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Introduction

In �DeMo� ������	� Deligne and Mostow raised the following question �

�Let W � GL�V 	 be an irreducible �nite group generated by complex re�ec�

tions� and let V � be the complement in V of the �xed hyperplanes of the complex

re�ections in W � For H the �xed hyperplane of a complex re�ection in W � let sH
be the generator of the monodromy around the image of H in V�W � It is well de�

�ned up to conjugacy in � �
 ���V ��W 	� The fundamental group � is an extension

of W by the fundamental group of V �� and sH projects in W to the inverse of the

generator of the �xer of H� with non trivial eigenvalue of the form exp���i�nH	�
Question �� For each conjugacy class of each hyperplaneH �xed by a complex

re�ection� let qH�t	 be a path in C� � starting at exp����i�nH	� Is it uniquely

possible to deform with t a representation �t of �� starting at t 
 � with the given

representation of the quotient W of �� so that �t�sH	 is a complex re�ection with

non trivial eigenvalue qH�t	 ��

As noticed by Deligne and Mostow� in the case where W is a Coxeter group� the
existence of the Hecke algebra as an image of the group algebra of the braid group �
provides a positive answer to their question�

It is one of our purposes here to give a positive answer to the preceding question� at
least for all in�nite series of irreducible �nite complex re�ection groups� and for some
exceptional ones �a more partial answer� without proofs� had been announced in �BMR�	�
We shall get this answer by exhibiting a generalized Hecke algebra for these groups again
as an image of the group algebra of the associated �braid group� ��

Through recent work on representations of reductive �nite groups and related topics
�like representations of �nite Coxeter groups and associated Hecke algebras	� it has
become clearer and clearer that �nite �complex re�ection groups� �i�e�� linear groups
generated by pseudo�re�ections	 behave very much like Coxeter groups� or even like
Weyl groups�

� Many of them behave as if they were the Weyl group of a reductive algebraic
group � in particular� they determine families of polynomials which share many
properties of the set of generic degrees of the unipotent characters of a reductive
algebraic group�

� Through suitable presentations by generators and relations� it has become pos�
sible to deform the complex group algebra of most complex re�ection groups
in a way which generalizes the construction of classical Hecke algebras of �nite
Coxeter groups�

Here we prove in particular that these presentations are naturally associated to pre�
sentations of the corresponding braid groups� thus providing a more intrinsic de�nition�

It should be noticed that some other nice properties of �Coxeter braid groups� extend
to this more general setting�

For example� generalizing a result of Deligne and Brieskorn�Saito valid for Coxeter
groups� we check here� in most cases� that the centers of braid groups associated to
irreducible complex re�ection groups are cyclic�

�see for example �AlLu�
 �Ari�
 �ArKo�
 �BreMa�
 �BrMa�
 �BrMi�
 �BMM�
 �Lu�
 �Ma��
 �Ma�	
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Also �at least in the case of the in�nite series	 the pure braid group of an r�dimensional
irreducible complex re�ection group has a natural structure as an r�fold iterated semidi�
rect product of free groups �of �nite rank	�

Nevertheless� it should be emphasized that this must only be the beginning of a long
story which is still to be discovered� Our results are � almost � general� but few of our
proofs are� Moreover� new questions emerge now � how to characterize the distinguished
generators and the diagrams representing the relations � How to explain the natural
�diagram invariants� like degrees� codegrees� zeta function �see x below	 �

�� Complex reflection groups and their presentations

A� Background from complex re�ection groups�

For all the results quoted here� we refer the reader to the classical literature on complex
re�ections groups� such as �Bou�� �Ch�� �Co�� �ShTo�� �Sp�� and also to the more recent
fundamental work on the subject by Orlik� Solomon and Terao �see �OrSo��� �OrSo���
�OrTe�	�

Let V be a complex vector space of dimension r� A pseudo	re�ection of GL�V 	 is a
non trivial element s of GL�V 	 which acts trivially on a hyperplane� called the re�ecting
hyperplane of s� Let W be a �nite subgroup of GL�V 	 generated by pseudo�re�ections�
The pair �V�W 	 is called a complex re�ection group�

A parabolic subgroup of W is by de�nition the subgroup of elements of W which act
trivially on a subspace of V � The following result is due to Steinberg ��St�� Theorem ��	
� cf� also exercises � and � in �Bou�� Ch� v� x��

���� Theorem� Let V � be a subspace of V � Then the parabolic subgroup WV � � consisting
of all elements of W which �x V � pointwise� is still generated by pseudo�re�ections � WV �

is generated by those pseudo�re�ections in W whose re�ecting hyperplane contains V ��

We denote by A the set of re�ecting hyperplanes of �V�W 	� and we set N �
 jAj�
We denote by N� the number of pseudo�re�ections in W �note that for real re�ection
groups we have N 
 N�	�
For H � A� we denote by WH the pointwise stabilizer of H� and we set eH �
 jWH j�

The group WH is a minimal non trivial parabolic subgroup of W � All its non trivial
elements are pseudo�re�ections� The group WH is cyclic � if sH denotes the element of
WH with determinant exp��i��eH 	� we have WH 
 hsHi� the group generated by sH �
The centralizer CW �WH	 of WH inW is also its normalizer� as well as the normalizer

�setwise stabilizer	 of H�

For C � A�W an orbit of hyperplanes� we denote by NC its cardinality� We have
NC 
 jW � CW �WH	j for H � C� We also set eC �
 eH for H � C�

We denote by S the symmetric algebra of V � by R 
 SW the algebra of invariants
of W � by R� the ideal of R consisting of elements of positive degree� and we set SW �

S�R�S�

The following facts are known �they are introduced here in an order which is conve�
nient for the exposition� but not necessarily for their proof	�
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� Degrees�

There is a family of r integers d�� d�� � � � � dr called the degrees of �V�W 	� de�ned as
follows � the Poincar�e polynomial of the graded module �V � SW 	W is

qd��� � qd��� � � � � � qdr�� �

We have
�q � d� � �	�q � d� � �	 � � � �q � dr � �	 


X
w�W

qdimV
hwi

�where V hwi denotes the space of �xed points of w	� It follows that

j�rX
j��

�dj � �	 

X
H�A

�eH � �	 

X

C�A�W
NC�eC � �	 
 N� �

� Codegrees�

There is a family of r integers d��� d��� � � � � d�r called the codegrees of �V�W 	� de�ned
by the following condition� the Poincar�e polynomial of the graded module �V ��SW 	W

is
qd

�
��� � qd

�
��� � � � �� qd

�
r�� �

We have

�q � d�� � �	�q � d�� � �	 � � � �q � d�r � �	 

X
w�W

detV �w	q
dimV hwi

�

It follows that
j�rX
j��

�d�j � �	 

X
H�A

� 

X

C�A�W
NC 
 N �

and so

N �N� 

j�rX
j��

�dj � d�j 	 

X

C�A�W
NCeC �

Remark� The �codegrees� have not been introduced as such in the quoted literature�
Nevertheless� the sets of degrees and the codegrees are related to the sets of exponents
fm��m�� � � � �mrg and coexponents fm�

��m
�
�� � � � �m

�
rg �which are de�ned in �OrSo��	 by

the formulae
mj 
 dj � � and m�

j 
 d�j � � �j 
 �� �� � � � � r	 �

� Algebra of invariants � More on degrees�

The algebra of invariants R is generated by r algebraically independent homogeneous
elements of S respectively of degrees d�� d�� � � � � dr�

The order of W is jW j 
 d�d� � � � dr�

If W is irreducible� its center Z�W 	 has order jZ�W 	j 
 d� � d� � � � � � dr �where we
denote d� � d� � � � � � dr �
 gcdfd�� d�� � � � � drg	�



Complex Re�ection Groups
 Braid Groups
 Hecke algebras �

� Cohomology of the hyperplane complements � More on codegrees�

We setM �
 V �
S
H�AH� For H � A� let us denote by �H a linear form on V with

kernel H� and let us de�ne the holomorphic di�erential form �H onM by the formula

�H �

�

�i�

d�H
�H

�

which we also write �H 

�

�i�
dLog��H	 �We denote by ��H� the corresponding de Rham

cohomology class�
Brieskorn �cf� �Br��� Lemma 	 has proved the following result�

���� Let C ���H 	H�A� �resp� Z���H	H�A�� be the C 	subalgebra �resp� the Z	subalgebra�
of the C 	algebra of holomorphic di
erential forms onM which is generated by f�HgH�A�
Then the map �H 	
 ��H � induces an isomorphism between C ���H 	H�A� and the coho	
mology algebra H��M� C 	 �resp� an isomorphism between Z���H	H�A� and the singular
cohomology algebra H��M�Z	��

From now on� we write �H instead of ��H ��
Orlik and Solomon �cf� �OrSo��	 have given a description of the algebra H��M� C 	�

Before stating their result� we need to introduce more notation�

� Let CA �

L

H�A eH be the vector space with basis indexed byA� and let �A be
its exterior algebra� endowed with the usual Koszul di�erential map � � �A
 �A
of degree ���

� For B 
 fH��H�� � � � �Hkg � A� we denote by DB the line generated by eH� �
eH� � � � � � eHk

�
� We say that B is dependent if codim�

T
H�BH	 	 jBj�

� We denote by I�A the �graded	 ideal of �A generated by the ��DB	 where B
runs overs the set of all dependent subsets of A�

���� Theorem� �Orlik and Solomon� The map eH 	
 �H induces an isomorphism of
graded algebras between �A�I�A and H��M� C 	�

Let Int�A	 be the set of intersections of elements of A� For X � Int�A	� we set

H�X��M� C 	 �

P

DB where the summation is taken over all B � A� jBj 
 codim�X	�T
H�BH 
 X� and where DB is the complex line generated by �H� � �H� � � � � � �Hk

if
B 
 �H��H�� � � � �Hk	�
Then it follows from Theorem ��� that

���� for any integer n� we have

Hn�M� C 	 

M

�X�Int�A��
�codim�X��n�

H�X��M� C 	 �

Moreover� we see that

����

��	 the family ��H	H�A is a basis of H��M� C 	�
��	 for X an element of Int�A	 with codimension �� if HX denotes a �xed element

of A which contains X�
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� whenever H and H � are two elements of A which contain X� we have �H �
�H� 
 �HX

� �H� � �HX
� �H �

� the family ��HX
� �H	�H�X��H ��HX� is a basis of H�X��M� C 	�

The codegrees are determined by the arrangement A� by the following consequence
of Theorem ����

��	� The Poincar�e polynomial PM�q	 �

P

n q
ndim�Hn�M� C 		 of the cohomology alge	

bra H��M� C 	 is given by the following formulae �

PM�q	 
 �� � �� � d��	q	�� � �� � d��	q	 � � � �� � �� � d�r	q	



X
w�W

detV �w	��q	
codim�V hwi� �

B� Presentations�

The tables in Appendix � provide a complete list of the irreducible �nite pseudo�
re�ection groups� as classi�ed by Shephard and Todd� together with presentations of
these groups symbolized by diagrams ��a la Coxeter�� as well as some of the data attached
to these groups� Many of these presentations were previously known� This is the case of
the rank r groups which are generated by r re�ections� studied by Coxeter �Cx�� Some
others �the ones corresponding to the in�nite series	 occurred in �BrMa� or were inspired
by �Ari��

The reader may refer to Appendix � to understand what follows�

Isomorphisms between diagrams�

We may notice that the only isomorphisms between the diagrams of our tables are
between the diagrams of G��� �� �	 and G��� �� �	� between the diagrams of S� and
G��� �� �	� between the diagrams of S� and G��� �� �	� and between the diagrams of
S� and G��� �� �	�

Coxeter diagrams�

Note �see tables	 the following correspondence of notation �

� Sr�� �r � �	 is the Coxeter group of type Ar�
� G��� �� r	 �r � �	 is the Coxeter group of type Br�
� G��� �� r	 �r � �	 is the Coxeter group of type Dr�

Indeed �see table � for notation� since e � �� t� and t�
�
commute� and it is enough to

show that the � double�link� braid relation t�t
�

�
t�t�t

�

�
t� � t�

�
t�t�t

�

�
t�t� is a consequence of

the other relations	
Applying successively the fact that t� and t�

�
commute� the braid relation between t�

and t�
�
� and the braid relation between t� and t�� we get t�t

�

�
t�t�t

�

�
t� � t�t�t

�

�
t�t

�

�
t� �

t�t�t�t
�

�
t�t� � t�t�t�t

�

�
t�t� � t�t�t

�

�
t�t�t� � t�t�t

�

�
t�t�t� � t�t

�

�
t�t

�

�
t�t� � t�

�
t�t�t

�

�
t�t� �

� G�e� e� �	 �e � �	 is the dihedral group of order �e�
� G�	 is the Coxeter group of type F��
� G�
 is the Coxeter group of type E��
� G�� is the Coxeter group of type E��
� G�� is the Coxeter group of type E	�
� G�� is the Coxeter group of type H��
� G� is the Coxeter group of type H��
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Admissible subdiagrams and parabolic subgroups�

Let D be one of the diagrams� Let us de�ne an equivalence relation between nodes
by s � s and� for s �
 t�

s � t � s and t are not in a homogeneous relation with support fs� tg �

Then we see that the equivalence classes have � or � elements� and that there is at most
one class with � elements�
If there is no class with � elements� the rank r of the group is the number of nodes

of the diagram� while it is this number minus � in case there is a class with � elements�

Thus s��



�
�
�� t

�� u

has rank �� as well as �
s
� �

t
� �

Remark� One must point out that� in the �rst of the preceding two diagrams� s� t and
u must be considered as linked by a line �so t and u do not commute	�

An admissible subdiagram is a full subdiagram of the same type� namely a dia�
gram with � or � elements per class�

Thus� the diagram s��



�
�
�� t

�� u

has �ve admissible subdiagrams� namely the empty

diagram� the three diagrams consisting of one node� and the whole diagram�

��
� Fact� Let D be the diagram of W as given in tables  to � in Appendix � below�

��	 If D� is an admissible subdiagram of D� it gives a presentation of the correspond	
ing subgroup W �D�	 of W � This subgroup is a parabolic subgroup�

��	 Assume W is neither G��� G��� G�� nor G��� If P� � P� � � � �Pn is a chain of
parabolic subgroups of W � there exist g � W and a chain D� � D� � � � �Dn of
admissible subdiagrams of D such that

�P�� P�� � � � � Pn	 

g�W �D�	�W �D�	� � � � �W �Dn		 �

Remark�
For groups G�� and G��� all isomorphism classes of parabolic subgroups are rep�

resented by admissible subdiagrams of our diagrams� but not all conjugacy classes of
parabolics subgroups are represented by admissible subdiagrams� as noticed by Orlik�
For groupsG�� and G��� not all isomorphism classes of parabolic subgroups are repre�

sented by admissible subdiagrams of our diagrams� In these cases� it seems that a second
diagram should be introduced� as suggested by �Hu�� Then all parabolic subgroups can
be found somewhere inside one of the two diagrams given�

More precisely� for G��� the second diagram is only needed for parabolic subgroups of
type D�� while for G�� it is needed for parabolic subgroups of type D�� D� and the second
copy of A�	
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�� Braid groups and their diagrams

For X a topological space� we denote by P�X	 its fundamental groupoid� where the
composition of �classes of	 paths is de�ned so that� if 
� is a path going from x to x�
and 
� is a path going from x� to x�� then the composite map going from x to x� is
denoted by 
� � 
��
Given a point x � X� we denote by ���X�x	 �or ���X	 if the choice of x is clear	

the fundamental group with base point x� So we have ���X�x	 
 EndP�X��x	� If
f � X 
 Y is a continuous map� we denote by P�f	 the corresponding functor from
P�X	 to P�Y 	� We also denote by ���f� x	 �or ���f		 the group homomorphism from
���X�x	 to ���Y� f�x		 induced by P�f	�

We choose� once for all� a square root of ���	 in C � which is denoted by i� Moreover�
for every z � C� � we identify ���C� � z	 withZby sending onto � the loop �z � ��� ��
 C�

de�ned by �z�t	 �
 z exp��i�t	�

A� Generalities about hyperplane complements�

What follows is probably well known to specialists of hyperplane complements and
topologists	 We include it for the convenience of the reader
 and because of the lack of
convenient references	

Let A be a �nite set of a ne hyperplanes �i�e�� a ne subspaces of codimension one	
in a �nite dimensional complex vector space V � We setM �
 V �

S
H�AH �

Let x � M� We shall give now some properties of the fundamental group ���M� x	�

Generators of the monodromy around the hyperplanes�

In Appendix �� we explain what we mean by the generator ���� of the monodromy

around H� associated to a path 
 �from x to an a ne hyperplane� H � A�
For H � A� let �H be an a ne map V 
 C such that H 
 fx � V j �H�x	 
 �g � Its

restriction toM
 C� induces a functor P��H	 � P�M	
 P�C� 	 � and in particular a
group homomorphism ����H � x	 � ���M� x	
Z

���� Lemma� For H�H � � A and 
 a path from x to H �see Appendix �� we have

����H�	�����	 
 �H�H� �

Proof of ���
Let us set MH �
 H �

S
H��A
H� ��H

H � � Let x� �
 
��	 and let B be an open ball

with center x� contained in M �MH � Let u � ��� �� such that 
�t	 � B for t � u�
We set x� �
 
�u	� Then� the restriction of �H to B � M induces an isomorphism
����H	 � ���B �M� x�	 
 Z� Let � be a loop in B �M� with origin x�� whose image
under ����H	 is �� Let 
u be the �restriction� of 
 to ��� u�� de�ned by 
u�t	 �
 
�ut	
for all t � ��� ��� De�ne ���� �
 
u

�� � � � 
u � Then the loop ���� induces the generator
of the monodromy ���� �see Appendix �	� and

����H�	�����	 
 ����H�	��	 
 �H�H� �

�
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���� Proposition�

�� The fundamental group ���M� x	 is generated by all the generators of the mon	
odromy around the a�ne hyperplanes H � A�

��� Let ���M� x	ab denote the largest abelian quotient of ���M� x	� For H � A� we
denote by �abH the image of �H�� in ���M� x	ab� Then

���M� x	
ab 


Y
H�A

h�abH i �

where each h�abH i is in�nite cyclic� Dually� we have

Hom����M� x	�Z	 

Y
H�A

h����H	i �

Proof of ����
��	 is a special case of Proposition A� �see Appendix � below	�
��	 is immediate and left to the reader� �

Remark� Let us recall that we have natural isomorphisms

���M� x	
ab �
�
H��M�Z	 and Hom����M� x	�Z	

�
�
H��M�Z	 �

Moreover� the duality between ���M� x	ab and H
��M�Z	 may be seen as follows� For


 a loop inM with origin x and for � a holomorphic di�erential ��form onM� we set
	
��� �


R
�
� � It is then clear that� under the isomorphism

Hom����M� x	�Z	
�
�
H��M�Z	 �

the element ����H	 is sent onto the class of the ��form �H 

�

�i�

d�H
�H

�see ��� for more

details	�

About the center of the fundamental group�

In this part� we assume the hyperplanes in A to be linear�

���� Notation� We denote by � the loop ��� ��
M de�ned by

� � t 	
 x exp��i�t	 �

���� Lemma�

��	 � belongs to the center Z����M� x		 of the fundamental group ���M� x	�
��	 For all H � A� we have ����H	��	 
 � �

Proof of ����
��	 results from a more general lemma� for which we need to introduce more notation�
Let z 
 jzjei� be a complex number with argument � chosen so that �� 	  � ��

For t � ��� ��� we set zt �
 jzjteti�� For x � M� we denote by 
z�x the path inM� with
initial point x and terminal point zx� de�ned by


z�x � ��� ��
M � t 	
 ztx �
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���� Lemma� Let 
 be a path in M� with initial point x and terminal point y� Then
the paths 
z�y �
 and z
 �
z�x are homotopy equivalent �where z
 denotes the path de�ned
by t 	
 z
�t	��

The proof of Lemma �� is easy and left to the reader� Note that Lemma �� holds
wheneverM is a subset of V which is stable under multiplication by C� �

��	 is immediate since ����H	��	 

�

��i

R �


d��H���t			

�H���t		


R �
 dt � �

��	� Proposition� Let M be the image of M in �V � f�g	�C� � and let x denote the
image of x in M�

��	 The map ���M� x	
 ���M� x	 is surjective� and its kernel is h�i�
��	 The center of ���M� x	 is h�i if and only if the center of ���M� x	 is trivial�

Proof of ����
��	 Since the ��t	 are scalar multiples of x� it is clear that � belongs to the kernel

of the map ���M� x	
 ���M� x	�
The homotopy exact sequence � � � 
 ���C

� 	 
 ���M� x	 
 ���M� x	 
 � shows
that the morphism ���M� x	 
 ���M� x	 is surjective� and that its kernel is cyclic�
Since � belongs to this kernel� it su ces to prove that � is a primitive element of
���M� x	� i�e�� that � has no proper root in ���M� x	� But this results from Lemma
���� ��	�
��	 Let us notice that� by Lemma ���� ��	� the group h�i maps injectively into the

largest abelian quotient of ���M� x	� So it su ces to prove the following elementary
lemma�

��
� Lemma� Let G be a group� and let H a normal subgroup of G which maps in	
jectively into the largest abelian quotient G��G�G� of G� Then the natural morphism
G
 G�H sends the center of G onto the center of G�H�

Proof of ���� Indeed� let z be an element of G which becomes central in G�H� Then
�z�G� � H� But by hypothesis we have H � �G�G� 
 �� Thus we have �z�G� 
 �� �

�

Generating with one loop per hyperplane�

With a little more work� Proposition ��� can be made more precise ! one �well�
chosen	 generator of the monodromy around each a ne hyperplane su ces to generate
the fundamental group �

���� Proposition� There is a set R 
 f�HgH�A of generators of ���M� x	� where �H
is a generator of the monodromy around H�

Proof of ����
We may assume that A is not empty� We prove the proposition by induction on the

dimension of V �
� The linear case�

Let us �rst consider the case where the intersection of the a ne hyperplanes of A is
non trivial� Up to translation� we can assume that � is contained in this intersection�
i�e�� the hyperplanes of A are linear�
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Let H� be a hyperplane of A and H� be the a ne hyperplane of V parallel to H�

and containing x�
We consider the conic projection on H� with center � �

f � �V �H�	 �
 H� � x 	�
 C x �H��

Both f and its restriction M 
 M� 
 H� � M are locally trivial �brations �see for
example �Spa�� chap� �	 with �ber F � C�x�
The associated exact sequence of fundamental groups is

���F� x	
 ���M� x	
���f�
�
���M�� x	
 � �

Let A� 
 A � fH�g� By induction� we can assume the proposition holds for the
a ne hyperplane arrangement A� 
 fH �H�gH�A� in H� � there is a set f�LgL�A� of
generators of ���M�� f�x		 where �L is a generator of the monodromy around L�
Let i be the inclusion M� 
 M� Then� �H 
 ���i	��H	H�	 is a generator of the

monodromy around H � A�� Note that fi is the identity onM�� hence ���f	���i	 
 ��
In particular� the exact sequence shows that ���M� x	 is generated by the set f�HgH�A��
together with �� the image of the positive generator of ���F� x	� which is central in
���M� x	�
Let �H� be a generator of the monodromy around H�� Then� there exists � in the

subgroup generated by f�HgH�A� such that ���f	��H��	 
 �� that is� �H�� 
 �r for
some integer r� Since ����H�	��H�	 
 �� ����H�	��H 	 
 � forH � A� and ����H�	��	 

� by Lemmas ��� and ���� we obtain r 
 �� Hence� � is in the subgroup generated by
f�HgH�A and this proves that f�HgH�A generates ���M� x	�

� The a
ne case�

Let A� be a �nite set of a ne hyperplanes of V disjoint from A and let M� 

V �

S
H�A
A�H� Assume x � M�� Since one gets M� by removing a sub�variety of

�real	 codimension � fromM� the injectionM� �
M induces a surjection ���M�� x	�
���M� x	 �see for example �Go�� chap� x� th� ����	� Under this morphism� a generator of
the monodromy around a hyperplane H � � A� becomes trivial� Hence� if the proposition
holds forM�� then it holds forM� Note also that we can change the base point x in
order to prove the result�
We choose an a ne hyperplane H� of V outside A� a new origin � � V �H� for V

and a new base point x � H� �M such that

� there is an open ball " with center �� containing x and which doesn#t intersect
any of the non�linear hyperplanes ofM�

� the line Cx never intersects two distinct a ne hyperplanes of A at the same
point� and

� no translate of the line C x lies in an a ne hyperplane of A�

Then� adding to A

� the linear hyperplane H� parallel to H��
� the linear hyperplanes parallel to the a ne hyperplanes of A�
� given two distinct non�linear hyperplanesH�H � of A� the linear hyperplane con�
taining H �H ��
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we may and will assume that A satis�es the following assumption �
Let A� be the set of linear hyperplanes of A distinct from H�� A�� the set of non�linear

hyperplanes of A� A� 
 fH� �HgH�A� andM� 
 H� �
S
L�A�

L� Then� the map

f �M�
M�

x 	�
 C x �H�

is a locally trivial �bration�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

������������������������������������������������������������������

������������������������������������������������������

������������������������������������������������������������������

������������������������������������������������������������������

�
�
�
�
�
�
��
�
���
�
�
�
�
�
�
���
���������������������������

pwqvrust�
�x

�
f�x	

H�

H�

C x

"

� ��

��������
��������

��������
Note that the restriction of f to " �M
M� is also a locally trivial �bration�

The associated exact sequences of fundamental groups give rise to the commutative
diagram �

���" � �C x � f�g	� x	 ��

��

���" �M� x	 ��

��

���M�� f�x		 �� �

���F� x	 �� ���M� x	 �� ���M�� f�x		 �� �

where F 
 f���f�x		 
 C x � �f�g � fC x �HgH�A��	 �

The study of the linear case above shows that there is a set f�hgH�A�
H� of generators
of the monodromy around the linear hyperplanes in "�M which generates ���"�M� x	�
There are generators of the monodromy �H around the points C x �H �H � A��	 in

F � such that� together with the image of ���"��C x�f�g	� x	� they generate ���F� x	�
Now� the set f�HgH�A generates ���M� x	� �
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B� Generalities about the braid groups�

More notation�

We go back to notation introduced in x�� In particular� A is now the set of re�ecting
hyperplanes of a �nite subgroup W of GL�V 	 generated by pseudo�re�ections� We
denote by p �M
M�W the canonical surjection�
Let x � M� We introduce the following notation for the fundamental groups�

P �
 ���M� x	 and B �
 ���M�W� p�x		 �

and we call B and P respectively the braid group �at x	 and the pure braid group �at
x	 associated to W � We shall often write ���M�W� x	 for ���M�W� p�x		�
The coveringM
M�W is Galois by Steinberg#s theorem �see Theorem ��� above	�

hence the projection p induces a surjective map B �W � � 	
 �� as follows �
Let $� � ��� �� 
 M be a path in M� such that $���	 
 x� which lifts �� Then � is

de�ned by the equality ��x	 
 $���	 �

The map � �� � is an anti�morphism	 Indeed� if �� is another loop in M�W with origin
x�� and if �� is lifted onto a path 
�� with origin x� in M� we may lift the loop ����� onto
the path ��
��� � 
�� whose image in W is clearly ��� �here we set ��
����t� �� ��
���t���	

Denoting by W op the group opposite to W � we have the following short exact se�
quence �

����	 �
 P 
 B 
W op 
 � �

where the map B 
W op is de�ned by � 	
 ��

The spacesM andM�W are conjectured to be K��� �	�spaces�
The following result is due to Fox and Neuwirth �FoNe� for the type An� to Brieskorn

�Br�� for Coxeter groups of type di�erent from H��H�� E�� E�� E	� to Deligne �De�� for
general Coxeter groups� The case of the in�nite series of complex re�ection groups
G�de� e� r	 has been solved by Nakamura �Na�� For the non�real Shephard groups �non�
real groups with Coxeter braid diagrams	� this has been proven by Orlik and Solomon
�OrSo��� Note that the rank � case is trivial�

����� Theorem� Assume W has no irreducible component of type G��� G��� G��� G���
G�� or G��� Then� M and M�W are K��� �		spaces�

Generators of the monodromy around the hyperplanes�

For H � A� we set �H �
 exp��i��eH 	� and we denote by sH the pseudo�re�ection in
W with re�ecting hyperplane H and determinant �H � We set

LH �
 im�sH � IdV 	 �

For x � V � we set x 
 prH�x	 � pr
�
H�x	 with prH�x	 � H and pr�H�x	 � LH�

Thus� we have sH�x	 
 �Hpr�H�x	 � prH�x	 �
If t � R� we set �tH �
 exp��i�t�eH 	� and we denote by s

t
H the element of GL�V 	 �a

pseudo�re�ection if t �
 �	 de�ned by �

�����	 stH�x	 
 �tHpr
�
H�x	 � prH�x	 �
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For x � V � we denote by �H�x the path in V from x to sH�x	� de�ned by �

�H�x � ��� ��
 V � t 	
 stH�x	 �

For any path 
 inM� with initial point x and terminal point xH � the path de�ned by
sH�
��	 � t 	
 sH�
���t		 is a path inM going from sH�xH	 to sH�x	�
Whenever 
 is a path inM� with initial point x and terminal point xH � we de�ne

the path �H�� from x to sH�x	 as follows �

�����	 �H�� �
 sH�

��	 � �H�xH � 
 �

It is not di cult to see that� provided xH is chosen �close to H�� the path �H�� is inM�
and its homotopy class does not depend on the choice of xH � and the element it induces
in the braid group B is actually a generator of the monodromy around the image of H
inM�W �see Appendix � below	�
The following properties are immediate�

����� Lemma�

��	 The image of sH�� in W is sH �
��	 Whenever 
� is a path in M� with initial point x and terminal point xH � if �

denotes the loop in M de�ned by � �
 
���
� one has

�H��� 
 � � �H�� � �
��

and in particular sH�� and sH��� are conjugate in P �

��	 The path
Qj�

j�eH�� �H�sjH��� � a loop in M� induces the element seHH�� in the braid

group B� and belongs to the pure braid group P � It is homotopy equivalent� as a
loop inM� to the generator ���� of the monodromy around H in P �see Appendix
��

����� Denition�

� A distinguished pseudo	re�ection in W is a pseudo�re�ection s with the following
property � if H denotes its re�ecting hyperplane� and if eH is the order of the minimal
parabolic subgroup WH � then s is the element of WH with determinant e�i��eH �
� Let s be a distinguished pseudo�re�ection in W � with re�ecting hyperplane H� An

s�generator of the monodromy is a generator of the monodromy s around the image of
H in M�W such that s 
 s�

The discriminants�

Let C be an orbit ofW on A� Recall that we denote by eC the �common	 order of the
pointwise stabilizer WH for H � C� We call discriminant at C and we denote by �C the
element of the symmetric algebra of V � de�ned �up to a non zero scalar multiplication	
by

�C �
 �
Y
H�C

�H	
eC �

Since �see for example �Co�� ���	 �C is W �invariant� it induces a continuous function
�C �M�W 
 C� � hence induces a functor P��C	 � P�M�W 	
 P�C �	 � and in particu�
lar it induces a group homomorphism ����C	 � B 
Z�
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����� Proposition� For any H � A� we have

����C	�sH��	 


�
� if H � C �

� if H �� C �

Proof of ����
Let us set C� �
 C � fHg �so C� 
 C if H �� C	� and �C� �
 �

Q
H��C� �H�	eC �

Recall that WH denotes the �parabolic	 subgroup of W generated by sH � Then the
maps

�C� � �
eH
H �M
 C�

are both WH�invariant� and so de�ne maps

�C� � �
eH
H �M�WH 
 C� �

The following diagram summarizes where the maps are de�ned �

M�W

��

�C

��
��

��
��

��
��

��
��

M�WH

��ttttttttt

��

��H�eH � �C�

TTTT
TTTT

TTTT
TTTT

TT

M ���H�

��wwwwwwwww
C�

The computation of ����C�sH��		 may be performed at the level M�WH� and so it
su ces to check

��	 ����C�	�sH��	 
 � �
��	 ����

eH
H 	�sH��	 
 � �

Let us check ��	 and ��	�
��	 It su ces to check that ����C� 	�s

eH
H��	 
 � � and this follows from Lemmas ��� and

����� ��	�
��	 We have

����
eH
H 	�sH��	 


�

�i�

Z �



d��H�stH �xH		
eH 	

�H�stH �xH		
eH

�

Since

�H�s
t
H �xH		

eH 
 �H�prH�xH	 � �tHpr
�
H�xH 		

eH


 �teHH �H�pr
�
H�xH		

eH


 exp��i�t	�H�pr
�
H�xH		

eH �

we see that ����
eH
H 	�sH��	 


R �

dt 
 � � �

Generators and abelianization of B�
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���	� Theorem�

�� The group B is generated by the generators fsH��g �for all hyperplanes H � A
and all paths 
 from x to H in M� of the monodromy �in B� around the elements of
A�

��� We denote by Bab the largest abelian quotient of B� For C � A�W � we denote by
sabC the image of sH�� in Bab for H � C� Then

Bab 

Y

C�A�W
hsabC i �

where each hsabC i is in�nite cyclic� Dually� we have

Hom�B�Z	 

Y

C�A�W
h����C	i �

Remark� We have natural isomorphisms

Bab �
�
H��M�W�Z	 and Hom�B�Z	

�
�
H��M�W�Z	 �

and� under the second isomorphism� we have

����C	 	
 eC
X
H�C

�

�i�

d�H
�H



�

�i�
dLog��C	 �

Proof of ���� The second assertion is immediate by the �rst one and by Proposition
���� Let us sketch a proof of ��	�
SinceW is generated by the set fsHg�H�A� and since we have the exact sequence ����	�

it is enough to prove that the pure braid group P is generated by all the conjugates in
P of the elements seHH��� This is a consequence of Proposition ���� ��	� �

Let us denote by Gen�B	 the set of all generators of the monodromy in B �see
De�nition ���� above	� For s � Gen�B	� we denote by es the order of s�

In other words� if s is a generator of the monodromy around the re�ecting hyperplane
H � A� we set now �using the notation of Denition �	��� � e

s
�� eH 	

The following property is a consequence of general results recalled in Appendix �
below�

���
� Proposition�

��	 The pure braid group P is generated by fsesgs�Gen�B��
��	 We have

W � B�hsesi
s�Gen�B� �

Proof of ���� The two assertions are obviously equivalent� The �rst one results from
Propositions A� and A�� ��	 �see Appendix � below	� �
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Length�
Let

� �

Y

C�A�W
�C

be the discriminant� and let ����	 � B 
Zbe the corresponding group morphism�
Let b � B� By Theorem ���� above� there exists an integer k and for � � j � k�

Hj � A� a path 
j from x to Hj and an integer nj such that

b 
 sn�H����
sn�H����

� � � snkHk��k
�

The following proposition results from Proposition ��� above�

����� Proposition� We have

����	�b	 


j�kX
j��

nj �

We call the length of b and we denote by ��b	 the integer ����	�b	�
If fsg is a set of generators of the monodromy around hyperplanes which generates B�

let us denote by B� the sub�monoid of B generated by fsg� Then for b � B�� its length
��b	 coincide with its length on the distinguished set of generators fsg of the monoid
B��

About the center of B�

����� Notation� We denote by � the path ��� ��
M de�ned by

� � t 	
 x exp��i�t�jZ�W 	j	 �

The following result is a consequence of Corollary ���� Notice that it generalizes
a result of Deligne �De��� �����	 �see also �BrSa�	� from which it follows that if W is a
Coxeter group� then ���	 
 �N � It was noticed �experimentally� in �BrMi�� ����	�

����� Corollary� We have ���	 
 �N �N�	�jZ�W 	j and ���	 
 N �N� �

From now on� we assume that W acts irreducibly on V � Note that� since W is
irreducible on V � it results from Schur#s lemma that

Z�W 	 
 fexp��i�k�jZ�W 	j	 j �k �Z	g �

and so in particular � de�nes an element of B� which we will still denote by ��

����� Lemma�

��	 The image � of � in W is the scalar multiplication by exp��i��jZ�W 	j	� It is a
generator of the center Z�W 	 of W �

��	 We have � � Z�B	� � � Z�P 	� and � 
 �jZ�W �j�

Proof of ���� We only have to check that � � Z�B	� This results from Lemma ��� �
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����� Proposition� Let M be the image of M in �V � f�g	�C� � Then� we have a
commutative diagram� where all short sequences are exact �

�

��

�

��

�

��
� �� h�i

��

�� h�i

��

�� Z�W 	

��

�� �

� �� ���M� x	 ��

��

���M�W� x	 ��

��

W ��

��

�

� �� ���M� x	 ��

��

���M�W� x	 ��

��

W�Z�W 	 ��

��

�

� � �

Proof of �����
It is clear that � belongs to the kernel of the map ���M�W� x	
 ���M�W� x	�
By Lemma ����� we know that the map h�i 
 Z�W 	 is onto� The three horizontal

sequences are exact� as well as the last vertical one� So it su ces to check that the
�rst vertical sequence is exact� i�e�� to show that h�i is equal to the kernel of the map
���M� x	
 ���M� x	� This is Proposition ���� ��	� �

The following statement is known for Coxeter groups �see �De�� or �BrSa�	� The result
holds as well for G�
� G��� G��� since the corresponding braid groups are the same as
braid groups of Coxeter groups� We shall prove it for all the in�nite series in x� below
�see Propositions ���� ����� ����	� and we give below a proof for the particular case of
groups in dimension ��
We conjecture it is still true in the case of G��� as well as for G��� G��� G��� G���

G���

����� Theorem� Assume W di
erent from G��� G��� G��� G��� G��� G���
The center Z�B	 of B is in�nite cyclic and generated by �� the center Z�P 	 of P is

in�nite cyclic and generated by �� and the short exact sequence ����� induces a short
exact sequence

�
 Z�P 	
 Z�B	
 Z�W 	
 � �

Note that� by Propositions ���� and ���� ��	� Theorem ���� is equivalent to the fol�
lowing statement �

����� The center of the �projective braid group� ���M� x	 is trivial�

Proof of ���� in dimension �� Assume that V has dimension �� The spaceM is homeo�
morphic to P��C 	 minus N points� so ���M� x	 is isomorphic to a free group FN�� on
N � � generators� Since W is irreducible� we have N � � and so ���� is proved� �
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����� Corollary� Let �ab be the image in Bab of the central element � of B� Then we
have

�ab 

Y

C�A�W
�sabC 	

eCNC�jZ�W �j �

Proof of ����� It su ces to prove that� for all C � A�W � we have ����C	��ab	 

eCNC�jZ�W 	j � This is immediate �

����C	��ab	 

X
H�C

eC
�i�

Z �



d�H�x exp��i�t�jZ�W 	j		

�H�x exp��i�t�jZ�W 	j		



eC
�i�

X
H�C

�i�

jZ�W 	j

Z �



dt 
 eCNC�jZ�W 	j �

�

C� The braid diagrams�

Let us �rst introduce some notation�

Let �V�W 	 be a �nite irreducible complex re�ection group� As previously� we set
M �
 V �

S
H�AH� B �
 ���M�W� x	� and we denote by � 	
 � the antimorphism

B �W de�ned by the Galois coveringM�M�W �

Let D be one of the diagrams given in tables �� �� � �Appendix � below	 symbolizing
a set of relations as described in Appendix ��
� We denote by Dbr and we call braid diagram associated to D the set of nodes of

D subject to all relations of D but the orders of the nodes� and we represent the braid
diagram Dbr by the same picture as D where numbers insides the nodes are omitted�

Thus� if D is the diagram s�a ne �b t

�c u

� then Dbr is the diagram s� ne � t

�u

and represents the relations

stustu � � �� �z �
e factors


 tustus � � �� �z �
e factors


 ustust � � �� �z �
e factors

�

Note that this braid diagram for e 
 � is the braid diagram associated to G��d� �� �	
�d � �	� as well as G�� G��� G��� Also� for e 
 �� this is the braid diagram associated
to G�� and for e 
 � the braid diagram associated to G��� Similarly� the braid diagram

s�



�
�
� t

� u

is associated to the diagrams of both G�
 and G��d� �� �	�

� We denote by Dop and we call opposite diagram associated to D the set of nodes
of D subject to all opposite relations �words in reverse order	 of D� Thus� if D is the

diagram s�a ne �b t

�c u

� then Dop represents the relations

sa 
 tb 
 uc 
 � and utsuts � � �� �z �
e factors


 sutsut � � �� �z �
e factors


 tsutsu � � �� �z �
e factors

�
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Note that Dop is the diagram u�c ne �b t

�a s

� Finally� we denote by Dop
br the braid dia�

gram associated with Dop� Thus� in the above case� Dop
br is the diagram u� n� t

�s

�

Note that if Dbr is a Coxeter type diagram� then it is equal to D
op
br �

The following statement is well known for Coxeter groups �see for example �Br�� or
�De��	� It has been noticed by Orlik and Solomon �see �OrSo��� ���	 for the case of non
real Shephard groups �i�e�� non real complex re�ection groups whose braid diagram �
see above � is a Coxeter diagram	� We shall prove it below for all the in�nite series� We
also checked it case by case for all the exceptional groups but G��� G��� G��� G��� G���
G�� � for the case of groups of rank �� we made use of �Ba��
We conjecture it still holds for G��� The question whether it is possible to �nd right

diagrams for G��� G��� G��� G��� G�� is still open �see remark below	�

���	� Theorem� Let W be a �nite irreducible complex re�ection group� di
erent from
G��� G��� G��� G��� G�� � and also di
erent from G�� for which the following assertions
are still conjectural�

Let N �D	 be the set of nodes of the diagram D for W given in tables �� below�
identi�ed with a set of pseudo	re�ections in W � For each s � N �D	� there exists an
s�generator of the monodromy s in B �cf� De�nition ���� such that the set fsgs�N �D��
together with the braid relations of Dop

br � is a presentation of B�

���
� Questions� Let W be a �nite irreducible complex re�ection group� di
erent from
G��� G��� G��� G��� G��� We denote by B� the monoid de�ned by generators and
relations as follows � a set of generators is fsgs�N �D�� subject to the braid relations
represented by Dop

br �

��	 Is the natural morphism B� 
 B injective �
��	 Do we have

B 
 f�nb j �n �Z	�b � B�	g �

Remark� This is true for Coxeter groups �see �De��	� But the answers to the above
questions are negative for diagrams given above for G��� G��� G��� G��� G���

�� Proofs of the main theorems for the braid groups B�de� e� r	

In this paragraph� we shall prove Theorems ���� and ���� for the in�nite series of
irreducible complex re�ection groups G�de� e� r	�

A� Notation and prerequisites�

Notation�

Let d� e and r be positive integers� We denote by �z�� z�� � � � � zr	 a general element of
C r � Let G�de� e� r	 be the subgroup of GLr�C 	 whose elements are �

�a� �� � zj 	
 ajz	�j�

for � � Sr and a 
 �a�� � � � � ar	 where aj � C � adej 
 � and �a� � � � ar	
d 
 ��
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The groupG�de� e� r	 is a subgroup of index e of G�de� �� r	 and G�de� �� r	 � �Z�deZ	o
Sr�
For de �
 � and �d� e� r	 �
 ��� �� �	� the group G�de� e� r	 acts irreducibly on C r � while

G��� �� r	 is isomorphic to Sr in its permutation action on C r �
Note that the center Z�G�de� e� r		 of G�de� e� r	 is cyclic� of order d�e�r	� We denote

by %�de� e� r	 the abelian normal subgroup of G�de� e� r	 given by

%�de� e� r	 �
 f�a� ��g �

The group %�de� e� r	 is of order d�de	r���

For the following notation� we assume that de �
 � and �d� e� r	 �
 ��� �� �	 �i�e�� that
G�de� e� r	 acts irreducibly on C r 	�
For m � N � f�g� let �m �
 exp��i��m	� We set

