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Abstract. Considerable research effort has recently been

directed at improving and operationalising ensemble sea-

sonal streamflow forecasts. Whilst this creates new opportu-

nities for improving the performance of water resources sys-

tems, there may also be associated risks. Here, we explore

these potential risks by examining the sensitivity of forecast

value (improvement in system performance brought about by

adopting forecasts) to changes in the forecast skill for a range

of hypothetical reservoir designs with contrasting operating

objectives. Forecast-informed operations are simulated us-

ing rolling horizon, adaptive control and then benchmarked

against optimised control rules to assess performance im-

provements. Results show that there exists a strong relation-

ship between forecast skill and value for systems operated

to maintain a target water level. But this relationship breaks

down when the reservoir is operated to satisfy a target de-

mand for water; good forecast accuracy does not necessarily

translate into performance improvement. We show that the

primary cause of this behaviour is the buffering role played

by storage in water supply reservoirs, which renders the fore-

cast superfluous for long periods of the operation. System

performance depends primarily on forecast accuracy when

critical decisions are made – namely during severe drought.

As it is not possible to know in advance if a forecast will

perform well at such moments, we advocate measuring the

consistency of forecast performance, through bootstrap re-

sampling, to indicate potential usefulness in storage opera-

tions. Our results highlight the need for sensitivity assess-

ment in value-of-forecast studies involving reservoirs with

supply objectives.

1 Introduction

Coupled natural-engineered water resources systems provide

a multitude of services to society. A properly functioning sys-

tem can ensure reliable public water supply, support agricul-

tural and industrial activity, produce clean hydroelectricity,

provide amenity, sustain ecosystems and protect communi-

ties against damaging floods. But these benefits are by no

means guaranteed; the performance of a given system de-

pends on the quality of its operating scheme and the intel-

ligence used to support management decisions on the stor-

age, release and transfer of water. Typically, such operating

decisions are governed by control rules based on observable

system state variables. For example, the operator might select

from a predefined lookup table the desired volume of water to

release from a reservoir based on the time of year, volume of

water held in storage and current catchment conditions (soil

moisture, snowpack, etc.). The problem with this approach

is that the decisions it recommends are optimal only under

the narrow range of historical forcing conditions upon which

they are trained. This is a major concern given emerging ev-

idence of sharp trends and abrupt regime shifts in stream-

flow records and palaeo-reconstructions (Turner and Galelli,

2016a). Flexible, real-time operating schemes that adapt in

response to seasonal streamflow forecasts are thus the van-
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guard of water resources management practice, seen widely

as the natural successor to predefined control rules (Rayner

et al., 2005; Brown, 2010; Gong et al., 2010; Brown et al.,

2015).

A move toward schemes informed by seasonal stream-

flow forecasts would benefit from a wealth of recent sci-

ence advances, including new ensemble seasonal streamflow

forecasting methods, adding to existing ensemble stream-

flow prediction (ESP) and regression methods (e.g. Wang and

Robertson, 2011; Olsson et al., 2016; Pagano et al., 2014;

see review by Yuan et al., 2015). Seasonal streamflow fore-

cast services are becoming available in countries such as

the United States, Australia and Sweden. An emerging field

of research has begun to demonstrate the value of seasonal

streamflow forecasts when applied to real-world water man-

agement problems, such as determining the appropriate water

release from a reservoir – the focus of the present study. Wa-

ter release decisions can be improved with seasonal forecasts

across a variety of reservoir types, including hydropower

dams (Kim and Palmer, 1997; Faber and Stedinger, 2001;

Hamlet et al., 2002; Alemu et al., 2010; Block, 2011), wa-

ter supply reservoirs (Anghileri et al., 2016; Zhao and Zhao,

2014; Li et al., 2014) and reservoir systems operated for mul-

tiple competing objectives (Graham and Georgakakos, 2010;

Georgakakos et al., 2012). Operators considering whether to

adopt a forecast-informed operating scheme should be en-

couraged by these outcomes. But they also need to under-

stand the associated risks and uncertainties (Goddard et al.,

2010). If the new scheme increases the benefits of a system

by, say, 20 % in a simulation experiment, then can the opera-

tor assume that 20 % will be guaranteed when the scheme is

implemented in practice?

To explore uncertainty in the value of seasonal forecasts

applied to reservoir operations, we conduct two simulation

experiments using reservoir inflow time series recorded at

four contrasting catchments located in Australia. Our first

experiment uses synthetically generated forecasts of varying

skill to test for sensitivity in simulated forecast value across a

range of reservoirs. Forecast value is calculated using cumu-

lative penalty costs incurred for deviation from a predefined

objective over a 30-year simulation. We define two simple,

contrasting objectives: a “supply objective”, which aims to

maintain a target release by allowing storage to vary, and

a “level objective”, which aims to maintain a target storage

level by varying the release. As we shall see, the contrast in

performance between the two operational settings is striking.

Our second experiment aims at explaining this outcome by

applying an advanced seasonal streamflow forecast system to

a range of fabricated reservoirs with deliberately adjusted de-

sign parameters. Results provide new insights into the risks

operators take when applying seasonal forecasts to critical

management decisions in systems dominated by a supply ob-

jective.

2 Materials and methods

2.1 Inflow records, climate data and forecasts

Our experiments are based on four reservoir inflow records

(Table 1), which were selected because they represent a range

of hydrological regimes (perennial, ephemeral, intermittent)

across different regions of Australia. For each inflow record,

we study the period 1982–2010 (Fig. 1) for which forecasts

are available.

The inflow records are derived from streamflow gauges,

storage outflows and lake levels, and were supplied by the

Bureau of Meteorology. The gauged data are freely available

from http://www.bom.gov.au/waterdata/. Rainfall and evapo-

ration forcing data used to generate forecasts are taken from

the Australian Water Availability Project (AWAP) gridded

dataset (Jones et al., 2009; Raupach et al., 2009).

2.1.1 Synthetic forecasts: Martingale model of forecast

evolution (MMFE)

Our first experiment is a sensitivity test for forecast value

as a function of forecast quality. To generate many forecasts

of varying quality, we use the Martingale model of forecast

evolution (MMFE) (Heath and Jackson, 1994). This model

can be considered superior to one that simply imposes ran-

dom error on observed values, since it captures the way in

which forecast error decreases as the forecast horizon short-

ens and more information becomes available to the forecaster

(known as the evolution of forecast error) (Zhao et al., 2011).

Here, we vary an “injected error” parameter, which controls

the error of the synthetic forecast. The injected error takes

values between 0 and 1, where 0 generates a perfect forecast

and 1 generates a sufficiently error-laden forecast to ensure

that our experiments include a wide range of forecast perfor-

mance. (Note that an error injected of 1 should not be inter-

preted as having any physical meaning, such as equivalence

to climatology.) Because the model uses probabilistic sam-

pling to generate forecasts for a given error, the deviation of

the forecast from the observation will vary in time, although

the temporal average of the error will match the error injected

given enough data points. The code for this model is avail-

able as open source (Turner and Galelli, 2017).

