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Introduction.

Complex powers of a pseudo-differential operator have been defined by
Seeley [15] and Burak [2] for the elliptic case, and defined by Nagase-Shinkai
[12] and Hayakawa-Kumano-go [5] for a more general case containing semi-ellip-
tic operators.

In the present paper we shall construct complex powers of a hypoelliptic
system of pseudo-differential operators, and apply those powers to the generalized
Dirichlet problem and the index theory.

The plan of the paper is as follows. In Section 1 we describe well-known
results on the theory of pseudo-differential operators which has been developed
in Hérmander [6], [7], Kumano-go [9] and Grushin [4]. In Section 2 the strong
(or uniform) continuity and the analyticity of pseudo-differential operators with
respect to a parameter are examined by means of their symbols. In Section 3 we
construct complex powers P, of a hypoelliptic system P which belongs to a
subclass of Hérmander’s in [6], p. 164 (c.f. also Subin [16]).

Section 4 treats the generalized Dirichlet problem for an operator P which
admits complex powers P,. 'The Sobolev space H; p associated with P is defined,
and a subspace I of Hj p is defined as the completion of C3(Q2) in the norm of
H, p for an open set Q) of R*. We seek the solution of Pu=f for f € L*()) in the
space V. Then, the Lax-Milgram theorem can be applied effectively.

Finally Section 5 is the supplement to the first author’s paper [10] where the
vanishing theorem of the index is proved when an operator P is slowly varying
in the sense of [4] and has complex powers.

We try here to reduce the index theory of a hypoelliptic operator Q of
order m to an elliptic operator of order 0 (studied in [4]) when the symbol
a(Q)(x, ) is equally strong to the symbol o(P)(x, £) of an operator P which
admits complex powers.

Throughout the present paper we shall treat strict algebras of pseudo-
differential operators, and investigate the topology of the symbol class precisely
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in Sections 2 and 3. 'The analyticity of complex powers P, with respect to z is
used essentially in order to determine the domain of the adjoint operator P¥.
The symbols of complex powers are defined by the Dunford integral for the
symbols of parametrices R({) for P—{I. We have to note that for a scalar operator
P we can give complex powers of P in the concrete form as in [12], if the ar-
gument of the symbol o(P)(x, £) is well defined. This fact is interesting when
we recall the proof of the vanishing theorem of the index by Seely [14] and Niren-
berg [13] for an elliptic operator on a compact manifold.

1. Notation and definitions

Let x=(x,, --+, x,,)) be a point of the n-dimensional Euclidean space Rj, and
let S denote the space of C~-functions which together with all their derivatives

decrease faster than any power of |x| :(zn] x3)Y% as |x]—oco. By SB(0=38<p
j=1

<1) we denote the set of all C~-symblos p(x, £) in RjXx R} satisfying, for any
multi-index a=(a,, -+, a,) and B=(B,, -+, B,),

(L1) [P, )] SCyp<EXm 14518 on REX RY
for a constant C, g, wehre
P&, §) = 0¢D5p(x, £), 0F = 0gi-+- 0% ,
Dg = (— 0] e (—i 00 ), <E> = (1423 £,

and for a p(x, £)e 8% ; we define a pseudo-differential operator P=p(x, D.), de-
noted also by P& S% ;, with the symbol o(P)(x, £) = p(x, &) by

Pu(x) = Sgix'Ep(x’ E)ﬂ(f)dg, usS (x'f = xlg1+"'+xngn) )

where #(£) denotes the Fourier transform of u(x) which is defined by a(&)= fe~"¢
u(x)dx, and df=(2x)"dt. We set

ST=N 8%, (=N8%s) S55=US%s.
For two pseudo-differential operators P and Q, P=Q(mod S~*) means that
a(P) (%, §)—o(Q) (%, E)E 555 -
For any real number s, we define a continuous operator A°: S—S by
Auls) = (e Kt

It is easy to see that A° belongs to S§ , and can be extended uniquely to an ope-
rator of & into itself by the relation

AN, v) =lu, AN°v)> forueS,ves.
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Let Hy={ucS; N'ucL¥R3)} be a Hilbert space provided with the
s-norm ||u}|;=1|{ A °u|l.2 for uc H,, where ||-||;z denotes the L>-norm. We set

H. .= UH,H.= NH,.
For a p(x, £)= S% 5, we define semi-norms | p|,, by

(1.2) [Pl = max sup {1 P8, E)|CEY-OmPimt+BIpDY |

ot+BI<k (%,

then, S% ; makes a Fréchet space with these semi-norms.

DrrFiNiTION 1.1, We say that a sequence {p,(x, £)} %, of S" 5 converges to
a p(x, ) of 8% 5 in S7* ; weakly, if {p;(x, £)}75-, is a bounded set of S ; and
(1.3)  p;&B(x, E)—>piB(x, £) as j—oo uniformly on Ryx K

for any «, 8 and any compact set K of Rf. We denote it by
P (%, ’g‘)m)p(x, £) inS%; asjooo.

Remark. If (1.3) holds for ¢=8=0, then, we have (1.3) for any « and B.
In fact, if we use a well-known inequality

(14 1FE)IPSC max (170 fmax (1£0))max (| £} G0, 1)

for any C*-function f(t) on [0, 1], then, setting f(£)=p;(x, E+ta)—p(x, E+tax)
for |a|=1, we get

D, E)— p®(x, E) as j—co uniformly on Ry X K,

and so we get

D;8(x, E)—p&(x, E) as j—oo uniformly on Ry x K
for any « and .

Lemma 1.2 (c.f. [7], p. 88). If a sequence {p ;(x, £)}%5-, of S" s converges
to a p(x, E) of S 5 in S7 5 weakly, then, p (x, E)—p(x, E) as j—oo in the topology
of S¥s for any m’ >m.

Proof. We may assume p(x, £)=0. Then, the statement is clear from the
inequality

max, sup {12, @ (x, §)|<Ey o -rersaieny

|@+BIZk Cx,

—cm/ -
< max sup {|p;E(x, §)|EHTTPIHITHERY
|@+BISk Cr ERIXE

+ map  sup {1 9,8)(x, E)[<E)~m-P1aI+8180} max (E)~ ",
l@+8I<k (1, §)€R”X(RE\K) E(RE\K)
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DrriniTION 1.3, 1) By So'”‘:,s we denote the set of all symbols p(x, &) for
which (1.1) holds for bounded functions C, g(x), instead of constants C, g, such
that

(1.5) Cup(x) >0 as |x|—> oo,
(We denote it also by p(x, DI)ES,"Z,S).

ii) We say that a symbol p(x, £)(S% ;) is slowly varying, when pe,(x, £) =
S8l for any B+0.

RemaRk. In the inequality (1.4) we set f(£)=p(x, E4+27<E ) ax) for || =1
(resp. p(x+27KE>T3B, E) for |B[=1). Then, we have (1.5) for |a|=1 (resp.
|B]=1) and so for any « and 2, if (1.5) holds only for a=8=0.

