concepts, with high predictive capability also for

other fields.

1.1. Significance of strong correlations in nature

Let us start with a brief overview on correlation effects in

various fields of physics. Historically, the first encounter of

strong non-ideality effects was, probably, the gas–liquid phase

transition. Condensation effects clearly showed a deviation

from ideal gas behavior and the breakdown of the ideal

equation of state p = nkBT . The phenomenological solution

of this problem was achieved by the introduction of a modified

equation of state, such as the van der Waals equation, which

incorporates interactions between the molecules. Despite

its model character it correctly captures the non-perturbative

nature of the phase transition—a manifestation of strong

correlations with Ŵ � 1.

Modern statistical mechanics have put the theoretical

analysis of correlations on a firm ground. Here, pioneering

work started in the description of fluids, in particular, in

electrolytic solutions. Charged molecules in a solvent (such

as water) interact via strong Coulomb forces and may exhibit

strong correlations, see e.g. [2, 3]. The consequences are

strong static and dynamical screening effects first described by

Debye and Hückel [4]. Also, the formation of chemical bound

states of positive and negative ions, described by Planck [5],

Arrhenius [6], Bjerrum [7], and others strongly influences

the thermodynamic and transport properties [2]. The modern

statistical treatment of non-ideal fluids is based on a rigorous

derivation from mechanics which leads to the hierarchy for the

reduced distribution functions of Bogolyubov [8] and others

(BBGKY hierarchy, see e.g. [1]). The proper treatment of

2
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strong correlations in classical fluids is achieved with self-

consistent closure approximations such as the Percus–Yevick

(PY) and hypernetted-chain (HNC) approximation, e.g. [3],

which will be discussed in section 7.2.

Screening and, in particular, neutral bound state formation

strongly limit the interaction energy and coupling strength

in electrolytes. This limitation is overcome in colloidal

dispersions (‘complex fluids’) where mesoscopic particles

with a size in the range 1 nm to 10 µm are embedded into

a fluid solvent. These particles can become highly charged

and strongly interacting—the same mechanism which forms

the basis of strongly coupled complex plasmas, see section 2.

Strong Coulomb interaction together with dense packing of

particles gives rise to strong spatial correlations leading to the

formation of gels, crystals and glass states. These systems

differ from dusty plasmas by the existence of a liquid solvent

causing a strong damping of the particle motion. For recent

overviews, see [9, 10] and references therein.

Correlations also play a significant role in the description

of the electronic properties of solids. The physical properties

of many materials such as simple metals, semiconductors and

insulators are characterized by moderate coupling and are,

thus, successfully explained by modern solid-state physics

within a quasi-particle description. There exist, however,

numerous materials such as transition metals and their oxides,

in which electrons experience strong Coulomb interactions

because of their spatial confinement into narrow bands, see

e.g. [11]. In these systems, a mean-field description—as in

usual band theory—fails4, (e.g. [12]), and correlations play a

crucial role. Such materials are often extremely sensitive to

external parameters (fields) which can lead to huge changes

in the resistivity at the metal–insulator transition [13–15], to

volume-collapse transitions of rare earth metals [16], to high

transition temperatures of cuprate superconductors, gigantic

thermoelectric power [17] or colossal magnetoresistance

[18]. Successful theoretical approaches to strongly correlated

electrons include model Hamiltonians such as the Hubbard

model [12] or dynamical mean-field theory [19].

Another field where strong correlations are becoming

increasingly important is ultracold fermionic or bosonic atoms

confined in traps or in the periodic potential of an optical

lattice [20]. The full control over all relevant parameters

in these systems provides a novel approach for the study of

correlation effects on a quantitative level. Exciting correlation

effects include the quantum phase transition from a superfluid

to a Mott-insulating phase [21], even in the standard regime

where the average interparticle spacing is much larger than the

scattering length. Thus, these extremely dilute gases can no

longer be described by a mean-field picture of non-interacting

quasi-particles, but require inclusion of strong correlations.

In addition to the optical lattices, the exploration of strong

correlations with ultracold gases is possible by using Feshbach

resonances [22]. The possibility of tuning the interaction

strength allows, e.g., for the exploration of the crossover,

which takes place in two-component fermionic systems, from

a molecular Bose–Einstein condensate of tightly bound pairs

4 Interaction effects can be divided into mean-field and correlation

contributions. This will be discussed in more detail in section 4.4

to a BCS superfluid of weakly bound Cooper pairs [23]. This

crossover promises insights into recent questions of quantum

fluids and high-transition-temperature superconductors [24].

One of the major advantages of ultracold atoms

is the possibility of dynamically changing the relevant

parameters such as the relative strength of the kinetic and

interaction energy, and thus studying the real-time dynamics

of strongly correlated systems. However, this requires

precise experiments under difficult conditions. In addition

to the creation of ultralow temperatures and preparation

of adequate traps [25], the detection methods need to be

essentially correlation-sensitive (for a recent overview, see

[26]). These and future experiments may substantially benefit

from the experience in dusty plasmas where the diagnostics of

individual particles and of correlation effects have reached a

mature state, as we will show in section 3.

While the emergence of correlations at low temperatures

may not be that surprising, strongly correlated systems at high

temperatures are even more exciting. In complex plasmas

Coulomb crystallization is easily reached at room temperature

which is one of the reasons for the impressive experimental

progress. An extreme and entirely different very recent

example of high temperature systems is the quark–gluon

plasma (QGP). This state of matter consisting of deconfined

quarks and gluons plays a major role in the description of the

early universe and of ultra-compact matter such as in neutron

or quark stars. It is experimentally studied in relativistic

heavy-ion collisions at the Relativistic Heavy Ion Collider

(RHIC) at Brookhaven National Laboratory [27–30] and at

CERN at the Super Proton Synchrotron (SPS) [31, 32] and the

Large Hadron Collider (LHC) [33]. While it was originally

expected to observe a weakly interacting gas of quarks and

gluons [34, 35] the experiments at RHIC give strong evidence

that the QGP actually behaves like a strongly coupled fluid

with extremely low viscosity [36, 37]. This view is now

supported by first-principle QCD lattice calculations [38, 39].

Interestingly, the governing role of correlations may allow for

the application of simpler theoretical models and simulations

of the QGP, including semiclassical molecular dynamics [40–

42] and quantum Monte Carlo simulations [43]. The analogy

of the collective properties of the QGP and electromagnetic

complex plasmas has been pointed out recently [44, 45] where

it was suggested that results from the latter may give qualitative

insights into properties of the former.

So far we have discussed various examples (this is by

no means a complete list) of different systems where strong

correlations occur. It is amazing to see how enormously

different these systems are and how strongly their parameters

differ. An illustration is given in figure 1 where a density–

temperature plane is shown which spans tens of orders of

magnitude. Extreme cases in density are complex plasmas,

at the low end, and the QGP, at the high density limit; the

difference is more than 35 orders of magnitude. Similarly,

their difference in temperature is about 10 orders of magnitude;

another 6 orders of magnitude lower than complex plasmas are

the ultracold atomic gases.

3
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Figure 1. Examples of strongly correlated systems in thermodynamic equilibrium include complex plasmas, trapped ions and the QGP
extending along the outer (pink) area, dot shows the conditions at RHIC). Prominent properties of all systems can be quantified by a few
dimensionless parameters: the coupling parameter Ŵ, equation (2), the degeneracy parameter χ , equation (3), and the Brueckner parameter
rs , equation (4).

Figure 2. Phase diagram (small part of figure 1) of a two-component plasma of electrons and singly charged ions in thermodynamic
equilibrium with a few astrophysical examples (WDM and HEDP denote ‘warm dense matter’ and high-energy density plasmas,
respectively). The dashed line χe = 1 [χi = 1] separates the region of classical (upper left) and quantum (lower right) behavior of the
electrons (ions). Also, several lines of constant classical (Ŵ) and quantum (rs) coupling strength are shown.

1.2. Correlations in charged particle systems

Many details of the observed correlation phenomena depend

on the character of the pair interaction which varies from

long-range Coulombic to short-range contact potentials. Since

plasmas are dominated by Coulomb forces, in the following

we will narrow the discussion to systems of charged particles.

Besides the examples mentioned above, strong correlations

are known to occur in various astrophysical systems including

the interior of giant planets, brown and white dwarf stars,

neutron stars and the hypothetical quark stars. Some of

them are included in figure 2 showing a small portion of

figure 1. Besides, strong correlation effects have been achieved

in various laboratory plasmas, most importantly in trapped ion
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systems. Ion crystallization in Paul traps was achieved more
than two decades ago at milli-kelvin temperatures (e.g. [46]),
and is now routinely studied in a number of laboratories, see
e.g. [47]. Crystal geometries range from linear strings to
spheres and are similar to the structures observed in complex
plasmas. The main differences compared with the latter
are the existence of a pure Coulomb interaction between
the ions and the absence of additional plasma components.
Other laboratory systems where strong correlations play a role
are dense plasmas produced by intense lasers or ion beams
which gave rise to the new field of ‘warm dense matter’
(for a recent overview, see [48, 49]). Finally, we mention
the field of ultracold plasmas where a strongly correlated
plasma is produced by photoionization of a trapped neutral
gas, previously cooled to micro-kelvin temperatures [50].
However, these experiments are very difficult and have so far
reached only moderate coupling strengths, Ŵ ∼ 3–4, although
Coulomb crystallization has been predicted if the plasma could
be laser cooled [51] (for recent overviews see [52, 53]).

The reason why these very different systems, spanning
so broad regions in density and temperature, possess similar
structural and collective properties rests on the fact that
the mechanisms governing cooperative behavior are quite
universal. To this end, consider the characteristic energy scales
of a one-component many-particle system: these are the kinetic
energy K of a particle and the mean interaction energy V of
two nearest neighbors. The ratio of their expectation values
forms a dimensionless ‘coupling parameter’ (e.g. [54])

Ŵa = |〈Va〉|
〈Ka〉

−→ Q2
a

r̄akBTa

, (2)

where the second expression corresponds to charged
particles with charge Qa and mean interparticle distance
r̄a . Interestingly, distinct values of Ŵa separate qualitatively
different behaviors: from weak coupling (ideal gas-like) at
Ŵa ≪ 1, over fluid-like (Ŵa � 1) to very strong coupling,
Ŵa � 100, where crystal formation occurs because particles
have insufficient kinetic energy to leave local minima of
the total potential. This scenario of crystallization was first
predicted by Wigner for the electron gas in metals [55] and has
since then been verified in many systems. The precise values
of Ŵa at the freezing point have been obtained by computer
simulations and have, over the years, converged to values
around 175, in 3D, and 137, in 2D, (e.g. [54, 56]). Thus, in the
density–temperature plane, cf figures 1 and 2, lines of constant
Ŵ separate different many-particle behaviors and allow one
to qualitatively estimate the characteristic properties of the
various physical systems. Other quantities characterizing the
correlations will be introduced and discussed in section 4.2.

In a multi-component system, Ŵ may be different for
different species (labeled by subscript ‘a’) giving rise to
interesting coexistences of different phases. Throughout this
paper, Ŵ will be a key parameter for characterizing the strength
of correlations. Finally, for completeness, we note that the
definition of Ŵa is restricted to classical systems. For quantum
systems characterized by a value of the degeneracy parameter
χa (�a denotes the thermal de Broglie wave length),

χa = na�
3
a, �2

a = h2

2πmakBTa

, (3)

exceeding unity the kinetic energy has to be replaced by its

quantum expression. This gives rise to a quantum coupling

parameter (Brueckner parameter):

rsa = r̄a

aB

, (4)

where aB denotes the Bohr radius; for more details and further

references on strongly correlated quantum systems see [54].

1.3. How to reach the crystal state

With the coupling parameter Ŵ at hand it is straightforward to

discuss different ways toward strong coupling and, ultimately,

crystal formation.

