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Abstract—QR decomposition (QRD) is widely used in various
engineering applications and its implementation has a significant
impact on the system performance and complexity. This paper
develops a low-complexity QRD algorithm based on fast plane ro-
tations, which does not require square-root operations for decom-
posing a complex-valued matrix. Furthermore, an update-based
implementation is presented where computations are performed
incrementally as the data arrives sequentially in time to drasti-
cally reduce the overall latency and hardware resources. Practical
results for QRD-based spatial correlation estimator are provided
to demonstrate the effectiveness of our solution for multiple-input
multiple-output (MIMO) systems with complex-valued signals.

Index Terms—Least-squares problems, fast plane rotations,
square-root free QR-decomposition.

I. INTRODUCTION

M IMO techniques have been widely adopted in wire-
less and wireline communications because they offer

significant improvements in the data transmission rate and
quality of services (QoS). QR decomposition (QRD) is a key
MIMO technique for decomposing a matrix into the product
of an orthonormal matrix and a triangular matrix and is widely
used for robust numerical computations of the eigenvalues of
a matrix and finding least squares approximations. In recent
years, there has been considerable interest in designing QRD
algorithms and their associated hardware architectures based
on Householder reflections [1], Givens rotations [2] and the
Gram-Schmidt procedure [3].

However, the recent literature on QRD implementation
mainly focuses on wireless MIMO systems where QRD is
typically performed on a large number of small matrices (e.g.,
decomposition of channel matrices with size up to 8 × 8). In
such systems, the input data for QRD computations i.e., all the
elements of a given matrix, is assumed to be available simul-
taneously. QRD implementation throughput is often improved
by pipelining the various row and column operations where
each pipeline stage can work on an independent set of inputs
[4], [5]. On the other hand, our focus in this paper is on ap-
plications involving “overdetermined systems” e.g., computing
alien noise correlation in vectored VDSL2 systems [6], [7]. In
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such applications, the input to the QRD hardware A ∈ C
m×n,

is provided sequentially over time where m and n correspond
to the number of observations (received symbols) and the
number of receivers, respectively. Furthermore, the estimation
accuracy required often necessitates processing a large number
of observations (m � n) which makes the triangularization of
large complex-valued MIMO matrices very challenging due
to high computational complexity and large memory require-
ments. Most of the QRD approaches reported in the literature
based on Householder, Givens or Gram-Schmidt procedures
perform operations across multiple rows and columns and often
involve square roots and multiple division operations. This can
make the QRD of large matrices prohibitively complex with
impractical latency and memory requirements, since the data
received at multiple time instances has to be stored before QRD
computations can begin.

In this paper, we make the following contributions. First, we
derive the complex-version of the fast plane rotation algorithm
from its real counterpart [8], [9] and show that the square-
root operations can be avoided and a lower implementation
complexity can be achieved for the decomposition of complex-
valued matrices as well. Fast plane rotations (also known as
“Fast-Givens transforms”) were formulated by Gentleman [10]
to reduce the number of scalar-vector multiplications and elim-
inate square roots from the calculation of the plane rotations.
Anda and Park [9] later developed fast plane rotations with
dynamic scaling to prevent the problem of underflow and over-
flow, which eliminated the computational overhead of moni-
toring and periodic rescaling necessitated by the standard fast
rotations. Second, we present an iterative QRD approach which
exploits the sequential arrival of input data to break up the
O(mn2) QRD computational complexity into m update-steps
of O(n2) complexity and, hence, minimize the overall latency,
silicon area and memory required for practical implementation.
Third, we quantify the benefits of our proposed approach by
considering the problem of alien noise mitigation for upstream
vectored-VDSL2 transmission as a case study to demonstrate
the effectiveness of our approach for MIMO systems with
complex-valued signals. The following notation is used in the
rest of this paper. Bold uppercase letters indicate matrices.
The ‖.‖ indicates Euclidean norm, and the superscripts T and
H denote the transpose and the complex conjugate-transpose
(Hermitian) operations, respectively.