Here, the synthetic forecasts are constructed to overlay the

four inflow time series described above. For each catchment,

we generate 1000, 12-month-ahead, monthly resolution syn-

thetic forecasts. The quality of the forecasts is varied by sam-

pling from a uniform distribution between 0 and 1 to feed

the injected error parameter. Each forecast should be consid-

ered a separate deterministic forecast rather than a member

of a forecast ensemble. Figure 2 displays the goodness of

fit for these forecasts as a function of the error injected at

each forecast lead time (forecasted against observed values

for the period 1982–2010). The goodness-of-fit measure is

the normalised root mean squared error (nRMSE), which is

Hydrol. Earth Syst. Sci., 21, 4841–4859, 2017 www.hydrol-earth-syst-sci.net/21/4841/2017/
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Figure 1. Reservoir inflow records for (a) Burrinjuck Dam, (b) Lake Eppalock, (c) Serpentine reservoir and (d) Upper Yarra Reservoir during

the 29-year study period (January 1982–December 2010).

Table 1. Reservoir inflow data; µ and Cv are the mean and coefficient of variation of the annual flow totals, respectively. (NSW: New South

Wales; VIC: Victoria; WA: Western Australia.)

Inflow site Regime µ Cv Area Record Lat. Long. State

(Mm3) (km2)

Burrinjuck Perennial 1252.1 0.90 1631 1900–2014 −35.00 148.58 NSW

Lake Eppalock Ephemeral 166.8 0.82 1749 1900–2014 −36.88 144.56 VIC

Serpentine Intermittent 58.4 0.69 664 1912–2014 −32.40 116.10 WA

Upper Yarra Perennial 153.3 0.43 337 1913–2014 −37.68 145.92 VIC

the RMSE divided by the standard deviation of observations.

Since zero error corresponds to the perfect forecast, all lead

times have nRMSE of 0 when no error is injected. As the

injected error increases, the performance gap between short

and longer lead time forecasts widens, reflecting a deterio-

ration of forecast performance that one would expect with a

weaker forecasting system.

2.1.2 Actual forecasts: forecast guided stochastic

scenarios (FoGSS)

In our second experiment, we apply the forecast guided

stochastic scenarios (FoGSS) experimental streamflow fore-

cast system (Bennett et al., 2016, 2017, this issue). FoGSS

combines dynamical climate forecasts, statistical post-

processing, rainfall–runoff modelling and statistical error

www.hydrol-earth-syst-sci.net/21/4841/2017/ Hydrol. Earth Syst. Sci., 21, 4841–4859, 2017
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Figure 2. Normalised root mean squared error (nRMSE) for varying error injected into synthetic forecasts generated using the Martingale

model of forecast evolution (1000 forecasts, monthly resolution, 12 months ahead, giving 12 000 points on each pane).

modelling to produce 12-month ensemble streamflow fore-

casts. The method behind FoGSS is complex, and ac-

cordingly we only give an overview here. A full descrip-

tion, including detailed equations, is available in Bennett et

al. (2016) and Schepen and Wang (2014). FoGSS makes use

of climate forecasts from the Predictive Ocean and Atmo-

sphere Model for Australia (POAMA) (Hudson et al., 2013;

Marshall et al., 2014), post-processed with the method of cal-

ibration, bridging and merging (CBaM; Schepen and Wang,

2014; Schepen et al., 2014; Peng et al., 2014) to produce

ensemble precipitation forecasts. CBaM corrects biases, re-

moves noise, downscales forecasts to catchment areas and

ensures ensembles are statistically reliable. The precipitation

forecasts are then used to force the monthly water partition-

ing and balance (Wapaba) hydrological model (Wang et al.,

2011). Hydrological prediction uncertainty is handled with a

three-stage error model, which reduces bias and errors, prop-

agates uncertainty and ensures streamflow forecast ensem-

bles are reliable (Wang et al., 2012; Li et al., 2013, 2015,

2016). In months where forecasts are not informative, FoGSS

is designed to return a climatological forecast. FoGSS pro-

duces 1000-member ensemble streamflow forecasts in the

form of monthly resolution time series with a 12-month fore-

cast horizon.

FoGSS hindcasts are available for selected Australian

catchments for the years 1982–2010 (based on the availabil-

ity of POAMA reforecasts), including the four catchments

examined in this study. The hindcasts are generated using

a leave-5-years-out cross-validation scheme (Bennett et al.,

2016), which ensures that the performance of FoGSS hind-

casts is not artificially inflated. We characterise forecast per-

formance with a skill score calculated from a well-known

probabilistic error score, the continuous ranked probability

score (CRPS; see, e.g. Gneiting and Raftery, 2007). The skill

score is calculated by

CRPSS =
CRPSRef − CRPS

CRPSRef
× 100%, (1)

where CRPS is the error of FoGSS forecasts and CRPSRef is

the error of a reference forecast – in this case, a naïve clima-

tology. The climatology reference forecast is generated from

a transformed normal distribution (Wang et al., 2012), fitted

to streamflow data using the same leave-5-years-out cross-

validation as applied to the FoGSS forecasts (Bennett et al.,

2016).

FoGSS exhibits a range of performance across the catch-

ments used in this study (Fig. 3). In the Upper Yarra, Burrin-

juck and Eppalock catchments, FoGSS forecasts are gener-

ally skilful at lead times of 0–2 months, extending to more

than 3 months at certain times of year (in particular for the

Upper Yarra and Burrinjuck catchments). Skill is much less

evident in the Serpentine catchment, only appearing evident

in a few months of the year (January, August, September,

November), even at short lead times. Generally, at longer

lead times, forecasts are at worst similar to climatology. The

only exception is the Eppalock catchment for February and

March, where strongly negative skills occur. In the Eppalock

catchment, February and March usually experience very low

(to zero) inflows. FoGSS forecasts in the Eppalock catchment

are slightly positively biased at longer lead times. However,

because inflows are so low during these months, these errors

have very little influence on annual (or even seasonal) water

balances.

Hydrol. Earth Syst. Sci., 21, 4841–4859, 2017 www.hydrol-earth-syst-sci.net/21/4841/2017/
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Burrinjuck Eppalock Serpentine Upper Yarra

Figure 3. FoGSS forecast skill measured by the continuous ranked probability score (CRPSS) with respect to climatology forecasts. Rows

show target months; columns show lead time in months.