(i) The first approach to increase Ŵ is to lower the

temperature. The main obstacle in a two-component

neutral plasma is the recombination of electrons and ions

leading to neutral bound states (atoms or molecules) which

interact much weaker. How to realize Coulomb crystals in

a two-component plasma was recently discussed in [57].

Alternatively, recombination can be entirely avoided by

working with a single charge species, i.e. with a non-

neutral plasma. This is realized with ions in electrostatic

traps which are required to stabilize the charges against

Coulomb repulsion. Typical temperatures are in the milli-

kelvin range (e.g. [47]); see section 1.2.

(ii) The second approach consists of increasing the pair

interaction by reducing the interparticle distance. This

requires a substantial plasma density which exists in

certain astrophysical objects or laboratory environments

(e.g. laser or ion beam compression); see section 1.2.

(iii) There exists an alternative to increase the pair interaction

at fixed kinetic energy and density which consists of

increasing the particle charge. This was first predicted

by Ikezi [58] and confirmed by simulations [59]. This is

the key idea to form crystals in dusty (complex) plasmas.

What is remarkable about the third approach is that it allows

one to choose very ‘friendly’ experimental conditions—room

temperature and low density (large interparticle distance) such

that individual particles can be directly detected. This is

illustrated in figure 1 by the line Ŵ = 175, Z = 1 × 104

which is located eight (!) orders of magnitude higher in

temperature than the corresponding line Ŵ = 175 for singly

charged particles such as those used in ion traps.

The outline of this paper is as follows: we first discuss the

main issues of dusty plasma experiments and the question how

strong correlations are achieved experimentally in section 2.

This is followed by a discussion of the peculiarities of plasma

crystals in finite systems containing several tens to several

hundreds of dust particles in section 3. These finite systems,

in particular spherically symmetric systems, allow for a very

clear analysis and comparison of experiments with theory and

are, therefore, in the focus of the remaining sections. We

discuss in detail the structure of plasma crystals (section 4),

their dynamical behavior and collective oscillations (section 5)

and their thermodynamic properties and melting behavior

(section 6). Finally, we analyze the properties of the liquid state

(section 7) and conclude with a brief discussion and outlook.
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2. Physics of complex (dusty) plasmas

A complex plasma contains electrons, ions and a third
comparably large and heavy species, namely dust particles.
This combination is found in astrophysical situations [60]
as well as technical applications [61]. However, in addition
complex plasmas are an ideal tool to study fundamental
properties of strongly coupled matter. The discovery that
the dust particles in complex plasmas can form crystalline
structures [62–64] has opened a new field of research which
allows one to obtain a microphysical picture of strongly
coupled matter. After 15 years, a broad spectrum of
experiments, simulations and theoretical approaches has
achieved a considerable understanding of structural and
dynamical processes in complex plasmas. A complete survey
of the entire field of complex and dusty plasmas is of course
beyond the scope of this review and the reader is referred
to recent monographs [60, 61, 65–68] and a new review [69].
However, to show that complex plasmas are indeed a laboratory
for strong correlations this review will focus on plasma crystals
and in particular mesoscopic 3D systems. For this purpose, this
section will briefly introduce the basics of complex plasmas to
provide the physical background for the following sections and
to hint at some peculiar features of complex plasmas which are
not found in other systems and which make complex plasmas
interesting by themselves.

2.1. Parameter regime

Compared with other strongly coupled systems, complex
plasmas have several advantages. Firstly, they are stable under
laboratory conditions. This means dust particles can be trapped
at room temperature and kept in a desired dynamical state
for hours which is beneficial for any diagnostic purpose and
generally leads to high accuracy of the measurements due
to excellent statistical properties. Secondly, these complex
plasmas can consist of millions down to just a very few
particles, i.e. finite size effects are accessible. Thirdly, typical
densities of 1–50 particles/mm3 and particle diameters of a
few micrometers result in a high optical transparency even
for macroscopic dust clouds. This transparency can be used
to illuminate particles at arbitrary positions, i.e. even at the
center of large clouds, and to resolve the scattered light of
individual particles with conventional CCD cameras [70, 71]
or to manipulate individual particles in situ [72]. Fourthly,
the charge-to-mass ratio of dust particles is small, and hence
the dynamic response is slow. The dust plasma frequency ωpd

is on the order of several hertz and, therefore, the frame rate
of CCD cameras is sufficient to study dynamic processes in
great detail. Finally, complex plasmas are usually produced in
a gas discharge with neutral gas pressures of 1–100 Pa. This
implies that the system is subject to only moderate damping.
As a result, many interesting dynamic phenomena, e.g. waves,
can be investigated at a kinetic level. In particular for two-
dimensional dust systems, the phase space evolution of all
particles is experimentally accessible which provides a unique
opportunity for a detailed comparison of experiment and
theory. The combination of these nice experimental features
is certainly the foundation of the success of complex plasma
research.

2.2. Charging of dust particles

One of the most important parameters in a complex plasma is

the particle charge. Except for astrophysical situations [73],

the particle charge is determined by the ambient plasma. For

an isolated particle in a collisionless plasma the orbital motion

limit (OML) model [74] can be used to determine the floating

potential φfl at its surface. Since the electrons are much more

mobile than the ions the particles generally charge negatively.

The balance of electron (right-hand side) and ion currents (left-

hand side) to the dust grain then gives

1 − eφfl

kTi

=
√

miTe

meTi

ne

ni

exp

(

eφfl

kTe

)

, (5)

where Te(Ti) is the electron (ion) temperature, me(mi) the

electron (ion) mass and ne(ni) the electron (ion) density.

Although this equation can be solved exactly numerically, for

typical laboratory plasmas with Te ≫ Ti and ni = ne, its

solution is well approximated with φfl ≈ −2kTe/e.

With the help of a simple capacitance model [75] the

particle charge Qd = Zde can be determined for spherical

particles. Recent simulations [76, 77] show that the charge

can deviate notably for arbitrarily shaped particles and even for

isolating and conducting particles. However, with the above-

mentioned approximation it is possible to find a simple rule of

thumb to estimate the particle charge to

Zd ≈ 1400 a Te, (6)

where the particle radius a is given in micrometers and the

electron temperature in eV. From this approximation it is

obvious that particle charges of the order of 104 elementary

charges are typical for dusty plasmas.

Unfortunately, the validity of the OML model is

questionable for many discharge conditions, and different

additional processes have to be taken into account, e.g.

streaming ions [78–81], collisions [82–84] and dense packing

of dust particles [85, 86]. Nevertheless, measurements of

the dust charge have been performed by means of resonance

methods [63, 87], wave phenomena [88–91] and particle

collisions [92], and they confirm that the OML model can

be used to estimate an upper limit for the particle charge.

Ivlev et al have shown that in a supersonic flow the charge

distributions become inhomogeneous and substantially deviate

from the OML model [93]. A completely different approach

to calculate the particle charge has been proposed recently by

Bronold et al [94]. Their physisorption-inspired model for

the formation of surface charges allows one to describe the

charging and shielding of dust grains and is an interesting

alternative to the existing models.

Finally, it is important to mention that the particle charge

in a dusty plasma is in general variable. Firstly, the floating

potential depends on the plasma parameters, and these usually

have a space dependence. Secondly, at high dust densities

the plasma losses on the particles reduce the electron and

ion densities [95–97] and, in addition, the quasi-neutrality

condition and the high negative charge of dust grains can give

rise to an additional depletion of free electrons [98]. Thirdly,

6
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the particle charge in the sheath of an rf-discharge is slightly

modulated due to the modulation of the electron density in

the sheath [99]. Fourthly, for small particles with just a few

elementary charges the discreteness of the charge of electrons

and ions and the stochastic nature of the charging process can

create notable charge fluctuations which can even result in

short periods where the particles are charged positively [100].

In general, the magnitude of the fluctuations is of the order of

0.5
√

N [100] and thus, under many experimental conditions,

particular those discussed in section 3, charge fluctuations are

negligible.

2.3. Dust plasma interaction

As pointed out in the previous section, dust grains are charged

by the plasma, but at the same time they do affect the plasma.

Firstly, plasmas are known to be quasi-neutral. Thus, if a

notable amount of negative charge is bounded to the dust, the

number of free electrons has to decrease to maintain neutrality.

Secondly, the average plasma density will decrease since the

continuous recombination of electrons and ions on the dust

particle surface is an additional plasma loss. Thirdly, any

charged object in a plasma is shielded, and this is certainly the

most important fact. Thus, in the direct vicinity of a negatively

charged dust particle the ion density will increase and the

electron density will decrease. As a result two neighboring

dust particles will not interact via their unscreened Coulomb

potential. Their interaction is weakened by an additional

exponential factor and reads as

V (r; κ) = Q2

r
e−κr , κ2 = λ−2

D =
∑

a=e,i

4πnae
2
a

kBTa

, (7)

where the screening parameter κ (inverse screening length λD)

is determined by the density na and temperature Ta of electrons

and ions. This type of potential is well known in plasmas

and nuclear matter as Debye–Hückel or Yukawa potential,

respectively, and is a good approximation for all cases without

streaming electrons or ions. However, as soon as ion streaming

occurs, the Yukawa potential is shown to be valid only in the

direction perpendicular to the ion drift [101], and even there,

at large distances, deviations from a Yukawa form have been

found [102]. In particular at the plasma boundary, where the

ions are supersonic, it was shown by experiments that an ion

focus establishes in the wake of a particle. This positive space

charge adds an attractive component to the interaction potential

and, due to the supersonic character, the resulting particle

interaction was shown to be non-reciprocal (e.g. [103, 104]).

As a result the particles arrange in chains in the direction of

the ion flow (see figure 3(a)). This ion focusing and effective

dust–dust attraction were studied in detail experimentally (e.g.

[105, 106]), as well as theoretically and with simulations (e.g.

[107–112]).

2.4. Neutral gas effects

So far the discussion concentrated on the dust particles

embedded in a plasma. However, in a typical gas discharge

the ionization degree is at maximum of the order of a few

Table 1. Summary of important forces acting on dust particles in a
plasma environment.

Name Formulae

Gravitational force Fg = 4
3
πa3ρdg

Electrostatic force FE = 4πǫ0aφflE

Radiation pressure Fr = γ
πa2I0

c
R

Neutral drag force Fn = −δ 4
3
πa2mnnnvth,n(vd − vn)

Thermophoretic force Fth = − 16
15

√
π a2kn

vth,n
∇Tn

Ion drag force Fion = Fcoll + Forb

(after Barnes) Fcoll = πb2
cρivsvi

Forb = 4πbπ/2ρivsŴvi

with vs =
√

v2
i + 8Ti

πmi

percent. Thus, most atoms are not in an ionized state and

even though their cross sections are much smaller than those of

ions, collisions with neutrals cannot be neglected in general. In

particular, temperature gradients in the neutral gas are known

to give rise to a thermophoretic force (see table 1 and [113–

115]). Already temperature gradients of a few kelvin per

centimeter are sufficient to compensate the gravitational force

and levitate particles [114, 116]. The recent experiments of

Carstensen et al [117] are another example. They showed that

collisions of ions and neutrals can provide a sufficient transfer

of momentum to set up a collective neutral gas motion which

can drive dust particles. Thus, it is important to keep in mind

that the neutral gas component might contribute more than just

friction to dynamical processes in dusty plasmas.

