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1 Introduction

The Sachdev-Ye-Kitaev (SYK) model [1–5] is a quantum mechanical model (0 + 1 dimen-
sions) of N fermions with random all-to-all interactions, which can nevertheless be studied
analytically in the large N limit. The SYK model exhibits various interesting properties.
In particular, it is a highly chaotic model, with a maximal quantum Lyapunov exponent
at low temperatures [6]. Letting χi be N Majorana fermions, i = 1, · · · , N , such that
{χi, χj} = 2δij , the Hamiltonian of the SYK model is given by

H = ip/2
∑

1≤i1<···<ip≤N
Ji1···ipχi1 · · ·χip . (1.1)

p is a parameter in the model which sets the length of the all-to-all interactions in the
Hamiltonian, and the Ji1···ip are the random couplings.

The model can be analyzed using Feynman diagrams. At large N , the dominant
diagrams are the so-called melonic diagrams. The sum of all those diagrams is described
by a set of Schwinger-Dyson (SD) equations [1–5], and at low energies the model has a
conformal regime in which the Schwinger-Dyson equations can be solved. At low energies,
the equations are invariant under a symmetry of time reparametrizations, which is broken
spontaneously (and also explicitly in the full theory). Beyond the strictly conformal regime,
the modes which describe this reparametrization symmetry are lifted by the Schwarzian
action (see also [7–14]). Various correlation functions in the Schwarzian theory have been
found in [7–9, 11].

From the holographic point of view, the Schwarzian action is equivalent to Jackiw-
Teitelboim gravity in the bulk [11, 12, 15, 16]. Recently, it was shown that the partition
function of Jackiw-Teitelboim gravity (on surfaces of any genus) is described by a particular
double-scaled random matrix model [17], and relations of random matrix theory and chaos
to the SYK model were discussed in [18, 19].

SYK-like models in higher dimensions have been studied in [20–25] (in such theories
there are in general interesting disorder effects related to renormalization [26, 27]). Higher
point correlation functions were obtained in [28, 29], and results beyond the leading order
in N were obtained in [30–32].

The techniques above are applicable when the value of p is taken to be a constant
independent of N , such as p = 4, or in the large p limit (as long as N →∞ first). However,
an interesting scaling was recently studied, known as double-scaled SYK [18, 33–35], where
p is taken to scale as

√
N . In this limit the model can be solved exactly at all energy

scales using combinatorial tools, and it is rigidly controlled by a quantum group symmetry
which replaces the conformal symmetry at all energy scales. The relevant quantum group
is Uq (su(1, 1)), see [35] for more details.
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In solving double-scaled SYK, the combinatorial description of the partition function,
as well as of correlation functions, is given in terms of chord diagrams (which are reviewed
in section 3). The summation of those chord diagrams can be performed analytically.
In particular, the 4-point function, which encodes the quantum Lyapunov exponent, was
found exactly [35]. At low energies and in the limit p2/N → 0, it indeed agrees with the
result [9] found from the Schwarzian theory.

The double scaled limit is in a sense also much more universal as many different
microscopic models reduce to similar chord diagrams prescription; for example, one can
replace the Majorana fermions by Pauli matrices (which commute between different sites)
and obtain the same set of chord diagrams, or consider the SUSY model [36] which results
in modified rules, still within the chord diagrams framework. It also suppresses spin glass
phases in the theory [37]. Moreover, at low energies and when p2/N → 0, the model is
still described by the Schwarzian theory, which means that it is still equivalent to Jackiw-
Teitelboim gravity living in two-dimensional AdS space.

In this paper, we study the version of the SYK model, where the fermions are complex
rather than real such that there is a global symmetry, in the double-scaling limit. This is
a variant of the original Sachdev-Ye model [1], which can be written in terms of complex
fermions, with four-fermion interactions.