2.2 Reservoir setup

2.2.1 Reservoir model and design specifications

We use monthly resolution reservoir simulation and operat-

ing schemes in both experiments. Each reservoir obeys ba-

sic mass balance, meaning volume of water held in storage

(St+1) is equal to the previous month’s storage (St ) plus to-

tal inflow to the reservoir (Qt ) minus volume of water re-

leased (Rt ). (Evaporation and other water losses are ignored

for simplicity.) The release Rt is constrained physically to a

maximum of the available water in storage plus any incoming

inflows during period t (Eq. 2).

St+1 = St + Qt − Rt − Spillt

Spillt = max(St + Qt − Rt − Scap,0) (2)

subject to 0 ≤ S ≤ Scap;0 ≤ Rt ≤ min(St + Qt ,Rmax),

where Scap is the capacity of the reservoir and Rmax is the

maximum water release, taken in this study as twice the re-

lease target to give the operator ample storage level control.

All excess water is spilled.

Rather than using the real-world specifications of the four

reservoirs corresponding to our inflow records, we vary the

size and operation of reservoirs. This approach gives two im-

portant advantages. First, it allows us to specify operating

objectives relevant to the study question (level objective ver-

sus supply objective). Second, it enables us to examine the

value of forecasts for reservoirs sensitive to different types of

hydrological conditions. Specifically, by changing the design

parameters of a reservoir, it becomes sensitive to droughts of

different intensity and duration. So a wider range of reser-

voirs allows us to test reservoir performance across a variety

of time periods within the simulation.

To fabricate these reservoirs, we begin by assuming a time-

based reliability of 0.95 in all instances. Time-based reli-

ability is the ratio of non-failure months – months during

which the demand for water is satisfied in full – to the to-

tal number of months simulated. This reliability target can

be considered a realistic service standard, since in designing

these reservoirs we assume a standard operating policy where

reservoirs release to meet as much of the demand as possible

from the water available in storage and from incoming flow.

A constant demand for water is assigned for eight alterna-

tive reservoirs by varying the draft ratio (ratio of demand to

mean inflow) for values between 0.2 and 0.9 in increments

of 0.1. The reservoir capacity required to achieve the target

reliability is then determined for each demand using an it-

erative simulation procedure (storage–yield–reliability anal-

ysis). Since the reliability is held constant across all reser-

voirs, an incremental increase in the draft ratio results in a

larger design storage capacity – as shown in Table 2. In other

words, when the demand on a reservoir increases, the storage

must also be increased so that the required reliability (0.95)

is achieved. As demand and storage increase, drift decreases

and critical period increases. Critical period gives the time

taken for the reservoir to empty under recorded droughts,

whilst drift indicates the presence of within-year or over-

year behaviour (drift greater than 1 normally suggests that

the reservoir will fill and spill each year). The wide vari-

ance across these indicators suggests that as demand is ad-

justed, the storage dynamics are affected and the reservoirs

will be sensitive to different hydrological events. For exam-

ple, a reservoir with large demand and storage will easily

tolerate short-duration periods of extremely low inflow but

will be vulnerable under very long periods of moderately low

flows. Conversely, small reservoirs with lower demands will

fail easily under short-duration droughts but will usually tol-

erate moderately low flows for long periods, because the de-

mand will be too small to cause drawdown. Appendix A pro-

vides more detailed definitions of the parameters and vari-

ables discussed above. All computations are executed using

R package “reservoir” (Turner and Galelli, 2016b) using ob-

served inflows for the period 1982–2010.

www.hydrol-earth-syst-sci.net/21/4841/2017/ Hydrol. Earth Syst. Sci., 21, 4841–4859, 2017
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Table 2. Reservoir design specifications and characteristics for 0.95 reliability reservoirs. Drift indicates the reservoir time to recovery from

full as well as tendency for within-year behaviour. Storage ratio represents the time (mean) to fill the reservoir assuming no outflows (i.e.

capacity to mean annual inflow ratio). Critical period is the time period taken to empty the reservoir assuming recorded drought conditions.

(Full definitions are in Appendix A.)

Draft Design demand Drift Design storage Storage ratio Crit. period

ratio (Mm3 month−1) (–) (Mm3) (yr) (months)

Burrinjuck 0.2 18.2 1.14 57 0.05 8

0.3 27.2 1.00 144 0.13 11

0.4 36.3 0.85 404 0.37 32

0.5 45.4 0.71 830 0.76 84

0.6 54.5 0.57 1685 1.55 104

0.7 63.5 0.43 2570 2.36 104

0.8 72.6 0.28 3539 3.25 128

0.9 81.7 0.14 4699 4.31 152

Eppalock 0.2 2.4 0.88 58 0.40 102

0.3 3.6 0.77 175 1.22 102

0.4 4.8 0.66 289 2.01 102

0.5 6.0 0.55 409 2.84 102

0.6 7.2 0.44 535 3.72 146

0.7 8.4 0.33 710 4.94 146

0.8 9.6 0.22 885 6.15 147

0.9 10.8 0.11 1061 7.37 147

Serpentine 0.2 0.51 1.50 2 0.07 6

0.3 0.76 1.32 4 0.13 11

0.4 1.0 1.13 7 0.24 15

0.5 1.3 0.94 11 0.37 15

0.6 1.5 0.75 15 0.48 15

0.7 1.8 0.56 27 0.89 93

0.8 2.0 0.38 53 1.75 100

0.9 2.3 0.19 88 2.90 112

Upper Yarra 0.2 2.1 1.91 2 0.02 3

0.3 3.2 1.67 7 0.06 6

0.4 4.2 1.43 14 0.11 9

0.5 5.3 1.19 26 0.20 13

0.6 6.4 0.96 39 0.31 15

0.7 7.4 0.72 64 0.50 24

0.8 8.5 0.48 139 1.09 142

0.9 9.5 0.24 323 2.54 147

2.3 Operating schemes

If we allow for the objective of a reservoir to be described

adequately by a mathematical function, we can quantify op-

erating performance by imposing penalty costs for devia-

tions from that objective. Then, to understand the value of a

forecast-informed operating model, we need simply to com-

pare that performance against a benchmark. We therefore

apply two operating schemes in this study: a “benchmark

scheme” that ignores forecasts and a “forecast-informed

scheme” that makes use of forecasts. Since we are primar-

ily interested in the value added by applying the forecasts to

the operation, we must ensure that the performance differ-

ences between the two models are attributable to the forecast

information rather than conceptual differences in the operat-

ing schemes applied. We therefore select two schemes that

are conceptually similar (see Sect. 2.3.2), whilst recognising

standard, common practice. Our benchmark scheme guides

the reservoir operation using control rules, which are estab-

lished by optimising release decisions for historical condi-

tions. Control rules (often termed “release policies”, “hedg-

ing rules” or “rule curves”) are very commonly applied in

practice (Loucks et al., 2005), so they provide a realistic

benchmark. Our forecast-informed scheme effectively ad-

justs those control rules in response to new information avail-

able through the forecast.