2.5. Forces on dust particles

To understand dust confinement and dust dynamics, several

forces are important (see table 1). For large particles,

the gravitational force exceeds all other forces because it

scales with the volume of the particles. Due to the high

particle charge, Coulomb forces are important for both,

particle confinement and particle interaction. Furthermore,

thermophoretic forces due to temperature gradients in the

neutral gas [113–115] and friction with ions and neutral

gas [118] cannot be neglected for dust particles. While

gravitational, Coulomb and thermophoretic forces as well as

neutral gas friction are well understood, the ion drag force

is still a subject of intensive research activity. There are

several models for the ion drag force [78, 119–125], but a

complete self-consistent model is not yet available. On the

one hand, the self-consistent treatment of the charging and

shielding problem of particles is aggravated by the requirement

to include streaming ions and collisions. On the other

hand, a correct description of the contribution of scattered

ions to the momentum transfer is not trivial. Although the

recent models reflect considerable progress, the debate on the

description of the ion drag force has not finally settled. Only

few experiments have studied the drag force quantitatively

(e.g. [126–131]). The first experiments were performed in a

parameter regime, where the influence of ion–neutral collisions

during the scattering in the field of the dust particle cannot

7
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be neglected. Hirt et al [130] presented the first dedicated

ion drag investigations in a collisionless situation. The ion

drag force and the collection radius bc were measured for

weak (β < 1) and strong (β ≫ 1) ion–dust interaction.

Here the momentum transfer is characterized by the scattering

parameter β = e|φfl|a/(miv
2λD), where mi and v are the

ion mass and velocity, respectively. For low values of beta

(β < 0.2) already the model of Barnes et al [78] was found to

give a suitable description. At high ion energies, the collection

of streaming ions was correctly described by the OML model

[74]. For superthermal ion drifts (β = 50–122), however,

the OML model predicts collection radii bc > λD. In this

case, the collection radius was overestimated by the model

of Barnes. The critical parameter bb from Khrapak et al’s

model [122] gave a better description. Recently, Nosenko

et al [132] repeated these experiments for β = 16–60 and

found good agreement with a slightly modified Khrapak model.

2.6. Dust confinement

To confine dust particles inside a plasma, the gravitational

force has to be balanced. Thus, dust confinement is typically

achieved in the plasma sheath region above an electrode where

strong electric fields are present [133]. The trapping of

the dust particles in the horizontal direction is established

by depressions of the electrode surface [134] or flat metal

rings on the electrode [87]. However, this results in a

very anisotropic confinement potential. The confinement in

the vertical direction is much stronger and thus these dust

clouds are mostly 2D systems which nevertheless can form

highly ordered crystals with a hexagonal lattice structure [62–

64]. Further, the supersonic ion flow toward the electrode

is focused below each particle [105, 107–110]. In multilayer

systems, the resulting positive space charge attracts particles in

a lower layer. This process is responsible for chain formation

observed in all dust clouds which are confined in the regions

of strong electric fields, i.e. regions with strong ion flows (see

e.g. figure 3(a)). This alignment vanishes if small particles

and high gas pressures are used (figure 3(b)) [135–137].

However, extended homogeneous 3D plasma crystals cannot

be generated this way and investigations of dust dynamics are

not feasible due to strong damping.

To produce extended 3D dust clouds, different approaches

were followed. Merlino and co-workers confined dust in a

magnetized anodic plasma [141, 142] and investigated dust

acoustic waves. In these experiments the dust confinement

is achieved by a balance of electric field and ion drag forces

in the horizontal direction [143] and ion drag, gravitation and

electric fields in the vertical direction [144]. Barkan et al [145]

calculated that the system can be in a strongly coupled state

and recently Pilch et al [146] indeed observed well-ordered

regions in these dust clouds, but their detailed structure is not

yet understood.

To produce 3D plasma crystals, a number of experiments

have been performed under microgravity conditions. These

experiments have provided many interesting observations, e.g.

of localized crystalline structures [147], of complex plasma

boundaries [148, 149], of coalescence of complex plasma

fluids [150], of transport properties [151, 152] and of low

frequency waves and instabilities [153–156]. However, the

most striking observation was the formation of a dust free zone

(void) at the center of the discharge [140, 147]. It was proposed

that the ion drag force is responsible for the formation of these

voids (figures 3(c) and (d)) [139, 157–159]. The combination

of simulations [160–162], experiments [97, 114, 131, 163] and

recent ion drag models [119–121] was able to verify this.

Although it was shown very recently that a void closure can

be achieved [164], the formation of void-free crystalline dust

clouds is still an important issue.

2.7. Dust dynamics

Many investigations on complex plasmas focused on dynamic

phenomena. New types of waves have been predicted and

observed, e.g. dust acoustic waves [165], dust-ion acoustic

waves [166, 167] and dust lattice waves [168, 169]. Many non-

linear wave phenomena, e.g. shocks [155, 170–172] and Mach

cones [173–176], were studied and the role of compressional

and shear waves in solids and fluids has been discussed [177–

180]. A recent review on this topic was published by Shukla

and Eliasson [181]. Furthermore, the detailed investigations

of the solid–fluid phase transition are certainly a highlight of

complex plasma research [182–186]. Recently, a growing

interest in liquid complex plasmas has been noted. Several

investigations aim at a deeper understanding of transport and

diffusion processes in strongly coupled liquids [151, 152, 187–

192]. However, such dynamic properties were mostly studied

in 2D complex plasmas.

3. Finite systems

Systems consisting of just a few particles are of special interest,

because their structural and dynamical properties strongly

depend on the precise number of particles. Already Thomson

[196] investigated the structure of charged particle clusters in

view of his atomic model. Although his results did not explain

the structure of atoms, they mark the starting point for research

on finite strongly coupled systems. Finite particle number

effects have turned out to be of similar importance for the

understanding of the structure of atomic nuclei. In the field

of non-neutral plasmas Thomson’s ideas have been developed

much further [56]. Using the Penning and Paul traps [197] it

was shown that the regime of strong coupling can be reached

for laser-cooled ions [46, 198]. With refined experimental

techniques the ions were found to arrange on nested shells

[199] and for large ion clouds bcc order was observed, cf

figure 4 [195, 200]. The same results were obtained with

molecular dynamics simulations [56, 201, 202], and it should

be noted that the particle arrangements, in particular those for

closed shell configurations, are very similar to those of noble

gas [203] and metal clusters [204]. This finding is a hint that

geometric constraints might determine the structure of small

systems to a large extent.

Nevertheless, when approaching large clusters the shell

formation should vanish and a regular volume order should

appear. This transition was predicted for ion clouds containing

8
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Figure 3. Examples for experimental realizations of 3D dust clouds. (a) Dust cloud in an inductively coupled rf-discharge. Note that the
dust grains form vertical chains due to a strong vertical ion flow. (Reprinted with permission from [138]. Copyright 2000 Springer Science
and Business Media.) (b) Structure of a multilayer crystal using small particles and high gas pressure to avoid chain formation. Coexistence
of hcp (green) and fcc (red) lattices is observed. (Reprinted with permission from [137]. Copyright 2000 American Physical Society.)
(c) Typical dust cloud under microgravity conditions. A dust free zone (void) establishes at the center of the discharge due to ion drag
forces. (After [139, 140].) (d) If gravity is compensated by thermophoresis, similar voids are observed. (Reprinted with permission
from [114]. Copyright 2002 American Physical Society.)

Figure 4. Structure of ion crystals. (a) Image of a small, spherical ion cloud (∼2000 ions) in a Paul trap. The ions arrange in distinct shells.
(After [193].) (b) MD simulation of a cloud with 105 ions reveals bulk order close to the center and shell formation outside. (Reprinted with
permission from [194]. Copyright 2002 American Physical Society.) (c) Time-resolved Bragg diffraction pattern of a large ion cloud with a
bcc lattice structure. (Reprinted with permission from [195]. Copyright 1998 American Association for the Advancement of Science.)

Figure 5. (a) Side view of the discharge arrangement for the Yukawa balls experiment. The lower electrode is heated (T < 90 ◦C) and the
vacuum vessel is grounded and kept at room temperature. The dust cloud is confined inside a glass cube where the upper and lower sides are
left open. The inset shows an image of a large dust cloud which is 1 cm in diameter. (b) A thin slice at the front side of the cloud is
illuminated. The particles basically arrange in a hexagonal lattice. (After [116].)
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Figure 6. Structure of a Yukawa ball with N = 31 particles observed experimentally. (a) Particle positions in cylindrical coordinates in the
ρ–z plane. The (red) dots are the average particle positions of a (5, 26) configuration, the dashed lines indicate the shells. (b) Structure of
the inner shell. (c) Voronoi analysis of the outer shell with No = 26. Pentagons are dark (blue) and hexagons are bright (green). The particle
positions are marked with dots. (Reprinted with permission from [216]. Copyright 2007 IOP Publishing.)

about 104 ions. However, recent experiments show that even

small clouds (N ∼ 103) can show a bcc or fcc structure

[193]. Further experiments investigated structural transitions

due to resonant instabilities [205] and Coulomb bicrystals

[206, 207]. In general, it can be stated that many theoretical

predictions [56] for these systems are not yet verified by

experiments, e.g. the size dependence of the melting process.

The main reason for this is that the ion clouds are about

20 times smaller than complex plasma clouds with the same

particle number and that the ion dynamic is too fast to track

individual ions. Hence, these experiments are restricted to the

analysis of the average structure of ion clouds. However, Juan

et al [208] demonstrated that such experiments are generally

possible in complex plasmas. Klindworth et al were able to

show that the structural and dynamical properties of finite

2D clusters strongly depend on the particle number [209].

Further experiments and simulations treated normal modes

[210], phase transitions [211] and structural properties of these

systems [212, 213].

In 3D, interesting observations were reported by

Annaratone and co-workers [214, 215]. They observed

spherical dust clouds with less than 50 particles in a secondary

discharge in front of an adaptive electrode. Unfortunately,

these clouds are rather in a liquid state and their confinement

is not yet understood. Similar dust clouds but in a well-

defined confinement were generated by Arp et al [116].

Using thermophoresis to balance gravity and a glass box

to generate radial electric fields, they managed to create an

isotropic parabolic confinement potential, cf figure 5. Inside

this trap the dust particles were found to form spherical

dust clouds. Figure 6(a) visualizes the typical structure of

an experimentally generated so-called Yukawa ball. Using

cylindrical coordinates, z and ρ =
√

x2 + y2, a formation

of shells is clearly observed. The inner shell consists of 5

particles whereas 26 particles form the outer shell. While

the inner shell is a symmetric double tetrahedron (figure 6(b))

which represents a typical close-packed structure, the Voronoi-

analysis of the outer shell shows a pattern of hexagons and

pentagons (figure 6(c)). Thus, Yukawa balls are in a crystalline

state and the particle arrangement is similar to the one in ion

crystals.

4. Structure of plasma crystals

After having discussed the basic issues of dusty plasma

experiments we will now concentrate on the results in the

strong coupling regime. The large amount of work in this field

does not allow for a comprehensive presentation of all results

and even of the main systems. We will, therefore, focus on one

particular system—finite spherically confined dusty plasmas in

the liquid and crystal states. For this system we will discuss a

variety of properties in close comparison between experiment

and theory.

4.1. Theoretical models

We now turn to a theoretical analysis of the structure of

plasma crystals and start by analyzing the plasma conditions.

First, due to the large size and mass of the dust particles

quantum effects are irrelevant. This holds not only for the

presently used temperatures but also for cryogenic conditions

with temperatures in the micro-kelvin range unless particles in

the sub-nanometer range are being used. But in that case, the

advantage of achieving highly charged particles will be lost.

Thus for this classical system, in principle, an exact simulation

approach is possible. Such approaches which are based on

particle in cell (PIC) simulations have in fact been developed

by Matyash and others but they are presently capable of treating
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only a very few dust particles in the plasma. These difficulties

are caused by the second peculiarity—the embedding of the

dust particles into a partially ionized plasma consisting of

neutral gas molecules, ions and electrons, all of which have

a mass which is at least 10 orders of magnitude smaller. This

leads to an essential decoupling of the dust particle motion

from that of the plasma—in many cases the plasma can be

assumed quasi-stationary and instantaneously following the

motion of the heavy particles. Therefore, instead of simulating

the complex plasma exactly it is possible to develop hybrid

concepts (see e.g. [217] and references therein).

