
This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg)
Nanyang Technological University, Singapore.

Complex Queries in a Shared Multi User Relational
Cloud Database

Sidorov, Vasily; Ng, Wee Keong

2014

Sidorov, V., & Ng, W. K. (2014). Complex Queries in a Shared Multi User Relational Cloud
Database. 2013 IEEE Sixth International Conference on Cloud Computing (CLOUD), 903‑909.

https://hdl.handle.net/10356/83219

https://doi.org/10.1109/CLOUD.2013.49

© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. The published version is available at:
[https://dx.doi.org/10.1109/CLOUD.2013.49].

Downloaded on 25 Aug 2022 03:44:47 SGT



Complex Queries in a Shared Multi User
Relational Cloud Database

Vasily Sidorov
School of Computer Engineering

Nanyang Technological University
Singapore

Email: vasily001@e.ntu.edu.sg

Wee Keong Ng
School of Computer Engineering

Nanyang Technological University
Singapore

Email: awkng@ntu.edu.sg

Abstract—While DaaS is becoming more and more popular
enterprises start considering it as an option to reduce IT
maintenance costs. But data privacy and security issues keep
most of them from moving to the cloud. Existing schemes of
encrypting the database usually either provide a very basic
search only (e.g., SELECT * FROM t WHERE t.a = 5) and
nothing more or give users more flexibility at a cost of data
security. In this paper we try to introduce a highly secure and
flexible database encryption scheme allowing multiple users
to perform more complex queries, including cross-table joins
and still achieve acceptable performance by utilizing database’s
built-in indexing capabilities. Several dedicated proxy servers
in between the user and the database server help to achieve this
and make it all transparent for the user. Developed solution
shows acceptable performance level in most of the testing cases.

Keywords-cloud database security; querying encrypted data;
encrypted joins;

I. INTRODUCTION AND RELATED WORK

Such concepts as DaaS or Cloud Storage are becoming
more and more popular among corporate and individual
customers. Since the corporate customers tend to have higher
requirements to the security and reliability of such services
we will consider only them without any loss of generality.
Data storage outsourcing allows organizations to reduce
drastically IT maintenance costs (which is very important
to new small businesses, especially in IT) and to improve
flexibility and scalability of business.

On the other hand, the risks of data theft are increasing.
Moreover, not only third party ill-wishers who could try
to intercept data transfer from outsourced storage to client
and back should be considered. In general, we should also
assume the data storage server itself untrusted, as it has full
access to the data.

Encryption could guarantee data privacy along with caus-
ing a severe performance bottleneck: without applying addi-
tional efforts, database becomes no longer able to answer
data queries without sending back the whole encrypted
piece of data and further client-side decryption and query
execution. In fact, this is not the only issue appearing when
moving to an encrypted database. Most common issues are

inability to perform analytical processing on data anymore,
key management, difficulties with compromised encryption
keys and multi-user scenarios: differentiating access to the
data, enrollment of new users, revoking access.

Many papers have proposed different solutions to the
problem of querying encrypted data. Some of them concern
general issues of searching over the encrypted data [1]–[3].
Others are more aimed at providing solutions for querying
data in a relational database [4]–[7].

C. Dong et al. proposed to use an RSA-based proxy re-
encryption to give differentiated access to the data [8]. Proxy
re-encryption makes it possible to keep the data encrypted
with a master key and give users only a share of the master
key (each user has unique share), and the complimentary
share is kept by a DBMS. Shares of the master key on
their own has no ability to encrypt or decrypt data, but once
they are combined we can fully operate the data. Typical
workflow with proxy re-encryptions does not reveal the
master key neither to user nor to DBMS. This approach also
gives an opportunity to easily revoke/grant access from/to
users. Procedure becomes as simple as create two shares
(one for a new user and one for the proxy) of a master
key to grant access or to instruct proxy to destroy a share
of master key corresponding to certain user to revoke his
access.