Hydrol. Earth Syst. Sci., 21, 4841–4859, 2017 www.hydrol-earth-syst-sci.net/21/4841/2017/
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2.3.1 Benchmark scheme: control rules

The control rules we devise can be thought of as a look-

up table that specifies reservoir release as a function of two

state variables: volume of water held in storage (discretised

uniformly into a manageable number of values) and month

of the year. In practice – and in simulation – the operator

simply observes the current reservoir level and then imple-

ments release for the time of year as specified by these rules.

These rules are designed with respect to the operating ob-

jectives and constraints of the system and can be considered

risk based in the sense that they are conceived to minimise

the expected cost of release decisions across the distribution

of the inflow for each month. Costs are based on penalties

associated with failure to meet the objectives of the reservoir

(see Sect. 2.4).

The most rigorous way to design such rules is by op-

timisation. Here, we use stochastic dynamic programming

(SDP), which offers four significant advantages. First, SDP

handles non-linearity in both the operation of the system

and the objective functions. Second, SDP accounts for the

effect of uncertainties, in this case stemming from inflows,

on system dynamics. Third, SDP finds the optimal opera-

tion for a given model of the system (as opposed to other

approaches that approximate the optimal solution). Fourth,

SDP returns a cost associated with each combination of state

variables, in this case the volume in storage and the month of

the year, known as Bellman’s function. Bellman’s function

is useful for the forecast-informed operating scheme intro-

duced in the following section. The inputs to our SDP model

are the reservoir specifications, reservoir objective function

and inflow time series, which provides inflow distributions

for each month of the year. The control rules are optimised

by solving a backwards recursive procedure (Bellman, 1956;

Loucks et al., 2005), which is detailed in Appendix B. We

retrain the control rules for each year of simulation using the

same data (1982–2010) and with the same leave-5-years-out

cross-validation scheme employed in FoGSS (Sect. 2.1.2).

SDP suffers from two well-known drawbacks: the exponen-

tial growth of computation with the number of state variables

and the need for an explicit model representing each compo-

nent of the water system (Castelletti et al., 2010). These is-

sues limit the application of SDP to relatively small systems

(e.g. maximum three to four reservoirs) but do not represent

an obstacle in our study, which focuses on single-reservoir

systems.

2.3.2 Forecast-informed scheme: rolling horizon,

adaptive control

To inform operations with forecasts, we adopt a “rolling hori-

zon, adaptive control” scheme – also known as model predic-

tive control (Bertsekas, 1976). The idea behind this scheme

is that a deterministic forecast can be used to run short sim-

ulations (t = 1, 2, . . ., H , where H is the forecast length in

months) to evaluate changes in storage that would be experi-

enced under alternative sequences of release decisions. The

release decision sequence (R1,R2, . . ., RH ) is optimised to

minimise the cost over the forecast horizon H plus the cost

associated with the resulting storage state:

min
R1,2,...,H

{[

H
∑

t=1

Ct (Rt ,St )

]

+ X(SH+1)

}

, (3)

where Ct is the penalty cost calculated from the reservoir’s

objective function (see Eqs. 4 and 5 below), and X(·) is a

penalty cost function that accounts for the long-term effects

of the release decisions being made. The latter helps avoid a

short-term, greedy policy that optimises solely for operations

in the following H months. We set the function X(·) equal

to Bellman’s function obtained when designing the control

rules, since it contains costs that represent the risk of a given

storage level for each month of the year (Appendix B). By

using Bellman’s function in this way, we effectively append

the forecast-informed scheme to the control rules. In effect,

this means that the information contained in the forecast is

used to adjust the decisions that would be taken using the

benchmark scheme – hence our prior statement that the two

schemes are conceptually similar.

The optimisation problem is solved at each time step us-

ing deterministic dynamic programming, giving the precise

optimal release sequence for the forecast horizon (R1,R2,

. . ., RH ). The first of these (R1) is implemented in simula-

tion and the remainder are discarded, since the optimisation

is repeated on the next time step as a new forecast is issued

(hence the term “rolling horizon”; Mayne et al., 2000). While

this approach ignores the spread of the ensemble (and there-

fore a key element of its value; Boucher et al., 2012), it pro-

vides a clear indication of the contribution of the forecast to

the performance of the operation and is thus still a standard

when dealing with seasonal forecasts (e.g. Anghileri et al.,

2016). In contrast, methods that use the spread of the en-

semble present a number of technical challenges. One can-

not simply optimise the release decision by minimising the

expected cost across all ensemble members, because this dis-

counts the operator’s ability to adjust the release in response

to new information, resulting in over-conservative release de-

cisions and thus weak performance (Raso et al., 2014). The

established approach to incorporating information from the

spread of the ensemble is multi-stage stochastic optimisa-

tion, which applies a reduced form of the ensemble known

as a scenario tree to guide corrective decisions as new fore-

cast data are revealed (Shapiro et al., 2014). Whilst this ap-

proach has been applied in a handful of water-related studies,

including short-horizon problems (Raso et al., 2014) as well

as using seasonal streamflow forecasts (Housh et al., 2013;

Xu et al., 2015), it relies on arbitrary decisions (such as the

preferred scenario tree nodal structure), and it is computa-

tionally demanding and highly complex, making experimen-

tation laborious and results hard to diagnose. For these rea-
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Figure 4. Behaviour of reservoirs operated to meet the supply objective (a) and level objective (b). Simulations use the rolling horizon model

with a perfect 12-month (observed) inflow forecast, applied to 95 % reliability reservoirs with draft ratio of 0.5. S is the storage (as the

percent of capacity) and R is the release (given as the percent of target for emergency response reservoirs and percent of maximum possible

release for the continually adjusted setting).

sons, we pursue the deterministic model predictive control

method described above.

2.4 Operating objectives

We test two operating objectives: one that rewards meet-

ing target releases (“supply objective”) and one that rewards

meeting target storage levels (“level objective”). The supply

objective encourages full release of water to meet target de-

mand except under drought conditions:

Csupply =

T
∑

t=1

[

max(1 − Rt/D, 0)
]2

, (4)

where D is the demand and Csupply is the penalty cost used

in the adaptive control scheme (Eq. 3). The squared term cre-

ates an impetus to cut back the release to reduce the risk of

major shortfalls that would occur if the reservoir failed (i.e.

became fully depleted). Reservoir failure is often associated

with highly damaging consequences, such as large water re-

strictions imposed on households and businesses. Operators

therefore tend to hedge against the risk of failure by cutting

back the release in small and frequent increments that are, in

the long run, preferable and ultimately less costly than rela-

tively infrequent major shortfalls that would result from total

storage depletion (Draper and Lund, 2004).