����	

sm �
 ���m� �� � � � � �	� ��

t���m	 �
 ���
��
m � �m� �� � � � � �	� ��� �	�

tj �
 ��� �j � �� j	� for � � j � r �

Let S�de� e� r	 denote the set of pseudo�re�ections of G�de� e� r	 given by

S�de� e� r	 �


���
��
fsd� t

�
��de	� t�� � � � � trg when e �
 � � d �
 �

fsd� t�� � � � � trg when e 
 � �

ft���e	� t�� � � � � trg when d 
 � �

The following result is proved� for example� in �Ari��

���� Proposition� The set S�de� e� r	� together with the relations described in Appendix
� and its tables  and �� give a presentation by generators and relations of G�de� e� r	�

Note that S�de� e� r	 consists of distinguished pseudo�re�ections �see De�nition ����
above	 for G�de� e� r	�

Re�ecting hyperplanes�

The following lemma is well known and easy to check�

���� Lemma� Let m be a positive integer�

��	 For e j m and e 	 m� the complement in C r of the union of the re�ecting
hyperplanes of G�m� e� r	 is

M��m� r	 �
 f�z�� z�� � � � � zr	 j ��j� k� � � j �
 k � r	��a �Z	�zj �
 �	�zj �
 �amzk	g �

��	 For all e � N� the complement in C r of the union of the re�ecting hyperplanes
of G�e� e� r	 is

M�m� r	 �
 f�z�� z�� � � � � zr	 j ��j� k� � � j 	 k � r	��a �Z	�zj �
 �amzk	g �
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Choosing an appropriate base point� we denote by B�de� e� r	 and P �de� e� r	 respec�
tively the corresponding braid group and pure braid group associated with G�de� e� r	�

Remark� By Lemma ��� above� P �de� e� r	 depends only on �de� r	 �

P �de� e� r	 
 P �de� �� r	 �for all d �
 �	 �

On the other hand� we shall prove �see Proposition ��� below	 that B�de� e� r	 depends
only on �e� r	 for d �
 � �so that B�de� e� r	 
 B��e� e� r		�

Preliminary � the case of the symmetric group�

Here we quote some well known results about the usual braid groups� mainly due to
Artin �Ar� � see also �Bi�� th� ����
Let us introduce some speci�c notation�
We setM�r	 �
M��� r	 andM��r	 �
M���� r	 �see Proposition ��� above	�

For all j � r� we denote by H�r���
j the hyperplane of C r�� de�ned by the equation

zj 
 zj��� and we denote by s
�r���
j �or simply sj	 the re�ection in C r�� with respect to

H
�r���
j � The set fs�r���

j g���j�r� generates a subgroup of GLr���C 	 which we identify

with the symmetric group Sr��� and the setM�r � �	 is the complement of the union
of the re�ecting hyperplanes of Sr���
We choose a base point x � Rr�� with coordinates x�� x�� � � � � xr�� such that x� 	

x� 	 � � � 	 xr��� Note that x is in one of the alc&oves ofM�r � �	 �Rr�� delimited by

�the real part of	 the hyperplanes H
�r���
j �

We set

P �r � �	 �
 ���M�r � �	� x	 and B�r � �	 �
 ���M�r � �	�Sr��� x	 �

For each j � r� we denote by �
�r���
j �or simply �j	 the generator of the monodromy

around H
�r���
j inM�r � �	�Sr�� associated to a path contained in Rr���Sr���

The following well known proposition establishes Theorem ���� for the case where
G 
 Sr��� The second assertion has been proved by Chow �Cho��

���� Proposition�

��	 The group B�r � �	 has a presentation described by the following diagram

�

�

�

�

� � � �

r

�

��	 Let ��r � �	 be the element of B�r � �	 de�ned by

��r � �	 �
 ����� � � � �r	
r�� �

For r � �� we have

Z�B�r � �		 
 Z�P �r � �		 
 h��r � �	i �

We will often consider B�r	 
 ���M�r	�Sr � �x�� � � � � xr��		 as a subgroup of B�r��	

through the injection �
�r�
j 	
 �

�r���
j�� � This induces an injection of the pure braid group

P �r	 
 ���M�r	� �x� � � � � � xr��		 into P �r ��	� as well as an injection of Sr in Sr�� as
the subgroup �xing the �rst coordinate�
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���� Proposition� The map

pr �M�r � �	
M�r	 � �z�� z�� � � � � zr��	 	
 �z�� � � � � zr��	

is a locally trivial �bration� and it induces a short exact sequence

�
 F �r	
 P �r � �	
 P �r	 
 � �

where F �r	 is a free subgroup� on the set of generators

f��� � ���
�
��
��
� � � � � � �r � � � �����

�
��
��
� ���� � � � ���r g �

We have P �r � �	 
 F �r	 o P �r	 �

B� Computation of B�de� e� r	 and of its center for d �
 ��

B�� Proof of Theorem ���	�

Let us use the notation introduced above about B�r � �	 and P �r � �	� as well as
notation introduced in ����	�

��	� Theorem� Assume d �
 ��
�� For s equal to respectively sd� t�� t�� � � � � tr� there exist s	generators of the mon	

odromy denoted respectively by �� ��� ��� � � � � �r in B�d� �� r	 and an injective group mor	
phism

��d���r� � B�d� �� r	 �
 B�r � �	 � ��d���r� �

	
� 	
 ���

�j 	
 �j for j � �

which induces an isomorphism of B�d� �� r	 onto the subgroup of B�r � �	 generated by
f���� ��� ��� � � � � �rg �

��� This isomorphism� as well as the isomorphism between B�r	 and the subgroup of
B�r � �	 generated by f��� ��� � � � � �rg� induce the following commutative diagram �

�

��
�

��

�

��
P �r� � t

��OO
OOjJwwooo

o

��
P �d���r�

��

� �
�� P �r���

��
B�r� � t

��OO
OOjJwwooo

o

��
B�d���r�

��

� �
�� B�r���

��
Sr � t

��OO
OOO�� ��

nnn
nn

��
G�d���r�

��

�� Sr��

��
�

� �

Proof of Theorem ����
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The map
�z�� z�� � � � � zr	 	
 �zd� � z

d
� � � � � � z

d
r 	

identi�es the quotient of M��d� r	 by the action of the diagonal group %�d� �� r	 with
the spaceM��r	�
The map

f �M�r � �	
M��r	 � �z�� z�� � � � � zr��	 	
 �z� � z�� z� � z�� � � � � z� � zr��	

is a trivial �bration with �ber C � which is Sr�equivariant with respect to the action of
Sr onM�r � �	 de�ned by the embedding of Sr into Sr�� as the pointwise stabilizer
of the �rst coordinate�
Since

G�d� �� r	 
 %�d� �� r	 oSr �

we have the following commutative diagram �

M��d� r	

��
M��d� r	�%�d� �� r	

��

���
M��r	

��

M�r � �	oo C��bration

��
M��d� r	�G�d� �� r	 ���

M��r	�Sr M�r � �	�Sr
oo

��
M�r � �	�Sr��

The horizontal arrows induce isomorphisms between fundamental groups�
Let y � M��d� r	 with image f�x	 inM��r	� Let � be the isomorphism

���M
��d� r	�G�d� �� r	� y	 
 ���M�r � �	�Sr� x	

and ��d� r	 be the injection

���M
��d� r	�G�d� �� r	� y	 
 ���M�r � �	�Sr � x	
 ���M�r � �	�Sr��� x	 �

Note that ��� is a generator of the monodromy aroundH
�r���
� inM�r��	�Sr �Propo�

sition A�� Appendix �	� Since P �r � �	 is contained in the subgroup of B�r � �	 gener�
ated by ��� � ��� � � � � �r and since the image of this subgroup in Sr�� is Sr� it follows that
���M�r��	�Sr � x	 is the subgroup of ���M�r��	�Sr��� x	 generated by ���� ��� � � � � �r�
Let � 
 �������	 � this is a generator of the monodromy around the hyperplane

z� 
 �� Let �j 
 �����j	 for j � � � this is a generator of the monodromy around
the hyperplane H

�r�
j � Then� ���M

��d� r	�G�d� �� r	� y	 is generated by �� ��� � � � � �r and
Theorem ��� follows� �

Let us now explain why Theorem ��� above implies Theorem ���� �for the case which
is presently considered� namely the case of B�de� e� r	 with d � �	�
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� The case e 
 ��

By Theorem ���� the group B�d� �� r	 is isomorphic to the subgroup of B�r��	 gener�
ated by f���� ��� ��� � � � � �rg � and from now on we identify B�d� �� r	 with this subgroup�
In particular� it follows from Theorem ��� above that P �r��	 � B�d� �� r	 � Since the

image of B�d� �� r	 in Sr�� �recall that Sr�� 
 B�r��	�P �r��		 is isomorphic to Sr�
the index of B�d� �� r	 in B�r��	 is �r��	� Hence the set f�� ��� ����� � � � � ���� � � � �rg is a
set of right coset representatives of B�d� �� r	 in B�r��	� By construction� it is actually a
Schreier set of right coset representatives� and it results from the Reidemeister�Schreier
method �see �MKS�� Theorem ���	 that the braid relations de�ned by the diagram

�

��

�

�

�

�

� � � �

r

are indeed de�ning relations for B�d� �� r	�

Remark� The group G��� �� r	 is actually a Coxeter group� since it is isomorphic to the
Weyl group of type Br� So we have reproved in this case a result which is known for all
Coxeter groups by �De�� or �Br���

Note also that

��
� the injection B�d� �� r	 �
 B�r � �	 induces an injection

P �d� �� r	 �
 P �r � �	 �

�� The general case e � ��

Let us set ��� �
 ������
��
� � Note that �with notation introduced in Part A above	 that

��� is a t���de	�generator of the monodromy in the braid group B�de� e� r	�
Note also that� since we have the following coverings

M��de� r	
M��de� r	�G�de� e� r	 
M��de� r	�G�de� �� r	 �

it results from Proposition A� �Appendix � below	 that ��e� is an sd�generator of the
monodromy in the braid group B�de� e� r	�

By Lemma ��� above we may identify P �de� �� r	 and P �de� e� r	 for d �
 �� Fur�
ther� G�de� e� r	 acts as a subgroup of G�de� �� r	 onM��de� r	� so we have the natural
embeddings

P �de� �� r	 �
 B�de� e� r	 �
 B�de� �� r	 �

and the index of the latter embedding equals e� Let � � B�de� �� r	 
 G�de� �� r	 denote
the canonical epimorphism� Set � �
 ���� Now f�� ���	� � � � � ���e��	g is a set of right
coset representatives of G�de� e� r	 in G�de� �� r	� so� since

���B�de� �� r		 � ��B�de� e� r		� 
 e 
 �B�de� �� r	 � B�de� e� r	� �

the set f�� �� � � � � �e��g is a right �Schreier	 transversal of B�de� e� r	 in B�de� �� r	�
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An application of the Reidemeister�Schreier method then proves� starting from the
presentation for B�de� �� r	 on the set ���� ��� � � � � �r �proved above	 that the braid rela�
tions de�ned by the diagram


�e� �
e��

�
�
�
�
�

�

��

�
�

�

�

�

� � � �

r

are indeed de�ning relations for B�de� e� r	� This proves Theorem ���� for B�de� e� r	
and d � � assuming the corresponding statement for B�de� �� r	� �

Note that the above diagram is indeed the opposite diagram to the braid diagram
describing the relations between the set S�de� e� r	 of the corresponding family of distin�
guished generators of the �nite group G�de� e� r	� namely

s�d
e��

�
�
�� t���

�� t�
�
�
t�

� �
t�

� � � ��
tr

� �

It will be useful to note that we have proved for G�de� e� r	 a statement similar to
�and more general than	 Theorem ���� ��	� namely �

���� Proposition� For s equal to respectively sd� t
�
��de	� t�� t�� � � � � tr� there exist s	

generators of the monodromy denoted respectively by �e� � ��� ��� ��� � � � � �r in B�de� e� r	
and an injective group morphism

��de�e�r� � B�de� e� r	 �
 B�r � �	 � ��de�e�r� �

���
��
�e 	
 ��e�

� �� 	
 ��� �where ��� 
 ������
��
� �

�j 	
 �j for j � �

which induces an isomorphism of B�de� e� r	 onto the subgroup of B�r � �	 generated by
f��e� � ���� ��� ��� � � � � �rg �

On the pure braid group�

Let us note a result about the structure of P �d� �� r	 which is analogous to Proposition
���
Let F �r	 be the free subgroup of P �r � �	 introduced in Proposition ��� Let us set

�� �
 ��� and

�j �
 ��j � � � ����	�
�
���

��
� ���� � � � ���j 	 for j 
 �� � � � � r �

Then F �r	 is the free group on f��� ��� � � � � �rg�
The map ���M�r � �	� x	 � ���M��r	� f�x		 
 %�d� �� r	 provides by restriction a

morphism F �r	 
 %�d� �� r	 � We denote by F �d� r	 the kernel of this morphism� Thus
we have a short exact sequence

�
 F �d� r	
 F �r	
 %�d� �� r	
 � �
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���� Lemma�

�� We have F �d� r	 
 F �r	�P �d� �� r	� and F �d� r	 is a free group on ��r� �	dr ��	
generators�

��� We have P �d� �� r	 
 F �d� r	 o P �r	�

Proof of ����
The equality F �d� r	 
 F �r	 � P �d� �� r	 expresses the de�nition of F �d� r	� Since

F �d� r	 is a subgroup of index dr of the free group F �r	� it is a free group on ��r��	dr��	
generators�
Since P �r��	 
 F �r	oP �r	� the second assertion follows from the fact that P �r	 �

P �d� �� r	 � P �r � �	� �

B�� The center of B�de� e� r	 for d �
 ��

Let us denote by ��de� e� r	 the central element of B�de� e� r	 de�ned as in �����
The following proposition proves Theorem ���� for the braid groups B�de� e� r	 with

d � �� We use the notation introduced in Proposition ���� In particular� B�de� e� r	 is
de�ned by generators and relations represented by the diagram

	e�
e��

�
�
���
�

�
� ��

�
�
��

�
t�

� � ��
�r

�

����� Proposition� We have �
�� ��de� e� r	 
 �er��er��� ������ � � � �r	

e�r�����er� �
��� Z�B�de� e� r		 
 h��de� e� r	i�
��� Z�P �de� e� r		 
 Z�B�de� e� r		 � P �de� e� r	 
 h��de� e� r	d�er�i �

Proof of ���� Note that for e 
 � the result is already known by �De��� since by Theorem
��� we have B�d� �� r	 
 B��� �� r	� the braid group associated to a Weyl group�
In what follows� we identify B�de� e� r	 with its image in B�r � �	 �see Proposition

��� above	�
Step �� We prove that

�����	 Z�P �de� e� r		 � h��r � �	i �

Let z � Z�P �de� e� r		�
Since P �r	 � P �de� e� r	 � P �r��	� the element z belongs to P �r��	 and centralizes