1.1 Outline and summary of new results

We start in section 2 where we review the definition of the complex SYK model and mention
some known results about it. In particular, the model was studied in the literature in the
large p limit (N taken to infinity first and then p is taken to be large), and we will make
contact with these results. Indeed, this large p limit is obtained as a limit of double-
scaled SYK as p2/N → 0. As the combinatoric approach to double-scaled SYK reduces
the calculation of various observables to a description in terms of a summation over chord
diagrams, we derive the value assigned to each chord diagram in generic double-scaled SYK
theories with complex fermions in section 3. The result is simply given in terms of rules
assigning to every chord and pairs of chords a particular value. Then we use these rules to
evaluate observables in the theory at all energies. In section 4 we calculate the canonical
and the grand canonical partition functions of the theory, where in the latter a chemical
potential for the global U(1) symmetry is turned on. In addition, we find in section 5 the
exact partition function in every sector of a particular fixed charge, providing a refined
information related to the charge. We verify that in the limit p2/N → 0 these results
reduce to the large p results from the literature. In section 6 we consider another SYK
model with a global symmetry, namely a U(M) symmetry, and use similar tools to get the
partition function with chemical potential for the various Cartan generators.

We then go on to study correlation functions. In section 7 we find the full two-point
function (in a fixed chemical potential and in a fixed charge sector). We go to the limit
exhibiting a conformal behavior, as well as get small corrections to it. As a check, we match
to the spectral asymmetry factor in the theory. We also consider an analogous measure of
asymmetry defined by the two-point function with these corrections, exhibiting a slightly
different behavior; in particular, it is not simply determined by the charge of the operator,
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but depends also on its dimension. In section 8 we calculate the four-point function. In
particular, this gives the Lyapunov exponent in the limit of small p2/N and we match
this with the literature. In section 9 we discuss the effect of very heavy operators. These
are operators that in the low energy limit do not go to operators of a finite conformal
dimension, but rather formally have an infinite dimension. They have a significant effect
of separating spacetime into two spaces, as in [38], and the chord diagram picture provides
a simple way to see this. We also discuss how very light states can still go between these
separated spaces. We finish with several appendices containing further details to which we
refer from the main text.

2 Review of the complex Sachdev-Ye-Kitaev model

In this section we briefly review the complex SYK model. In subsection 2.1 we discuss the
definition of the model and in subsection 2.2 we review some key results about it that we
will make contact with, following [39].

2.1 Definition of the model

The complex Sachdev-Ye-Kitaev model [40] is a quantum mechanical model of N complex
fermions ψi and ψ̄i (where i = 1, 2, . . . , N) with random all-to-all interactions.1 The
fermions satisfy{

ψi, ψ̄j
}

= 2δij ,
{
ψi, ψj

}
=
{
ψ̄i, ψ̄j

}
= 0, i, j = 1, · · · , N , (2.1)

and the model is specified by the Hamiltonian

H =
∑

1≤i1<···<ip≤N
1≤j1<···<jp≤N

J
i1···ip
j1···jp ψ̄ip · · · ψ̄i1ψ

j1 · · ·ψjp =
∑
I,I′

JI
′
I ψ̄I′ψ

I . (2.2)

In the last term above, I and I ′ denote an index set I = {i1, i2, · · · , ip} consisting of p
distinct indices i1 < i2 < · · · < ip. Fermions with capital indices stand for the following
product of the components

ψI = ψi1ψi2 · · ·ψip ,
ψ̄I = ψ̄ip · · · ψ̄i2ψ̄i1 .

(2.3)

Note that we have reversed the ordering in ψ̄I . This notation will turn out to be convenient
later. The couplings J are Gaussian complex random variables satisfying (J i1···ipj1···jp)

∗ =
J
j1···jp
i1···ip , ensuring the Hermiticity of the Hamiltonian. Their variance is

〈J i1···ipj1···jpJ
j1···jp
i1···ip 〉J = J2

(
N

p

)−2

(no sum), (2.4)

where J is a normalization constant for the disorder.2
1In the usual large N scaling, this random model is described by Schwinger-Dyson equations, and has a

tensor [41, 42] and a matrix [43, 44] quantum mechanical counterpart models.
2Our notations are related to those of [39] as follows: p = q/2 , ψi =

√
2fi,

(
J
i1···ip
j1···jp

)
here

=
1
2p

(
Ji1,i2,··· ,iq

)
there

, and for N � p, Jhere =
√

2N
2p Jthere. Note that by J2

there we mean the one in eq.
(C14) of [39] (that is the one used in the quoted results) which appears to us to differ from the one in eq.
(1.2) there (the former being half the latter).
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The model possesses a U(1) global symmetry that acts on the fermions as follows

ψi → ψie−iφ , ψ̄i → ψ̄ie
iφ . (2.5)

The associated conserved charge is the fermion number defined as

Q = 1
4

N∑
i=1

(
ψ̄iψ

i − ψiψ̄i
)
. (2.6)

We will also use the specific charge defined by

Q = 1
N
Q, (2.7)

which takes values in the range −1/2 < Q < 1/2. This will be useful when comparing to
existing results in the literature.