The level objective encourages controlled releases to

maintain a target storage level, which could represent oper-
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ation for flood control (e.g. maintain sufficient flood buffer

storage), amenity (e.g. avoid unsightly drawdown) or hy-

dropower (maintain high hydraulic head). The objective pe-

nalises deviations from a target storage S∗, which is set arbi-

trarily to 75 % of total storage capacity in the present study:

Clevel =

T
∑

t=1

(1 − St/S
∗)2, (5)

where T is the final month of the simulation and Clevel is the

penalty cost used in the adaptive control scheme (Eq. 3).

Figure 4 gives storage behaviour and release decisions im-

plemented for 0.95 reliability reservoirs (draft ratio of 0.5)

operated for the supply objective (Eq. 4) and level objec-

tive (Eq. 5), under rolling horizon, adaptive control operation

with a perfect 12-month forecast. The figure shows the con-

trast in the frequency of decision-making for the two operat-

ing objectives. For the supply objective, we see that the re-

lease is adjusted only under drought – predominantly during

Australia’s Millennium Drought – and that there are multi-

decade periods in which the operator simply releases to meet

demand. For the level objective, we see that the release must

be adjusted constantly through the operating horizon to keep

storage close to the target level of 75 %. The main aim of the

experiments described below is to elucidate how this distinc-

tion in operating behaviour affects the usefulness of applying

seasonal forecasts in operations.

3 Experiment 1 – characterising the uncertainty of

forecast value in reservoir operations

3.1 Experiment description

The purpose of the first experiment is to examine the nature

of uncertainty in forecast performance under two contrast-

ing operating objectives (level objective versus supply objec-

tive). For this experiment, we hold the reservoir design spec-

ifications constant (mid-range draft ratio of 0.5 selected for

all four inflow time series). For each of the four reservoirs,

we follow these steps:

1. A set of control rules is optimised with the SDP ap-

proach over the period 1982–2010, where the objective

is to minimise the sum of penalty costs over the simula-

tion.

2. The rolling horizon, adaptive control scheme is run for a

synthetic forecast generated by MMFE over the 1982–

2010 period. The value of the forecast is measured by

the percentage reduction in penalty cost relative to the

control rules over the entire 1982–2010 period.

3. Step 2 is repeated 1000 times, once for each set of syn-

thetic forecasts generated with the MMFE.

4. Steps 1–3 are executed twice – once for the supply

objective and once for the level objective. The exact

same set of 1000, monthly resolution, 12-month-ahead

MMFE forecasts is applied in each case.

We then assess the performance of the forecast-informed

operating scheme against the forecast error injected by the

MMFE.

3.2 Results for experiment 1

Figure 5 shows the value of the forecast-informed scheme

for each reservoir. The value of forecasts is presented as the

reduction in cost relative to control rules (%). A positive

cost reduction indicates that the forecast-informed scheme

outperforms control rules, and a negative cost reduction in-

dicates that control rules outperform the forecast-informed

scheme. Forecasts with zero error (i.e. perfect forecasts) out-

perform control rules in all cases, regardless of the objec-

tive. Interestingly, when operated with a perfect forecast,

the reservoirs operated to meet the supply objective enjoy a

significantly larger percentage increase in performance (40–

60 %) compared with the reservoirs operated to the level

objective (20–40 %). This occurs because the target in the

level objective reservoirs will often be achievable within 1

or 2 months of operation, meaning the perfect forecast skill

available at longer lead times is a surplus to requirement. The

supply-targeted reservoirs, in contrast, will benefit from the

entire forecast as they are drawn down during drought.

More striking is the contrast in behaviour between oper-

ational objectives as the forecast error is increased. For the

supply objective (Fig. 5a–d), forecast value declines rapidly,

becoming highly unstable with the injection of a moderate

error into the forecast. For the level objective (Fig. 5e–h),

the forecast value decreases relatively slowly, and the points

remain tightly grouped for errors up to ∼ 0.4. Taking Burrin-

juck (Fig. 5a) as an example, we find that an injected forecast

error of 0.2 could result in cost reductions anywhere from −5

to +40 % for the supply objective (i.e. the forecast-informed

operations are outperformed by simple control rules by up

to 5 % in some instances). The same forecasts applied to the

level objective (Fig. 5e) result in cost reductions in the nar-

row region of 24 to 26 %. The Serpentine reservoir presents

even greater sensitivity to injected error. Here, an injected

error of 0.3 gives cost reductions ranging between −50 and

+50 % for the supply objective. The same forecasts appear

to guarantee beneficial cost reductions of 5 to 15 % when op-

erating with a level objective.

These results show that for the supply objective, the mea-

sure of forecast error, quality, skill or goodness of fit does not

always accurately predict whether that forecast will be valu-

able. We believe that this unexpected phenomenon relates to

the role played by storage. When operated to the level objec-

tive, storage plays no role as a buffer. The release is simply

adjusted to keep storage at a desired level. Because inflows
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Figure 5. Value of the forecast-informed scheme over control rules as a function of forecast error for supply objective (a–d) and level

objective (e–h) operational settings.

fluctuate constantly, release must be adjusted throughout the

operation in response to forecasts issued (recall Fig. 4). At

moments when forecasts skill is weak, release decisions may

underperform relative to control rules. At moments when

forecast skill is strong, release decisions will improve on con-

trol rules. For the supply objective, however, storage actively

buffers inflows. When storage levels are high, the operator

can be assured that a short period of low inflows need not

threaten the system performance, because the target release

can be met by drawing on stored water. In such a case, it

does not matter how accurate the next inflow’s forecast is; the

release target will be met regardless. Generally, very large

reservoirs may withstand a number of consecutive drought

years before storages drop to levels that raise concern. Only

then will the option of reducing the release be considered.

The value of the forecast will be determined solely by its skill

at a small number of periods during which the storages are

sufficiently depleted to warrant hedging the release. Forecast

skill is often measured by averaging errors over a long period

of time (as done in Fig. 3). Figure 5 shows that it is possible

for a skilful forecast (measured on average) to generate a net

reduction in performance if the skill level dips during the crit-

ical point in time where the forecast is mobilised. Similarly,

it is also possible for a forecasting system that is on average

unskilful to generate a net improvement in operating perfor-

mance if forecasts happen to be accurate during that critical

moment.

This ability of storages to buffer inflows also explains

why the Upper Yarra Reservoir, under the supply objective,

shows a stronger correlation between forecast value and fore-

cast quality than Burrinjuck, Eppalock and Serpentine. Up-

per Yarra tolerates injected error in the forecast of up to ∼ 0.4

before negative performance gains are observed – compared

to ∼ 0.2 injected error for the other three reservoirs. At a draft

ratio of 0.5, Upper Yarra has the shortest critical period, low-

est storage ratio and highest drift value (a result of low vari-

ance in inflows for 1982–2010 relative to the other storages).

In other words, the storage buffer in Upper Yarra will tend to

provide less time between full and empty during drought. In

such systems, adjustments to release decisions are required

more frequently (as observed in Fig. 4).