Later in 2006 Z. Yang et al. proposed a specific way
to store redundant data for searching purposes along with
the ciphertexts of the data values themselves [9]. The sole
idea of storing additional data for searching purposes was
first proposed by H. Hacıgümüş et al. [10], which is one of
the most important papers in this field. Evolution of proxy
re-encryption introduced by C. Dong [8] in combination
with ideas by Z. Yang [9] was later used by N. T. Hung,
D. H. Giang et al. in one of the most recent works on the
topic [6].

Approach proposed by N. T. Hung et al. maintains several
interesting and useful properties for the encrypted database.
First, it supports easy enrollment and revocation of users
and dealing with compromised keys without having to re-
encrypt data in the database. Second, the system consists of



several independent parts (user, proxies, key manager and
database server) no one of which (except for key manager)
knows in full the secret needed to decrypt data — it is
shared between all of them and since they are independent
they could easily be hosted at different physical locations
(e.g., at different cloud server providers) and unless all
parties maliciously collude data is safe. The key manager
is only needed when a new user is enrolled and could
be kept offline most of the time. Third, proposed solution
is flexible and allows database administrator to fine-tune
security–performance trade-off for every user separately. In
addition, in case keys were somehow compromised, solution
gives an opportunity to easily re-encrypt all data right in
the database without decrypting it. Lastly, proposed scheme
conceals which cells in the database contain ciphertexts for
equal plaintext values, i.e., two ciphertexts in the database
for same original value are different, which blocks a range
of attacks like statistical attack.

However, the system also has several limitations. The
proposed design only allowed users to search for constant
data in the database, not to match different attributes of a
table or perform table equi-joins1.

Our contribution made in this work is a database encryp-
tion scheme, which maintains the security properties listed
above but at the same time has a much wider capabilities:
support of database’s built-in indexing mechanism; ability to
perform basic data search (... WHERE t.col = 3) as
well as more complex queries (... WHERE t.col1 =
t.col2) and even joins; ways to do fine-grained adjust-
ments between security and performance individually for
each column.

The paper is organized as follows: Section II fully de-
scribes all parts of the system and their interactions; Sec-
tion III provides information on how to construct and run
different types of queries in this system and how to interpret
query results; Section IV provides a security analysis of the
proposed system design; Section V contains a comprehen-
sive comparison of the proposed system in various setups
with a conventional plaintext database; Section VI describes
how system executes operations other than querying; Sec-
tion VII summarizes the contribution made in this paper.

II. SYSTEM MODEL DESCRIPTION

We assume that database consists of 2 tables A and B
with attributes Ai and Bi respectively. Each cell of each
table keeps a secure representation of plaintext value T ∗x,y

2,
where x is a row number, y is an attribute index.

The general idea is that along with encrypted value
database stores a fingerprint (in a form of bit array) of
a plaintext value. When we need to do matching with a
constant value or with another attribute we simply match

1Equi-join — join based on pairs of attributes from different tables being
equal.

2T ∗
x,y stands for TA

x,y or TB
x,y

their fingerprints. If they are not equal then the underlying
plaintexts are definitely not equal also. If they match then
underlying plaintexts are probably equal. This means that
upon retrieval the response contains some amount of false
positives, which are to be filtered on a client side (see
Sections V and IV for false positive rate estimations).

A. Parts of the System

Key manager: KM generates and allocates keys to users
and proxies so they are able to follow the protocols needed
for the system to operate. Most of the time KM could and
should be kept offline. It is needed online only during the
system setup and then every time a new user is enrolled in
the system.

Data owner: Data owner knows which information is
more sensitive and which is less and thus sets the data
sensitivity level m∗i ≤ m for every column in every table.
This information is public.

Set of proxies: There’s a set of z proxies. Each proxy
keeps a specific share of secret keys s and q, individual for
every user. So, for the ith user the jth proxy keeps sPi,j and
qPi,j .

Hashing server: This is a special kind of a proxy. It is
present in the system only once and is purposed to compute
data fingerprints both on stages of data encryption and query
construction.

Cloud database server: A relational DBMS hosted by
a third-party cloud service provider. Users share the database
and are able to perform simultaneous reads and writes. Since
the DBMS is hosted somewhere outside the organization all
sensitive data should be kept encrypted in the DB server.

User: Here in this paper we do not separate users and
their client applications, which they use to access the cloud
database; word “user” is therefore used to describe both
application and user himself.