Lemma 1.4. For any p(x, £)=S"% 5 and real s we have
(1.6)  [1p(%, D)ull, <C| plmalltllssm  for uEHerp,
where C and k are constants independent of p(x, £) and u.
Proof is omitted (c.f. Theorem 3.5 of [6] and Corollary 1 of Theorem 5.2
of [9]).
Lemma 1.5 (Grushin [4]). i) Let P S% ; and QES'",;,S. Then, we have
PO=S™ and QPESTI™.

ii)y Let PES™,and Q= Sr;. Assume that P and Q are slowly varying, Then,
we have that PQ(€ S7t™) is slowly varying. Moreover, if we write PQ=Ry+ R}
with
1 o
o(Ry)(x, &) = >3 — a(PY(%, E)o(Q)ewl, ) »
1<y o

then we have
(17)  RyeSpim-o oy

Proof. i) By Theorem 1.1 in [9] we have

(1.8) a(PQ)(x, &)= S(D,,)"o o(P)(x, E+m) (Se“"‘"’”<w>"‘o a(Q)(x+w, E)dw)dn

for any even integer #,=#n-1. Then, writing for large R>0
Se“'“"”(w)‘”w(Q) (2w, £)dw

- jnge"i"’”’(w)‘”oo-(Q) (4w, £) dw+s IZRe_iw'"<w>—”00-(Q) (x+tw, E)dw ,

lwl=

we can easily see that PQE.§',’,’§§‘"", and also get QP& g’ﬁ"_;"‘/ in the same way.
ii) By the similar way to i) we can see by (1.8) that PQ is slowly varying. If we
write
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() (x4, ) = 7(Q)(w, £+ 30, o(Q)cplvttw, E1c,

then, from (1.8) we have
a(R/) (%, E)
= S<D,,>"oo-(P) (%, 5;‘—}—77)(Se'“"”(w)‘”o(gij:U(Q)(j)(x—l—tw, £)dt)dw)dn

_ §S<Dn>"o(i8,,j)a'(P) (, ’g‘—l—n)(Se""w”’<w>'”OS:o-(Q)( ox-+tw, E)dtdw)dr .

Since o (Q)c;>(x+tw, £)—0 as |x|—>oo together with all their derivatives,
we see that R/eSpi™ ~*®, If we use Taylor’s expansion of order N for

o(Q)(x+w,E), we get (1.7) for any N. Q.E.D.

Lemma 1.6. Let P belong to So”s,s. Then, P is compact from H,.,, into Hy
for any s>5'.

Proof. We write ||Pu||ly=||A*Pu||_¢s_>> Then, by Lemma 1.5, we have
Q:/\SPESO,‘;;"‘. Take a Cg-function a(x) such that a(x)=1(|x|=<1) and
a(x)=0 (|x| =2), and set Q,=a(éx)Q for 0<<€<<1. Then, noting | D3a(éx)| =
C(x>™'*" for a constant C, independent of & we see that {o(Q.)(¥, £)}o<e<:
makes a bounded set in S§}™ and o(Q,)(%, £) - o(Q)(x, ) in the topology of
S3A™ because of QeSoz,*s"‘. Hence, we have

a(A~C"Q,) (%, £)—>a(A*'P)(x, E) in the topology of Si ™.

Since A~“"*"Q,: H,,,,—H, is compact, we get by Lemma 1.4 that P: H,,,—
Hy is compact. Q.E.D.

2. Topology of symbol class

Throughout what follows we shall often use a Cy-function y~(£) such that

1 <1
2.1)  0=<v(£)<1 and ¥(£) = {0 E:g:;;
Consider {yr(€£)}, 0<&<1. Then we have
1 (|&l<se™)
oz |osvenstmdven={o 02

|05 Yr(EE) | < C o)1
for a constant C, independent of &, which means that

(2.3) \!’(EE)M)I inSy,as & —0.

Lemma 2.1 Let P,€S™,, j=1,2, -, and Q= S0} .
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Suppose that for a PES; ;
24)  o(Pj)(x, E) (P) (%, &) in ST,
Then we have

o(PiQ) (%, E) oo PO (%, £)  in se

(2.5) "
a(QP;)(x, E) k)G(QP)(x g  in S

and

(2.6)  o(PF)(x, E)(w?ﬁ)d(P(*)) (%, &) in ST,

where P*° is defined by

2.7y (Pu,v)=(u, P*v)  for u,veS (c.f.[9], p. 36).

Proof. From Corollary 2 of Theorem 4.1 in [9] we see that o(P,;0)(x, £)
and o(QP,)(x, £) are bounded in Sp;™ and that o(P$¥)(x, £) is bounded in
S%s. By means of Theorem 1.1 in [9] we have

a(P;0)(x, &)
_ S(D,,}”o o(P,)(x, g+n)(se—fw-"<w>—"o #(0) (3w, E)dw)dn

for any even integer #n,=n-+1. We write

o(P,Q)(x €)
= DOmo® ) e [ oo Q) ot

mI=R

+|  DymatP) @ Erm <y [,y
mizr

<o (Q) (x+w, E))dw)dn .

Then, if we take a large / such that the second term is absolutely integrable and
fix a large R, we see that

o(P;0)(x, £)—>a(PQ)(x, £) on Ry X K uniformly

for any compact set K of Ri. Hence we get the half part of (2.5). For o(QP;)
(%, £) we get the assertion in the same way. For o(P§*)(x, £) we use the formula
in [9];

oPP)(x, £) = | ([e-mrcay-mD Mo (P,) (x-+w, E4-n)duw)d,
and get (2.6).
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Lemma 2.2. Let P,eS8%;,j=1,2,-. Suppose that

o(P;)(x, E)m o(P)(x,E)in S5 fora PEST ;.

Then, for any s, we have
(2.8)  ||Pu—Pu|l;—~0(j—>c0) for ucH,,,, .
Proof. By Lemma 2.1 we have
a(N\°(P;—P))(, g)(vm)o in S§5™.
Then, using a function (£} of (2.1), we have
1P ju— Pulls= | \*(P;— P)ull,
SIAP;—PWAED Julle+ I A*(Ps— PY(1—¥(ED,)ull, -
By Lemma 1.4 we have

AP ;—PYWr(ED Jull, < C | a(A(P;—P)) (%, &) VAEE) | s, o[t sm
and

INA(P;—P)(1 =Y (ED,)ulle = C (AL ;—P)) (%, &) | sm, s [|[(1—V(ED )l ls1m
Then, noting |a(A*(P;—P))(x, )Y (EE)| s1m,;—0 (j—>o0) for any fixed £>0,
and

(1= (ED, )yl 2 e = S |(1—r(B)) I(<ED™ ™ [ a(E) 1 )°dE

= SIEI;E_1<E>M+M) |%(E)|2dE—-0 (£—0),
we get (2.8). QED.

Lemma 2.3. Let P,& 8% ; for 2 (an open set of C). Suppose that o
(P,)(x, &) is an analytic function of = in Q in the topology of S7 5.

Then we have, for any Q& Spy,
i)y o(P.O)(x, E) and o(QP,)(x, &) are analytic functions of = in Q in the topology
of Sp™ for any Q€SP
ity For ucH;.,,, Puis an analytic function of z in Q in the topology of H,.

Proof is omitted.