The third peculiarity of dusty plasmas is that strong

correlations appear asymmetrically. While the dust component

may be very strongly correlated with Ŵd ≫ 1, the correlations

of the electron and ion subsystems are normally very small,

Ŵe,i ≪ 1, and also the coupling of the dust to electrons

and ions is weak (the coupling parameters associated with

the average dust–electron and dust–ion interaction are small).

This allows one to develop effective one-component plasma

(OCP) models where the dust is treated exactly whereas the

properties of the lighter components enter via several input

parameters. The fourth aspect is that the dusty plasma is in

a non-equilibrium state which can be considered stationary:

electrons and ions counterstream between the electrodes and

(in particular electrons) attach to the surface of the dust

particles, see the discussion in section 2. A simplified model

which treats the streaming electrons and ions within linear

response and computes the dynamically screened potential V

of the dust particles was developed by Joyce and Lampe (see

[218, 219] and references therein). They derived an anisotropic

and non-monotonic (wake) potential around a dust grain which

explains many of the unusual observations such as effective

dust–dust attraction, cf section 2, as well as the control of dust

crystallization by variation of the neutral gas pressure.

4.1.1. Langevin molecular dynamics simulations. In the

following we will take advantage of the peculiarities of dusty

plasmas mentioned above. For simulations of spherical dust

crystals which are formed in the plasma bulk, electron and ion

streaming are of minor importance, so dynamical screening

effects can be neglected. Then the simplest effectively one-

component model is given by the Hamiltonian (1) for the

dust particles where the properties of the light plasma species

are included into the pair interaction potential V and the

confinement potential U . For the interaction potential V ,

an isotropic Yukawa potential (see equation (7)) can be used

as will be verified by comparisons with the experimentally

observed crystal structures below. On the other hand, the

interaction of the dust particles with the dominant species, the

neutral gas, can be treated as in standard Brownian motion:

by a simple Stokes-type friction (see table 1) together with a

noise term,

mr̈i(t) = Fi(t) − νmṙi + yi(t), i = 1, . . . , N, (8)

〈yi〉 = 0, 〈yiα(t)yjβ(t ′)〉 = 2Dδi,jδα,βδ(t − t ′),

α, β = x, y, z,

which models the random collisions of dust particles with

neutral gas atoms. If the latter are in thermodynamic

equilibrium with a temperature Tn, which is normally the
case, the particles will relax toward a Maxwellian velocity
distribution with the same temperature, and the random force
amplitude D is determined by the fluctuation–dissipation
relation, D = mkBTnν. The force Fi = −∇iU − ∇iV is
the total force on the ith particle due to the external potential
and all other dust particles.

Solving this set of equations yields a first-principle
simulation (Langevin molecular dynamics, LMD) for the dust
particles which does not make any approximation with respect
to the coupling strength. This approach thus allows one
to systematically study the details of the dust ensemble in
the whole parameter space, including the strongly coupled
liquid and crystal regimes. A second first principle approach
which provides the thermodynamic properties is Monte Carlo
simulations with the Hamiltonian (1). This provides the crystal
structures and melting points, but cannot reveal dynamic
properties. We will discuss examples of such simulations in
section 4.3.

4.1.2. System of units. For the theoretical and numerical
analysis it is useful to define proper dimensionless quantities
based on physical length, time and energy scales, r0, t0, E0.

(i) For macroscopic systems, we will use, as the length scale,
the Wigner–Seitz radius, r0 = r̄ and the associated energy
scale E0 = Q2/r0. The characteristic time scale is the
inverse plasma frequency, t0 = ω−1

p , and frequencies and
damping constant ν are given in units of ωp.

(ii) For finite systems in a spherically symmetric harmonic
trap potential, U(r) = mω2r2/2, it is convenient to use

r0 = (2Q2/mω2)1/3,

E0 = (mω2Q4/2)1/3
, (9)

where r0 is the stable distance of two particles with
Coulomb repulsion in a harmonic trap and E0 is their total
energy. A natural unit of time is the inverse trap frequency
t0 = ω−1 whereas frequencies and the dissipation constant
ν are given in units of ω.

4.2. Pair distribution function of a strongly coupled plasma

For a quantitative analysis of the correlation effects a variety
of quantities can be used, besides the coupling parameter
Ŵ, equation (2). Spatial correlations and formation of long-
range order are well characterized by the pair distribution
function g(r),

g(r) = V

N(N − 1)

〈

∑

i

∑

j �=i

δ(|r − rij |)
〉

, (10)

which is normalized to the system volume,
∫

d3rg(r) = V ,
and represents the probability of finding an arbitrary particle
pair at a distance r . In dusty plasmas, this quantity is not only
easily computed from simulations but also directly measured
from the available particle positions. The function g(r)

is straightforwardly computed within a molecular dynamics
simulation by analyzing all pair distances rij . A simulation
example is shown in figure 7 for the case of an OCP monolayer
at three different coupling strengths. The function evolves
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Figure 7. Pair distribution function of a one-component Yukawa
plasma (κaws = 2.0) in two dimensions. The curves correspond to
the solid phase, (Ŵ = 440), the strongly (Ŵ = 140) and the
moderately coupled liquid phase (Ŵ = 20). For an ideal system,
g(r) ≡ 1. Length unit is the Wigner–Seitz radius aws.

from a constant, g(r) = 1, in an ideal plasma, to a curve

with a minimum around zero (‘correlation hole’) at Ŵ > 0.

With increasing coupling, first, short-range ordering appears,

cf the curve for Ŵ = 20, until long-range order emerges, which

corresponds to a crystalline state. Note that for finite systems

the pair distribution function decays to zero, for distances of

the order of the system size, see figure 10.

There exist many other quantities well suited to

characterize the many-particle effects and the spatial ordering,

including the static structure factor (essentially the Fourier

transform of g(r) − 1). Further quantities suitable for

characterizing finite spherical crystals will be discussed in

section 4.3. The experiments with dusty plasmas directly allow

one to measure the pair distribution function and to compare

with theoretical approaches. An example for a measurement

of a spherical plasma crystal is presented in figure 10.

4.3. Spherically confined crystals: Yukawa balls

The spherical crystals (Yukawa balls) consist of a finite number

N of dust particles where N can be varied between one and

a few thousand. This gives access to a whole new field of

strongly correlated systems in which finite size effects play a

crucial role. Even though these systems are classical, they have

properties very similar to atoms and nuclei—they can be in a

variety of stationary states characterized by a well-defined total

energy. Ground state and metastable states can be realized in

experiments, see below, and are easily studied with simulations

and analytical models.

As shown by the experiments, see section 3, the dust

particles forming the crystal are confined by an isotropic and

nearly harmonic potential, U(ri) = mω2r2
i /2. This crystal is

formed in the plasma bulk so that the dust–dust interaction is

well approximated by a Yukawa potential (7). Note that in a

harmonic potential, the absolute strength of the confinement

(i.e. of ω) has no influence on the plasma state. An increase in

ω leads only to a reduction in the interparticle distances, as can

be seen from equation (9) for the case of two particles. The

same is true for Yukawa systems [220].

4.3.1. MD results for the ground state. With these input

parameters, the structure of the Yukawa balls is easily obtained

by simulations solving the equations of motion (8) without

the dissipation and stochastic force terms (MD). Since the

screening parameter is difficult to measure accurately it

is used as a free parameter. Based on the experimental

estimates, the Yukawa balls are strongly correlated, with

Ŵ � 500. Thus the observed crystal structure should

be close to the ground state. The classical ground state

of system (1) is obtained by neglecting the kinetic energy

and by finding the absolute minimum of the total potential

energy. The simulations are conceptually very simple: one

starts with a random particle configuration and proceeds

with slow ‘cooling’ (reduction of the particle velocities)

until the desired temperature—zero for the ground state—

is reached, so-called ‘simulated annealing’. Nevertheless,

there are many caveats: there exists no computational scheme

which will with certainty lead to the ground state, in a finite

time. With high probability a simulation will end up in a

local minimum of the potential energy, rather than in the

absolute minimum. Therefore, simulations have to be repeated

sufficiently frequently, typically several thousand times. Also,

rapid cooling will not lead to the ground state but rather to

metastable or glass-like states. On the other hand, very slow

cooling will be very inefficient, and one has to find an optimal

time step.

Let us summarize the results: at T = 0 the dust

particles form narrow concentric shells which agrees with the

measurements, cf figure 6. Ground state and metastable states

are characterized by a definite set of shell occupation numbers

{Ns}. With increasing cluster size, particles continuously

populate a shell until its capacity is reached (so-called ‘magic’

clusters) and a new shell forms. Shell closures have been

investigated in detail for spherical Coulomb systems by Hasse

and Avilov [201], Tsuruta and Ichimaru [202], Ludwig et al

[221] and many others. The first shell is closed for N = 12, the

second for N = 57 and again for N = 60 [202]. The closure of

the third and fourth shells is observed for N = 154 [221, 222]

and N = 310 [220], respectively.

However, the shell occupation numbers are not sufficient

to fully characterize the stationary state. Clusters with the

same occupation numbers {Ns} can be in one of several

configurations differing by the intra-shell symmetry. This

‘fine structure’ was investigated in detail in [221] where it

was observed that the ground state is characterized by the

highest intra-shell symmetry. Each shell is characterized by a

combination of six-fold and five-fold symmetries, i.e. particles

have, respectively, six and five nearest neighbors (other

symmetries are also observed but less frequently), known

as Euler’s problem, in agreement with the measurements,

cf figure 6. A prominent example is the cluster with N = 12

particles which forms a single shell with 4 (8) particles having

6 (5) nearest neighbors. Another example is shown in figure 8

depicting the ground and the first excited states for N = 17,

both having the same shell configuration and the same number

of hexagons (4) and pentagons (12), but differing in their

arrangement.
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(a) (b)

Figure 8. Voronoi construction for the cluster N = 17—the two energetically lowest states with shell configuration Ns = {1, 16} are
shown. White (gray) areas are hexagons (pentagons)—indicating the number of nearest neighbors of the corresponding particle (black dot):
(a) ground state, (b) first excited (‘fine structure’) state, (c) arrangement of the four particles surrounded by hexagons—the two states differ
by rotation of the edge AB, black [white] circles correspond to case (a) (b). (Reprinted with permission from [221]. Copyright 2005
American Physical Society.)
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Figure 9. Binding energy �2 (right axis) and MVSP (left axis), equation (12), for the two outermost cluster shells: (a) N � 80,
(b) 80 � N � 160. (Reprinted with permission from [221]. Copyright 2005 American Physical Society.) (Color online.)

The strong correlation between cluster stability and

symmetry is demonstrated in figure 9 where the binding energy

�2 and the mean Voronoi symmetry parameter (MVSP),

�2 = E(N + 1) + E(N − 1) − 2E(N), (11)

MVSP = 1

N shell

∑

M=4,5,6

NMGM , N4 + N5 + N6 = N shell,

(12)

GM = 1

NM

NM
∑

j=1

1

M

∣

∣

∣

∣

∣

M
∑

k=1

eiMθjk

∣

∣

∣

∣

∣

, (13)

are plotted together for clusters with N from 1 to 160. The

MVSP is the weighted (by the corresponding number NM of

particles) average of the bond angular order parameters GM

within a shell. Here NM denotes the number of all particles

j in the shell, each of which is surrounded by a Voronoi

polygon of order M (M nearest neighbors) and θjk is the angle

between the j th particle and its kth nearest neighbor. For

example, a value G5 = 1 (G6 = 1) means that all pentagons

(hexagons) are perfect, the magnitude of the reduction of GM

below 1 measures their distortion. For the cases included

in figure 9 only the symmetries with M = 4, 5, 6 occur
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Figure 10. Experimental results for a Yukawa ball with N = 190 particles: (a) Radial particle distribution, clearly indicating formation of
four concentric shells and (b) the associated pair distribution function, indicating a strongly correlated liquid-like state. The monotonically
decreasing (red) curve shows the pair distribution function for a random distribution of particles in a spherical cloud with the same volume.
(Reprinted with permission from [223]. Copyright 2005 American Institute of Physics.) (Color online.)