B. Trust and Attack Model

In our scheme we assume the key manager is fully trusted.
The database server, proxies and users are modeled as

semi-honest. They follow all the protocols but are passively
curious — they try to learn as much information as possible
about the data stored database as well as users’ queries
without initiating unauthorized actions. In addition, when
users leave the system we do not expect them to forget or
to keep their keys in secret.

C. System Construction

1) System Setup: Key manager sets up a cyclic group
G of large prime order p, w is the generator of G. KM
also chooses a random master storage key s and a query
key q. Additionally, KM chooses length of fingerprint in
bits m (usually 16, 32 or 64) and generates m different
keys k1, . . . , km for hashing purposes. KM also selects a
cryptographic hashing function f (x, k) with image [1,m]∩
N.



User

Database

Proxy P1 Proxy P2 Proxy P3 Hashing server

Fingerprint
Encryption

Query / response

Service table

Figure 1. System architecture

KM publicizes (G, p,w,m). Hashing keys k1, . . . , km and
hashing function f (x, k) are to be transferred securely to the
hashing server. Keys s and q are kept secret.

2) Data Model Annotation: Before first user enrolls in
the database, data owner should annotate data scheme. As
mentioned earlier, we assume that database consists of
two tables A and B, each has attributes Ai and Bi. All
procedures described in this paper could easily be extended
to any bigger amount of tables.

In addition to these tables DB also stores a public
unencrypted service table S, containing a data sensitivity
level m∗i for every attribute, e.g., for attribute B3 its data
sensitivity level is mB

3 . Data sensitivity level refers to
the amount of different hash functions used to generate
fingerprints (which are constructed similar to Bloom filters;
see Section II-C4 for details). The most sensitive information
has data sensitivity level 1, least sensitive information has
data sensitivity level m.

3) User Enrollment: When a new user Ui is enrolled in
the system, KM generates shares si and qi of secret keys
s and q respectively for user and proxies. These shares
are then securely transferred to respective parties. User Ui

receives secret shares sUi and qUi . For every user enrolled
in the system each proxy keeps corresponding shares of the
keys; so for user Ui the jth proxy keeps sPi,j and qPi,j , and
following holds:

s = sUi + sPi,1 + . . .+ sPi,z = sUi +

z∑
j=1

sPi,j

q = qUi + qPi,1 + . . .+ qPi,z = qUi +

z∑
j=1

qPi,j

4) Data Encryption: As we said earlier, along with
encrypted value database stores a fingerprint of data.
So, for every plaintext value T ∗x,y database stores〈
T ′∗x,y 〈1〉 , T ′∗x,y 〈2〉

〉
, where T ′∗x,y 〈1〉 is the original value

ciphertext and T ′∗x,y 〈2〉 is the fingerprint.
To compute T ′∗x,y 〈1〉 user Ui chooses a random number

r ∈ Z∗p and computes c1 = T ∗x,y × wrsUi and c2 = wr.

He sends c2 to the proxy P1. Upon receiving a value c2

proxy operating in encryption mode computes c′2 = c
sPi,j
2

and sends it to the next proxy in chain, e.g., P1 sends to
P2. For example, proxy P1 computes c′2,j = c

sPi,j
2 = wrsPi,j .

Last proxy in the chain — Pz — sends the result cr =

c
∑z

j=1 sPi,j
2 = wr

∑z
j=1 sPi,j to the user. After receiving cr from

Pz user computes:

c′1 = c1 × cr = T ∗x,y × wrsUi × wr
∑z

j=1 sPi,j

= T ∗x,y × wr(sUi +
∑z

j=1 sPi,j) = T ∗x,y × wrs

After computing c′1, user sends (c′1, c2) to the database
server, which stores this pair as T ′∗x,y 〈1〉 = (c′1, c2) =(
T ∗x,y × wrs, wr

)
.