3. Complex powers

DerFintTION 3.1, For an /X! matrix P& .S% 4(m>0) we say that operators

P, zeC,(&S%;) are complex powers of P, when P, satisfy the following con-
ditions (c.f. [10]):

i) For a monotone increasing function m(s) such that

m(s)—— oo(s—— o), m(0) = 0, m(s)—>oco(s—>o0),
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we have P,& S7’{*°®, where Re z denotes the real part of 2.
1) P=I (1dent1ty operator) P =P (original operator).
iii) For any real s, o(P,)(x, £} is an analytic function of z (Re 2<Cs,) in the
topology of S&§o.
iv) For any real s,
o(P;)(x, Ej) a(PsO)(x £) in SYY

as s 1 s, along the real axis.
v) P, Pzz_leJr,_.2 (mod S~=) in the sense:
o(P,P,,—P,,..,) (% ) is an analytic function of 2, and z, in the topology of
S5 for any real Soe

First we state a result obtained by Nagase-Shinkai [12] in a modified form
for our aim.

Theorem 3.2°. Let P=p(x, D,) be a single operator of class S% 5. Assume
that the symbol p(x, E) satisfies conditions:
A | plx, EY| = LED™ for constant ¢,>0 and T(0<<T<1),
B) &%, E)p(x, £)7H | <c4,gEHTIITOR

and

C) arg p(x, E)(the argument of p(x, £)) is well-defined

for large |E|. Then, for m(s)=1ms(s<<0) and =ms(s=0), we can define complex
powers P, of P by

a(P.)(x, £)
=p(0, O {1+ 3 Ciusl2)p(x, £)*pG3(x, ) pER(, D)},

l@|=1pl=k2

where P(x; ‘E)z:ez log pC%: S)’ a:(al’ R ak): B—:(BI) "0ty Bk)

and Cy, , o(2) are polynomials in 2.

Proof is given in [12] for, so called, An-elliptic operators. But, we can see
that the discussion there works in our case, if we note

[0FDEp(x, E)*« p(x, £) % | ZC, 4 p<EDPIIHA
and

| (%, E) " pigR(x, £)| SCps piCEY™1#1H0W = 1, o R,
for large |&].
Our main theorem of this section is stated as follows.

Theorem 3.2. Let p(x, E)=(p;u(x, £)) be an I X | matrix of symbols p ;4(, E)
of class S% 5, m>0, such that for some positive constants C,,¢,, C, 55 and 7(0<T
<1)

B.1) (e, E)—EN) M =CLE>™™

and
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(3:2) P&, E) (D%, E)—LI) M| S C, g oCED~P1BIH8I8

—
-

for large |E| uniformly on B, where ||-|| denotes a matrix norm and E,={{ =C);
dis (§, (—o0,0))<c,}. Then, we can construct complex powers P, = p (x, D,) of
P=p(x, D,) such that

(3.3) P.eSi%Re* for Re 2<<0, S7¥e” for Re 520,
that is, m(s)=7ms for s<<0, =ms for s=0.

Remark. We may assume that p(x, &) satisfies conditions (3.1) and (3.2)
for every £. In fact, if we set p(x, E)=p(x, E)+E Y(€E)] for a C7-function
Y(£) of (2.1), then, for a small fixed >0, p,(x, ) staisfies (3.1) and (3.2)
uniformly on = for any £, and we have complex powers P, , of P,. Set P,=
P, .+xP—P, ). Then, noting P=P, =P, ,, we get required powers of P.

For the proof of Theorem 3.2 we need several lemmas.

Lemma 3.3. Let {\(x,£), -, §,(x, E) be eigen-values of p(x, E) which satisfies
(3.1) for £=0. Then, there exists a positive constant C, such that

(34)  CiKEY™= L (%, &) SCLE™ j=1, -+, 1.
Proof. We write
det (p(x, £)—8I) = (— 1) {&'+ - +¢;(x, '+ Fq,(=, £)} .

Then, noting |g;(x, £)| =CEX™, j=1, -+, [, for a constant C, we get easily
the right half of (3.4). The left half is proved in the same way, if we use
det (7' I—p(x, £)")=0, j=1, ---, 1, and ||p(x, £) Y| < CLE>"™. Q.E.D.

Lemma 3.4. Let p(x, £)(ES% ;) satisfy conditions (3.1) and (3.2). Then,
for any A(>C,) we have

(o, §)—ED)NI=BIE| ™
on By = {{EC; 5| =AKE™ or |§| 24E},

for a constant B, where C, is a constant of Lemma 3.3.

(3.5)

Proof. We write
det (p(a, £)—ED=(= 1) LI(E—E (@, £) .
By Lemma 3.3 we have
>{|§,~(x, E) =812 Cr<ed™— 8] 2(4/C—1)E] for [T] =A7KE™
UL —=1E(x, O 2 18] —CLEm=(1-C,/A)|E] for |§] = ALE™.



156 H. Kumano-co anp C. Tsurtusmi

Hence, we have
|det (p(x, £)—EI)| =C|E]* on Eg 4 .

Noting [|(p(x, £)—CT)l| <const. || for |¢]ZAE™, we get [[(p(x, £)—LI)"
<B'|§]7 for |§] ZAE™
Using
E(p(x, £)—LI)™" = p(x, E)H(E —p(x, £))7
we have in the same way
I(p(x, E) =) II=lp(x, E)IHIE T —p(x, )77 1E]
SCLE™™|ETHE B |E] 7 for [E] =A7KE)™.

Hence, we have proved (3.5) Q.E.D.
Now following Hormander [6], p. 165, we shall construct a parametrix for
p(x, £)—CI. We define ¢,(¢; «, £),j=0, 1, ---, inductively by

(66)  altin = (o H—LD",
6D aGno=—{3 3 Low s oDiee -5y,

j=0 |@|=N—

Lemma 3.5. Let p(x, £)eS% y(m>0) satisfy conditions (3.1) and (3.2).
Then, q,(8; x, ), j=0, 1, ---, defined by (3.6) and (3.7) are analytic functions of §
on B,V E; 4 and belong to Sy~ =% for any fixed { €E,, moreover satisfy

(3.8)  lgo(&; %, ENI=CKE>™,

(3.9) g, B(E; % ENISC; g 6Ep"™PIdRIZE=DS - (j=0, 1, +)
uniformly on E,, and

(3.10) llg&; x, EW=CalL| ™",

(.11)  lg; &5 %, HII=CT a6l 0| TIEI-PImIHOIRIZE=0S (7=0,1, ),
(3.12)  g;B(&; %, ENI=CYapl L | XEmPHBI=C-0F (it |a+B|+0),
(313)  Ilg,8E; %, BN CYa gl E| - bp-0-0i  (j=1)

uniformly on E,\VEy; 4.

Proof. 'The estimate (3.8) is clear by (3.1), and (3.9) is proved by induction
in view of (3.2). We write

(p(x, ©)—ED)™ = £ {p(x, £) (p(x, E)— )1} .

Then, from (3.1) and (3.2) we get (3.10) on E,, and by Lemma 3.4 we get on
Ega. For |a|=1 we have

6?% = “%)agp'q ) DZ% = %DG;P'%
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and so
(3.14) 4B =3 CLsi g, D580 4P ER G, »
where the summation is taken under the condition
1<k=|a+B|, a'ttaf=a, BH++p5=4.