This model admits a non-trivial double scaling limit in which

λ = p2

N
fixed, N →∞ . (2.8)

In this paper we explore the complex SYK model in this limit. But first we present a short
summary of known results in the usual, fixed p, large N complex SYK model.

2.2 Summary of known results

2.2.1 Thermodynamics

In the limit where N is taken to infinity first, at fixed p, followed by a zero temperature
limit T → 0, the canonical free energy, F ,3 of this model has the following low temperature
expansion [39]4

F (Q, T ) = E0(Q)− TS(Q) + · · · . (2.9)

In the above expression, E0(Q) is a non-universal ground state energy and S(Q) is the
universal zero-temperature entropy (universal in the sense that it is independent of the
‘UV’ details of the theory; for example adding higher order fermion interaction terms to
the Hamiltonian does not change the result). For generic p the analytic form of the ground
state energy is not known. However, it can be computed analytically in a large p expansion
and has been found to be

E0(Q) ∼ −J
√
N

p
(1− 4Q2)

p+1
2 +O(1/p2) . (2.10)

The universal zero-temperature entropy S(Q) is a symmetric function of the U(1)
charge Q and has been computed analytically for any p > 2. In a large p expansion, the
expression for S(Q) takes the following form

S(Q)/N = 1
2 log

( 4
1− 4Q2

)
+Q log

(1− 2Q
1 + 2Q

)
− π2

8 (1− 4Q2) 1
p2 +O(1/p3) . (2.11)

3In [39] the free energy is per site (divided by N) while here we write the full free energy.
4In the results quoted here, there is in fact a problem taking the zero temperature limit [45]. However,

we obtain results for a chemical potential (or charge) scaling with N , which is actually consistent with the
careful analysis of [45]. This eliminates the problem just mentioned.

– 4 –



J
H
E
P
0
2
(
2
0
2
1
)
1
1
3

Because of the non-universality of E0(Q), the thermodynamic grand potential, Ω =
−T logZ(µ, T ), has both universal and non-universal pieces. The universal part of Ω has
been computed in [39] for generic p from the G,Σ action. In the large p limit, the analytic
expression for Ω has been found to be5

Ω(µ, T ) = −TN log(2 coshµ)− πvTN

2 (coshµ)2

[
tan

(
πv

2

)
− πv

4

] 1
p2 +O(1/p3) . (2.12)

In the above expression v is the solution of the equation

πv

cos(πv/2) = J̃
T
, where J̃ = J

2 coshµ
(coshµ)p

√
p2

N
. (2.13)

2.2.2 Two-point function

A quantity that plays an important role in the complex Sachdev-Ye-Kitaev model is the so
called ‘spectral asymmetry’ factor whose thermodynamic definition is given by the charge
derivative of the entropy6

E = 1
2π

dS
dQ

= 1
2π log

(1− 2Q
1 + 2Q

)
+ π

2p2Q+O(1/p3) .
(2.14)

This factor reflects an asymmetry in the spectral function A(ω) which is defined as

A(ω) = − 1
π

ImG(ω + iε) , (2.15)

where G(ω) is the Green’s function of a single fermion, which in terms of the Euclidean
time τ is defined as follows (note there is no summation over i in the following equation)

G(τ) = −〈Tτψi(τ)ψ̄i(0)〉

= − 1
Z(µ, β)Tr

[
e−βKTτ

(
eτKψie−τKψ̄i

)]
.

(2.16)

In the above expression Tτ specifies the τ ordering, Z(µ, β) is the grand canonical partition
function and K is the sum of the Hamiltonian and the fermion number operator

K = H + µ

2β

N∑
i=1

(
ψ̄iψ

i − ψiψ̄i
)
. (2.17)

As shown in [39], assuming conformal invariance in the IR, the Green’s function G(ω)
in the frequency domain (also in the presence of a chemical potential) at zero temperature
takes a scaling form

G(z) = C
e−i(π∆+θ)

z1−2∆ , Im (z) > 0 (2.18)

5We used the convention for the chemical potential used here, which is related to [39] by µthere =
−2Tµhere, and the grand potential here is the total grand potential (rather than per site).