We now turn to experiment 2, which explores further the

behaviour observed with the supply-targeted reservoirs. We

need to understand whether the same behaviour occurs with

an actual forecast service (as opposed to synthetic forecasts).

In addition, we wish to explore further the possibility that

variance in forecast skill through time is the explanation.

4 Experiment 2 – the importance of critical drought

timing on forecast value

4.1 Experiment description

The primary aim of Experiment 2 is to determine whether

the periods during which critical decisions are made can ex-

plain the wide variation in forecast value for a given forecast

skill level when applied to reservoirs with the supply objec-

tive. For this experiment, we keep the forecast input consis-

tent and instead vary the timing of critical decision points

in the simulation. This is achieved by adjusting the reservoir

specifications in such a way that they respond to different

types of drought (as described in Sect. 2.2.1) so that critical
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decision periods change. Control rules are designed for all

32 reservoirs (four inflows, eight reservoir set ups) using the

SDP approach as above. Operations are then simulated using

both the control rules and the deterministic model predictive

control method using the median value from the full FoGSS

forecast ensemble (i.e. a deterministic forecast is constructed

by taking the median of the ensemble at each lead time).

We compute the value of FoGSS forecasts in relation

to both an upper benchmark (perfect forecast) and a lower

benchmark (control rules):

Performance gain =
Ccntrl − Cfcast

Ccntrl − Cperfect
, (6)

where Ccntrl, Cfcast and Cperfect are the total penalty costs as-

sociated with the control rules, forecast-informed operation

and perfect forecast operation, respectively. A performance

gain of 1 is generally unattainable, as it signifies that the

forecast is perfect. A performance gain of 0 indicates equal

performance with control rules. Negative performance gain

suggests that the forecast-based scheme is more costly than

control rules (as shown in Fig. 5, Cperfect is always less than

Ccntrl, meaning the denominator in Eq. (6) is always posi-

tive). The use of the upper bound in this performance score

ensures that the variance in performance will be a function

solely of the critical drought timing.

4.2 Results for experiment 2

The left-hand panels in Fig. 6 (a, c, e, g) specify times at

which operating decisions become critical (herein termed

“critical decision periods”). These periods are defined as mo-

ments when supply is cut back when operating with perfect

forecasts (i.e. moments when the operator should be adjust-

ing the release). A general pattern that emerges when a reser-

voir’s storage capacity and demand are simultaneously in-

creased is that reservoirs with larger demand (and storage)

recover less readily, leading to a concentration of the fail-

ure on a single drought period. In contrast, smaller reser-

voirs with relatively low demand often fail but then recover

quickly, so the failure periods tend be short, occurring mul-

tiple times over the simulation period. Indeed, we see here

that for smaller reservoirs the operations tend to be sensi-

tive to short dry spells, so hedging decisions are required on

a more frequent basis during the simulation. The exception

is Eppalock, for which the critical period of the reservoir is

relatively insensitive to changes in the design demand (Ta-

ble 2). For the reservoirs located in south-eastern Australia

(Burrinjuck, Eppalock and Upper Yarra), critical decision pe-

riods tend to coincide with the severe Millennium Drought

(∼ 2001–2009; van Dijk et al., 2013) occurring towards the

end of the simulation period. Critical decision periods for

the Serpentine also occur towards the end of the record, re-

flecting the long-term trend of declining inflows since 1975

(Petrone et al., 2010).

The right-hand panels (Fig. 6b, d, f, h) show how op-

erating performance varies with draft ratio. The FoGSS-

informed operating model offers performance improvements

(i.e. performance gain greater than 0) in more than four-fifths

of reservoirs tested. Performance gains are achieved for all

reservoirs specified for Eppalock and Upper Yarra, and six of

the eight reservoirs specified for Burrinjuck. Performance for

Serpentine is relatively poor, with only three of seven reser-

voirs improving under forecast-informed operation (the 90 %

draft reservoir is omitted in this case, since the end of the sim-

ulation period prevents us from quantifying the implications

of a late, sacrificial release decision on overall performance).

This is partly the result of the generally low skill of FoGSS

forecasts with respect to climatology forecasts in the Serpen-

tine catchment (Fig. 3) and is also due to the consistency

of FoGSS performance through the validation period (dis-

cussed in the ensuing paragraphs). Generally, the forecast-

informed schemes improve performance over control rules

most in reservoirs that must meet high demand (draft ratio

greater than 0.7). For these reservoirs, critical decisions tend

to be concentrated in the Millennium Drought period – dur-

ing which climatology is a poor predictor of inflows, and thus

forecast information offers substantial benefits over control

rules.

There are certain cases for which seemingly minor

changes in the critical decision periods result in large dif-

ferences in performance gain. To understand this behaviour,

we can examine specific cases. Figure 7 gives storage and

release time series (2005–2011) for the Serpentine reservoir

with the 50 % draft requirement (where performance gain is

positive) and with the 80 % draft requirement (negative per-

formance gain). Whilst the differences between control rules

and forecast-informed operations appear modest in the re-

lease time series, the practical implications of these differ-

ences can be substantial (e.g. a public supply system that

runs dry for an entire month, versus one that supplies suffi-

cient water for basic household activities). For the 50 % draft

reservoir (Fig. 7a, b), the storage depletes and recovers (fully)

a number of times. Within the sequence shown there is a 2-

year period beginning mid-2007 during which storage and

inflows are sufficiently healthy and no hedging is required.

Performance gain is effectively determined by the differences

between control rules and forecast-informed operations dur-

ing just two periods: the first half of 2007 and the period from

mid-2009 to December 2010. Overall, the forecast-informed

operation improves performance in this reservoir because it

instructs the operator to hedge significantly from mid-2009,

thus avoiding total reservoir depletion and 100 % release

shortfall incurred by the control rules. The information pro-

vided by FoGSS for this specific time period suffices to avoid

reservoir failure and thus reduces the penalty cost by enough

to overcome an earlier mistake (the hedge comes too late at

the end of 2006). This contrasts with the Serpentine reservoir

with 80 % draft requirement, for which the forecast causes re-

duced performance relative to control rules (Fig. 7c–d). The
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Figure 6. Panels (a, c, e, g) give critical decision periods for each reservoir design (draft ratio 0.2, 0.3, . . ., 0.9). Panels (b, d, f, h) give

performance gain plotted against draft ratio. Critical decision periods are moments during which perfect forecast operations implement

supply cutbacks.

storage dynamics brought about by the larger storage capac-

ity and draft ratio mean that the 80 % reservoir is heavily de-

pleted during the entirety of the chosen sequence. This means

that more points along the sequence become important for

decision-making (refer back to Fig. 6g). As for the 50 % draft

reservoir, we observe an intelligent decision from mid-2009

and the same misstep at the end of 2006. But the 80 % draft

reservoir never fully recovers after 2006, so all release de-
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Figure 7. Storage and release time series for reservoirs in the Serpentine catchment with 50 % (a, b) and 80 % (c, d) draft ratios. The solid

grey line gives operation under control rules whilst the dotted black line gives operation with the FoGSS forecast (median of ensemble).