Hence, using (3.1) we have (3.9), (3.11) and (3.12) for j=0. From (3.7) we can
see that ¢;(3} also have the form (3.14) and get (3.9), (3.11)—(3.13) in general.
Q.E.D.

Now we construct a parametrix r({; x, D,)(€S:5") of p(x, D,)—¢I as
follows: Let @(£) be a Cy-function in R} such that

(315) @(®)=0 (JEI<1) and o)=1 (1&]22),
and set as in Theorem 2.7 of [6]

(316) r(tsx, 8) = g&: % B+ X 9(t7E)g, (85 %, ©)

for an appropriate increasing sequence f,—>co. Then, by Lemma 3.5, we have
(B17) ;% E)eS. for LeE,,

and moreover we have

(3.18)  [IrB(&; x, E)I=Cy p<E> = P1*1+818 ynifomly on E,,
and
(319)  [rB(E; %, B)ISCh | §] B8,

(3.20)  [Ir&(E; x, EW=CLIE|EYm P+, Jat+B]+0,
(B.21)  IrB(Es x, £)— (& %, IS CL| L] 7 KED™P-D-piniaifl

uniformly on B,V E; 4.
Let A be a positive number of Lemma 3.4 such that 4~'<C¢, for a constant
¢, of Theorem 3.2, and let T'; 4 be a counterclockwisely oriented curve defined by

Tea= {{EC; |§] = A" or = A7KEY™, dis (§3(—oo, 0])= 47"}
b {g == gliiA—l; —Rxéglé—“Rz} )

where R, and R, are positive numbers satisfying

| =R, +:i47"| = AED™ and | —R,+1A™"| = A7<E™

respectively. Then, we have

(3.22)

Lemma 3.6. For a complex number z we define symbols p,(x, &) by

S W s
(23) puleB)= 5|, (im0
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Then, for a function m(s)=7ms(s<<0) and=ms(s=0), we have i)—iv) of Definition
3.1 for pa(x, ).

Proof. Since

PeRln ) =5 O m Bt
we have by (3.19)

@ C; 27 {Im g ez~ —-Pla
IpaB(x, glis St emimal | (pimeeigyneenijag

Then, estimating the cases: Re 2<<0 and Re 2=0 separately, and noting
Ds(%, E)— ps(%, E) uniformly on RyX K as s 1 5,

for any compact set K of R}, we have i) and iv). Next, we write
ps 0= L[ ramart L e —am.
Then, by (3.21) we see that the second term can be deformed to

Z}ESF E(r(6)—gqit))dE  when Re 3<2,

T'ga

and vanishes for z=0 and =1, where
(324) T,={teC;dis(§;(—o,0)=47}.

Hence, noting that the first term defines p(x, £)* we get ii) of Definition 3.1.
Since

d (i) 1 2, (0
£ B B) = 5| log £-LrB(Ls x, )L,
we get the last assertion in the same way. Q.E.D.

Lemma 3.7. Let R({)=r({; x, D, )§ EE,) be the parametrix of P=p(x, D,)
defined by (3.16). Then we have for {1,

(3.25)  R(EIR(E,) = (5= L) (R(E)—R(EN+(E—8)K(L0, 8r)

where K(8,,L,)E S~ is a pseudo-differential operator with the symbol k({,, §,; %, £)
which satisfies, for any real number s and multi-index «, 3,

(3.26)  [1RB(E1, Eos %, EN=Claps| 61l M E,1TKCEY.
Proof. For some K (¢,), K,(£,) of class S~ we have
R YP—-C D)= I+ K,(&,) and (P—{,DR(E,) = [+ K(L,) -
Then, we have

R(CI)R(CZ) (Cz_gl) = R(CJ—R(L’,)—}—K(;’H Cz) ’
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where K(¢,, £,)=K(&)R(E,)—R(E)K,(L,). Hence, by (3.19) we have only prove
for symbols &,(¢;; x, &) of K(¢), j=1, 2,

(3.27)  lk; @& 5%, ONSC; aps|L;17CE for any a, B, 5.

By Theorem 1.1 of [9] we can write for any integer N
k(85 %, &) = o(R(E)(P—E D)) (%, §)—1T
(3.28) =X l' 0gr(L1; %, E)DY(p(x, E)—& L)+ Ry(Lys %, &§H—1

lel<¥ ¢l

EIN(Cﬁ X, E)—I_RN(EU X, E) »

where

Ry(t 2 8) = [Py 33 T (1-V00r(E,s =, E+-tn)dt)
(3.29) = ol o
- (e platw, &)L Dy

for any even number n,=n-+1. Using (3.16) and interchanging the order of
summation, we can write

Iy=3 > Lo prp—tny—1

1)< j+iai<y !

3 = Lo, -1t
| <N _,+|';]1<_Na

1 ne 3
PIRIPS 0Up;(£)a;)Da(p—E.)
H>jzl

» % CHOR DI AN ES S A A

|I<N  j=N

From (3.6) and (3.7) we have
(331) I,=0.

(3.30)

Using (3.12), we have
(3.32) 10tDELI< const. <EX|L, | *(<EX™+1€,]) < comst. |T| TKE™
for any real number s, and

103DELI|< const. [£,-<E O PNCE™ |, [CEymeimram)

(3.33) < const. |, |- IKEDIm-P- BN -plaI B

Similarly we have
(3.34) |IEDELIIS const. [£,|-ICgym-o-on-rieisael,

Finally we have to estimate Ry(,; x, £) .
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Since
D0 (L, x, E41m)) = 2 Ca, gt Peln? P Par (L5 x, E4-1)

181+ Bl
and

7B — (10, P,

integrating by parts we have only to estimate

S{aFﬂzr(ﬁ 5, E+t77)(Se"”'"GL'BI(<W>‘”°(,P(x+w, E)—{.0))dw)} dn

1 Per(t,; @, &) ([0 Pa(Cand~"o(pl+- 0, ©)— L, ))dw)} by

5!’7!§<E>/2

(> ™0f*Per (8, 2. E+-tm)

Sl’” Z<E>/2
([ ey ple+, )~ E D} dr= it T

Then, noting C-(E>ZEL )OS CLE) for a constant C>0 when |7| S{ED/2
and 0<¢<1, we have by (3.20)

(x5 2, E)I const. [, | 75EX™- PN HEDER(LEM N 4| L)
< const. |§,| TKER-E-DN
Taking a large integer / we have

JAEs5 %, E)lI= comst. |§,|~XEX#+H(EHN L))

< const. |§,| T m-RA-DEREN
Hence, fixing / such as m—2I(1—38)+N <2m—(p—38)N, we have
HRn (L5 2, E)|< const. |§,|CEYHm-(P-DN
and also have
(3.35)  [IRNB(L,; x, E)|< comst. |§,| T I(gDPEn-(P-ON-Pla+8IB

Consequently from (3.28)—(3.35) we have (3.27) for j=1 for a large N, and for
J=2 analogously, which completes the proof. Q.ED.

Proof of Theorem 3.2. Let P,=p_(x, D,) be operators defined by (3.23).
Then, by Lemma 3.6 we have i)-iv) of Definition 3.1. For the proof of v) we
consider the case: Re 2,<0, j=1, 2.