6There is a universal relation in the usual large N complex SYK model between the spectral asymmetry
and the charge [39, 46].
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which can then be plugged in the Schwinger-Dyson equations, fixing the dimension ∆ =
1/(2p) and C. In the above, z is the complexified frequency. In the τ domain, one obtains
the following ratio

G(τ > 0)
G(τ < 0) = −sin(π∆ + θ)

sin(π∆− θ) ≡ −e
2πE . (2.19)

When the net-charge is zero (Q = 0), E vanishes, and otherwise E acquires a non-zero value
which in the large p limit is given by (2.14).

In this paper, we calculate these various quantities in the double-scaled complex SYK
model. We will find that at the leading order in large p, our results match with those in [39].

In the large-N double scaled SYK model, the natural operators to consider are those
that are made out of a string of fundamental fermions whose length is of the order of

√
N .

For such operators that carry a U(1) charge σ, the ratio of the Green’s functions (2.19)
gets modified so that we have σ times the spectral asymmetry. In fact, in our analysis we
will be able to calculate subleading in N corrections to the ratio of the coefficients (of the
time dependence) in the 2-point functions, finding a different behavior where there is also
a dependence on the dimension of the operator. However, it should be stressed that the
relation to the spectral asymmetry only holds in the conformal regime, which is what we
indeed get at leading order in N . The subleading corrections go beyond the scaling regime,
and enter in a slightly different measure of asymmetry that we consider.

3 Computation using chord diagrams

Using chord diagrams, we now present a method for solving the complex Sachdev-Ye-Kitaev
model in the double scaling limit

N →∞, λ = p2

N
held fixed . (3.1)

The method boils down to the calculation of the traces of generic products of complex
fermions, and then taking into account the Gaussian structure of the couplings. We begin
in subsection 3.1 by briefly reviewing the chord diagram method for solving the SYK model
with Majorana fermions. The generalization to the complex SYK will then be clearer. In
subsection 3.2 we work out the formulas for traces of fermions relevant for the complex SYK,
and in subsection 3.3 we work out their simplified large N limit. The main result of this
section is given in (3.11) or (3.12). The largeN rules are summarized in figure 4. In the next
sections we use these rules to compute the partition functions and correlation functions.

3.1 Chord diagrams and the real SYK model

The real SYK model is a quantum mechanical model of interacting Majorana fermions
whose Hamiltonian is given by (1.1). If we write the Hamiltonian in a short-hand nota-
tion as

H = ip/2
∑
I

JIχI , I = {i1, · · · , ip} , (3.2)

– 6 –
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I1

I1

I2

I2

Figure 1. An example of a typical chord diagram.

then the moments of the Hamiltonian are given by

mk = 〈trHk〉J = ikp/2
∑

I1,··· ,Ik

〈trJI1χI1 · · · JIkχIk〉J . (3.3)

The average over the Gaussian random coefficients JIj is given by Wick’s theorem, instruct-
ing us to sum over all pairings of the k index sets Ij . This is represented combinatorially
by chord diagrams: we draw a circle, on which we mark k nodes, corresponding to the
Hamiltonian insertions. The nodes are connected in pairs by chords, representing the
Wick contractions. An example of a particular chord diagram is shown in figure 1.

For every chord diagram, we are left with a trace over the fermions tr(χI1χI2 · · ·χI1 · · · ),
where each index set Ij appears twice. This trace is then evaluated simply by commuting
the different χ’s, so that eventually contracted χ’s are next to each other, in which case
we can use χ2

i = 1 and the trace becomes trivial. In the chord diagrams, this amounts to
disentangling the intersections, so that each intersection, as a consequence of the fermion
anti-commutation relations, gives (−1)|Ij∩Ij′ | where Ij , Ij′ are the index sets corresponding
to the intersecting chords, and |Ij ∩Ij′ | is the size of their (set) intersection. The size of the
intersection |Ij ∩ Ij′ | is a random variable (since we sum over the Ij ’s), which in the large
N double scaled limit (3.1) follows a Poisson distribution with mean p2/N [33]. Weighting
by the Poisson probability distribution, one finds that each chord intersection contributes

∑
|Ij∩Ij′ |=k

(−1)k (p2/N)k
k! e−p

2/N = exp
(
−2p2/N

)
. (3.4)