The fingerprint T ∗′x,y 〈2〉 of the value, which will be later
used to perform value look-ups and joins, is constructed in a
similar pipeline starting with user, going through all proxies
(now operating in fingerprint construction mode) and ending
with hashing server. First, user computes b = T ∗x,y×wqUi . He
then passes b to proxy P1, which computes b1 = b×wqPi,1 =

T ∗x,y × wqUi +qPi,1 . Proxy P1 then transfers b1 to proxy P2

which in its turn computes b2 = b1×wqPi,2 and so on until last
proxy Pz finally computes bz = bz−1 × wqPi,z = T ∗x,y × wq .
This value bz is then transferred to hashing server.

From this point, construction of the fingerprint is similar
to creation of a Bloom filter (e.g., see [3, p. 5] or [2,
p. 7]). First, hashing server refers to the service table S
in the database and retrieves corresponding data sensitivity
level m∗y . Then it creates a bit array R of length m and
initializes it with zeros. After that f(bz, k1), . . . , f(bz, km∗

y
)

are computed and the set of resulting values is used as
indices in R where 0s are replaced with 1s, i.e., we per-
form R[f(b, k1)] := 1; ...; R[f(b, km∗

y
)] := 1;.

Some indices could coincide — we do not do anything about
that. Eventually we obtain a bit array R of length m with 1s
on certain places. This array is a fingerprint of the original
value, which is then returned to the user, who sends it to the
cloud database to be stored as T ′∗x,y 〈2〉.



III. QUERY CONSTRUCTION

A. Constant Match

First subset of supported queries is (e.g., for a table A):
SELECT columns FROM A WHERE Ay = v, where v
is a constant value. To construct a query user Ui should
obtain a fingerprint Rv for value v in a manner similar to
described in Data Encryption. The sensitivity level should
be retrieved for the queried attribute (Ay in this exam-
ple). After that the original query should be rewritten in
the following way: SELECT columns FROM A WHERE
T ′Ay 〈2〉 = Rv . Of course, for table B everything is the same.

The mechanism of signatures guarantees that if T ∗x,y = v
then T ′∗x,y 〈2〉 = Rv . On the other hand, this does not work
backwards, i.e., if T ′∗x,y 〈2〉 = Rv it does not mean that
T ∗x,y = v. This helps to protect the information about cells
with the same plaintext values but enlarges data transfer
overhead since extra amount of tuples is transferred in
a query result to a client, who then needs to filter false
positives. Rate of false positives could be adjusted with data
sensitivity level m∗y — the lower it is, the bigger amount of
false positives is, but information about coinciding data is
more secure, and vice versa.

B. Columns Match

Another subset of supported queries is the one which
involves matching values of two different columns on the
same table A (or B): SELECT columns FROM A WHERE
Ay1 = Ay2 . We are considering two possible scenarios:
mA

y1
= mA

y2
and mA

y1
6= mA

y2
.

1) mA
y1

= mA
y2

: This scenario is very straight-
forward and similar to matching with constant value,
it is enough to rewrite original query in a follow-
ing way: SELECT columns FROM A WHERE T ′Ay1

〈2〉
= T ′Ay2

〈2〉. Additional benefit of the proposed scheme is that
both in case of matching two columns with equal sensitivity
levels and in case of matching with a constant we can utilize
a built-in indexing capabilities of the database.

2) mA
y1
6= mA

y2
: This scenario is slightly more compli-

cated since fingerprints for two columns we are trying to
match were built with different sets of hashing functions.
To be specific, let us assume that mA

y1
> mA

y2
. To construct

a fingerprint T ′Ax,y1
〈2〉 for Ay1

a hashing function f was
computed with keys k1, . . . , kmA

y1
; to construct a fingerprint

T ′Ax,y2
〈2〉 for Ay2

a hashing function f was computed with
keys k1, . . . , kmA

y2
. Therefore, keys k1, . . . , kmA

y2
were used

in construction of both fingerprints, but T ′Ax,y1
〈2〉 also used

several more keys. This means that if there is a “0” in
T ′Ax,y1

〈2〉 and a “1” in T ′Ax,y2
〈2〉 on the same position, then

we can say definitely that TA
x,y1
6= TA

x,y2
. Otherwise, they

could match and server should return this tuple.
Thus the original query should be rewritten in

a following way: SELECT columns FROM A WHERE

T ′Ax,y1
〈2〉 & T ′Ax,y2

〈2〉 = T ′Ax,y2
〈2〉, where & denotes a bit-

wise AND operation.
The proposed scheme is rather flexible since it allows

database manager to fine-tune the security–performance
trade-off for every single column and still leave users the
ability to perform matches between these columns. The only
issue here is the inability to rely on a database indexing
mechanisms in case mA

y1
6= mA

y2
, since the WHERE predicate

contains a bitwise operation.