Set

I, = {{eC; dis (£, (—oo, 0]) = c,/2} ,
I, = {{eC;dis(§, (—oe, 0]) = c,/3} .
Then, by means of (3.19) and Lemma 3.7 we have

P, P, u(x)



ComPLEX POWERS OF HYPOELLIPTIC PSEUDO-DIFFERENTIAL OPERATORS 161
= fem{ L{ curttm 008, [P e

2midr,
. EAREIPaa(L,

27t
- <z‘717 > S rIS r S ER(EIR(E Ju(x)dE AL,
= L[, R,
+ (5a7) T Jo e K2 R ar,

2m1 2 1

— Pt (50 ) ], [ ese G tiar gy,

2= 51
Hence, we get iv) when Re 2,<0, j=1, 2.
Next we consider P,P—P,,,. For any N, using (3.16), we write

S(PP) w0 E) = 3 ", Dl B+ (e ©)

= L{ > > LSF;,}zqi(w)Pcmdé'

2t lei<m jiai<y o)
1 S 2w .
i e ol PS'} 05 ((®;(5)—1)q;)pcadt
21
1 2ne
<y jia=r o) Sl"s,.;z: P (O))puwdt
F>izl

oo

|®I<N  j=N§

=1

T 2ni

where r, ,&€ SP{Re 2"~ *-5N gnd, by the similar way to the estimation of Ry(&,;

x, £) in the proof of Lemma 3.7, is an analytic function of 2 (Re 2<(s,) in the to-
pology of Sp§o+™-*=- Nfor any s,. Using (3.7) we have

&1_! S I_'g,Aé‘ 012 (6)4;) P8 } 47N

[ SO LA LA L) 41

N-1 ¥

1
11:22 Z |q1 P(m)

B=0 j=0 |oi=p-j.

N1 (Bt 1
=2 {Z 2 Qj(m)P(w)‘FQM(P“ILI)“}‘CQ#}
=0 .

j=1|ef=p-j

It is clear that Sl"g I,dt e S-=, and is an analytic function of 2 in the topology of
LA

Spo; for any s,. By the similar way to the proof of Lemma 3.6, we see that
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S I t*Idt and S Ie &*1dE belong to SpFe®t™-¢*-ON and are analytic in 2
A ,A

(Re 2<<s,) in STFo+™-@-ON for any 5,. Now we write

1

N-1
pz+1(x’ g) - 2—7;; §§Z+Ide§+r:+1,N(x) E) .

SFE,A i
Then, by (3.11) we see that 7/, y(x, £) belongs to SFfe#+H~®-N and is analytic
in 2 (Re <Cs,) in Spgo™™-®-HN for any 5,. Consequently we see, by taking large
N, that o(P,P—P,,,)(x, £) is analytic in 2z in the topology of S3% for any s,.
Then, we see that, for any positive integer %,

O-(Psz—Pz—i—k)(x) E)

= o((P.P—P, ., )P* ) (%, E) 4+ 0(Porp- L= Pois) (%, §)
is analytic in 2 in the topology of S3% for any s,. Hence, for any z, and z,, if
we fix a positive integer & such that Re z,—k<0, j=1, 2, then writing

PZ]Pzz_le+zz = Pz1(Pzz_Pzz—2kP2k)+(Pz1_le—kPk)Pzz—2kP2k
+Pzl—kPk(Pzz—zk_P—szz—-k)PZk+le—k(PkP—k_I)Pzz-kP2k
_I_(Pz1—szz—k_le+zz—2k)P2k+(P;1+zz—2kP2k_le+zz)

we see that o(P, P,,—P, . .,) (%, £) is analytic in z, and 2, in the topology of S3¢;
for any s,. 'Thus the proof is complete. Q.E.D.

4. Generalized Dirichlet problem

Let p(x, £) be an /X! matrix of symbols p;.(x, £) which satisfies the as-
sumption of Theorem 3.2, and let P,=p,(x, D,) be complex powers of P defined
there.

We define a Hilbert space H; p by

H,p={ucH_.; Pucl?

provided with the norm: [jull, p= {||Pa| 2+ || D(D,)ul[2}**, where ®(£) is a fixed
function of S such that ®(£)>0 in R}.
Then we have

Theorem 4.1. For any real number s, there exist constants Cs and C;
such that

1) Cilltelloms = ltlls,p Z Colltt]lons for s=0,
(Callullms < luells,p = Col[tellrms for s<0.
Proof. Noting P,& S3*i(s=0), P,e Si7%'(s<<0) and &(D,)=.S~~, we have the

right halves of (4.1) by means of Lemma 1.4. For s=0 we write

”uH'rms = ”/\Tmsu”o = H/\Tms(P—-sPs_Ks)u”o »



CompPLEX POWERS OF HYPOELLIPTIC PSEUDO-DIFFERENTIAL OPERATORS 163

where K,&S5= which is defined by P_P,=I4+K,. Then noting A™P_,
€88 and A™K,&8-", we have by Lemma 1.4

ot roms < [| AT P_o( P)l o+ 1 A ™ K|, < C (1|1 Pstel o+ 28]l s ) -

On the other hand, for any £>>0, there exists a constant C, such that

(ot rys—1 S [t cms+ Cel | D(D Yl
so, if we fix >0 such that C}’,<<1/2, we have

% [[2e]] s S C3' (1| Pstal o+ Co, [ |D(D Jul o) -
Hence, we have C}||u]|,ps <|lulls p for s=0. Writing [lull,,s=||A"(P_P;—K)
ull,, we can also prove the statement for s<Z0 in this manner. Q.E.D.
Lemma 4.2. Let P(€S8% ;) be a formally self-adjoint in the sense
(Pu, vy = (u, Pv)y  foru,veS,

and satisfy the condition of Theovem 3.2, and let P, be complex powers of P defined
there. Then, we have

4.2) P, =Pz (mod S~~),
where P,*(& 8% ;) is defined by
(P, v)=(u, P,¥0)  foru,veS.

Proof. By the assumption it is clear that (P*¥)*> = P* for any positive
integer k. If we can prove

4.3) P, ®=P;for Re2<0,
then, by v) of Definition 3.1, it follows that for kA(Re z<Ck)
P O=(PyP,_)® = P, ;0P =P;_ P,®
=P; f(P¥)*® = Pz_ P*=P;_,Pr=Pz(mod S~~).

Hence, we have only to prove (4.3). Let R (§)=r({; x, D,) be the parametrix of
P—¢I. Since I=((P—EDR(E))*=R(§)*(P—EI), R(Y)™ is the parametrix of
P—ZI. Now, using the path T, of (3.24), we have for u, vE S

(P4, v)=<ge‘x RN GRIORY

o i £ RO )5 = ST e, REy o)t
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_ gu(x)(%spogzmdé’)dx .
Then we get
P %y = Zim ( SP,,?ZW‘JC )

= — selertae) ([ 7oEs B,

T 2mi
so that we have

o(P, %) = — L(Srow*xg; x, £t ) = Q%Sro‘:z’(*)(f; %, E)dE .

27t

Noting r*(&; x, £) is a parametrix of P—{I, we have (4.3). Q.E.D.

Theorem 4.3. Let L be an | X1 matrix of pseudo-differential operators of
class 8% s(m>0), and set

P=(L+L%)[2, 0 = (L—L*)/2.