II. QR DECOMPOSITION APPROACH USING COMPLEX

FAST PLANE ROTATION

Plane rotations are widely used in various algorithmic con-
texts, e.g., the QR decomposition, singular value decomposi-
tion, and reduction to the Hessenberg form. Givens rotation
Gn(i, k, θ) of order n through an angle θ in (i, k) plane is a
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rank-two correction to the identity matrix [8], which involves
computation of cosine and sine terms (refer to Table II for
details). For a given x = [f g]T ∈ C

2 and d = [df dg]
T ∈ R

2
+,

the fast plane rotation (also referred as the complex Fast-Givens
transformation) M is computed using Algorithm 1 such that the
second component of MHx is zero and MHDM is a diagonal
matrix, as shown below

M =

[
β 1
1 α

]
︸ ︷︷ ︸
type=1

or

[
1 α
β 1

]
︸ ︷︷ ︸
type=2

MHx =

[
r
0

]
& MH

[
df 0
0 dg

]
︸ ︷︷ ︸

=D

M =

[
dnewf 0
0 dnewg

]
︸ ︷︷ ︸

=Dnew

(1)

where, α, β, r, type, dnewf , and dnewg are the outputs of the
function fast.givens of Algorithm 1. The key idea behind QR
decomposition using fast plane rotations is that the square roots
needed for the computation of the cosine and sine can be
eliminated. Consequently, the number of multiplications can
be reduced through the factorization A = RD, where D is a
diagonal matrix and R is accordingly scaled. During QRD,
these two factors are updated separately and their product is
only calculated at the end, if an explicit result is required.

The Fast-Givens QRD using complex Fast-Givens transfor-
mations is shown in Algorithm 2. The “full QRD” algorithm
(Algorithm 2A) initializes the diagonal matrix D as the identity
matrix and Rfull as the input matrix A. The elements of matrix
Rfull are updated iteratively by overwriting the previous values
to ultimately arrive at the final result of a triangular matrix
Rfull. An appropriate form of Fast-Givens transformation is
selected for each iteration in Algorithm 2A (based on the calcu-
lated “type”) in order to minimize the growth factor (1 + γ)
of the entries in Rfull and D. Overflow can be effectively
managed by using dynamic scaling techniques as described
in [9]. The complex Fast-Givens QRD can also be broken
into incremental QRD-update steps as shown in Algorithm 2B
to exploit the sequential arrival of input data. During each
incremental QRD-update step, the incoming input data row-
vector is stored in a FIFO buffer (vector new as shown in line 9

of Algorithm 2B). Next, complex Fast-Givens transformations
are used to zero-out the input data row-vector elements (inner
for-loop on line 11) and to update upper-triangular matrix R.
Once the upper triangular matrix R has been updated, the next
set of inputs (next observation) are written into the FIFO buffer
(i.e., new vector is overwritten), and the QRD-update process
is repeated until all of the input data to be used for QRD is
exhausted.

Tables I–III compare the computations required by the
Householder, Givens and Fast-Givens transformations based
complex-valued QRD algorithms, respectively. Note that the
complex Fast-Givens QRD does not require any square root
operation. Although, the square root operations can also be
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TABLE I
HOUSEHOLDER QR COMPLEXITY

TABLE II
GIVENS QR COMPLEXITY

avoided using the CORDIC algorithm, however, it suffers from
high computation latency [5]. The round-off properties of a
Fast-Givens transformation are the same as in Givens rota-
tion techniques [8], [9]. The update-based Fast-Givens QRD
(Algorithm 2B) divides the QRD computations into m update-
steps of O(n2) complexity, where the update-step computations
can begin as soon as new input data (input matrix row) is
received instead of waiting for the entire input data matrix. If
the computations for the update-step are completed before the
arrival of the next set of data, the processed input data row-
vector can be discarded from memory (input FIFO) to make
space for new incoming data. Thus, the overall latency and
memory requirements can be drastically reduced.