[221]. Magic clusters—as in the case of noble gas atoms

or magic nuclei—have a particularly high binding energy

(high stability) and a high symmetry; prominent examples are

N = 12, 38, 103, 116. Note that these magic numbers differ

from those in nuclei or neutral gas clusters due to the different

pair interaction potentials.

Finally, small clusters, N � 12 have a particularly

symmetric arrangement—they form platonic bodies. These

reappear in the core of larger clusters, cf figure 6. With

increasing cluster size the competition between bulk order and

spherical order due to the trap becomes more pronounced and

for N � 104, the bulk order begins to prevail in the core, as

was shown by Totsuji et al [194].

4.3.2. Comparison with experiments: screening dependence

of the ground state. The high quality of the dusty plasma

experiments makes it possible to directly compare the

measured cluster configurations with the above theoretical

predictions. In figure 10 experimental results for a Yukawa

ball with 190 particles are shown. The radial density profile

(left) clearly confirms the formation of concentric shells. At

the same time, the pair distribution function (right) signals

the emergence of a quasi-long-range order. The decay is a

consequence of the finite cluster size and is also present in an

ideal (non-interacting) cluster, cf figure 10.

The shell configurations for a large number of Yukawa

balls containing 100–500 particles were reported in [220], see

figure 11. The overall trend observed in the simulations and

in the experiment is an increase in Ns proportional to N2/3.

However, the experimentally determined occupation numbers

{Ns} show small deviations from the theoretical results for

Coulomb clusters of about 5–10%. The authors could show

that this is not due to statistical errors but is a systematic

difference which is explained by screening of the interaction.

In fact, screening leads to a reduced repulsion—the clusters

shrink and, at the same time, it is energetically favorable for the

20 30 40

N
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N
s
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κ = 1.0

Figure 11. Experimental (symbols) and theoretical (lines) shell
population Ns of the ground states versus system size. The MD
results are obtained for different screening parameters κ (κ is given
in units of r0) and show that the particles redistribute toward inner
shells with increased κ . Good agreement is observed for κr0 = 0.6.
(Reprinted with permission from [220]. Copyright 2006 American
Physical Society.) (Color online.)

particles to increasingly occupy inner shells. Results for {Ns}
for several values of κ are shown in figure 11. A comparison

with the experiments allows one to deduce an average value of

the Debye screening length in the experiment of λD/a ≈ 1.5

where a is the mean interparticle distance (this corresponds,

in dimensionless units, to κr0 = 0.6), in good agreement with

other measurements.

Thus these experiments confirmed the existence of an

effective screened interaction between two dust particles—

which is a qualitative difference compared with ultracold ions

in traps. Subsequently there have been numerous studies of

the properties of finite spherical Yukawa plasmas and of their

dependence on the screening strength. Baumgartner et al have
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Figure 12. Shell closures for Yukawa ball ground states. N denotes
the last cluster with only one shell (lower curve) and two shells
(upper curve) for the given value of κ (in units of r−1

0 ). The N + 1st
particle will be located at the trap center, opening a new shell. Note
the re-entrant shell closures for the outer shell (for κ = 0) and the
first shell (for 2.0 � κ � 4.0). (Reprinted with permission
from [224]. Copyright 2008 IOP Publishing.)

computed all shell configurations for N � 60 in a broad range

of κ [224]. The first observation is that the magic clusters

(clusters with a closed shell) with increased κ move to lower

N . This is shown in figure 12. While, overall, an increase

in κ leads to an increased occupation of inner shells, there

exist a number of interesting anomalies: (1) upon κ increase

two particles may move to (one of) the inner shell(s) at once,

(2) when the particle number is increased by one, at fixed κ ,

in some cases one particle moves from the inner to the outer

shell and (3) at very large κ there exist cases of re-entrant shell

fillings: one particle returns from the inner to the outer shell.

These anomalies are, in most cases, dictated by symmetry

properties of the corresponding state which allow one to lower

the total energy.

4.3.3. Shell models. The observed shell structure suggests

that the main crystal properties can be obtained from simpler

shell models. Such a model assumes that the particles are

homogeneously distributed along L concentric shells with zero

width. The first shell model was proposed by Avilov and Hasse

for ion crystals (pure Coulomb interaction) [201] and was

improved by Tsuruta and Ichimaru [202] who approximately

included correlation effects. Kraeft and Bonitz further

improved this model and presented detailed comparisons with

MD simulations [225]. They gave the following form of the

total energy per particle (they also subtracted a term 9
10

N2/3

which accounts for a possible neutralizing background but can

be omitted for our present discussion of the shell structure):

Emodel(N)

N(Ze)2/r0

= 21/3

L
∑

ν=1

Nν

Nxν

×
(

Nν − ǫ
√

Nν

2
+

∑

µ<ν

Nµ + ζ +
1

2
x3

ν

)

, (14)

where ζ = 0 or 1 (accounting for the possibility of a

particle sitting exactly at the trap center) and xµ is the

radius of the shell µ in units of r0. Here, the first term

(proportional to N2
ν ) is related to the surface energy of a

spherical capacitor of radius xν , containing Nν charges, with

Esurf(N) = [N(N − 1)e2]/(2xν). The sum over µ accounts

for the electrostatic interaction of the shell ν with all inner

shells whereas the x3
ν contribution describes the confinement

energy. This model, without the term proportional to ǫ, can

be rigorously derived from a mean-field theory [226] which is

discussed in section 4.4. The term proportional to ǫ takes into

account the discreteness of the particles by excluding a certain

area around each particle from the available shell area and thus

accounts for intra-shell correlations. The cluster configuration

can now be derived simply by an optimization procedure

searching for those shell populations and radii which minimize

the total energy (14) which is much simpler than to solve the

exact problem. While this yields the correct qualitative trend,

with ǫ = 0 [201] there are large quantitative deviations from

the MD simulation results [225]. Using ǫ as an additional free

parameter allows one to reduce the deviations from the exact

ground state energy to (1–2)% [225]. The resulting values for

ǫ were slightly above 1 and converged to ǫ = 1.104 for large

N , a result which could be recently derived from the Thomson

model by Cioslowski [227, 228].

For Yukawa balls the situation is more complex. A mean-

field-type model (ǫ = 0) was recently obtained by Totsuji

et al [229] and derived from continuum theory, cf section 4.4,

by Henning et al [226],

Emodel(N; κ) =
L

∑

ν=1

Nν

{

α

2
R2

ν + Q2 e−κRν

Rν

×
(

sinh(κRν)

κRν

× Nν − ǫν(N, κ)
√

Nν

2
+ ζ +

∑

µ<ν

sinh(κRµ)

κRµ

Nµ

)}

. (15)

One readily confirms that this result includes the Coulomb

case. Model (15) differs from [226, 229] by the additional

correlation corrections which generalize the Coulomb

expression (14). This model was used in [230] and optimized to

minimize the total energy. A detailed comparison with exact

results showed that the model with ǫ = 0 performs rather

poorly. In contrast, allowing for correlation corrections ǫν

which are different for different shells gives rise to an accuracy

of about 5% for the shell populations compared to experiment

and simulations. Such shell models are a valuable complement

to simulations since they allow for insight into the structure of

the Yukawa balls.

4.4. Radial density profile of Yukawa balls

The experimental data suggest that the mean density in Yukawa

balls is distributed inhomogeneously. This is in striking

contrast to a system of charged particles (with Coulomb

interaction): as is known from electrostatics, a homogeneously

charged sphere produces a parabolic electrostatic potential φel

in its interior, cf figure 13. Vice versa, a parabolic confinement

will give rise to a homogeneous distribution of particles with

Coulomb interaction. However, this is not the case for particles
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Figure 13. A homogeneously charged sphere (Coulomb interaction, density n(r)) with radius RC produces inside a linear field Eel and a
parabolic potential φel.

Figure 14. (Left) Mean radial density profile in mean-field approximation, equation (19), lines, compared with exact result (symbols), for
four different screening parameters. (Right) Radial profile of the force contributions on a particle at radial position r for three screening
parameters. FU is the force produced by the confinement and F< (F>) the force from all particles inside (outside) the radius r . (Color online.)

with Yukawa interaction. The corresponding radial profile has

been computed by Henning et al [226]. The derivation uses a

classical version of density functional theory: the ground state

total energy is written as a (unique) functional of the density

profile n(r):

E[n] =
∫

d3r u(r), (16)

u(r) = n(r)

{

U(r) +
N − 1

2N

∫

d3r2 n(r2)
Q2

|r − r2|
e−κ|r−r2|

}

+ ucorr, (17)

where the terms on the right denote the confinement energy

density, the mean-field contribution and the density of the

correlation energy. The ground state density profile is obtained

from minimizing the total energy E, i.e. from the variational

problem 0
!= δE[n]/δn(r) under the constraint

∫

d3r n(r) =
N . The solution for a general anisotropic confinement U(r)

in mean-field approximation (ucorr ≡ 0) is given by [226]

4πQ2 N − 1

N
n(r) = (� − κ2)U(r) + κ2µ, (18)

where µ is a Lagrange multiplier (chemical potential) assuring

the normalization.

For the case of Yukawa balls, we use an isotropic harmonic

potential, U(r) = mω2r2/2, and equation (18) yields the

explicit result (we define Q̃2 = Q2/(mω2))

n(r) = N

4π(N − 1)Q̃2

(

c − κ2r2

2

)

�(R − r),

c = 3 +
R2κ2

2

3 + κR

1 + κR
. (19)

The density drops to zero at a finite radius R(N, κ) which

follows from the normalization, yielding the following

equation:

Q̃2(N − 1) + Q̃2(N − 1)κR − R3 − κR4 − 2κ2R5/5

−κ3R6/15 = 0, (20)

which has a single real positive solution R(κ, N) [226].

The result for the density profile is shown in figure 14.

As expected, for a Coulomb system (κ = 0), a constant

profile is observed which terminates at a finite radius R =
RC = [(N − 1)Q2/(mω2)]1/3, with a step. With increased

screening, the cluster is compressed due to the weakened

interparticle repulsion. This is clearly seen by the reduction

in R. Furthermore, the profile is not constant anymore but

decreases parabolically towards the edge where the decrease

becomes steeper with increasing κ , cf equation (19).

This density profile provides a global minimum to the

total energy (16) and, at the same time, it assures stability

of the cluster locally, i.e. for any r simultaneously. In fact,

computation of the gradient of the total potential energy yields

the force on the particles, cf right part of figure 14. There are

three contributions to the force: the first, FU , results from the

confinement and is directed inward. On the other hand, the

particles themselves produce a repulsive force. For a particle

located at any given radius r � R there is a force F< from

all particles located inside a sphere of radius r which acts

toward the edge. In the Coulomb case, these two forces are

both linear functions and exactly balance each other, for any

r , see the solid lines in figure 14. Obviously, there is no force

from the particles located at radii larger than r , i.e. F> ≡ 0,

which is nothing but the Faraday cage effect. The situation
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is completely different in the case of a screened interaction,

κ �= 0. In this case, there is no Faraday cage effect—particles

located outside a given radius produce a substantial inward

force which adds to the force FU . Thus, stability requires an

increased (compared with the Coulomb case) force F<. Due to

the shorter range of the interaction, the plasma can accomplish

this only by strongly increasing the density toward the center.

Finally, it is interesting to compare the results of this

mean-field model for the density profile with the exact results

which are shown by the symbols in the left part of figure 14.