C. Equi-Joins

Equi-join is a query of the type SELECT columns
FROM A,B WHERE Ay1

= By2
. It is quite obvious, that

the described in Section III-B mechanism of matching
different columns does not rely on the columns being in
same table and thus makes it possible to perform equi-joins
without additional efforts.

D. Result Processing and Decryption

Assume the result to user Ui’s query is a set of n records
(tuples) J = {Ji1 , Ji2 , . . . , Jin}, each of them consists of
c ciphertexts T ′∗x,y 〈1〉 =

(
T ∗x,y × wrx,ys, wrx,y

)
, where x ∈

{i1, . . . , in}, y ∈ {j1, . . . , jc}. Server sends this result to
user Ui. User Ui then sends each ciphertext T ′∗x,y 〈1〉 to the
chain of proxies. Each proxy Pj in the chain computes tj =
wrx,ys

P
i,j , multiplies encrypted value by t−1j and sends result

to the next proxy in the chain. Last proxy in the chain —
Pz — sends result back to user. The value received by user
is in fact T ∗x,y×wrx,ys

U
i . User then multiplies received value

by
(
wrx,ys

U
i

)−1
and obtains cleartext value T ∗x,y .

After that when user has decrypted ciphertexts and knows
cleartext values he needs to do the final filtering and remove
from the query results those records which do not really
satisfy the WHERE predicate in the query.

IV. SECURITY ANALYSIS

T 〈2〉 is used to search certain values among data in
the database or to match columns with each other without
revealing to anybody (should it even be a database admin-
istrator) which exactly cells of the database contain equal
values. Database administrator could adjust data sensitivity
level from 1 to m, where 1 corresponds to most sensitive
data and m — to most insensitive data.

As it could be easily seen, during the construction of a
fingerprint (which in fact appears to be a hash of a ciphertext
of an original value encrypted with query key q) almost all
information about original value is destroyed and adversary
is incapable to reconstruct original value from it. Moreover,
constructed fingerprint is generally a good hash function
as defined by RFC4949 [11, p. 139]. This means that two
values having same fingerprint tells adversary nothing about
original values. Of course this depends on a selected hashing
function f (x, k) in every particular case and certain hashing



function f (x, k) should be formally proved to deliver a good
fingerprint before using.

As the very process of constructing T 〈2〉 suggests, for a
sensitivity level mi ∈ [1,m] the whole domain of a value
is uniformly divided into

∑mi

j=1

(
m
j

)
buckets3. This means

that if a value domain contains d values (e.g., for a 32-bit
integer d = 232 = 4 294 967 296), amount of values in each
bucket is

v =
d∑mi

j=1

(
m
j

)
.

E.g., for a 32-bit value in a column with sensitivity 1 v ≈
2.7×108, and in a column with sensitivity 16 v ≈ 6.5×104

(m is assumed to be 16).

V. EMPIRICAL RESULTS

As long as current work leaves all the procedures of gen-
erating and decrypting of T 〈1〉 unchanged as compared to
[6] and mainly focuses on proposing a new approach to work
with T 〈2〉, we only were doing performance benchmarks of
different scenarios of data retrieval and were not involving
actual encryption or decryption of data.

Proposed model of working with T 〈2〉 was implemented
and various performance tests were conducted. Implemen-
tation was written in C# and consists of 3 parts: proxy
server, hashing server and program emulating user activity,
which communicated through network. MySQL v5.5.28 x64
for Windows was used as a database server for tests. Tests
were run on following configuration: quad-core Intel Core i5
2.67 GHz, 4 GB RAM, Windows 7 Enterprise SP1 x64.