P �r	� Since �cf� Proposition ��	 P �r��	 
 F �r	oP �r	� where F �r	 is the normal closure
in P �r � �	 of the subgroup generated by ���� in order to prove that z � Z�P �r � �		 it
su ces to prove that z centralizes ��� � But z centralizes �

�de
� � Thus the elements z���z

��

and ��� both belong to the free group F �r	� and their �de	�th powers are equal� This
implies that they are equal �see for example �MKS�� ���� ex� �	� This proves �����	�

Thus we have

�����	 �Z�B�de� e� r		 � P �de� e� r		 � Z�P �de� e� r		 � h��r � �	i �B�de� e� r	 �



� Michel Brou�e
 Gunter Malle
 Raphael Rouquier

Step �� Let us now prove that

�����	 h��r � �	i �B�de� e� r	 
 h��r � �	e��er�i �

We have �see �Bi�� �����	 �

�����	 ��r � �	 
 �����
�
��

�
��
�
�	����

�
��

�
��
�
���	 � � � ��r � � � ���

�
��

�
��
�
��� � � � �r	 �

Since �� 
 ���� ������ � we have ������ 
 ������ and �����	 becomes

����	 ��r � �	 
 �����
�
����

�
�	�����

�
����

�
�	��	 � � � ��r � � � ����

�
����

�
�	�� � � � �r	 �

Since ��� commutes with ����
�
�	� as well as with �j for j � �� we deduce from ����	 that

�����	 ��r � �	 
 ��r� ����
�
�	�������

�
�	��	 � � � ��r � � � ������

�
�	�� � � � �r	 �

and then for all n � N�

�����	 ��r � �	n 
 ��rn� �����
�
�	�������

�
�	��	 � � � ��r � � � ������

�
�	�� � � � �r		

n
�

Since� for e� � N� we have hB�de� e� r	� ��e
�

� i 
 B�de� �e � e�	� r	 � it follows from �����	
that ��r��	n � B�de� e� r	 if and only if e divides rn� i�e�� if and only if e��e�r	 divides
n� which proves �����	�

Step � Let us now check that

�����	 ����
�
�	�������

�
�	��	 � � � ��r � � � ������

�
�	�� � � � �r	 
 ����

�
��� � � � �r	

r�� �

Let us introduce the group B��� �� r � �	 together with its distinguished set of gener�
ators f����� � � � � �r��g� which satisfy the relations described by the diagram �

�
�

�
��

�
��

� � � �
�r��

Then the map
� 	
 ���

�
� � �j 	
 �j�� for j � �

de�nes a morphismB��� �� r��	 
 B�de� e� r	 � Thus� in order to prove �����	� it su ces
to prove that

�������	����������	 � � � ��r�� � � ���������� � � ��r��	 
 ������ � � ��r��	r�� �

This last equality expresses a known property of reduced expressions of the longest
element in the Weyl group G��� �� r � �	� i�e�� the Weyl group of type Br�� �see for
example �Bou�� chap� v� x�� ex� �	� The proof of �����	 is complete�

Last step� Let us �temporarily	 set �� �
 ��r � �	e��er� � By �����	 and �����	� we see
that

�����	 Z�B�de� e� r		 � P �de� e� r	 � h��i �



Complex Re�ection Groups
 Braid Groups
 Hecke algebras �

and by �����	 and �����	� we see that

�� 
 �
�re��er�
� ����

�
��� � � � �r	

e�r�����er� �

or� with the identi�cation made in Proposition ����

�����	 �� 
 �er��er��� ������ � � � �r	
e�r�����er� �

On the other hand� it is not di cult to check that
����� the canonical epimorphism � � B�de� e� r	 
 G�de� e� r	 sends �� onto the scalar

multiplication in V by exp��i��jZ�G�de� e� r		j	 �
Since the map � � Z�B�de� e� r		 
 Z�G�de� e� r		 is onto� and since �by �����		 its

kernel is contained in h��i� it follows from ���� that

�����	 Z�B�de� e� r		 
 h��i �

Using �����	� it is then easy to prove that Z�P �de� e� r		 
 h��d�er�i �
It remains to check now that �� 
 ��de� e� r	� This follows from the fact that�
� on one hand� we have �by �����	 and Lemma ����� ��		 ��de� e� r	 � h��i�
� on the other hand� ��de� e� r	 and �� have both the same image under the discrim�

inant map ����	 � B�de� e� r	 
Z�cf� x�� B above	� �

C� Computation of B�e� e� r	 and of its center� e �
 ��

In this section we study the braid group of type B�e� e� r	 and in particular prove
Theorems ���� and ���� for type G�e� e� r	�
Note that the construction in the proof of Theorem ��� above gives an identi�cation

of ���M��e� r	�G�e� e� r		 with the subgroup of the braid group B�r � �	 generated by
��e� � ���� ��� ��� � � � � �r with presentation

�����	 
�e� �
e��

�
�
�
�
�

�

��

�
�

�

�

�

� � � �

r

Since M��e� r	 is obtained from M�e� r	 by removing the hyperplanes fzj 
 �g for
� � j � r we have a natural map

� � ���M
��e� r	�G�e� e� r		 
 ���M�e� r	�G�e� e� r		 �

which is surjective since the complement M�e� r	�G�e� e� r	 �M��e� r	�G�e� e� r	 has
complex codimension ��
The following proposition follows from Proposition A� in Appendix ��

Proposition ����� The kernel of � is the normal closure of the subgroup generated by
��e� in the group ���M��e� r	�G�e� e� r		�

Note that Theorem ���� follows immediately from this� Indeed� by the above Propo�
sition the presentation of B�e� e� r	 is obtained from �����	 by suppressing the node
corresponding to ��e� �

Complements on B�e� e� r	�
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Theorem ����� Let e� r � �� and let B�e� e� r	 be the braid group of type G�e� e� r	� on
standard generators ��� � ��� ��� � � � � �r ordered such that ���� ����	� 
 ������ ��	� �

e
�����

� ����
�
�
��

� �
��

� � � ��
�r

� �

Let $B�e� �� r � �	 be the preimage of the subgroup G�e� �� r � �	 of G�e� e� r	 �xing the

�rst coordinate� Then $B�e� �� r � �	 has index r in B�e� e� r	 and has a presentation on
generators

f�j � �j�l� j � � j � r� � � l � e � �g

subject to

�����	 ���i �j�l�i 


��������
�������

�j�l if i �
 �� j� j � �

�j���l if i 
 j � �

���j�l���j���l���j�l if i 
 j �
 �

���l���j�l�
��
��l if i 
 � 	 j

�j�l�� if i 
 j 
 �

�where the subscript l of �j�l is taken modulo e��

�����	 �j�e���j�e�� � � ��j� 
 � for � � j � r�

and ��� � � � � �r satisfy the relations of the standard generators of B�e� �� r � �	�
In terms of the generators of B�e� e� r	 we may take

�� 
 ���
�
�� �i 
 �i for � � i � r� ��� 
 � ���

��
� � ���� 
 � ��

��
�� �

In particular� $B�e� �� r � �	 has a semidirect product decomposition

$B�e� �� r � �	 
 F�e����r��� oB�e� �� r � �	 �

where F�e����r��� denotes the free group on the �e��	�r��	 generators ���� � � � � �r�e���

Proof� The assertion can be proved by the Reidemeister�Schreier method �see for ex�
ample �MKS�� Theorem ���	� Assume �rst that r 
 �� Then B�e� e� �	 is generated by
f��� � ��g subject to the single relation ��� ���� � � � 
 � ����� �� � � � with e factors on each side� A
right transversal for $B�e� �� �	 in B�e� e� �	 is given by T �
 f�� ��g� Let � � B�e� e� �	 
 T
be the transversal map which to every element of B�e� e� �	 associates its coset represen�

tative in T � Then by the Reidemeister�Schreier theorem $B�e� �� �	 is generated by the
elements �tg	����tg	 where t � T and g runs over the generators of B�e� e� �	� In our
case this yields the generators

�����	 �� �
 ���
�
�� ��� �
 � ���

��
� � 
� �
 ��� �

Furthermore� by the Reidemeister�Schreier algorithm the relations for B�e� e� �	 yield

�����	 �
�e�����
� 
 ����
����	

�e������� 
 �
����	�e�����
� if e is odd�
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�����	 �
e��
� 
 �
����	

e�� 
 ����
�	
e�� if e is even�

as de�ning relations for $B�e� �� �	� By introducing ���� �
 � ��
��
�� 
 ���� 
� we may

eliminate 
� and arrive at the statement of the theorem in this case�
Now assume that r 
 �� Here a transversal is given by T �
 f�� ��� ����g� We obtain

generators

�� �
 ��� 
� �
 ���
�
� �

��
� � � �
 ���

�
�
��
���

�
��
��
� �

and ��� 
�� ��� from �����	 above� subject to the relations

�����	

�����	
� 
 �����	

�� ���� 
��� 
 
�� ��
�
� 
 
�
����

���� 
 ������ ������� 
 �
�� �
��� 
 
������


�������
� 
 ���
�
���� 
 
�
��������

and the relations �����	 respectively �����	� We may eliminate 
� 
 ���� 
��� and
� 
 ����������� With ���� �
 ���� 
� as above we �nd the stated presentation�
Finally� for r � � it follows easily from the presentation for B�e� e� r	 given in Theo�

rem ���� �proved by Proposition ����	 that

T �
 f�� ��� ����� � � � � ���� � � � �rg

is a right transversal for $B�e� �� r � �	 in B�e� e� r	� This yields the generators

�i �
 �i and 
i �
 ���� � � � �i����i �
��
i�� � � � �

��
� ���� �� � i � r	 �

�� �
 ���
�
�� 
� �
 ��� � ��� �
 � ���

��
� � � �
 ���

�
�
��
���

�
��
��
� �

Furthermore� by the Reidemeister�Schreier algorithm the relations for B�e� e� r	 yield as

relations for $B�e� �� r � �	 the relations of the standard generators for B�e� �� r � �	 on
��� � � � � �r� the commutator rules

�
i� �j � 
 � for j �
 i� i� �� ���i��
i�i�� 
 
i�� for � � i �

and
�i��
i��
i 
 
i��
i�i�� for � � i� �

as well as

����� �j � 
 � for j � �� ��� �j � 
 � for j � �� ��� 
j � 
 � for j � � �

���� 
 ������ ������	
� 
 ������	

� �

and the relations �����	� �����	 respectively �����	� Note that the generators 
�� � � � � 
r
may be eliminated from this presentation using the relation 
i�� 
 ���i��
i�i��� This
reduces the assertion to the case r 
 �� �

This result has some nice consequences� like the following analogue of Proposition ��
and Lemma ����
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Corollary ����� The pure braid group P �e� e� r	 is a semidirect product

P �e� e� r	 �
 F�e����r��� o P �e� �� r � �	

of the free group of rank �e � �	�r � �	 with the pure braid group of type G�e� �� r � �	�

This follows immediately by descent to the pure braid groups �see �Na�� p� �� for a
related result	� We also obtain Theorem ���� for type G�e� e� r	�

Corollary ����� For e� r � �� �e� r	 �
 ��� �	� the center of the braid group B�e� e� r	 is
generated by ��� � � � �r	e�r�����er��

Proof� Let � � B�e� e� r	 
 G�e� e� r	 be the canonical projection� If z is central in
B�e� e� r	 then so is ��z	 in G�e� e� r	� Hence ��z	 
 ��� � � � �r	n with n a multiple of
e�r � �	��e � r	� and z 
 ��� � � � �r	nw for some w in ker��	� But then we already have
z � $B�e� �� r � �	 �de�ned as above	�
Let � � $B�e� �� r � �	 
 B�e� �� r � �	 be the canonical projection with kernel F �


F�e����r��� the free group on �e � �	�r � �	 generators emanating from Theorem ����
Since the center of �� $B�e� �� r � �		 
 B�e� �� r � �	 is generated by ��� � � ��r	r 

��� � � � �r	r we deduce that z 
 ��� � � � �r	nw for some w � F � But ��� � � � �r	n is central
in $B�e� �� r��	� while the center of the free group F is trivial �note that �e��	�r��	 � �	�
Thus the center of $B�e� �� r � �	 is generated by ��� � � � �r	e�r�����er�� �

Remark ����� For the braid groupB��� �� r	 of Coxeter type Dr Theorem ��� specializes

to the following� $B��� �� r � �	 has a presentation on

f�i� �j � j � � i� j � rg

subject to

���i �j�i 


��������
�������

�j if i �
 �� j� j � �

�j�� if i 
 j � �

�j�
��
j���j if i 
 j �
 �

���� �j�
��
� if i 
 � 	 j

�j if i 
 j 
 �

and ��� � � � � �r satisfy the relations of the standard generators of B��� �� r � �	�

Remark ����� The subgroup $B�e� �� �	 of index � of the braid group B�e� e� �	 of Coxeter
type I��e	 has a presentation on f��� �l� j � � l � e� �g subject to

���� �l�� 
 �l�� for � � l � e� �

�where the subscript of �l has to be taken mod e	� and

�e���e�� � � � � 
 � �

Remark ����� The action of B�e� �� r��	 on F�e����r��� in Theorem ��� can be extended
to an action of the Artin braid group B�r	� More precisely� let $��� ��� � � � � �r be the
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standard generators of B�r	� Then B�e� �� r��	 is isomorphic to the subgroup generated
by $���� ��� � � � � �r by Theorem ���� We extend the action �����	 of ��� � � � � �r to an action

of B�r	 on F�e����r��� 
 h�j�l j
Qe��

l� �j�l 
 �i by

$���� �j�l $�� 


�
���l�

��
j�l if j �
 ��

�j�l�� if j 
 ��

It is easy to verify that this does in fact extend the action of B�e� �� r � �	�
On the other hand the action �����	 can be viewed as an action on the free group

Fe�r��� on free generators h�j�l j � � j � r� � � l � e � �i by just omitting rela�
tions �����	� The homomorphism de�ned by

� � Fe�r��� 
 hti �
Z� �j�l 	
 t for all j� l �

is B�e� �� r � �	�equivariant �with trivial action on the right side	� so it gives rise to a
Magnus representation �see �Bi�� Th� ���	

' � B�e� �� r � �	
 GLe�r����Z�t		

with

'��i	�j�l���k�m� 


�������
������

�jk�lm if i �
 �� j� j � �

�j���k�lm if i 
 j � �

��j���k�l���m � �jk�l���m	t
�� � �jk�lm if i 
 j �
 �

��k�l���m � ��jk�lm � ��k�lm	t if i 
 � 	 j

�jk�l���m if i 
 j 
 �

�where � � i� j� k � r� � � l�m � e � �	 of B�e� �� r � �	�

A general statement for pure braid groups�

Let us �rst introduce some notation�

� We make the convention that G��� �� r	 �
 Sr��� and we denote by P ��� �� r	 the
corresponding pure braid group�

� Let m�
r�de� e� r	 be the co�exponent �see x��A above	 of G�de� e� r	 such that the

set of co�exponents of G�de� e� r	 consists of the set of coexponents of G�de� �� r�
�	� together with m�

r�de� e� r	� We have m
�
r�de� e� r	 
 �r��	de�� for d �
 � and

m�
r�e� e� r	 
 �r � �	�e � �	�

� For any natural integer m� let Fm be the free group on m generators�

���
� Proposition� For all positive integers d� e� r� we have a split short exact sequence

�
 Fm�
r �de�e�r�


 P �de� e� r	 
 P �de� �� r � �	
 � �

In particular� P �de� e� r	 is the semidirect product of a free group on m�
r�de� e� r	 genera	

tors by the pure braid group associated with a complex re�ection subgroup of G�de� e� r	
of rank �r � �	�

Proof of ����� We assume d �
 �� since for d 
 �� the result was proven in Corollary
�����
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Consider the map f � M��de� r	 
 M��de� r � �	� �z�� � � � � zr	 	
 �z�� � � � � zr��	�
This is a locally trivial �bration� with �ber isomorphic to C minus �r � �	de�� points�
By Theorem ����� M��de� r � �	 is a K��� �	�space� Hence� we have a short exact
sequence of fundamental groups associated to the �bration �

�
 F�r���de�� 
 P �de� e� r	 
 P �de� �� r � �	
 � �

The locally trivial �brationM��de� r	 
M��r	� �z�� � � � � zr	 	
 �zde� � � � � � zder 	 induces
a commutative diagram with exact rows and columns �

�

��

�

��

�

��
� �� F�r���de���

��

��

P �de� e� r	 ��

��

P �de� e� r � �	 ��

��

�

� �� Fr ��

��

P �r	 ��

��

P �r � �	 ��

��

�

� �� Z�deZ ��

��

%�de� �� r	 ��

��

%�de� �� r � �	 ��

��

�

� � �

The splitting of the map P �r	 
 P �r � �	 together with the splitting of %�de� �� r	 

%�de� �� r � �	 given by identifying %�de� �� r � �	 with the subgroup of %�de� �� r	 of
elements acting trivially on the last coordinate give then a splitting of P �de� e� r	 

P �de� e� r � �	 and the proposition follows� �

�� Hecke algebras

We extend to the case of complex re�ection groups the construction of generalized
Knizhnik�Zamolodchikov connections for Weyl groups due to Cherednik ��Ch��� �Ch���
�Ch��! see also the constructions of Dunkl �Du�� Opdam �Op� and Kohno �Ko��	�� This
allows us to construct explicit isomorphisms between the group algebra of a complex
re�ection group and its Hecke algebra�

A� Background from di�erential equations and monodromy�

What follows is well known
 and is introduced here at an elementary level for the
convenience of the unexperienced reader
 since we only need this elementary approach	
For a more general approach
 see for example �De�	

We go back to the setting of x�� Let A be a �nite dimensional complex vector space�
We denote by � a chosen non zero point of A � in the applications� A we will be an

�This construction has also been noticed independently by Opdam
 who is able to deduce
from it some important consequences concerning the �generalized fake degrees� of a complex
re�ection group	 We thank him for useful and friendly conversations	



Complex Re�ection Groups
 Braid Groups
 Hecke algebras ��

algebra� We set E �
 End�A	� Let � be a holomorphic di�erential form on M with
values in E� i�e�� a holomorphic mapM
 Hom�V�E	 � where Hom�V�E	 denotes the
space of linear maps from V into E� such that �see ��� and ��� ��		 we have

� 

X
H�A

fH�H �

with �H 

�

�i�

d�H
�H

� and fH � E� For x � M and v � V � we have ��x	�v	 


�

�i�

P
H�A

�H�v	

�H�x	
fH �

We consider the following linear di�erential equation

�Eq��		 dF 
 ��F 	 �

where F is a holomorphic function de�ned on an open subset of M with values in A�
In other words� for x in this open subset� we have dF �x	 � Hom�V�A	 � and we want
F to satisfy� for all v � V � dF �x	�v	 
 ��x	�v	�F �x		 � or in other words dF �x	�v	 

�

�i�

P
H�A

�H�v	

�H�x	
fH�F �x		 �

For y � M� let us denote by V�y	 the largest open ball with center y contained inM�
The existence and unicity theorem for linear di�erential equations shows that for each
y � M� there exists a unique function

Fy � V�y	
 A � x 	
 Fy�x	 �

solution of Eq��	 and such that Fy�y	 
 �� From now on� we set

F �x� y	 �
 Fy�x	 �

Assume now that the �nite groupW acts linearly on A through a morphism � � W 

GL�A	� Then it induces an action of W on the space of di�erential forms on M with
values in E� and an easy computation shows that � is W �stable if and only if� for all
w �W �

����	 ��w�x		 
 ��w	���x	 � w��	��w��	 �

which can also be written� for all x � M and v � V �X
H�A

�H�wx	�v	fH 

X
H�A

�H�x	�w
���v		��w	fH��w��	 �

An easy computation shows that this is equivalent to

����	
X
H�A

fw�H�

d�w�H�

�H


X
H�A

��w	fH��w
��	

d�w�H�

�H
�

In particular we see that



�� Michel Brou�e
 Gunter Malle
 Raphael Rouquier

���� If fw�H� 
 ��w	fH��w��	 for all H � A and w �W � then the form � is W 	stable�

From ����	 �and from the existence and unicity theorem	� it follows that

���� If � isW 	stable� then for all y � M� x � V�y	 and w �W � the solution x 	
 F �x� y	
satis�es

��w	�F �x� y		 
 F �w�x	� w�y		 �

The case of an interior W 	algebra�

The following hypothesis and notation will be in force for the rest of this chapter�
From now on� we assume that A is endowed with a structure of C �algebra with unity�

and that � takes its values in the subalgebra of E consisting of the multiplications by
the elements of A � which� by abuse of notation� we still denote by A� With this abuse
of notation� we may assume that

� 

X
H�A

aH�H �

where aH � A� and the equation Eq��	 is written

dF 
 �F or dF �x	�v	 

�

�i�

X
H�A

�H�v	

�H�x	
aHF �x	 �

Let 
 be a path inM� From the existence and unicity of local solutions of Eq��	� it
results that the solution x 	
 F �x� 
��		 has an analytic continuation t 	
 �
�F 	�t� 
��		
along 
� which satis�es the following properties�
Let us say that a sequence of real numbers t 
 � 	 t� 	 � � � 	 tn�� 	 tn 
 � is

adapted to �
�Eq��		 if for all � � j � n� we have 
��tj��� tj �	 � V�
�tj		�
Then �

��	 there exists � � � such that �
�F 	�t� 
��		 
 F �
�t	� 
��		 for � � t � ��
��	 whenever t 
 � 	 t� 	 � � � 	 tn�� 	 tn 
 � is adapted to �
�Eq��		� we have

�
�F 	�tj � 
��		 
 F �
�tj	� 
�tj��		�
�F 	�tj��� 
��		 for all j � � �

We see that

���	 �
�F 	��� 
��		 

j��Y
j�n

F �
�tj	� 
�tj��		 �

Note that there is always an adapted sequence for �
�Eq��		�

The case of an integrable form�

We recall that the form � is said to be integrable if d� � � � � 
 � �
The following fact was noticed� for example� by Kohno �see �Ko��� ���	�

��	� Lemma� The form � 

P

H�A aH�H is integrable if and only if� for all subspaces
X of V with codimension �� and for all H � A such that X � H� aH commutes withP

�H��A�
�H��X�

aH��

Indeed� this is an immediate consequence of ��� ��	�
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If � is integrable� the value �
�F 	��� 
��		 depends only on the homotopy class of 
�
By ���	� we see that we get a covariant functor

S �

	
P�M	
 A�


 	
 �
�F 	��� 
��		

Action of W �

Assume now that A is an interior W �algebra� i�e�� that there is a group morphism
W 
 A� �through which the image of w � W is still denoted by w	� which de�nes a
linear operation � ofW on A by composition with the injection A� �
 GL�A	 � So� with
our convention� for w �W and a � A we have ��w	�a	 
 wa�
The form � is then W �stable if and only if� for all w �W and x � M�

��w�x		 
 w���x	 � w��	w�� �

which can also be written� for all x � M and v � V �X
H�A

�H�wx	�v	aH 

X
H�A

�H�x	�w
���v		waHw�� �

By ���� we have the following criterion�

��
� If� for all H � A and w � W � we have aw�H� 
 waHw
��� then the form � is

W 	stable�

By ���� the solution F of Eq��	 then satis�es

����	 wF �x� y	w�� 
 F �w�x	� w�y		 �

���� Denition�Proposition� Assuming that � is W 	stable� we de�ne a group mor	
phism

T � ���M�W� x	
 �A�	op

�or� in other words� a group anti�morphism T � ���M�W� x	 
 A� �� called the mon	
odromy morphism associated with �� as follows�

For � � B� with image � in W through the natural anti�morphism B 
W �see ��B
above�� we denote by $� a path in M from x to ��x	 which lifts �� Then we set

T ��	 �
 S�$���	� �

Let us check that T is a group anti�morphism�
Notice �rst that� by ����	 and by ���	� for w �W and 
 a path inM� we have

wS�
	w�� 
 S�w�
		 �

Thus we have

T ���	T ���	 
 S� $��
��	��S� $����	��


 S� $��
��	S���� $����		����


 S� $��
����� $����		����


 S����� $��	 $��	
��	����

which proves that T ���	T ���	 
 T �����	 � since ��� $��	 $�� is indeed a path in M with
origin x which lifts �����	� �
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Dependence of parameters�

Suppose the form � depends holomorphically on m parameters t�� � � � � tm� De�
noting by O the ring of holomorphic functions of the variables t�� � � � � tm� we have
� 


P
H�A fH�H where fH � O�C E� Then� for y � M� the function Fy is a holomor�

phic function of t�� � � � � tm� i�e�� Fy has values in O �C A�
Then� given a path 
 in M� the analytic continuation t 	
 �
�F 	�t� 
��		 depends

holomorphically of t�� � � � � tm�
If � is integrable and W �stable� then the monodromy morphism depends holomor�

phically on the parameters t�� � � � � tm� It follows that we have a monodromy morphism

T � ���M�W� x	
op 
 �O �C A	

��

B� A family of monodromy representations of the braid group�

From now on� we assume that A 
 CW �

Notation and hypothesis�

We denote by O the ring of holomorphic functions of a set of
P
C�A�W eC variables

z 
 �zC�j	�C�A�W ���j�eC��� �
Let

t �
 �tC�j	�C�A�W ���j�eC���

be a set of
P
C�A�W eC complex numbers� For H � C� we set tH�j �
 tC�j �

We put
qC�j 
 exp��tC�j�eC	 for C � A�W � � � j � eC � � �

For H � C� we set qH�j �
 qC�j�
Let C � A�W and let H � C� For � � j � eC � �� we denote by �j�H	 the primitive

idempotent of the group algebra CWH associated with the character det
j
V of the group

WH � Thus we have

�j�H	 

�

eC

k�eC��X
k�

exp�
��i�jk

eC
	skH �

We set

aH �


j�eH��X
j�

tH�j�j�H	 and � �

X
H�A

aH�H �

In other words� we have

� 

X

C�A�W

j�eC��X
j�

X
H�C

tC�j�j�H	�H �

The following lemma is clear�

����� The map A
 A� H 	
 aH has the following properties �

��	 it is W 	stable� i�e�� for all w �W and H � A� we have aw�H� 
 waHw
���

��	 for all H � A� aH belongs to the image of CWH in A�

The following property follows from �����
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����� Lemma� The form � is W 	stable and integrable�

Proof of ��� The form � isW �stable by ���� It is integrable by ���� Indeed� let X be a
codimension � subspace of V and let H be an element of A containingX� By ���� above�
it is enough to check that� if w �WH � then w commutes with

P
�H��A��H��X� aH� � This

is the case since w centralizes X� hence normalizes fH � � A j �H � � X	g� �

The main theorem�

����� Theorem� We denote by T � Bop 
 �CW 	� the monodromy morphism associ	
ated with the di
erential form � on M� For all H � C� we have

j�eC��Y
j�

�T �sH��	� qH�jdetV �sH	
j 	 
 � �

Furthermore� T depends holomorphically on the parameters tC�j� i�e�� arises by special	
ization from a morphism T � Bop 
 �OW 	��

Proof of ����

First step � case of rank �

Here we assume dim�V 	 
 �� So we may assume that W is the cyclic group of order
e generated by the multiplication s by exp��i��e	� We haveM 
 C� �
For � � j � e � �� let �j be the primitive idempotent of CW corresponding to the

character of W which sends s onto exp��i�j�e	�
There are e complex numbers t� t�� � � � � te�� such that

� 


j�e��X
j�

tj
�i�

�j
dz

z
�

A function F � C� 
 CW may be written

F 


j�e��X
j�

Fj�j

where Fj � C� 
 C �
The equation Eq��	 becomes

dFj
dz



tj
�i�

Fj�z	

z
for � � j � e� � �

Hence the solution F �x� �	 is given by the formula

F �x� �	 


j�e��X
j�

xtj��i��j �
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The analytic continuation of F along the path � � t 	
 exp��i�t�e	 gives

S��	 


j�e��X
j�

exp�tj�e	�j

hence

T �s	 
 S��	��s 

j�e��X
j�

exp��tj�e	 exp��i�j�e	�j �

Thus we see that� with qj �
 exp��tj�e	� we have

�����	

j�e��Y
j�

�T �s	 � qj exp��i�j�e		 
 � �

as claimed�

Second step � towards the reduction to the case of rank �

We are back to the general case� Here we use notation introduced in x��B�

�� First we prove that� to compute the relation satis�ed by the monodromy of sH���
we may assume that x is �close to H�� namely that x 
 xH �
Let us denote by

TxH � ���M�W� xH	
op 
 A

the monodromy morphism associated with �� and let us denote by sH the element of
���M�W� xH	 de�ned by the path �H�xH �

����� Lemma� For any path 
 from x to sH�x	� we have

T �sH��	 
 S�
	��TxH �sH	S�
	 �

Proof of ���� By �����	� we have �H�� �
 sH�
��	 ��H�xH �
 � from which it follows that

T �sH��	 
 S����H��	sH


 S�
��	S����H�xH
	S�sH�
		sH


 S�
��	S����H�xH
	sHS�
	


 S�
��	TxH �sH	S�
	

�

�� Now we prove that we may reduce to rank one�
Choose and �x H � A� We still use notation introduced in x��
The elements of the a ne line �xH � LH	 are the elements xH�z	 �
 prH�xH	 �

zpr�H�xH 	 with z � C � We may adjust the choice of xH so that� if

D�
H �
 fxH�z	 j � 	 jzj 	 �g �
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we have D�
H �M � Note that D�

H is stable by the operation of the group WH �
We have �H�xH �z		 
 z�H�pr�H�xH		� For H

� �
 H� we set �H��pr�H�xH 		 
 uH��
and �H��prH�xH 		 
 vH� � Recall that xH has been chosen so that

zuH� � vH� �
 � on DH if H � �
 H �

Then the function

RHF � D
�
H 
 CW � xH�z	 	
 F �xH �z	� xH 	 �

satis�es the following di�erential equation �

d�RHF 	

dz





� �

�i�

aH
z
�
X
H� ��H

�

�i�

uH�

uH�z � vH�
aH�

�
ARHF �xH �z		 �

In other words� RHF satis�es the di�erential equation associated with the di�erential
form RH� de�ned on D

�
H by

����	 RH� �

�

�i�



�aH

z
�
X
H� ��H

uH�

uH�z � vH�
aH�

�
A dz �

Note that RH� is WH�stable�

�� Now we reduce to the case of the action of the cyclic group WH on D
�
H �

Let RHS � P�D
�
H	
 CW be the monodromy functor associated with the form RH��

By the existence and unicity theorem for linear di�erential equations� since the loop �H
takes its values in D�

H � we see that

�����	 S��H	 
 RHS��H	 �

Let us still denote by sH the image of the path �H in ���D
�
H�WH	� Let

RHTxH � ���D
�
H�WH	

op 
 A

be the monodromy morphism associated with the di�erential form RH�� Then it results
from �����	 and from Lemma ���� that

���
� T �sH��	 is conjugate �in �CW 	�� to RHTxH �sH	�

Third step � reduction to the case of rank �

Let TH � ���D
�
H�WH � xH	op 
 CWH be the monodromy morphism associated with

the WH�stable di�erential form de�ned on D
�
H by aH�H � By �����	� we know that the

characteristic polynomial of TH�sH	 �viewed as acting on CWH by left multiplication	
is

PH�t	 �


j�eC��Y
j�

�t � qC�j exp��i�j�eC		 �
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where C denotes the W �orbit of H� We want to prove that PH�RHTxH �sH		 
 ��

By the �rst two steps� it is clear that our problem may be reformulated as follows�

We set D �
 fz � C j �jzj 	 �	g and D� �
 D � f�g � and we view D and D� as
endowed with the action of WH de�ned by �w� z	 	
 detV �w	z for w �WH and z � D�
In order to simplify the notation� we also set e �
 eC�
 eH	� and for � � j �

e � �� �j �
 �j �H	 � tj �
 tC�j � qj �
 qC�j � and a �
 aH 

Pe��

j� tj�j � We de�ne a

holomorphic function b on D by the formula b�z	 �

�

�i�

P
H� ��H

uH�

uH�z � vH�
aH� �note

that uH�z � vH� �
 � on D	�

We have two di�erential equations for holomorphic functions �locally	 de�ned on D�

with values in CW �

dFH
dz
�z	 


a

z
FH�z	�Eq�a		

dF

dz
�z	 
 �

a

z
� b�z		F �z	 ��Eq�a� b		

Both these equations correspond to WH�stable di�erential forms on D� � a commutes
with the action of WH� and we have b�w�z	 
 detV �w	

��wb�z	w�� for w � WH and
z � D�

We denote by SH and S the functors from P�D�	 to �CW 	� associated respectively
to the equations Eq�a	 and Eq�a� b	� and by TH � T � ���D��WH � �	 
 �CW 	� the
corresponding morphisms�

����� Proposition� Assume that� for all j� k � � � j� k � e � �� qjq
��
k is not an e	th

root of the unity� Then there exists an invertible element u of CW such that� for all
� � ���D��WH � �	� we have T ��	 
 uTH��	u�� �

Proof of ����

�� Equivalence of Eq�a	 and Eq�a� b	�

Here we follow �Ha�� ����
Let us consider the following di�erential equation

�Eq��a� b		
d'

dz
�z	 


�

z
�a'�z	 � '�z	a	 � b�z	'�z	 �

for ' a function �locally	 de�ned on D� with values in CW � The following assertion is
proved� for example� in �Ha�� ���� �see in particular ������ and proof of �����	� Here we

use the fact that the spectrum of the multiplication by a in CW is f
t
�i�

�
t�
�i�

� � � � �
te��
�i�

g

�each
tj
�i�

with multiplicity jW �WH j	�

����� Lemma� Assume that� for all j� k � � � j� k � e��� we have tj�tk �� �i�Z�f�g�
Then there is a unique solution ' of Eq��a� b	 satisfying the following two conditions �

��	 ' is holomorphic on D�
��	 '��	 
 ��
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Now it is immediate to check that� if z 	
 FH�z� z	 is the solution of Eq�a	� de�ned in
the neighbourhood of z� and such that FH�z� z	 
 �� then the function z 	
 F �z� z	 �

'�z	FH �z� z	'�z	�� is the solution of Eq�a� b	� de�ned in the neighbourhood of z� and
such that F �z� z	 
 ��

By the formula ���	� we see that� for all homotopy classes of paths 
 in D�� we have
then

�����	 S�
	 
 '�
��		SH�
	'�
��		
�� �

�� WH�equivariance and proof of Proposition ����

By the unicity property of ' �see Lemma ����	� it follows from the WH invariance of
a and b that '�detV �w	z	 
 w'�z	w�� for all w � WH and z � D� Then the formula
�����	� together with the de�nition ��� of the monodromy functors� imply Proposition
���� with u �
 '��	� i�e�� for all � � ���D��WH � �	� we have

T ��	 
 '��	TH��	'��	
�� �

�

Conclusion � end of proof of Theorem ����

From what precedes� we see that Theorem ���� is proved provided the family

q �
 �qC�j	�C�A�W ���j�eC���

satis�es the condition that �for all C and all j� k	 qC�jq��C�k is not an eC�th root of the
unity� i�e�� if the family t has the property that tC�j � tC�k is not a non�zero integer�
for all C and all j� k� Since the set of such families is a dense open subset in the space
C
P

C�A eC of all families t� we see that Theorem ���� follows by continuity� since the
solution x 	
 F �x� y	 is a holomorphic function of t� �

C� Hecke algebras�

We de�ne a set
u 
 �uC�j	�C�A�W ���j�eC���

of
P
C�A�W �eC	 indeterminates� We denote byZ�u�u

��� the ring of Laurent polynomials
in the indeterminates u�
Let I be the ideal of the group algebra Z�u�u���B generated by the elements

�sH�� � uC�	�sH�� � uC��	 � � � �sH�� � uC�eC��	

where C � A�W � H � C� sH�� is a generator of the monodromy around H in B �cf�
�����		 and s is the image of sH�� in W �

����� Denition� The Hecke algebra Hu�W 	 is the Z�u�u���	algebra Z�u�u���B�I�

Now assume that W is a �nite irreducible complex re�ection group �see x��C above
for notation and references	� Let D be the diagram of W � and let s � N �D	 be a node
of D� We set us�j �
 uC�j for j 
 �� �� � � � � eC � �� where C denotes the orbit under W of
the re�ecting hyperplane of s�
The following proposition is an immediate consequence of Theorem ���� �
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����� Proposition� Assume W is di
erent from G��� G��� G��� G��� G�� � and
also di
erent from G�� for which the following assertion is still conjectural� The Hecke
algebra Hu�W 	 is isomorphic to the Z�u�u����algebra generated by elements �Ts	s�N �D�

such that

� the elements Ts satisfy the braid relations de�ned by Dop
br �

� we have �Ts � us�	�Ts � us��	 � � � �Ts � us�es��	 
 � �

Notice that through the specialization us�j 	
 detV �s	j �for s � N �D	 and � � j �
es��	� the algebraHu�W 	 becomes the group algebra ofW op over a suitable cyclotomic
extension of Z�

Hecke algebras and monodromy representations�

By Theorem ����� we see that the monodromy representation T factors through
Hu�W 	� Indeed� let us set

tC�j �
 detV �s	juC�j

for all �C� j	� and
t �
 �tC�j	�C�A�W ���j�eC��� �

and let us denote by O the ring of holomorphic functions of the set of variables t� Then
we have the following commutative diagram �

OB ��T

��OO
OOO

OOO
OOO

O OW op

O �Z�u�u�� � Hu�W 	

		mmmmmmmmmmmm

Let K be the �eld of fractions of O�
The following lemma is a key point to understand the structure of Hu�W 	� It is well�

known to hold for Coxeter groups� For the in�nite series of complex re�ection groups�
see �ArKo� for G�d� �� r	� �BrMa�� �����	 for G��d� �� r	 and �Ari�� Proposition ��� for the
general case �it has been also checked for many of the remaining groups of small rank
� see for example �BrMa�� Satz ���	� We conjecture it is true for all complex re�ection
groups�

����� Lemma� Assume W is Coxeter group or a complex re�ection group in the in�nite
series�

The Z�u�u���	module Hu�W 	 can be generated by jW j elements�

From this lemma� we can now deduce the following

����� Theorem� Assume W is Coxeter group or a complex re�ection group in the
in�nite series�

The monodromy representation T induces an isomorphism of K	algebras

K�Z�u�u�� � Hu�W 	
�
�
KW op �

Furthermore� Hu�W 	 is a free Z�u�u���	module of rank jW j�

Proof� By Lemma ����� there is a surjective morphism of Z�u�u����modules

� � Z�u�u���jW j 
 Hu�W 	 �
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Let m be the ideal of O of the functions vanishing at the point �tC�j 
 �	� The morphism
Om �Z�u�u�� � Hu 
 OmW induced by the monodromy is surjective by Nakayama#s
lemma� since it becomes an isomorphism after tensoring by �Om	�m� Composing with

�Om � �� we obtain an epimorphism OjW j
m 
 OmW � this must be an isomorphism�

Hence� ker� 
 �� i�e�� � is an isomorphism and Hu is free of rank jW j over Z�u�u����
Since the morphism K �Z�u�u�� � Hu 
 KW is a surjective morphism between two

K�modules with same dimensions� it is an isomorphism and Theorem ���� follows� �

	� Diagrams and tables

Information provided by the tables� invariants of braid diagrams�

Let us recall that a diagram where the orders of the nodes are �forgotten� and where
only the braid relations are kept is called a braid diagram for the corresponding group�

The groups have been ordered by their diagrams� by collecting groups with the same
braid diagram� Thus� for example�
� G�
 has the same braid diagram as the groups G��d� �� �	 for all d � ��
� G�� G	� G��� G�
� G�� all have the same braid diagrams as groups S�� S� and S
�
� G
� G�� G�	 have the same braid diagram as the groups G�d� �� �	 for all d � ��
� G�� G��� G�� have the same braid diagram as the groups G��d� �� �	 for all d � ��
� G�� has the same braid diagram as G�d� �� �	 for d � ��

The element � �generator of Z�W 		 is given in the last column of our tables� Notice
that the knowledge of degrees and codegrees allows then to �nd the order of Z�W 	�
which is not explicitely provided in the tables�

The tables provide diagrams and data for all irreducible re�ection groups�

� Tables � and � collect groups corresponding to in�nite families of braid diagrams�
� Table � collects groups corresponding to exceptional braid diagrams �notice that
the fact that the diagram for G�� provides a braid diagram is only conjectural	�
but G��� G��� G��� G��� G���

� The last table �table �	 provides diagrams for the remaining cases �G��� G���
G��� G��� G��	� It is not known nor conjectural whether these diagrams provide
braid diagrams for the corresponding braid groups�

Degrees and codegrees of a braid diagram�

The following property may be noticed on the tables� It generalizes a property already
noticed by Orlik and Solomon for the case of Coxeter�Shephard groups �see �OrSo���
����		�

���� Theorem� Let D be a braid diagram of rank r� There exist two families

�d��d�� � � � �dr	 and �d���d
�
�� � � � �d

�
r	

of r integers� depending only on D� and called respectively the degrees and the codegrees
of D� with the following property� whenever W is a complex re�ection group with D as
a braid diagram� its degrees and codegrees are given by the formulae

dj 
 jZ�W 	jdj and d�j 
 jZ�W 	jd
�
j �j 
 �� �� � � � � r	 �
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The zeta function of a braid diagram�

In �DeLo�� Denef and Loeser compute the zeta function of local monodromy of the

discriminant of a complex re�ection group W � which is the element of Q�q� de�ned by
the formula

Z�q�W 	 �

Y
j

det�� � q��Hj�F� C 		
����j�� �

where F denotes the Milnor �ber of the discriminant at � and � denotes the monodromy
automorphism �see �DeLo�	�
Putting together the tables of �DeLo� and our braid diagrams� one may notice the

following fact�

���� Theorem� The zeta function of local monodromy of the discriminant of a complex
re�ection group W depends only on the braid diagram of W �

Remark� Two di�erent braid diagrams may be associated to isomorphic braid groups�
For example� this is the case for the following rank � diagrams �where the sign ���
means that the corresponding groups are isomorphic	 �

For e even� s�
e��

�
�
� t

�u

� s� ne � t

�u

�

for e odd� s�
e��

�
�
� t

� u

� �
s

�
t
�

and ns� n
� t

� u



� � �
s

�
t
�

It should be noticed� however� that the above pairs of diagrams do not have the same
degrees and codegrees� nor do they have the same zeta function� Thus� degrees� codegrees
and zeta functions are indeed attached to the braid diagrams� not to the braid groups�
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Appendix � 
 Generators of the

monodromy around an irreducible divisor

We de�ne here what we mean by a �generator of the monodromy around an irreducible
divisor� and recall some well known properties	

Let Y be a smooth connected complex algebraic variety� I a �nite family of irreducible
codimension � closed subvarieties �irreducible divisors	 and Z �
 �D�ID� Let X �

Y � Z and x � X�

For D � I� let Ds be the smooth part of D and $D �
 Ds �

Ds �

S
D��I�D� ��DD�

�
�

�A path from x to D in X� is by de�nition a path 
 in Y such that 
��	 
 x�


��	 � $D and 
�t	 � X for t �
 ��
Let 
� be another path from x to D in X� We say that 
 and 
� are D�homotopic

if there is a continuous map T � ��� ��� ��� ��
 Y such that T �t� �	 
 
�t	 and T �t� �	 



��t	 for t � ��� �� � T ��� u	 
 x and T ��� u	 � $D for all u � ��� �� and T �t� u	 � X for
t � ��� �� and u � ��� ��� We denote by �
� the D�homotopy class of 
�
Given a path 
 from x to D in X� let B be a connected open neighbourhood of 
��	

in X � $D such that B �X has a fundamental group free abelian of rank �� Let u � ��� ��
such that 
�t	 � B for t � u� Put x� �
 