Assume that o(P)(x, £) satisfies the assumption of Theorem 3.2 and P_;QP _,& S8} ;,
where P, is complex powers defined by Theorem 3.2. Then, there exist constants C
and A, such that

(44)  (Lu,v)| =Cllulls pllollsp  foru,0eS8
and
(4.5)  Re (Lu,w)=|lull} p—N llull;  forusS.
REMARK 1°. i) Assume that Q= S5;%. Then, we have
P_QP_ 485, since P S;7".

ii) For the single case we assume that Re o(L)(, £) satisfies

A Re o(L)(x, &) ZcE™,

B)' [32Dr(L)(x, £)-(Re o(L)(x, E))"] S aCE>~" "1+

and

C’) are Re o(L)(x, &) is well-defined

for large |£| instead of conditions A)-B) of Theorem 3.2°. Then, by using
the asymptotic expansion fomula of o(P,)(x, &), we can see that the operator L
satisfies the conditions of Theorem 4.3.

Remark 2°. The inequality (5.4) is a generalization of Géarding’s inequa-
lity to hypoelliptic operators, which is different form [3], [9], [11], [17] where the
positivity as in A)’ is not assumed, but the space is limited to the usual Sobolev
space.

Proof of Theorem 4.3. We can write for u, v S
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(Lu, v) = (Pu, v)-+(Qu, v)

(4.6)
= (Pyu, Py®v)+(P_3OP _y(Py), Pyv)+(Ku, v)

for some K&.S™. 'Then, from Lemma 4.2 and the assumption P_;QP_,& 83 ;,
we have

(#7)  (Lu, 2)] =Cllulls,pllvlls,p for u, v€ S

for a constant C. On the other hand, using Lemma 4.2 again and noting
Re (Qu, u)=0, we have

(4.8)  Re (Lu, u) = (Pu, u)=||ull} p— Nollue]
for a constant A,. Q.E.D.
Now, let V be the closure of C7(Q) in Hj p for an open set Q of R}, and set

(4.9)  Bi[u, v] = (P, Py*0)+(P1QP _(Pyu), Py*0)+(Ku, v)-+Mu, v)
foru,veV .

Then, we have

Theorem 4.4 (Generalized Dirichlet problem). Let L be a matrix of
operators of class S 5 (m>0) which satisfies conditions of Theorem 4.3. Then, for
any f & L*(Q), we can find a unique element ucV such that

L+Nu=f inQ
for any X=X\, where A, is a constant determined in Theorem 4.3.
Proof. Consider B,Ju, v] for u,v€V. Then, from (4.6)-(4.9) we have

| Bilu, ©]| =Cllully,pllollye
Re By[u, u]=|lull§ » foru,vel .

(4.10) {

Then, by means of the Lax-Milgram theorem (see, for example, [1], p. 98), we
have a unique element u= ¥ such that

B,[u, v] = (f, v) for any v V.
In particular for ve C5(Q) we have from (4.6) and (4.9)
Bi[u, v] = (Lu, v)+\(u, v)
Hence, we have (L+A)u=fin Q. Q.E.D.

RemaARk. Consider a neighborhood U(x,) of a point x, on the boundary
80 of Q. Assume that 8Q is smooth and P is elliptic of order m, (>0) in U(x,)
in the sense
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|o(P)(x, £)| =CKE™,

(4.11) { _
|o(P)ea (%, E)| = Cf g<EX™0~1*1H28in Ulx,)

for large |£|. Then, for any a(x)=C(U(x,)), we have
(4.12) aucH,,,

and concerning the trace of au, we have

(4.13)  Bl(au)|4e =0, 0= j<(m,—1)/2,

where 0, denotes the normal derivative for 6Q. In fact, we can write for some
KeS--
au = aP _y(Py)+aKu = (aP_y A¥*) (N "¥*Pu)+aKu .

Then, noting Pyu& L* we have A~¥Pue Hy, , and in view of (4.11) we have

aP_iAN¥eS; ;. Consequently we have (4.12), and noting supp ucC {3, we get
(4.13).

ExampLE. Consider a single operator
L= a@) A"+(1—a@) A",
where m, m’(m>m’) are positive number and a(x) is a C~-function such that
a(x) = 0(|x| £1/2), — 1(1x| 21), 0<a(x)<1(1/2< || <1)
and for a fixed o1
| DZa(w)a(e)| =C.l ] — - |~ for any .
Then, setting 7=m’/m, we can see that o(L)(x, &) satisfies A) and B) of Defini-

tion 3.2° for any 0<8<C1 and p=1, so that Theorem 4.3 is applied to this
operator L.

5. Index theory

First we describe results obtained in [10] with complete proofs. Let P be
a system of pseudo-differential operators of class S%' ;, which maps H_.. into
itself, more precisely H,,,, into H, boundedly for any real s.

Consider P as the closed operator of L}(=H,) into itself with the domain
9(P) defined by

.1y  DP)= {ucsl’ Pucl? .

Then, the adjoint operator P*: L>->L? is defined as follows. For a v=L? if
there exists g L? such that

(5.2) (Pu,v)=(u,g) forany uc P(P),
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we say that v belongs to the domain 9(P*) of P* and define P*v=g. On the
other hand we have defined the formal adjoint P“* of class S7 ; by

(5.3)  (Pu,v) = (u, P*0) for any u, v S.
Then, considering P*> as the closed operator L’ into itself as above, we have
54) DP®)= {vel?; P*vel’}.

Concerning P* and P“* we have

Lemma 5.1. Let P be a system of operators of class S 5. Then, as the
operator of L* into itself, the operator P™® is an extension of P*, so that we have

(5.5)  DP¥)CDP*).
Proof. Assume ve 9(P*). Then, noting PH(P)DS, we have
(u, P*v) = (Pu, v) = (u, P*%v) .

In the above the right half is guaranteed, if we take a sequence v,(€S)—
v in L? and, considering # as an element of H,,, apply Lemma 1.4. Then, we

have P*y=P“*®’y< L?, which means that v& D(P*). Q.E.D.

Lemma 5.2. Let P(€.S% ;) have complex powers P, in the sense of Defini-
tion 3.1. Then, we have, for any 2,€C, P, *>=P,* as the operator of L* into
itself.

Proof. By means of Lemma 5.1 we have only to prove
(5.6) (P u,v)= (u, P, *0) foruc Y(P, ), ve PP, *).

By i) of Definition 3.1 for a large N we have PucH g, ,, for uc 9(P,) so,
using Lemma 1.4, we have
(Pu, P, *v) = (P, ,Pu, v) = (PP, u, v)

5.7
(5.7) +((P.,P,—P.P, )u, v) for uc PP, ), ve D(P,*) (Re s<—N).

From Lemma 2.3 and iii) of Definition 3.1 we have (P, P, *%) is analytic in
z when Re 2<<0, and from Lemma 2.2 and iv) of Definition 3.1 we have
lim (P, P, ®v)=(u, P, *v). Since P, uc L? we also have that (PP, u, v) is
s>-0

analytic in z when Re <0 and lim (P,P, u, v)=(P,u,v). Setting 5,=0 in )
S3»—0
of Definition 3.1 and writing P, P,—P.P, =(P, P,~P, . .)+ (P, ..—P.P,), we
can see that ((P,,P,—P,P, )u, v) is analytic in 2 and lim (P, P,—P,P, Ju, v)=0.
S3-0

20" 7

Then. letting 2—>—0 on the real line in (5.7), we get (5.6). Q.E.D.