TABLE III
FAST-GIVENS QR COMPLEXITY

Fig. 1. QR decomposition based alien noise mitigation.

III. CASE STUDY: ALIEN NOISE MITIGATION

This section compares the performance of our proposed Fast-
Givens “full QRD” and “update-based QRD” (Algorithms 2A
& 2B). We have considered the problem of alien noise mitiga-
tion in vectored-VDSL2 transmission [7], which involves QRD
of a large complex-valued alien noise matrix A ∈ C

m×n(m �
n), for estimating the alien noise spatial correlation across
the n vectored-VDSL2 lines (receivers) based on alien noise
observed at each line during m training symbols, as shown
in Fig. 1. The alien noise prediction filter coefficients for
each frequency subcarrier are given by the elements of the
normalized upper-triangular matrix whose jth row R̃(j, :) =
R(j, :)/R(j, j), where R is obtained from QRD of input noise
matrix A = QR.

Floating point computation of alien noise prediction filter
coefficients, R̃ using our proposed full and update-based Fast-
Givens QRD exactly matches the result obtained by any other
QRD method (Householder, Givens or Gram-Schmidt). The
normalized error (= finite-precision value − floating-point
value)/floating-point value) for different wordlength is shown
in Fig. 2 for QRD implementations based on our proposed full
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Fig. 2. Error in full and update-based Fast-Givens QRD.

and update-based Fast-Givens QRD. For Fast-Givens QRD to
work with any wordlength, appropriate scaling by power of 2
(hardware shift) are necessary at two stages

1) Fast-Givens QRD uses real-valued inversions (e.g., 1/df ,
1/‖f‖2 etc.). The input to the inversion block must be
scaled to be within a range for minimizing error (range is
[1,8) for this paper).

2) The f and g inputs of Fast-Givens transformation block
(Algorithm 1) are scaled by the same factor such that
the magnitudes of re(f), im(f), re(g), im(g) is less than
1. Similarly, the df and dg inputs are scaled by another
factor to be within [1,8).

As seen in Fig. 2, the normalized error for full and update-
based Fast-Givens QRD is almost the same and the error
for both increases as wordlength decreases. The performance
also degrades with increasing input matrix dimension since
elements in R̃ grow by 1 + γ (see Algorithm 1) and processing
more elements increases the dynamic range. Fig. 2 assumes
unlimited hardware and computation time for both full and
update-based Fast-Givens QRD. However, if we consider a
typical residential vectored VDSL2 deployment [11] (300 lines,
VDSL2 profile-17a [12]), the memory required to store each
input data row is about 1.4 megabyte (MB) assuming 16-bit
data-wordlength for real and imaginary noise signals. Since
update-based Fast-Givens QRD breaks the O(mn2) complexity
of the full Fast-Givens QRD into m update-steps of O(n2)
complexity, which can begin as soon as each input data-row
(sync-symbol) arrives, memory requirements are drastically
reduced and a much larger number of of VDSL2 training
symbols can be processed to improve the estimation accuracy
of alien noise prediction filter coefficients. Fig. 3 shows the sys-
tem performance for full and update-based Fast-Givens QRD
assuming total computational time of 0.54 ms. Hardware for the
spatial correlator block capable of handling up to 300 VDSL2
lines consists of 4k multipliers, 7.2k adders, 6k registers and
7k multiplexers. Total gate count and the clock frequency for
the spatial correlator block was 7.8 M gates and 200 MHz,
respectively, using IBM 65 nm standard cell library.

Fig. 3. Data rate improvement using QRD-based alien noise mitigation.

IV. CONCLUSION

We developed a QRD algorithm based on complex fast plane
rotations, which does not require square-root operations. An
update-based implementation of the QRD algorithm which
exploits the sequential arrival of input data was described to
drastically reduce the implementation complexity and latency.
Taking vectored-VDSL2 system as a case study, complexity
comparisons, simulation results and gate counts were presented
to illustrate the significant gain in system performance and
reduction in implementation complexity.
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