�u	� The orientation of B �X coming from

the orientation of X gives an isomorphism f � ���B � X�x�	
�
�
Z� Let � be a loop in

B �X from x� such that f����	 
 ��
Let 
u be the �restriction� of 
 to ��� u�� de�ned by 
u�t	 �
 
�ut	 for all t � ��� ���

De�ne ���� �
 
u
�� �� �
u � Then� the homotopy class of ���� in ���M� x	 depends only

on the D�homotopy class of 
 and is denoted by ����� We call it the generator of the
monodromy around D associated to �
��

� �

 �aa
�

x

Given two paths 
 and 
� from x to D� the generators of monodromy ���� and �����
are conjugate�

A�� Proposition� Let i be the injection of an irreducible divisor D in a smooth
connected complex variety Y and x � Y � D� Then� the kernel of the morphism
���i	 � ���Y �D�x	 
 ���Y� x	 is generated by all the generators of the monodromy
around D�

Sketch of proof of A� Note that the singular points of D form a closed subvarietyDsing

of D� distinct fromD� hence of �complex	 codimension at least � in Y � Therefore �see for
example �Go�� chap� x� ���	 the natural morphism ���Y �D�Dsing� x	
 ���Y �D�x	
is an isomorphism� and in order to prove A� we may assume D is smooth� which we do
now�
The lemma then follows from the fact that given a locally constant sheaf F over

Y � D� its extension i�F to Y is locally constant if and only if every generator of the
monodromy around D acts trivially on F � �

A�� Proposition� Suppose that Y is simply connected� Then the fundamental group
���X�x	 is generated by all the generators of the monodromy around the divisors D � I�

Proof of A��
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This follows immediately from Proposition A� by induction on jIj� �

Lifting generators of the monodromy�

Let p � Y 
 Y be a �nite covering between two smooth connected complex varieties�
Let D be the branch locus of p and D 
 p�D	� We assume D is an irreducible divisor�
We set X �
 Y �D and X �
 Y �D�
We shall see that a generator of the monodromy around D �associated to a path 


from x to D in Y 	 may be naturally lifted to an element of P�X	 �which depends only
on the D�homotopy class of 
	�
Indeed� let 
 be the path from x to an irreducible component� say D� � of D� which

lifts 
� Let B be an open neighbourhood of x in Y such that the fundamental group of
B �X is free abelian of rank � and B � �X � $D�	 
 B is unrami�ed outside D� � Let

u � ��� �� such that 
�t	 � B for t � u� Let � be a loop in B �X with origin 
�u	 which
is a positive generator of ���B �X�
�u		�
Let � be the path from 
�u	 which lifts �� Let 
u be the restriction of 
 to ��� u�� Let


�u be the path from ���	 which lifts �
u	
��� where 
u is the �restriction� of 
 to ��� u��

The proof of the following proposition is left to the reader�

A�� Proposition� We de�ne �� �
 
�u � � � 
u �

��	 The homotopy class of �� in P�X	 depends only on the D�homotopy class of 
�

��	 Let eD denote the rami�cation index of p on $D� Then �eD� is the generator of
the monodromy around D� associated to 
�
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Appendix � 
 tables � to 	

Here are some de�nitions� notation� conventions� which will allow the reader to un�
derstand the diagrams�

The groups have presentations given by diagrams D such that

� the nodes correspond to pseudo�re�ections in W � the order of which is given
inside the circle representing the node�

� two distinct nodes which do not commute are related by �homogeneous� relations
with the same �support� �of cardinality � or �	� which are represented by links
beween two or three nodes� or circles between three nodes� weighted with a
number representing the degree of the relation �as in Coxeter diagrams� � is
omitted� � is represented by a double line� � is represented by a triple line	�
These homogeneous relations are called the braid relations of D�

More details are provided below�

Meaning of the diagrams�

This paragraph provides a list of examples which illustrate the way in which diagrams
provide presentations for the attached groups�

� The diagram �
s
d

e �
t
d corresponds to the presentation

sd 
 td 
 � and ststs � � �� �z �
e factors


 tstst � � �� �z �
e factors

� The diagram �
s

 �

t
� corresponds to the presentation

s
 
 t� 
 � and stst 
 tsts �

� The diagram s�a ne �b t

�c u

corresponds to the presentation

sa 
 tb 
 uc 
 � and stustu � � �� �z �
e factors


 tustus � � �� �z �
e factors


 ustust � � �� �z �
e factors

�

� The diagram �
v
�
�
�
s
�

�
t
�

n
�
w
�

�
u
�
�

corresponds to the presentation

s� 
 t� 
 u� 
 v� 
 w� 
 � �

uv 
 vu � sw 
 ws � vw 
 wv �

sut 
 uts 
 tsu �

svs 
 vsv � tvt 
 vtv � twt 
 wtw �wuw 
 uwu �
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� The diagram s�d
e��

�
�
�� t���

�� t�
�
�
t�

� corresponds to the presentation

sd 
 t��
�

 t�� 
 t�� 
 � � st� 
 t�s �

st��t� 
 t��t�s �

t��t�t
�
� 
 t�t

�
�t� � t�t�t� 
 t�t�t� � t�t

�
�t�t�t

�
�t� 
 t��t�t�t

�
�t�t� �

t�st
�
�t�t

�
�t�t

�
� � � �� �z �

e�� factors


 st��t�t
�
�t�t

�
�t� � � �� �z �

e�� factors

�

� The diagram e
t�����

t���
�
�
t�

� corresponds to the presentation

t��
�

 t�� 
 t�� 
 � �

t��t�t
�
� 
 t�t

�
�t� � t�t�t� 
 t�t�t� � t�t

�
�t�t�t

�
�t� 
 t��t�t�t

�
�t�t� �

t�t
�
�t�t

�
�t�t

�
� � � �� �z �

e factors


 t��t�t
�
�t�t

�
�t� � � �� �z �

e factors

�

� The diagram s��



�
�
�� t

�� u

corresponds to the presentation

s� 
 t� 
 u� 
 � � stu 
 tus � ustut 
 stutu �

� The diagram �
s
�
�
�
t
�

�
�� u

��
corresponds to the presentation

s� 
 t� 
 u� 
 � � stst 
 tsts � tutu 
 utut � utusut 
 sutusu � sus 
 usu �

� The diagram �
s
�
�
�
t
�


�
�� u

�
corresponds to the presentation

s� 
 t� 
 u� 
 � � stst 
 tsts � tutut 
 ututu � utusut 
 sutusu � sus 
 usu �

� The diagram �
s
� �

t
� �

u
�

�
�� v

�
corresponds to the presentation

s� 
 t� 
 u� 
 v� 
 � � sv 
 vs � su 
 us �

sts 
 tst � vtv 
 tvt � uvu 
 vuv � tutu 
 utut � vtuvtu 
 tuvtuv �
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� The diagram ns�� n
�� t

�� u

 � corresponds to the presentation

s� 
 t� 
 u� 
 � � ustus 
 stust � tust 
 ustu �

� The diagram �
t
�

�� s

� �
u
�

�� v

corresponds to the presentation

s� 
 t� 
 u� 
 v� 
 � � su 
 us � tv 
 vt �

sts 
 tst � tut 
 utu � uvu 
 vuv � vsv 
 svs � stuvstuvs 
 tuvstuvst �

In the following tables� we denote by H o K a group which is a non�trivial split
extension of K by H� We denote by H �K a group which is a non�split extension of K
by H� We denote by pn an elementary abelian group of order pn�
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name diagram degrees codegrees � �eld G�Z�G�

G�de� e� r	
e���d�r�� s�d

e��

�
�
�� t���

�� t�
�
�
t�

� �
t�

� � � ��
tr

�
�ed��ed��
�r���ed�rd�

��ed��
�r���ed� s

r
�e�r	 �t��t�t����tr�

e�r��	
�e�r	 Q ��de �

G�
 s��



�
�
�� t

�� u

��� �� �� �� ustut�s�tu�� Q ���� � S�

Sr�� �
t�

� �
t�

� � � ��
tr

�
������
�r���

�����
�r��� �t����tr�r�� Q

G� �
s
� �

t
� �� � �� � �st	� Q ��� � A�

G	 �
s
� �

t
� �� �� �� � �st	� Q �i� S�

G�� �
s

 �

t

 ��� �� �� �� �st	� Q ��
 � A


G�
 �
s
� �

t
� �

u
� �� �� �� �� �� � �stu	� Q ��� � ��oSL����

G�� �
s
� �

t
� �

u
� �

v
� ����	����� �������	 �stuv	
 Q ��� � PSp����

G�d� �� r	
d�� �

s
d �

t�

� �
t�

� � � ��
tr

�
�d��d��
�rd�

��d��
��r���d� �st�t����tr�r Q ��d �

G
 �
s
� �

t
� �� �� �� � �st	� Q ��� � A�

G� �
s
� �

t
� ��� �� �� �� �st	� Q ���� � S�

G�	 �
s

 �

t
� ��� �� �� �� �st	� Q ���
 � A


G�� �
s
� �

t
� �

u
� �� ��� �� �� �� �� �stu	� Q ��� � ��oSL����

Table �
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name diagram degrees codegrees � �eld G�Z�G�

G��d� �� r	
d�r�� �

s
d n��

t��
�

�� t�

�
�
t�

� �
t�

� � � ��
tr

�
��d��d�
��r���d�rd�

���d�
��r���d� s

r
���r	 �t��t�t����tr�

��r��	
���r	 Q ���d �

G� s�� n�� t

�� u

��� �� �� �� stu Q ���� � A�

G�� s�� n�� t

�� u

��� �� �� �� stu Q ���� � S�

G�� s�� n�� t

�
 u

��� �� �� �� stu Q ���� � A


G�e� e� r	
e���r��

e
t�����

t���
�
�
t�

� �
t�

� � � ��
tr

�
�e��e��
�r���e�r�

��e���r���e�
�r���e�r� �t��t�t����tr�

e�r��	
�e�r	 Q ��e �

G�e� e� �	
e�� �

s
�

e �
t
� �� e �� e� � �st	e��e�� Q ��e��

��
e �

G� �
s
� �

t
� �� �� �� � �st	� Q ���� � A�

G� �
s
� �

t
� �� �� �� �� �st	� Q �� � S�

G�� �
s

 �

t
� ��� �� �� �� �st	� Q ���� � A


G�� �
s
�

	 �
t
� �� �� �� �� �st	� Q ��� �

p��� S�

G� �
s
�


 �
t
� ��� �� �� �� �st	
 Q ��� �

p

� A


G�� �
s
�

� �
t
� ��� �� �� �� �st	
 Q ���� �

p

� A


Table �
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name diagram degrees codegrees � �eld G�Z�G�

G�� s�� nn�� t

�� u

��	 �� �stu�� Q �
p��� S�

G��
ns�� n
�� t

�� u



� 	��� ��� �stu�� Q ��� S�

G�� s�� n �� t

�� u

���� ��	 �stu�
 Q �i�
p

� A


G�� �
s
�


 �
t
� �

u
� ����� ���	 �stu�
 Q �

p

� A


G�	 �
s
� �

t
� �

u
� �

v
�

����
	���

���
��� �stuv�� Q ��o�S��S�� y

G� �
s
�


�
t
� �

u
� �

v
�

�����
���

���
�	��	 �stuv��
 Q �

p

� �A
�A
�o� z

G�
 �
s�

� �
s�

� �
s�

�

�� s�

�
s


� �
s�

�
��
���	�
����

�������
��� �s����s���� Q SO�

� ����

G�� �
s�

� �
s�

� �
s�

�

�� s�

�
s


� �
s�

� �
s�

�

����	�
�����
����	

�����
	���
�����

�s����s��� Q SO����

G�� �
s�

� �
s�

� �
s�

�

�� s�

�
s


� �
s�

� �
s�

� �
s

�

��	����
����	���
����

�����
�������	�
����	

�s����s��
 Q SO�
 ���

G�� �
v
�
�
�
s
�

�
t
�

n
�
w
�

�
u
�
� 	����

����
����
����	

�stuvw�� Q �i� ��oS� �

Table �

It is still conjectural whether the corresponding braid diagram for G�� provides a pre�
sentation for the associated braid group	

y The action of S� �S� on �� is irreducible	
z The automorphism of order � of A� �A� permutes the two factors	
� The group G���Z�G��� is not isomorphic to the quotient of the Weyl group D� by its

center	
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name diagram degrees codegrees � �eld G�Z�G�

G�� �
s
�
�
�
t
�

�
�� u

��
������ �	�� �stu�� Q �

p��� GL����

G�� �
s
�
�
�
t
�


�
�� u

�
������ ��	��� �stu�
 Q ��� �

p

� A�

G�� �
s
� �

t
� �

u
�

�
�� v

�
��	����� �	������ �stuv�
 Q �i� ��oS
 y

G�� �
s
� �

t
�
�
�
u
�

�
�� w

�
�
v
�

������
����	

���	�
����� �ustvw�� Q ��� � SO
���

�

�
t
�

�� s

� �
u
�

�� w�

�
v
�

G�� �
s
� �

t
�
�
�
u
�

�
�� w

�
�
v
� �

x
�

������	����
����

�����	����
���� �stuvwx�� Q ��� � PSO�

� ������

�
t
�

�� s

� �
u
�

�� w�

�
v
� �

x
�

Table �

These diagrams provide presentations for the corresponding nite groups	 It is not known
nor conjectural whether they provide presentations for the corresponding braid groups	

y The group G���Z�G��� is not isomorphic to the Weyl group D�	
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name diagram degrees codegrees �

B�de� e� r	
e���r���d��

	�
e��

�
�
���
�

�� ��
�
�
��

�
t�

� � ��
�r

e� �e� � � � �
�r��	e� r

�� e� � � � �
�r��	e �

r
�e�r	 ����

�
��� � � � �r	

e�r��	
�e�r	

B��� �� r	 �
��

�
��

� � ��
�r

�� �� � � � � r � � �� �� � � � �r�� ��� � � � �r	r��

B�d� �� r	
d��

�
	

�
��

�
��

� � ��
�r

�� �� � � � � r �� � � � � � �r��	 ������ � � � �r	r

B�e� e� r	
e���r�� e

�����

� ����
�
�
��

� �
��

� � � ��
�r

�
e� �e� � � � �
�r��	e� r

�� e� � � � � �r��	e�
�r��	e� r

���� ���� � � � �r	
e�r��	
�e�r	

Table 	 
 braid diagrams

This table provides a complete list of the innite families of braid diagrams and corre�
sponding data	 Note that the braid diagram B�de� e� r� for e � �� d � � can also be described
by a diagram as the one used for G��d� �� r� in Table �	 Similarly� the diagram for B�e� e� r��
e � �� can also be described by the Coxeter diagram of type Dr 	 The list of exceptional
diagrams �but those associated with G��� G�	� G��� G��� G��� is identical with table �	
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