Fingerprint length m was set to 16 bit. Hashing function
was constructed using HMAC based on MD5. It produces
a 32 digit hexadecimal number, whose remainder from
division by m = 16 is then used as an index of the bit
to be set to 1 in the resulting fingerprint.

Database consisted of tables t1 and t2. Table t1
consisted of 4 columns a_1 INT, a_2 SMALLINT,
b_1 INT, b_2 SMALLINT. Table t2 consisted of 4
columns c_1 INT, c_2 SMALLINT, d_1 INT, d_2
SMALLINT. Index was built for columns t1.a_1,
t1.a_2, t2.c_1 and t2.c_2. Columns which have “_1”
in their names contain original plaintext value, columns
which have “_2” contain fingerprints and represent T 〈2〉.

Tests were run in several stages, each with different sets of
sensitivity values for each column. Each table was populated
with 30 000 rows with uniformly random integer values from
[−500; 500]∩N and their fingerprints created with respect to
corresponding sensitivity (i.e., using corresponding amount
of different keys for hashing). Each test stage consisted of
following tests:

3
(n
k

)
= n!

k!(n−k)!

Stage Sensitivity values
t1.a t1.b t2.c t2.d

1 1 1 1 1
2 2 2 2 2
3 4 4 4 4
4 8 8 8 8
5 16 16 16 16
6 1 1 16 16
7 2 2 16 16
8 4 4 16 16
9 8 8 16 16

10 15 15 16 16
Table I

SYSTEM CONFIGURATION SETS USED FOR TESTING

1) Constant matching on a column with index (t1.a):
SELECT SQL_NO_CACHE4 COUNT(*) FROM
t1 WHERE t1.a = const

2) Constant matching on a column without index
(t1.b):
SELECT SQL_NO_CACHE COUNT(*) FROM t1
WHERE t1.b = const

3) Intra-table column matching (i.e., t1.a = t1.b):
SELECT SQL_NO_CACHE COUNT(*) FROM t1
WHERE t1.a = t1.b

4) Inter-table column matching (join) on two columns
with index (t1.a = t2.c):
SELECT SQL_NO_CACHE COUNT(*) FROM
t1,t2 WHERE t1.a = t2.c

5) Inter-table column matching (join) on two columns,
only one of which has index (t1.a = t2.d):
SELECT SQL_NO_CACHE COUNT(*) FROM
t1,t2 WHERE t1.a = t2.d

6) Inter-table column matching (join) on two columns,
none of which has index (t1.b = t2.d):
SELECT SQL_NO_CACHE COUNT(*) FROM
t1,t2 WHERE t1.b = t2.d

Each of them runs repeatedly, tests 1 and 2 — 150 times,
tests 3–6 — 30 times for first 5 test stages and only tests 4–6
are run for the second 5 stages, each is repeated 20 times.
Test stages were conducted with sensitivity values for each
column shown in Table I.

Tests were conducted in order to estimate two perfor-
mance metrics: rate of false positives (it was estimated as
amount of all rows returned by a secure query divided
by amount of rows which should have been returned, i.e.,
returned by plaintext version of the query — as it was
mentioned earlier, client should filter out those rows that
actually do not comply with WHERE predicate) and query
execution time as compared to executing same queries on

4Query results caching disabled by specifying SQL_NO_CACHE. This is
MySQL-specific.



Stage 1 2 3 4 5 1 2 3 4 5
Test False positives ratio Time ratio

t1.a = const 65.573 8.667 1.253 1.007 1.027 3.094 1.232 1.014 0.979 0.979
t1.b = const 66.86 8.453 1.227 1.02 1.02 0.894 0.936 0.898 1.11 0.863
t1.a = t1.b 72 7 1 1 1 1 0.99 0.97 1 0.992
t1.a = t2.c 62 8 1 1 1 54.294 7.447 1.302 0.993 0.985
t1.a = t2.d 62 8 1 1 1 52.337 7.244 1.29 0.956 0.981
t1.b = t2.d 62 8 1 1 1 0.997 0.958 0.96 0.952 0.955

Stage 6 7 8 9 10 6 7 8 9 10
Test False positives ratio Time ratio

t1.a = t2.c 639 419 183 42 5 74.276 69.81 66.614 64.314 63.81
t1.a = t2.d 640 420 183 42 5 86.534 76.005 74.073 68.319 66.962
t1.b = t2.d 639 420 183 42 5 1.565 1.499 1.345 1.242 1.216

Table II
PERFORMANCE EVALUATION RESULTS

plaintext values also obtained as a ratio of execution times
of secure and plaintext queries. Results are calculated as
average among several repetitions of the test and appeared
to be as shown in Table II.