For comparison, the exact ground state profile which is

characterized by a radial modulation (shell structure) has been

averaged over radial intervals, for details, see [226]. The

agreement is surprisingly good, at least for κr0 � 2. For larger

κ , there are growing deviations in the central part of the cluster

which are due to the neglect of the correlation energy ucorr.

In fact, it was shown by Henning et al [231] how to include

correlations in a local density approximation. The results were

in excellent agreement with the simulations for κr0 � 2 but

they are less accurate than the mean-field result for smaller

κ . Thus, the present density functional theory concepts with

and without correlations in LDA complement each other. This

approach allows to correctly reproduce the radially averaged

properties of a Yukawa plasma in the (classical) ground state.

With the present approach the basis for a continuum theory

of strongly correlated dusty plasmas has been laid. It is

straightforward to extend this approach to finite temperatures

as was shown by Wrighton et al [232]. In that case the density

profile becomes smooth. It extends to larger distances and

the abrupt density step is washed out. We underline that

this theory yields only a part of the properties—the mean

density profile and related average properties. The observed

radial density modulation arising from the shell structure is,

however, a correlation effect and is, thus, not reproduced by this

approach. A theory which allows one to describe correlation

effects will be discussed in section 7.2. Interestingly, the

theoretical prediction of an inhomogeneous density profile in

Yukawa balls could be verified experimentally by Block et al

and co-workers [233, 234].

5. Dynamical properties

So far we have considered the zero temperature behavior

of spatially confined dusty plasmas which is determined by

the minima of the total potential energy. These minima

correspond to either the ground state or metastable states of

the cluster. Finite temperature will lead to excitations of

the cluster—particles will oscillate around the local potential

minima. Under normal experimental conditions, i.e. room

temperature and strong coupling, the excitation energy is

weak, and one can expand the total energy in a Taylor series

around a stationary state to second order. This gives rise

to the normal modes of the system which fully determine

the dynamical and transport properties and are crucial for

the melting behavior [213, 235] of strongly correlated finite

systems at weak excitation. For these reasons, normal modes

in classical trapped Coulomb systems have been extensively

studied by many authors, (e.g. [213, 236–238]). Investigations

of Yukawa systems were reported in [210, 230, 239, 240], for

other types of pair interactions in finite clusters, see e.g. [241–

244].

5.1. Normal modes of finite systems

In the following we recall the main properties of normal modes

of a d-dimensional finite system of N particles described by

the general Hamiltonian (1), where U(r) = U(|r|), and, at the

end, apply the concept to harmonically confined dust crystals

in two and three dimensions.

We start from the ground (or metastable) state of our

system given by the d × N -dimensional coordinate vector

r∗ =
(

r∗
1, r∗

2, . . . , r∗
N

)

, corresponding to a minimum of the

total potential energy Utot and thus fulfilling the equations

(
∑′

indicates the absence of terms with equal indices, and

we denote ril = ri − rl)

0 = ∇iUtot(r)|r=r∗ = U ′(|r∗
i |)

|r∗
i |

r∗
i +

N
∑

l=1

′ V ′(|r∗
il|)

|r∗
il|

r∗
il,

∀i � N. (21)

Now consider an arbitrary small excitation, r̂ = r−r∗, around

this state for which a harmonic approximation of the potential

can be applied

Utot(r) ≈ Utot(r
∗) + 1

2
(r − r∗)T

H(r∗)(r − r∗), (22)

where equation (21) and the definition of the Hessian matrix

H(r∗) = ∇∇
TUtot(r)|r=r∗ have been used. Since H(r∗) is a

real, symmetric and positive semidefinite dN ×dN matrix, its

eigenvalue problem

λmr̂ = H(r∗)r̂, (23)

defines d × N eigenvalues, λj � 0, and d × N linearly

independent eigenvectors r̂j , which form a basis in the

configuration space and are conveniently chosen to be

orthonormal. Within this basis the excitation can be expanded,

r(t) = r∗ +

dN
∑

j=1

cj (t)r̂j , (24)

so that the time dependence of an arbitrary excitation is fully

determined by the coefficients cj (t)—the normal coordinates.

Using the equations of motion for particles described by the

Hamiltonian (1) and equations (22)–(24), the equations for the

normal coordinates follow

0 = mr̈ + ∇Utot(r) ≈ mr̈ + H(r∗)(r − r∗)

= m

dN
∑

j=1

[

c̈j (t) + λjcj (t)
]

r̂j . (25)

Due to the independence of the normal modes the solution is

given by

cj (t) = Aj cos(
√

λj t + Bj ), ∀j � dN, (26)

in which the constants Aj and Bj have to be determined

from the initial conditions r(0), ṙ(0) of the excitation. The

frequency of the normal mode j is given by the eigenvalue,
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Figure 15. All normal modes of two-dimensional harmonically confined Coulomb systems with N = 3, 4, 5 particles. The dots picture the
particles within the ground state configuration, and the arrows show the direction and amplitude of the oscillatory motion. The
N -independent modes, i.e. the rotational modes, the sloshing modes, and the breathing modes are highlighted. (Reprinted with permission
from [248]. Copyright 2009 IOP Publishing.)

ωj =
√

λj and the associated collective motion of all particles

by the eigenvector r̂j .

With the normal modes the individual particle coordinates

can be eliminated from all expressions. In particular, inserting

expansion (24) into equation (1) diagonalizes the Hamiltonian

which is thus transformed into a superposition of N · d

independent one-dimensional harmonic oscillators. This

representation is very useful in order to obtain semi-analytical

approximations for the transport and melting properties of

strongly correlated systems, e.g. ( [204, 213, 245]) and can also

be extended to quantum systems, cf section 5.5. In the limit of

a macroscopic system, the normal mode spectrum of a finite

cluster approaches the phonon spectrum of an infinite crystal.

5.2. Normal modes of crystals in a spherical harmonic trap

5.2.1. Coulomb systems. For the investigation of the

normal modes of harmonically confined Coulomb systems

(κ = 0) detailed theoretical studies have been performed

for d = 1, 2, 3 dimensions (see [213, 237, 238, 246, 247]

and references therein). It was shown that there exist three

(partially degenerate) normal modes, which are universal, i.e.

they are independent of the particle number N , dimensionality

d and configuration r∗:

(i) There are rotational modes (λ = 0) corresponding to

a rotation of the whole system which reflect the axial

symmetries of the confinement potential.

(ii) There are d sloshing modes (or Kohn modes [246], λ =
ω2) describing the oscillation of the system as a whole.

The motion of the center of mass is independent of the

interparticle forces.

(iii) The breathing mode (λ = 3 ω2) describes a uniform radial

expansion and contraction of all particles.

The existence of these three universal modes is illustrated for

the two-dimensional systems with N = 3, 4, 5 particles in

figure 15, where all modes of these systems corresponding to

the ground state configuration are shown.

Figure 16. Screening dependence of the normal mode spectrum for
a two-dimensional harmonically confined system of N = 16
particles. The universal center of mass rotation (sloshing mode) is
shown by the dashed–dotted (dashed) line, the uniform breathing
mode exists in the Coulomb case only and is depicted by the dot at
κ = 0. (Reprinted with permission from [248]. Copyright 2009 IOP
Publishing.)

5.2.2. Yukawa systems. Since dusty plasmas exhibit

a screened interaction between the particles the question

arises how screening affects the normal mode spectrum of

plasma crystals. Since the screening parameter κ enters the

Hamiltonian (1) also the Hesse matrix H and its eigenvalues

will depend on κ . This dependence has been analyzed in

detail by Henning et al [248]. An example of a 2D crystal

with N = 16 particles is shown in figure 16. The analysis

shows that for Yukawa systems there are only two modes with a

universal frequency: the center of mass oscillation and rotation,

cf modes (i) and (ii) above. In contrast, the extension of the

Coulomb breathing mode to finite κ values shows an increasing

frequency which changes from
√

3ω, for κ = 0, to
√

5ω, for

κr0 ≫ 1. A simple analytical model for this frequency was

developed by Sheridan [249, 250] which, however, assumes a

constant mean density throughout the cluster which is justified

only for weak screening, cf section 4.4.

5.3. Breathing mode versus monopole oscillation

The breathing mode—the radial and uniform collective

expansion and contraction of all particles—is of special
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Figure 17. Experimental normal mode spectrum of a 2D dust cluster with N = 19 particles. (a) Selected normal modes: breathing,
sloshing, rotation of the whole cluster and inter-shell rotation. (b) Measured power density vesus mode number. Arrows show the position
of the four modes in (a). (Reprinted with permission from [264]. Copyright 2007 Deutschen Physikalischen Gesellschaft.)

relevance since it can be easily excited selectively by variation

of the confinement [210] or by applying external fields [241].

In particular, the corresponding breathing frequency ωBM can

often be precisely measured and may serve as a sensitive

indicator of intrinsic system properties including the screening

parameter and the particle charge in complex plasmas [210].

The continuum analog to the breathing mode is the monopole

oscillation [237], which represents the lowest compressional

mode within a hydrodynamic approach [251]. Due to the

continuum character, this monopole oscillation is applicable

to gas or fluid phases of classical [237, 250, 252] or quantum

systems [253–255] where correlations are weak or moderate.

In the strongly coupled crystalline state, however, where

the particles become individually separated, the concept of

the monopole oscillation is questionable. In order to use

this concept also in the case of strong correlations, the

monopole oscillation is often associated [210, 213, 256] with

the oscillation of the mean square radius:

R2(t) := N−1

N
∑

i−1

r(t)2. (27)

It was then shown [213, 237] that this oscillation is universal

in 3D harmonically confined Coulomb systems, with a

frequency, ωMO =
√

3 ω, equal to ωBM. A similar universal

correspondence between ωMO and ωBM was observed for

harmonically confined 2D systems if the interaction is a

repulsive power law, ∝ 1/rn (n = 1, 2, . . .), or logarithmic

[256]. Due to this close connection some confusion of

both concepts emerged [256]. Thus, the existence of a

breathing mode is commonly assumed also for non-Coulomb

systems, including Lennard-Jones clusters [238] or systems

with Yukawa interaction [257–259]. We also mention a recent

kinetic theory approach to the monopole oscillation [260].

However, while an oscillation of R2 can appear in all types

of finite clusters, this is not the case for the breathing mode.

The existence conditions of the uniform (i.e. self-similar with

r̂i ∼ r∗
i , for all particles) breathing mode have recently been

derived by Henning et al [261] and can be summarized as

follows. A configuration- and N -independent, breathing mode

exists:

(a) in the case of a harmonic confinement, U(r) = mω2r2/2,

with particles interacting via potentials V (r) proportional

to 1/rγ or to log(r). In these cases the breathing frequency

is generally given by ωBM =
√

2 + γ ω,

(b) for interaction potentials proportional to r2 if the

confinement has the form r2 log(r). In this case also

the prefactor of the confinement determines the breathing

frequency,

(c) in the case of stationary states with a special symmetry,

for example platonic bodies, a uniform breathing mode

exists for any pair interaction. This is restricted to small

clusters typically having only a single shell.

These results are valid for any real γ and any dimension and

coincide, in special cases, with the results of the monopole

oscillation [256]. Furthermore, the conclusion follows that

no universal breathing mode exists for exponential interaction

potentials (such as Yukawa and Morse) or non-monotonic ones

(e.g. Lennard-Jones). Interestingly, as a consequence, these

systems possess multiple monopole modes.