Lemma 5.3. Let p,(x,£), j=0,1,2, -, be a sequence of slowly varying
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symbols of class S%hi; (resp. So"’;g's) such that m; | — oo as j—>oco. Then we can con-
struct a slowly varying symbol p(x, E)S S”) (resp. S" s) such that

(58) P, )= 32,5 ESTE, (resp. STF
and 1s slowly varying for any N (c.f. [4]).
Proof. Take C~-functions (&) and yr(x, &) such that
(59) {¢(z)=0(|s|§1),=1(|s|22),
Y(x, ) = 0(lx[+[E]=1), = 1(Ix|+ 1] =2).
Then, setting p(x, £)=p,(x, &)+ i(p(tj_lzf)\#(t}'lx, t7'E)p;(x, £) for an appropriate
t,—>oo(j—>c0), we get a requiredjz;mbol. Q.E.D.

Lemma 5.4 (c.f. Prop. 2.1 of [8]). Let {P,} e 11 be a family of operators
of class S% 5 such that o(P,)(x,E) is a continuous function of t in S% ;. Suppose
there exist two families {Q,} sero 11 and {K,}sero, 1t Sp 5 such that Q,P,=I+K,, Q,
is strongly continuous in t, and K, is uniformly continuous in t and compact as opera-
tors from L? into itself. Then, it follows that

dim ker P,<Cco and Re P, is closed
and that
index P,=dim ker P,~codim Re P,

is upper semi-continuous in t, where ker P, denotes the kernel of P, and Re P, denotes
the range of P,.

Proof. For ucker P, we have
0=0Q,Pu=ut+Ku.

Then, we can easily see that dim ker P,<Cco, sicne K, is compact. If we write
L*=ker P,&@ (ker P,)*", then, for the closedness of Re P, we have only to prove

(5.10)  |lulle< C,||P.ull, for uc D(P,) A (ker P,y

for a constant C,.
Assume that there exists a sequence {u,}%5_, of D(P,)~ (ker P,)* such that
1=|lu,|l,=v||Pa,l||,. Then, we have

0<-Q,Pu,=u,+Ku,.
Since K, is compact, by taking a subsequence we may assume that
Ku, — vin L* for avel®.

Then we have v&ker P, and consequently 0=(v, u,)—||||’=1, which derives
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the contradiction.
For the proof of the upper semi-continuity of index P, we first get the state-
ment:

(5.11) If t,~2,&[0, 1], u,—u, in L*, P, u,~f, in L?, then, P,u,=f,,

which means that the graph {(¢, u, Pu); tel, us 9(P,)} isclosed. Foranyve
H,, we have

(Puios ©) = (s, Pyy0) = lim (u, Po,0) = lim (Pyy 1, 0) = (for 0,

since u,—>u, in L? and P, *v—P{*v in L’=H, by Lemma 1.4 and the continuity
of o(P,)(x, £) in S% 5. Hence we get (5.11).

Now let W be a finite dimensional subspace of L? and set A,={uc D(P,);
PucsW}. Then we can easily get

(5.12)  {|Pu||,=C|lull, for u€ A,

for a constant C independent of : [0, 1].

Assume there exist sequences {#,}%_, and orthonormal systems {x{*, -+, 4}
of A, for a fixed ! such that ¢z,—%,&[0,1]. Then, writing Q, P, u{’=uy" -
(K, — K, u+ K, u$, j=1, -+, I, we may assume that K, 4’ —>v; and P, uj’—
w;€W for j=1,.--,1 by taking a subsequence, since K, is compact and
P, u €W (finite dimensional) with (5.12). Hence from (5.11) we have P, u;
=w; for u;=—v;4-Q,w;. It is clear that u,, -+, u, is orthonormal, which
means that dim A, is upper simi-continuous in £. Then, for any W,c(Re P, )™,
we have

dim A, > lim dim A,=lim {dim ker P,+dim (Re P,) A W}

trty t>t,

= lim {dim ker P,4dim W,—dim (Re P,)"}.
ity
Since dim A, = dim ker P, , this means that index P, = lim inex P,. Q.E.D.
t>ty

Theorem 5.5. Let P be an [X1 matrix of operators of class S (m>0)
such that o(P)(x, &) satisfies conditions (3.1) and (3.2) for large |x|+ |&| uni-
formly on B,. Assume that o(P)(x, &) is slowly varying and that, for B=+0,
(3.2) holds with a bounded function C,,g(x) such as C,,pg(x)—0(]x]—>0c0).
Then, we can construct complex powers P, such that o(P,)(x, £) is slowly varying
and

(5.13)  o(P,, PPy (® )ES (= N S).

ReEMARK. We may assume that o(P)(x, £) satisfies (3.1) and (3.2) for every
x and £. In fact, for a Cy-function (%, £) such that 0=<+(x, £)<1, and v(x, &)
=1(lx|+ &1 =1),=0(|x]| 4 |E| =£2), We set P,=P-+&'y(&x, €D,)], Then, for
a small fixed £,>0, o(P, ) (x, £) satisfy conditions (3.1) and (3.2) for every x and
g, and has complex powers P, ,. Weset P,=P, ,+2(P—P, ;). Then, noting
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P—P, ,=P—P, =&"v(Ex, ED ) es -~, we see that P, are required powers.

€g,1

Proof. Instead r({; x, £) of (3.16) we consider, using functions @(£) and ¢
(%, &) of (5.9),

(14 (Eim E) =l % O 2 0OV 1704, 3 )

for an appropriate increasing sequence {¢;}%5_,. Then, we may assume that
P, ) defined by (3.23) is slowly varying and that

(5.15)  o(P)(x, &) —o(P)(x, E)‘e S?;",%Re -8,

Now, for any N, we define R, ,, y ESp{Fe 2t Rezp

by (Rupea)(®8) = 33 = 0(Pu) (3 9P, ). Then, by ii) of

1<K o
Lemma 1.5, we have

(5.16) P,P,—R, .. ~nE §;r:(sRe 2)4m(Re 2)=(P=DN

Noting o(P)(x, £)16(P)(x, )2 = o(P)(x, £}, we have
(5.17)  o(R,, ., n) (%, E)—c(P)(x, E) +ZZE‘S°':J".(8Re 2+(Rez)-(p-8)
Hence, if we write

(S_wa) Pz1Pzz_le+zz (le z2 Rzl,zz,N)+(sz,zz,N‘Pzﬁ—z?) )
then, using (5.16), (5.17) and (5.15) for z=2,+=z,, we get (5.13). Q.E.D.

Theorem 5.6. Let P be an X1 matrix of operators of class S% 5, m>0,
which are slowly varying. Assume that the symbol o(P)(x, £) satisfies conditions
(3.1) and (3.2) for large |x| -+ |E| uniformly on =,. Then, the operator P as the
map from L? into itself with the domain 9(P)={ucsL?; Puc L*} is Fredholm type
and we have

(5.18) index P=dim ker P—codim Re P =0 .