cisions during this period become locked into memory and

contribute to future performance. There appears to be a pe-

riod in late 2008 during which the forecast performance dips

and the operator is instructed to meet the full target release,

resulting in costly reservoir failure a few months later. More-

over, the year 2005 also becomes important for this reser-

voir, and it appears that FoGSS underestimates future flow

since an unnecessary and costly hedge is implemented. This

simple example demonstrates that a simple shift of emphasis

onto some different periods can make the difference between

a forecast that outperforms control rules in operation and one

that does not. This example is consistent with the high sensi-

tivity of the Serpentine reservoir to injected forecast error in

supply-targeted operations, demonstrated with the synthetic

forecasts in Sect. 3.2 (also true for the Burrinjuck Dam).

We have shown earlier that FoGSS forecasts are skilful, on

average, for the 1982–2010 period (Fig. 3). Yet this masks

the degree to which skill varies over shorter periods. As we

have seen, the supply objective can result in a situation where

the forecast is mobilised in only a few crucial periods, mean-

ing that forecast skill may need to be consistently available

to warrant its use in supply-targeted operations. To demon-

strate the consistency of FoGSS forecast skill, we calculate

CRPS skill (Eq. 1) of lead-0 forecasts for a block of 12 con-

secutive months, randomly selected from the 1982–2010 val-

idation period. This calculation is repeated by bootstrapping

with 5000 repeats. We repeat this procedure for blocks of 2,

3, 4, 5 and 6 years. Figure 8 shows the ranges of skill from

the bootstraps as box-and-whisker plots. The probability that

any given 1-year period will have positively skilful forecasts

is not statistically significant (p > 0.05) for all reservoirs. As

the blocks get larger, the probability of finding instances of

negative skill reduces. For 3-year blocks, forecasts are sig-

nificantly skilful (p < 0.05) for both the Eppalock and Up-

per Yarra reservoirs. However, for Serpentine and Burrinjuck

reservoirs, forecasts are not significantly skilful until we test

skill for 5-year blocks. That is, FoGSS forecasts are less con-

sistently skilful for the Serpentine and Burrinjuck reservoirs

than for the Eppalock and Upper Yarra reservoirs. Less con-

sistent forecast skill helps explain why the forecast-informed

scheme does not always outperform control rules in the Ser-

pentine and Burrinjuck reservoirs. An important practical im-

plication of measuring the consistency of skill in this way is

that it does not require knowledge of future conditions. This

measure can be used to predict the ability of future forecasts

to help meet supply objectives.

5 Discussion and conclusions

Our findings have general relevance for an increasingly

water-constrained world, where the demand for water and

variability of climate are, in many regions, intensifying si-

multaneously. Intelligent use of skilful forecasts has the po-
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tential to reduce the instances of supply failure and to extend

the life of existing infrastructure at very little cost; forecast

systems are very cheap compared to developing new supply

infrastructure. But this potential can only be realised if the

limitations of forecasts are acknowledged and their utility to

specific systems and operating objectives is understood.

Our analysis shows that the benefit to reservoir operators

offered by forecasts varies considerably with the objective

of the reservoir. For operations that target a constant stor-

age level, there is a clear relationship between forecast accu-

racy and benefit: as forecasts become more accurate, opera-

tional performance improves. This relationship is much less

clear in supply-targeted reservoirs, where synthetic experi-

ments showed that even reasonably accurate forecasts may

offer little improvement over conventional control rules. This

arises because reservoirs operated to the supply objective can

buffer variability in inflows to a greater extent than reservoirs

operated to the level objective. We conclude more generally

that seasonal forecasts are more likely to raise performance

in instances when reservoirs are less able to buffer variabil-

ity in inflows or demand. This has important implications

for older reservoirs. In our experiments, we have fabricated

our reservoirs to specific draft ratios and reliabilities with re-

cent inflows records. In practice, reservoirs have long service

lives (typically decades), leaving them vulnerable to possible

changes to the inflow regime beyond their construction (e.g.

Bennett et al., 2012). In severe cases, an older reservoir may

no longer be able to buffer inflows as effectively as when it

was constructed, even if demand is static. Our findings imply

that skilful seasonal streamflow forecasting systems may be

able to compensate for some of the losses in performance in

such instances.

While the value of forecasts was strongest for the level

objective, we have shown that forecasts can also offer value

to reservoirs operated to a supply objective. The real-world

example of the FoGSS forecast system showed that skilful

forecasts improve supply-targeted operations in the majority

of reservoirs used in this study. Meeting the supply objec-

tive essentially requires effective action in only a few crucial

instances. Accordingly, we contend that if forecast skill is

consistently available, forecasts will improve the operator’s

ability to manage a system to meet a supply objective. We

therefore recommend measuring the consistency of forecast

skill as a useful predictor of the value of forecasts to supply

objectives.

It appears that the operator of a supply-targeted system

will need to accept greater risk than the operator of a level-

targeted system when adopting a given seasonal forecast ser-

vice. This may explain the reluctance of operators of large

urban water supply systems to adopt seasonal forecasts –

an inaccurate forecast at the critical moment may humiliate

managers if the implications of missteps are felt by the pub-

lic. Slow response to an oncoming drought resulting from

overestimation of water availability could result in grave

consequences in an urban system. For example, the severe

rota cuts imposed on millions of people in São Paulo have

been attributed to tardy management decisions at the onset

of a major drought (although in this case the failed manage-

ment actions were attributed to political factors rather than

a weak operating scheme) (Meganck et al., 2015). On the

other hand, an underestimation of water availability can lead

to over-hasty and ultimately unnecessary supply restrictions

that may weaken the operator’s ability to act decisively the

next time a drought emerges. Whilst a skilful forecast ser-

vice would actually improve these decisions on average over

a very long period of time (given enough decision points),

managers of such systems may experience only a few such

episodes in their entire careers. By adopting a new operat-

ing scheme, they expose themselves to criticism in the event

that the scheme fails to work at the time that matters most.

This is particularly true for emergencies, which attract sig-

nificant public attention and political interest (Porter et al.,

2015). It is worth emphasising that the vast majority of dams

and reservoirs are operated at least partially for sustaining

a target release; the practitioner community’s reluctance to

adopt a forecast-informed operating scheme is understand-

able in this light.