5.4. Normal modes in dusty plasma experiments

A remarkable feature of dusty plasmas is that the normal modes

are directly accessible in experiments. Melzer has performed

detailed measurements of the normal mode spectrum of small

1D and 2D dust crystals [210, 262] (for an overview see

[263]). In one type of experiments the thermally excited

particles were traced and the associated power spectrum was

recorded. In other experiments, certain normal modes were

selectively excited by focusing a laser beam on selected

particles, including rotation of the whole cluster and inter-shell

rotations. Examples are shown in figure 17. Recently, first

measurements of the normal mode spectrum of 3D Yukawa

balls have been reported [248, 265]. An example of a Yukawa
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Figure 18. Experimental normal mode spectrum of a Yukawa ball
with N = 31 particles. The spectral power density is shown in
gray-scale with brighter colors corresponding to higher power. Gray
dots show the best fit to the theoretical power density computed
from the normal modes. (Reprinted with permission from [265].
Copyright 2009 American Physical Society.)

ball with 31 particles is shown in figure 18 displaying the

measured frequencies of all 93 normal modes compared with

the theoretical predictions.

For a quantitative comparison of the experimental results

with theory it is important to take into account dissipation

effects which are missing in the discussion of section 5.1.

This is straightforward and has recently been performed in

[248, 266]. Dissipation has a substantial effect on the spectral

properties: it leads to a broadening of the spectral peaks and to

a red shift and, ultimately, to a disappearance of low frequency

modes from the spectra.

5.5. Normal modes of strongly correlated quantum systems

The concept of normal modes is very useful for strongly

correlated quantum systems as well. In terms of the normal

modes the Hamilton operator can be diagonalized and used to

obtain an analytical solution for the N -particle wave function

which is a simple superposition of d · N harmonic oscillator

wave functions. This has been demonstrated for electrons in

quantum dots and indirect excitons in coupled quantum dots

by Balzer et al (cf [267, 268] and references therein).

A variety of normal modes of confined quantum systems

have been studied in some detail for electrons in quantum

dots and for ultracold atomic gases in traps. In particular, the

sloshing (Kohn) mode was analyzed, including the extension

to the case of a magnetic field [246, 247]. The independence

of this mode of the interaction between the particles is also

an important consistency test for approximate theories and

simulations [269]. Besides the Kohn mode, the breathing mode

(more precisely, the monopole mode, cf. section 5.3) also has

been intensively studied [254, 270]. Its dependence on the type

of the interaction potential was investigated by several authors,

including 1/r2 potentials [270] and dipole interaction [271].

A detailed study of the breathing frequency in the whole

range of coupling strengths, from the ideal quantum system

to the strongly coupled crystal-like state, has recently been

performed by Bauch et al [254]. They found that, in contrast

to classical systems, quantum systems possess two breathing

modes one of which is associated with the center of mass

motion and has a universal frequency of 2ω. They also reported

an interesting dependence of the standard breathing frequency

on the system dimensionality and on the spin statistics. These

dependences are of interest for experiments with trapped

atomic gases and for electrons or excitons in quantum dots

and may develop into a sensitive diagnostics just as it has been

demonstrated for dusty plasmas.

6. Thermodynamics and phase transitions

When the plasma crystal is heated particles start to oscillate

in their local potential minima. At sufficiently strong heating

these fluctuations become overcritical and the crystal melts.

Melting and freezing are well studied in macroscopic systems

and they can be characterized by many quantities. One is the

coupling parameter which has a critical value ŴM at the melting

point. Alternatively melting can be diagnosed from order

parameters, the shape of the pair distribution function (the ratio

of maxima and minima falls under a critical value) or the static

structure factor (e.g. [272]). Other sensitive quantities are the

specific heat Cv or the total energy autocorrelation function

[273] (the indices i and k denote either a time argument or a

Monte Carlo step in a thermodynamic simulation)

CE(k) =
∑L−k

i=1 (Ei+k − 〈E〉) (Ei − 〈E〉)
(L − k)

(

〈E2〉 − 〈E〉2
) , (28)

which will be discussed below. Finally, an important quantity

is the magnitude of the particle position fluctuations around

the equilibrium position,

u2
L = 1

N

N
∑

i=1

〈

(

ri − r0
i

)2
〉

, (29)

originally discussed by Lindemann [274]. But when applied to

two-dimensional systems, u2
L shows a logarithmic divergence

with system size according to the Landau–Peierls theorem (e.g.

[275]), and also the displacement autorcorrelation function

diverges [276]. This led to modified quantities, including the

relative interparticle distance fluctuations (IDF) [277–279]

urel = 2

N(N − 1)

N
∑

1�i<j

√

〈r2
ij 〉

〈rij 〉2
− 1, (30)

which are well behaved in low dimensional systems. Below

we will consider melting of finite Coulomb crystals. Readers

interested in general aspects of melting and the analysis with

computer simulations are referred to the dedicated reviews by

Löwen [280] and Hartmann et al [272]. The peculiarities of

melting in two-dimensional systems related to the Kosterlitz–

Thouless scenario [281, 282] have also been studied in dusty

plasmas (e.g. [283]).
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6.1. Melting in finite systems

A phase transition is a phenomenon observed in macroscopic

systems for which the thermodynamic limit can be applied.

Therefore, in finite systems such as plasma crystals in traps,

the notion of a phase transition such as melting requires a

special analysis. It has been observed in many finite systems,

including electrons in quantum dots [284, 285] or clusters [279]

that upon heating the collective particle behavior changes from

solid-like to liquid-like. Instead of a ‘true’ phase transition

a crossover is observed which extends over a finite range

of temperatures (of the order parameter), cf. figures 19(b).

This makes the definition of a ‘melting point’ ambiguous,

moreover, various quantities including the specific heat, the

energy correlation function (28) or the distance fluctuations

(30) need not necessarily agree with their predictions of the

melting point. Some examples are shown in the right column

of figure 19.

These difficulties have their physical origin in finite size

effects. Melting can occur via several mechanisms such as

excitation, coupling or softening of certain normal modes,

via creation of defects or oscillation between stationary states

(e.g. [286, 287]). Böning et al have discussed a simple example

which is very intuitive [273]. They considered a 2D ‘cluster’

of just four particles in a spherical confinement. This system

has a single stationary state where the particles are located

at the corners of a square of side length a. An increase in

temperature (lowering of Ŵ) has two effects. Firstly, particles

start to oscillate around their ground state positions (in the local

potential minima). Secondly, two particles can exchange their

positions. This is a rare event since it requires to overcome a

certain potential barrier and requires a coordinated motion of

(at least) two particles. This coexistence of local fluctuations

and hopping events changes when the temperature is increased

and shows similarities with a melting process. This is shown

in the left column of figure 19 where the time-dependent

fluctuating distance of a pair of particles with a mean distance

b =
√

2a is shown. In the ‘solid-like’ state close to the ground

state, hopping events are exponentially rare. An increase

in temperature leads to a growing frequency of these events

during which the distance changes from a to b and vice versa,

and in the ‘liquid-like’ state hopping events occur constantly.

This behavior is not adequately captured by the distance

fluctuations urel, equation (30), although the general trend of

an increase with T is seen, cf figure 19(b). Even worse, the

behavior of urel as a function of T depends on the way it is

computed [273]. When the simulation length is increased the

increase in urel shifts to lower and lower temperatures because

the probability of capturing a hopping event is increased. A

solution to this dilemma consists of recording not just the mean

value of the distance fluctuations but the whole probability

distribution of distance fluctuations P(urel). This function

has a peak around small values of urel associated with local

fluctuations which are dominant in the ‘solid’ state. In contrast,

in the ‘liquid’ state there is a peak around a larger value of urel

associated with the hopping events. In the transition region, in

the vicinity of the ‘melting’ point, P(urel) has a large width (in

some cases there are two peaks, see figure 21). This behavior

is well captured by the second moment of the fluctuations, σurel
,

Figure 19. (a) Distance of an arbitrary pair of N = 4 classical
particles in 2D as a function of Monte Carlo step. From top to
bottom: T1 = 0.02 (solid-like), T2 = 0.06 and T3 = 0.09 (transition

region), and T4 = 0.5 (liquid-like). a and b =
√

2a denote the two
possible interparticle distances in the ground state. (b) Temperature
dependence of the mean block averaged IDF ūrel, for different block
lengths M = 103, 104, 105, 106 (right to left) (equivalent to
computing urel, equation (30), from multiple simulations of length
L = M). (c) The corresponding second moment σurel

, equation (31).
(d) Specific heat Cv and energy correlation time kcorr . (e) Total
energy autocorrelation function CE , equation (28), for three of the
temperatures in (a). (Reprinted with permission from [273].
Copyright 2008 American Physical Society.)

i.e. the variance of the block averaged interparticle distance

fluctuations (VIDF) [273]:

σurel
=

√

√

√

√

1

K

K
∑

s=1

u2
rel(s) − 〈urel〉2, 〈urel〉 = 1

K

K
∑

s=1

urel(s).

(31)

This allows one to obtain a reasonable estimate of the melting

temperature TM from the peak of σurel
(T ). In equation (31) the

whole simulation duration L was split into K equal blocks

of length M , i.e. L = K · M , and urel is computed for

each block s with a subsequent average over all blocks. In

this approach the ‘proper’ value of M remains open, and the

authors used the maximum of the energy correlation time,

kcorr(T ) =
∑

k CE(k, T ), cf figure 19(d), which is sensitive

to melting, to fix the value of M .

6.2. Melting of Yukawa balls: experiment and simulation

The dynamical behavior of small trapped systems has been

studied in a number of recent experiments with Yukawa balls
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Figure 20. Experimentally observed inter-shell transition in a small
Yukawa ball with N = 31 particles. (Left) Particle positions (gray)
and trace of one particle moving from the outer shell inward and
back (red) in the ρ–z plane. (Right) Time-resolved radial component
of the trajectory of the particle leaving the outer shell. Vertical
(blue) stripes indicate the location of the two shells. (Color online.)

[233, 234]. In particular, transitions of particles between shells

or, in other words, transitions of Yukawa balls between two

different stationary states could be followed in detail. An

example of a cluster of 31 particles is shown in figure 20. There,

the dynamics of one particle is recorded as a function of time.

The particle first oscillates in its local potential minimum for

about 400 s and then undergoes a ‘hopping’ event as discussed

above: it moves from the outer shell to the inner shell and

rapidly returns to the outer shell. Thereby the cluster state, for

a short period of time of about 50 s, changes from the ground

state (4, 27) to the excited state (5, 26). The reason for this

rapid return can be traced to the local potential landscape—the

potential barrier from state (5, 26) to (4, 27) is much lower than

vice versa [288]. This shows that dusty plasma experiments

allow one to directly probe the total potential landscape of

strongly correlated plasmas.

The concepts for melting in finite systems developed

above can be directly applied in computer simulations of

Yukawa balls. An example of Monte Carlo simulations is

presented in figure 21. There for a crystal of 40 particles the

mean distance fluctuations (30), the variance of the distance

fluctuations (31) and the probability distribution P(urel) are

shown. As discussed in section 6.1 the distance fluctuations

urel increase very gradually with temperature; however, their

variance shows a distinct peak around the melting point.

Also, the distance fluctuations and their probability distribution

(right part of figure 21) exhibit the characteristic broadening

and indications of a two-peak structure in the vicinity of the

melting temperature discussed above.

In recent years there have been numerous theoretical

studies of melting in spherical plasma crystals. Golubnychiy

et al have shown that the melting temperature of small clusters

varies non-monotonically with the cluster size [289]. It

closely follows the stability of the clusters, cf section 4.3:

particularly high ‘melting’ temperatures were observed for

N = 6, 12, 13 all of which are stable with high values

of the mean Voronoi symmetry parameter (equation (12)).

Apolinario et al investigated larger two-dimensional and three-

dimensional clusters in anisotropic confinements and observed

inhomogeneous melting and the existence of several melting

transitions where first the order within a shell is lost, followed

by a decoupling of different shells, at a higher temperature

[235, 287]. Finally, the melting temperature of large Coulomb

balls was studied in detail by Schiffer [290] who found that it is

generally lower than in a macroscopic crystal and investigated

the transition to this limit.