Triple intersections, i.e., configurations in which there are 3 chords with I1 ∩ I2 ∩ I3 6= ∅
are negligible in the large N limit. Therefore, the combinatorial problem that one gets is
to sum over all chord diagrams, with a weight that depends on the number of pairwise
crossings of chords, i.e.,

mk =
∑

π∈ Chord Diagrams
exp

(
−2p2 · cr(π)/N

)
(3.5)

where π denotes a chord diagram, and cr(π) is the number of pairwise crossings in the
diagram. These combinatorial sums can be evaluated using a transfer matrix technique,
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which captures all energy scales in the model, and gives rise to a q-deformation of the
Schwarzian action [34, 35]. In a similar manner, one can extend this construction to
correlation functions.

3.2 Chord diagrams and the complex SYK model

The generalization to the charged SYK model is as follows. First of all, we note that
after carrying out the average over the (Gaussian distributed) couplings in the random
Hamiltonian (as will be done in section 4), we get a sum over traces of the form

tr(ψ̄I′1ψI1ψ̄I′2ψI2 · · · ψ̄I1ψI
′1 · · · ) . (3.6)

In this trace, the indices of a pair of consecutive ψ̄ψ are contracted with those of another
ψ̄ψ pair (as in · · · ψ̄I′ψI · · · ψ̄IψI

′ · · · ). However, in the remainder of this section we will
allow for a more general arrangement as shown in (3.9) since it will be useful for calculating
correlation functions of generic operators which we eventually do in section 7.

As a starting point we will represent the complex fermions using N -dimensional gamma
matrices. We will use the following conventions for the Pauli matrices

σ+ =
√

2
(

0 1
0 0

)
, σ− =

√
2
(

0 0
1 0

)
, σ3 =

(
1 0
0 −1

)
, (3.7)

and write the complex fermions ψi as the following tensor product

ψ1 = σ+ ⊗ σ3 ⊗ · · · ⊗ σ3

ψ2 = 12 ⊗ σ+ ⊗ σ3 ⊗ · · · ⊗ σ3

ψ3 = 12 ⊗ 12 ⊗ σ+ ⊗ σ3 ⊗ · · · ⊗ σ3

...
ψN = 12 ⊗ · · · ⊗ 12 ⊗ σ+

(3.8)

For ψ̄i we simply replace σ+ → σ− in the above formulas. Using this representation we
can now work out the trace of a product of complex fermions.

Fermions with capital indices, ψI and ψ̄J , stand for the appropriate product of com-
ponents as indicated in (2.3). Let pj denote the length of the index set Ij . Here we have
taken the length to be generic, because this generalization is needed when we compute
correlation functions. As mentioned, the quantity that we would like to evaluate in this
section is a slight generalization of (3.6)

tr
(
ψI1ψ̄I2 · · ·ψIiψ̄I1 · · ·

)
(3.9)

where now at each point any ψ or ψ̄ is allowed (not necessarily alternating), with a total
of 2k insertions, such that each of the k indices Ij appears in one ψ and one ψ̄. The trace
is defined to be normalized7 as tr 1 = 1. This object is represented by a chord diagram: as
reviewed above, this is a circle or a line (which is equivalent, by cutting open the circle at

7In the representation (3.8), the trace in each tensor product factor is normalized in this way.
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 I1
 ̄I1

 ̄I2
· · ·  Ii

· · ·

Figure 2. Chord diagram representation of the generic trace (3.9). The chords are oriented to go
from a ψ insertion to a ψ̄ insertion having the same index set I.

a point), on which 2k nodes are marked, such that pairs of nodes are connected by chords.
Since we have here two kinds of insertions (ψ and ψ̄), the chords are oriented, so that each
chord has a direction; let us choose a convention where the arrow goes from a ψ insertion
to a ψ̄ insertion (see figure 2).

The basic idea to evaluate (3.9) is the following. We will consider each component i
of the tensor product structure in the representation (3.8). The contribution of ψi to this
component is simply σ+, each ψj<i contributes σ3, while each ψj>i gives no contribution;
for ψ̄ it is the same, with σ+ → σ−.8 All the σ3 commute among themselves and give only
a sign, so the first step is to determine the sign and by this eliminate all the σ3’s. Then
the remaining strings of σ± is straightforward to evaluate, giving either a vanishing result,
or a power of two.