Data in the tables shows that as it was expected amount
of false positives lowers with increase of the number of
different hash functions used (which corresponds to lower
security5) and eventually become negligible.

As for the query execution time, for test stages 1–5 we
can see that in most cases query execution time is relatively
same for plaintext version and for secure version. Exceptions
are test t1.a = const on stage 1, where secure version
is 3 times slower and joins t1.a = t2.c and t1.a =
t2.d on stages 1 and 2. All three cases involve one indexed
column t1.a (in plain query it’s t1.a_1 and in secure
query it’s t1.a_2), so bigger execution time is most likely
caused by much bigger amount of returned rows (especially
for joins, where there are up to 60 times more rows to
return). In cases where indexed columns are not involved
at all query execution times are virtually same on all stages.

For test stages 6–10 we can see that for tests involving
indexed column query execution time is constantly much
bigger. This is obviously caused by the fact that when
sensitivity levels are different for two columns involved in
matching in WHERE predicate, this predicate is transformed
and uses bitwise operations which blocks database from
using index in any way. For the tests with no indexed
columns execution time is relatively same for secure and
plain queries, small difference is caused by data overhead
and by slightly more complex WHERE predicate in a secure
version.

5See Section IV for more details

VI. OTHER CONSIDERATIONS

A. User Revocation

As long as user can not query data or correctly encrypt
data for updates or inserts without a help from proxies,
revocation of user Ui is done by a KM simply by instructing
all proxies Pj to remove corresponding key shares sPi,j and
qPi,j . Even if user will gain access to the database he won’t
be able to generate a meaningful query.

B. Key renewal

Even though compromising key is much harder as it
requires collusion of all parties, it still can not be neglected.
Storage and query master keys s and q could be theoretically
obtained directly from KM. Thus both these keys should
be updated from time to time. Procedure for updating a
storage key s did not change and could be performed in
the database without need to decrypt data using proxy re-
encryption scheme similar to the ones proposed in [8], [12].
It is described in details in [6, Section VI.C].

Modified scheme is not capable of changing a query key
q in case it is compromised as effective as it can change
storage key s, though. The only way to change query key q
is to generate new fingerprints for all data which could be
quite time-consuming for large databases. On the other hand,
loss of the query key q would leak much less information
to the adversary than loss of a storage key s. In fact, the
query key itself would not reveal anything to the adversary.
In case adversary also knows a hashing function f (x, k) and
hashing keys k1, . . . , km (or has access to hashing server)
he can calculate sets of plaintext values corresponding to a
certain fingerprint and thus to all cells having this fingerprint
(taking into account sensitivity level).

Apart from query key, hashing keys k1, . . . , km should
also be changed from time to time. The process of changing
hashing keys does not differ much from process of query
key changing and needs recalculating of all fingerprints.



Practical implementation could partly alleviate process of
the query key renewal by changing query key for every
column separately, one at a time (in a transaction), starting
with those keeping the most sensitive data. During the
procedure of changing a query key the system should support
both new and old query keys for those columns which are
already updated and those which are still waiting in a queue,
respectively. Same could be done for hashing keys renewal.
It would save a lot of time if query key renewal and hashing
keys renewal are combined and performed as a single task.

VII. CONCLUSIONS

In this paper we presented an improvement to the scheme
proposed in [6] making it possible to perform cross-column
matching and cross-table equi-joins. Our modification still
preserves nearly all of the good properties of the original
approach and suggests new important features.

Presented solution allows us to use several proxies in order
to make collusion attack much harder and also assign differ-
ent amount of proxies to groups of users with different levels
of trust in order to increase performance for more trusted
users and reduce system load. Additionally each column in
the database now has its own level of security, which gives
us an ability to improve performance for insensitive data and
still have high security level for sensitive data.