Thus, summarizing this section, we have shown that the

concept of phase transitions can be extended to finite systems

and the melting point is reasonably well estimated by the

specific heat, the maximum of the energy autocorrelation

function or the VIDF, equation (31). Dusty plasmas are well

suited to test these concepts by direct measurements. Here

systematic experimental studies in a broad range of parameters

are still missing and are expected to become possible in the

near future. Finally, we note that the concept of ‘melting’ in

application to small systems should be of relevance also in

other fields of strongly correlated systems. In particular it was

shown that the presented melting criterion based on the VIDF

is applicable not only to small classical clusters but also to

finite quantum crystals [273].

7. Liquid behavior

Complex plasmas are perfectly suited to study thermodynamic

and transport properties in strongly correlated systems, in

particular in the liquid state. One can measure not only

macrosopic properties as e.g. in conventional fluids, but it is

possible to perform measurements even by tracking individual

particles. As an example we briefly discuss the recent

observation of anomalous diffusion in two-dimensional plasma

layers.

7.1. Anomalous diffusion

Stimulated by theoretical predictions [291] that in purely 2D

systems diffusion should deviate from the Einstein formula for

the particle displacements

u(t) = 〈|r(t) − r(t0)|2〉 = tα, with α = 1, (32)

where the averaging is performed over all particles, a series of

experiments has recently been performed [187, 190, 191, 292–

298]. As an example, we show in figure 22 the results of

Liu et al, for the friction and screening parameters ν = 0.2

and κ = 0.9, clearly indicating values of α > 1, so-called

‘superdiffusion’. The measurements were complemented by

first-principle computer simulations [189, 297, 299–303]. The

majority of these works predicted significant deviations from

normal diffusion, mostly toward α > 1, although a large scatter

of α-values from one to 1.3 was reported.

The systematic analysis of Ott et al indicates [301] that

superdiffusion reaches a maximum in the strongly coupled

liquid state at a temperature about 5 times higher than the

melting point, T ≈ 5Tm, corresponding to Ŵ ≈ 0.2ŴM, cf left
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Figure 21. (Left) Mean distance fluctuations (equation (30), crosses) and their variance (equation (31), circles), versus temperature around
the melting point TM, for a Yukawa ball with N = 40 and κ = 0.4. (Right) Block averaged interparticle distance fluctuations urel(s) versus
block number s during a Monte Carlo simulation and their accumulated probability P (rightmost column) for four temperatures (from
bottom to top): below, close to, at and above TM. Block length M = 1000. (Reprinted with permission from [288]. Copyright 2009
Wiley-VCH Verlag.)

Figure 22. (Left) Experimental and simulation results for the diffusion exponent in a 2D Yukawa plasma as a function of inverse
temperature (normalized to the melting temperature). Lines are Langevin simulations for κ = 1.0, 2.0, 3.0 and no dissipation, ν = 0. Three
small crosses indicate results with a dissipation of ν = 0.02 and κ = 3. Experimental data for κ = 0.90 and ν = 0.02 from Liu et al [296]
are indicated by the gray boxes with error bars in the lower right and are averaged over temperature regions, as indicated, and correspond to
Tm ≈ 6000 K. (Right) Diffusion regimes observed in the simulations for Ŵ = 200 and κ = 3 as a function of time for different dissipation
parameters ν in units of ωp. (Figure courtesy of T Ott.) (Color online.)

part of figure 22. This trend is easy to understand: when
the coupling is reduced, superdiffusion gradually vanishes
since excitation of collective modes requires sufficiently strong
interaction between the particles. On the other hand, at very
strong coupling, particles are increasingly localized in the
minima of the total potential energy (these ‘caging’ effects
have been investigated in detail by Donko et al [304, 305])
and the system approaches the crystallization point ŴM . As
a consequence, particle mobility is reduced again resulting in
normal diffusion and, ultimately, subdiffusion. The physical
origin of the collective modes responsible for superdiffusion
is still open and more recent substantially longer simulations
with a larger particle number indicate that superdiffusion is
only a transient phenomenon, see the right part of figure 22.
This is particularly clear in a dissipative system, and the figure
shows the results for a broad range of friction coefficients ν

(in units of plasma frequency). After sufficiently long times

of about 103–104 plasma cycles the system apparently returns

to normal diffusion, for dissipative and even for friction-less

systems [306, 307].

The experimental results in figure 22 are substantially

below the simulation data obtained without dissipation (lines).

If dissipation is included at a level as expected in the experiment

(cf three data points marked by the small crosses) the data

fall below the experiment. It is clear that the qualitative

trends are captured by the simulations; however, quantitative

discrepancies remain. They are, most likely due to different

time scales during which the diffusion exponent has been

extracted. As the right part of figure 22 shows, this has

crucial effect on the value of α. More precise comparisons

and resolution of these questions should be possible in the near

future. The behavior of the diffusion coefficient is expected to

be typical for the transport properties of strongly correlated
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Figure 23. Radial density profile of Coulomb balls (κ = 0) with N = 25, 100, 300 particles in the liquid phase. Symbols denote Monte
Carlo simulations and lines standard HNC and the improved HNC (AHNC). In the right (left) figure Ŵ = 20 (Ŵ = 40). (Reprinted with
permission from [309]. Copyright 2009 American Physical Society.)

plasmas. It clearly shows the important role of collective
effects. Still many of these effects are not yet fully explored.

7.2. Theoretical description of strong correlations in the fluid

state

In section 4.4 we have presented an analytical approach to
strongly correlated confined plasmas which was based on a
classical version of density functional theory. The results in
mean-field approximation and in local density approximation
were shown to well reproduce the spatially averaged properties
of the Coulomb and Yukawa balls, in particular the mean
density profile. However, the typical trends of particle
localization in shells, which are observed in simulations and in
the experiments in the strong coupling regime, were missed by
these approximations. An extension of this approach both to
finite temperatures and to the strongly coupled liquid regime
was recently developed in a series of papers by Kraeft et al

[308] and Wrighton et al [232, 309, 310]. The basis is the
classical theory of liquids. The external potential U induces a
non-uniform equilibrium density n(r). It follows from density
functional theory that n(r) obeys the equation [311]

ln
n(r)�3

z
= −βU (r) − β

δFex (β | n)

δn (r)
, (33)

where z = eβµ, µ is the chemical potential and � =
(

h2β/2πm
)1/2

is the thermal de Broglie wavelength. The
excess free energy Fex (β | n) is a universal functional of the
density for the Hamiltonian (1), independent of the applied
external potential U , and describes all correlations among
the particles. The solutions to (33) are such that there is a
unique equilibrium density n(r) for each U(r), using the same
Fex (β | n).

Equation (33) can be transformed by introducing the direct
correlation function of the uniform OCP, c, evaluated at the
average trap density n̄ = 3mω2/(4πQ2) [309]:

ln
n(r)�3

z
= −Ŵ

1

2
r∗2 +

∫

dr∗′ n∗(r∗′)c
(
∣

∣r∗ − r∗′∣
∣ ; Ŵ

)

− ŴB
(

r∗ | n∗) , (34)

where the function B(r | n) is referred to as bridge function for

the trapped system. Here, correlations are introduced via the

direct correlation function and the bridge function. The mean-

field results of section 4.4, generalized to finite temperature,

follow by neglecting correlations, i.e. setting B −→ 0 and

c(r) −→ −Ŵ/r .

To go beyond the mean-field limit, the authors of [309]

considered two approximations: the HNC approximation and

an augmented version of the HNC (AHNC). The HNC

approximation follows by neglecting, as before, the bridge

terms, B −→ 0 and computing the direct correlation function

from the Ornstein–Zernicke equation (35) with the HNC

closure relation (36), where g(r) denotes the pair distribution,

g(r) − 1 = c(r) +

∫

dr′ {g(r ′) − 1
}

c
(∣

∣r − r′∣
∣ ; Ŵ

)

, (35)

ln g(r) = −Ŵ

r
+

∫

dr′ {g(r ′) − 1
}

c
(
∣

∣r − r′∣
∣ ; Ŵ

)

. (36)

Equations (35) and (36) are a closed set of equations to

determine g(r) and c(r) for the OCP [3] which is here

generalized to strongly correlated trapped systems by means

of equation (34).

The results of the solution of the closed system (34)–

(36) for a system for 300 charged particles with Coulomb

interaction in a trap are shown in the left part of figure 23.

The curves correspond to a strongly correlated liquid state

at Ŵ = 40 and are compared with exact results from

Monte Carlo simulations [309]. In contrast to the mean-

field approximation, the HNC result indeed reproduces the

formation of shells. Overall there is a good qualitative

agreement with the simulations: the number of shells and

their positions are correctly reproduced. However, there are

some quantitative discrepancies: the height of the peaks is

underestimated by about 30%, and the width of the shells is

too large.

The origin of these errors is, of course, the neglect

of the bridge diagrams. Interestingly, these discrepancies

could be almost completely removed by a simple choice of

the bridge functions [309, 312] B(r|n) = λ(Ŵ)U(r). The
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results of this improved scheme (AHNC) with the choice

λ = 0.6 are included in the right part of figure 23. There

two cases of N = 25, 100 for Ŵ = 40 are shown and reveal

a surprising agreement with the simulations. Now even the

width and height of the density peaks are reproduced within

about 2%. This shows that the present augmented HNC

model adequately describes the thermodynamic properties of

the strongly coupled liquid state of trapped charged particles.

An extension to even larger couplings with Ŵ � 100 has been

presented in [310] indicating that even a description of the

crystal state should be possible.

Finally, we mention another interesting theoretical

approach to strongly correlated plasmas—the quasi-localized

charge approximation due to Kalman and Golden [313, 314]

which has proved to be efficient to compute the dielectric and

spectral properties of strongly correlated dusty plasmas, such

as the dust acoustic wave [315].

8. Conclusions

In this paper an overview of strongly correlated dusty plasmas

has been given. We started with a brief summary of the

historical developments—from the first predictions of the

plasma crystal by Ikezi and the first experimental realization

and proceeded to very recent results in this very active field.

We presented a diverse collection of experimental results and

figures which demonstrate the unique opportunities provided

by dusty plasmas: due to the large particle size and associated

large charge strong correlation effects are achieved at room

temperature, millimeter length scales and second time scales.

This allows one to directly view and record the position and

the motion of individual particles and to study many-particle

properties both in large and finite systems with a precise

particle number at the smallest (kinetic) level with maximum

(‘atomic’) resolution. Thus, dusty plasmas are indeed an

ideal ‘laboratory’ for strong correlation effects. Since under

conditions of strong coupling many universalities are observed

which are caused by the interaction, it is expected that many of

the results from dusty plasmas will be of (at least qualitative)

relevance also for other strongly correlated systems, including

quantum gases in traps and optical lattices, ions and ultracold

neutral plasmas in traps, electrons in quantum dots or the

quark–gluon plasmas.

Our main goal was to highlight some of the most

remarkable strong correlation effects observed in dusty

plasmas: formation of crystalline structures, coexistence of

ground and metastable states, collective excitations (normal

modes) and solid–liquid phase transitions. These effects

were discussed on the example of finite dust clusters in close

comparison of experiments, theory and simulation. Naturally,

this review had to omit many exciting experimental and

theoretical results. Among the questions not covered are

the effect of impurities and of non-spherical particles on the

crystal structure. Further interesting topics are dusty plasmas

in external electric and magnetic fields where first results show

that the interaction potential between dust particles can be

externally controlled [316], very similar to semiconductors

(e.g. [317]). Furthermore, there have been recent results on

the non-equilibrium dynamics and short-time behavior of dusty

plasmas (e.g. [245, 266, 318, 319]). Among the exciting topics

of current research are phenomena at the shortest time scales,

including the formation of binary correlations, anomalous

transport (in analogy to superdiffusion), non-Newtonian

viscosity [320], non-reciprocal forces due to streaming ions

and electrons and magnetized dusty plasmas.
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