Proof. Let P, be complex powers of P defined in Theorem 5.5. For
t[0, 1], consider {P,},c; and set Q,=P_,. Then, by iv) of Definition 3.1,
0O, is strongly continuous in # as L*-operators. Moreover, if we write Q,P,=
P_,P,=I+K,, then, by means of (5.13), K,E.§‘°° and consequently, by Lemma
1.4 and Lemma 1.6, K, is uniformly continuous in ¢ and compact as operators
from L?into itself. Hence, we can apply Lemma 5.4 and we have that index P,
is upper semi-continuous in ¢. Now, using .Lemma 5.2, we note that ker P,=
(Re P,*)"=(Re P,*’)", (Re P,)"=ker P,*=ker P,*®, so that index P,= — index
P, Since (P,P_,)*=P_, P setting Q,=P_,*, we have also that index
P, is upper semi-continuous in #. Hence we get that index P, is continuous,



ComprLEX PowERs OF HYPOELLIPTIC PSEUDO-DIFFERENTIAL OPERATORS 171

so is constant in [0, 1]. Then, index P=index P,, t € [0, 1],=index I=0.
Q.E.D.

Lemma 5.7. Let P and Q be I X I matrices of operators of class S’y ;5 such
that P has complex powers P, and Q has the parametrix Q_,. Assume that QP _,
and PQ_, are of class S, 5. Then, for P,'=QP_,,,, we have

(5.19) P/*=PpP,'®
Proof. We write
P,=PP_,,.=(PO_)P, (mod ™) and P,'=(QP_))P, (mod S~),
then we can see that
(5.20) P,uel’if and only if P,/'uc L? for ucH _...
If we write, for some K& S, P,"=(QP_,)P,+ K, then we have
(5.21) PO = P,S(QP_)* 4+ K,

Now we assume that ve P(P,'*), i.e., v&L? and P,"Pve L’. Since o(QP_)¥
€S, 5, by means of (5.21) we have

(QP_)*®veL? and P,*(QP_)*ycL?.

Then, noting P,**=P_* by Lemma 5.2, we have (QP_))*ve 9(P,*), so that,
for any ue 9(P,’), we have, noting uc 9(P,) by (5.20),

(u, le(*)v) — (u, Pz(*)(QP_l)(*)v)_'_(u’ K(*).v)

= (Pu, (QP_))*v)+4(u, K*v)

= (QP..Pu, v)+(Ku, v) = (P,'u, v),

which means that v 9(P,’*). Hence, by Lemma 5.1 we have
P,/ O=P,™* Q.E.D.

DErINITION 5.8. For [x ! matrices P and Q of class S% ; we say that o(P)
(%, £) and o(Q)(x, &) are equally strong, when they satisfy with each other

(522)  [lo(Q)@( E)o(P) (s, £) IS Ca s@)E>00
and
(5:23) llo(P)B(x E)o(Q) (@ B)l| < CLa(x)E>e10w

for large |x|+ |£|, where we assume that, for B840, C, g(x¥)—0 and C, g(x)—0
as |x|—oo,
Then we have
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Lemma 5.9. Let P and Q be I X I matrices of class S™; (m>>0). Assume that
o(P)(x, &) and o(Q)(x, &) satisfy conditions (3.1) and (3.2) for {=0 and are equally
strong. Then, for parametrices P_, of P and Q _, of O (which can be defined by (3.6),
(3.7) and (3.16) by setting =0, c.f. also [6]), we have that o(P_,)(x, £) and o(Q_,)
(%, E) are slowly varying and that

QP €8, and PQ_,€S2,

Proof. We expand for large N
a(QP-)(x E) = 2 — O'(Q)“”’(x E)o(P-1)ca(%,E)+Ru(, £)

such that Ry(x, £)€S; ;. Then, noting the form (3.14) and using (5.22) we see
that o(QP_,)(», £)€S, ;. Analogously, using (5.13), we get o(PQO-,)(x, £)e
e QE.D.

Theorem 5.10. Let P and Q be I X I matrices of class S7y s (m>0). Assume
that o(P)(x, &) and o(Q)(x, £) are slowly varying and equally strong, and that
P has complex powers P,. Then, QP_, ,(0=t<1) is Fredholm type as the
L’-operator, and we have

(5.24)  index Q = index QP_ ., = index QP_, .
Moreover we have

(5.25) index Q = index Q,,

where Q, is defined by

Q) 8) = vl 0@, £ )otr) (25, )"

with the function r(x, £) of (5.9) and a large fixed constant ¢ >0, which is an elliptic
operator of class S3, and is slowly varying (c.f. [4]).

Proof. Set P,/=QP_,,, and let Q_, be a parametrix of Q. Then, Q,'=
P,_,Q_, is a parametrix of P,” and belongs to S; ;. If we write Q,'P,'=I+K,’,
then by Lemma 1.6 we have K,’=S5-~. By Lemma 5.7 we have P,"*=P,/*=
P_ /0% and Q,/®=0_ P _® jga parametrix of P,/*, Then, in the
same way to the proof of Theorem 5.6, we get (5.24). By means of Lemma 1.5
we can write for large V

S(QP)(5 8) = 33 - a(0) " Do(P-Julx, E)Hrae, )

such that 7 (x, z‘j)ESo a$7%. Then, noting that
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o(Q) (%, E)(o(P_)) (%, E)—r(c™'x, ¢ E)o(P) (v, £) e S8
and

a(0) (%, E)o(P- )am(x, E)E §;_‘§‘8> for |a] 21,
we have

o(QP-))(x, &) = ¥(c7'x, c7'E)o(Q) (x, E)o(P) (%, £)'+Ry(x, &) ,

where R(x, £)e S’;, ¢-%_ Since by Lemma 1.6 R(x, D,) is compact on L? we
have index QP _,=index P,’, where P,’ is defined by

o(Py) (%, &) = V(c™'x, cT'E)a(Q) (%, E)o(P)(x, £)7* .

Now consider a family of symbols

Q) )= W 00 ((55) ® (555) )P

g G
((5) "= (&) )

It is easy to see that {o(Q,)(%, &)} =.<, Mmakes a bounded set in S; ; and Q,=P,’.
Furthermore we have with a constant C' >0
C'<Z |deto(Q)(x, )| =C for large x|+ |E] .

As the regularizers for O, we adopt operators Q_, defined by o(Q_,){x, £)=+r
(e,7'%, ¢, E)a(Q.) (x, E) (€ S, 5) for a large constant ¢,>0. For a fixed v L?

we wtite
Q—eu_Q-eou = Q-s(l_11"5)u+(Q—e‘I"Bu_‘I"SQ—eu)
+‘P‘8(Q—e—Q-so)u—‘—(‘ll‘sg-sou_Q-—eo‘l"su)_’_Q—zo(‘pS_ 1)“ ’
where yry(x) = (8x), >0, with a function J~(§) of (2.1). Then by Lemma 2.2
we have for any fixed §>0 )
|Wrs(Q-e—Q-eoullo > 0 as € > &,

and other terms tend to zero in L? as § | 0 uniformly in & Hence we see that
0, is strongly continuous in L? and by Lemma 5.4 we have

index P, = index Q, = index Q, . Q.E.D.
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