Our results also carry implications for future study into the

value of forecasts in reservoir operations. The high variabil-

ity of the performance of supply-targeted systems presents

potential pitfalls for case studies assessing the value of fore-

casts. The unstable relationship between forecast accuracy

and operating performance means that even good forecasts

may result in poor operational performance. Or perhaps

worse, mediocre forecasts may show strong performance for

supply objectives, giving potential users false confidence in

the forecast-informed operating scheme. When assessing the

value of forecasts in any system with a supply target, we offer

three recommendations and suggest that

1. sensitivity of a given system to forecast performance be

assessed, with appropriate operating objectives, perhaps

with synthetic forecasts as in our study;

2. long records and a large number of reforecasts are used

to assess performance, and if these are not available the

conclusions of the study be moderated accordingly; and

3. the consistency of forecast skill be established, over

the longest period possible, under stringent cross-

validation.

The onus is on the analyst to determine whether the fore-

cast service is sufficiently and consistently skilful to satisfy

the operator’s averseness to adopting a management system

that might cause more harm than good during his or her short

career.
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Figure 8. Variation in skill of lead-0 FoGSS forecasts for blocks of consecutive months. Skill for consecutive months for blocks of 1–6 years

is bootstrapped to create the box-and-whisker plots. Boxes give interquartile range; whiskers give 90 % intervals; lines show median values.

6 Summary

The increasing improvement and availability of seasonal

streamflow forecasts opens new opportunities for the adop-

tion of adaptive operating schemes to inform water resources

management. Consequently, research is needed to determine

the value of forecasts for a range of design and operating set-

tings. This can be done by measuring improvement in sys-

tem performance as defined by the operating objectives. We

use a rolling horizon, adaptive control approach to demon-

strate that the relation between forecast performance and op-

erational value varies significantly when comparing level-

targeted and supply-targeted operations. We demonstrate a

clear and strong relation between forecast skill and value

for reservoirs operated to meet target levels (level objective)

– operational value increases as the accuracy of the fore-

cast improves. In contrast, good forecast accuracy across the

simulation period does not necessarily translate into perfor-

mance improvement for reservoirs operated to meet supply

targets (supply objective). This is because reservoirs are able

to better buffer variability in inflows when operated to meet

the supply objective. We demonstrate with an experimental

forecast system, FoGSS, that forecasts add value to 25 of the

32 reservoirs tested, when they are operated to meet the sup-

ply objective. For reservoirs operated to a supply objective,

the driver of operating performance is the forecast accuracy

during a small number of periods where critical decisions are

made. We conclude that for forecasts to complement opera-

tions without imposing downside risks, forecast skill has to

be consistently available.

Data availability. Potential evaporation data were taken from the

AWAP gridded climate dataset (Raupach et al., 2009) and are avail-

able from http://www.csiro.au/awap/. Rainfall data were also taken

from the AWAP gridded climate dataset (Jones et al., 2009) and are

available from http://www.bom.gov.au/jsp/awap/. Inflow datasets

are proprietary and were made available by the Bureau of Mete-

orology for research purposes. The gauged streamflow, lake level

and storage outflow records from which the inflow records were

constructed are available from http://www.bom.gov.au/waterdata/.
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Appendix A: Definitions of reservoir parameters and

analysis techniques

All reservoir analyses executed in this study comply with

standard, common techniques outlined in mainstream litera-

ture (e.g. Loucks et al., 2005; McMahon and Adeloye, 2005).

A1 Time-based reliability

For a monthly time series, the time-based reliability consid-

ers the proportion of months during the simulation period

that the target demand is met in full, namely

Reliability =
Ns

Total number of months

0 ≤ Reliability ≤ 1, (A1)

where Ns is the number of months that the target demand is

met in full. Whilst the time-based reliability chosen in this

study is 0.95, this does not necessarily mean that reservoir

will fail as frequently as once every 20 months. This is be-

cause a fail period typically lasts more than a single month.

For this reason, the time-based reliability is often close to the

annual reliability (years in which failure does not occur over

total number of years simulated).

A2 Standard operating policy (SOP)

Standard operating policy (SOP) is a default mode of opera-

tion in water supply reservoirs. SOP assumes that the opera-

tor releases to meet demand in full if there is sufficient water

in storage and inflow. If available water (i.e. stored water plus

inflow) is insufficient to meet demand then all available water

will be released.

A3 Draft ratio

The ratio of demand, or target release, to the mean inflow

over the period of record.

A4 Storage–yield–reliability analysis

Storage–yield–reliability analysis refers to the procedure

used to determine the storage capacity required to meet a de-

mand (or yield) at a specified time-based reliability. This is

done using an iterative simulation procedure. First, the de-

mand and a trial storage capacity are implemented in the

reservoir model. The reservoir is then simulated assuming

standard operating policy. The resulting release time series is

analysed to determine the time-based reliability of the trial

reservoir. The storage capacity is iterated (bisection method)

according to whether the target is missed or exceeded. After a

number of iterations, an optimal storage capacity is attained.

A5 Critical period

The critical period is defined as the number of months taken

for the reservoir to deplete from full to empty (also known as

the critical drawdown period), assuming standard operating

policy. The critical period is a function of the demand, stor-

age capacity and inflow rate during drought. Some reservoirs

experience more than one critical period during a simulation.

In such cases, we take the average of all critical periods.

A6 Drift

Drift (m) – also known as standardised net inflow – indicates

the resilience of a reservoir as well as its tendency for within-

year behaviour (i.e. tendency to spill at least once each year).

m =
1 − DR

Cv
, (A2)

where DR is the draft ratio of the reservoir (demand over

mean inflow) and Cv is the coefficient of variation of the an-

nualised inflow time series, defined as the ratio of the stan-

dard deviation to the mean of the annualised inflow.

Appendix B: Reservoir optimisation model details

Control rules (the benchmark scheme) and the rolling hori-

zon, adaptive control (forecast-informed scheme) are trained

and simulated using the R package reservoir (Turner and

Galelli, 2016b). To develop control rules, the following ob-

jective is minimised using a backwards recursive procedure:

ft (St ) ={Ct (St ,Qt ,Rt ) + ft+1(St+1)}

∀St , t ∈ {1, . . .,T }, (B1)

where f is the optimal cost-to-go function (which gives the

cost of the optimal decision at time step t+1), C is the

penalty cost based on deviation from target operation, S is

the volume of water in storage, R is the release from stor-

age and Q is the inflow. Storage is discretised into 500 uni-

form values, meaning the resulting look-up table comprises a

500 × 12 (months) matrix of releases. Release is discretised

into 40 uniform values between 0 and Rmax, where Rmax

is twice the demand. Inflow is discretised according to the

bounding quantiles of 1.00, 0.95, 0.7125, 0.4750, 0.2375 and

0.00 (as adopted by Stedinger et al., 1984) and the likeli-

hood of each flow class is computed for each month using

observed inflow data.

For the rolling horizon, adaptive control (or model predic-

tive control) model, the penalty cost given in Eq. (3) is min-

imised at each time step using deterministic dynamic pro-

gramming.
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