Enrollment of new users and, what is even more impor-
tant, revocation of access from existing users is simple and
straightforward and was not changed with the improvements
suggested in this paper.

Ability to easily renew storage key was also preserved.
We sacrificed an ability to renew query key with same ease
though. It was done in order to gain capability to perform
cross-column matching and equi-joins.

Conducted benchmarks showed acceptable performance
in most scenarios with matching constants or columns of
same sensitivity level as compared to plaintext database
querying both time-wise and FP-wise. Matching of columns
with different sensitivity levels is expectedly far behind
plaintext matching since database is unable to utilize indices.
If indices are not built the difference in query execution
time between secure and plaintext versions is within the
acceptable range. The rate of false positives is pretty high
regardless of indices, so the database administrators should
consider raising sensitivity level of less sensitive column to
the same level with the more sensitive column if matching
between them is expected to occur frequently.

A security analysis shows that proposed system provides
required level of security and estimates a value essential for
false-positive rate — an amount of values from data domain
having same fingerprint.

REFERENCES

[1] D. X. Song, D. Wagner, and A. Perrig, “Practical techniques
for searches on encrypted data,” in Security and Privacy,

2000. S P 2000. Proceedings. 2000 IEEE Symposium on,
2000, pp. 44 –55.

[2] H. Hacıgümüş, B. Hore, B. Iyer, and S. Mehrotra, “Search on
Encrypted Data,” Secure Data Management in Decentralized
Systems, pp. 383–425, 2007.

[3] E. Goh, “Secure indexes,” Cryptography ePrint Archive, Re-
port, vol. 216, 2003.

[4] F. Bao, R. Deng, X. Ding, and Y. Yang, “Private Query
on Encrypted Data in Multi-user Settings,” in Information
Security Practice and Experience, ser. Lecture Notes in
Computer Science, L. Chen, Y. Mu, and W. Susilo, Eds., vol.
4991. Springer Berlin Heidelberg, 2008, pp. 71–85. [Online].
Available: http://dx.doi.org/10.1007/978-3-540-79104-1 6

[5] Y. Yang, X. Ding, R. Deng, and F. Bao, “Multi-User Private
Queries over Encrypted Databases,” Int. J. High Performance
Computing and Networking, vol. 1, no. 1/2/3, pp. 64–74,
2008.

[6] N. T. Hung, D. H. Giang, N. W. Keong, and H. Zhu, “Cloud-
Enabled Data Sharing Model,” Intelligence and Security
Informatics (ISI), 2012 IEEE International Conference on,
2012.

[7] R. Popa, C. Redfield, N. Zeldovich, and H. Balakrishnan,
“CryptDB: Processing Queries On An Encrypted Database,”
Communications of the ACM, vol. 55, no. 9, pp. 103–111,
2012.

[8] C. Dong, G. Russello, and N. Dulay, “Shared and searchable
encrypted data for untrusted servers,” Journal of Computer
Security, vol. 19, no. 3, pp. 367–397, 2011.

[9] Z. Yang, S. Zhong, and R. Wright, “Privacy-preserving
queries on encrypted data,” Computer Security–ESORICS
2006, pp. 479–495, 2006.

[10] H. Hacıgümüş, B. Iyer, C. Li, and S. Mehrotra, “Executing
SQL over encrypted data in the database-service-provider
model,” in Proceedings of the 2002 ACM SIGMOD
international conference on Management of data, ser.
SIGMOD ’02. New York, NY, USA: ACM, 2002, pp. 216–
227. [Online]. Available: http://doi.acm.org/10.1145/564691.
564717

[11] R. Shirey, “Internet Security Glossary, Version 2,” RFC 4949
(Informational), Internet Engineering Task Force, Aug. 2007.
[Online]. Available: http://www.ietf.org/rfc/rfc4949.txt

[12] G. Russello, C. Dong, N. Dulay, M. Chaudron, and M. van
Steen, “Providing data confidentiality against malicious hosts
in Shared Data Spaces,” Science of Computer Programming,
vol. 75, no. 6, pp. 426–439, 2010.