More explicitly, let us consider two indices 1 ≤ j < k ≤ N . For simplicity let us
discuss first the case where each of them appears in a distinct single chord only — this is
actually the case for most of the indices appearing in chords. The case where these two
chords intersect is shown in figure 3(a). Consider the k’th component of the tensor product
representation. The chord containing the k’th index gives one σ+ and one σ−, while the
other chord containing the j’th index gives two σ3 as shown in the figure (note that we can
consider each i < k independently because they all give σ3 factors that commute). That
is, we have something of the form tr [· · ·σ+ · · ·σ3 · · ·σ− · · ·σ3 · · · ]. Using the algebra of the
σ matrices, we can get rid of the σ3 insertions, resulting in a factor of (−1). If the chords
were not intersecting, then using σ2

3 = 1 we would get no sign.
More generally, consider two indices j < k such that each of them can appear in

any number of chords. As before, since the σ3’s commute, we can consider each chord
containing j in turn. As shown in figure 3(b), when we consider the k’th tensor product
factor, by inserting σ2

3 = 1 in intermediate steps, and using the fact that σ3σ±σ3 = −σ±,
each intersection of a chord containing j with a chord containing k gives a (−1).

Now we would like to combine all the signs from all the tensor product factors. Take
a pair of chords J,K that intersect. For any j ∈ J and k ∈ K, if j < k we saw that when
looking at the k’th tensor product factor, we get a (−1), and similarly for j > k we get a

8Here the convention for the definition of ψI and ψ̄I in (2.3) is useful, since the evaluation becomes
easier using the identities σa3σ+ = σ+ and σ−σa3 = σ− (for any integer power a).
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σ+ σ−σ3 σ3

k ∈ I1 j ∈ I2

(a)

σ3 σ3σ+ σ− σ+

σ2
3 σ2

3

(b)

Figure 3. Determining the sign of a diagram. Only in this figure the chords are shown in different
colors. The chords to which j belongs are shown in orange, while the ones to which k belongs are
in blue. In figure 3(b) we draw specific orientations for concreteness, but the argument in the text
is independent of the orientations of the chords.

(−1) from considering the j’th tensor product factor; but if j = k there are no σ3’s and no
(−1). As a result, by eliminating all the σ3’s, we find a sign which is

(−1)
∑

Chords i, j intersect(pipj−pij) (3.10)

where pj = |Ij | is the length of the index set Ij , and pij = |Ii ∩ Ij |.
After this step, we are left only with factors of σ±. If we have two consecutive σ+ or σ−

then this just gives zero since σ2
± = 0. This just corresponds to the fact that if we have two

consecutive ψ’s or ψ̄′s with common indices, we immediately get zero. Otherwise, consider
again a particular index i with the corresponding tensor product factor. If it appears in no
chord, then the trace in this tensor product factor is simply tr 12 = 1 (recall that the trace
is normalized to one). If it appears in a single chord, then we have tr (σ+σ−) = tr ( 2 0

0 0 ) = 1
(or tr(σ−σ+) which is the same here and below). If the index i appears in m number of
chords, then we get tr ((σ+σ−)m) = 2m−1.

As a result, a general oriented chord diagram with fixed indices Ij , that is expres-
sion (3.9), equals

tr
(
ψI1ψ̄I2 · · ·ψIiψ̄I1 · · ·

)
= (−1)

∑
Chords i, j intersect(pipj−pij)2

∑∞
m=2(m−1)·(# of indices 1 ≤ i ≤ N appearing in m chords) ,

(3.11)

unless when restricted to any particular i the ψ and ψ̄ do not appear in an alternating
form, in which case the value of the trace is just 0.

Let us also introduce the notation sijk··· which denotes the number of sites that appear
in Ii, Ij , Ik and so on, but in no other set. Note the difference between the two symbols
pij and sijk···. They are related by pij = sij + ∑

k sijk + · · · . In terms of sijk··· we can
write (3.11) as

tr
(
ψI1ψ̄I2 · · ·ψIiψ̄I1 · · ·

)
= (−1)

∑
Chords i, j intersect(pipj−pij)2

∑∞
m=2(m−1)·

∑
i1<i2<···<im

si1i2···im .
(3.12)

This result holds for any value of N and pi.
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3.3 Large N simplification

A simplification occurs in the large N double scaling limit. Consider the same trace
object as above, associated to a particular oriented chord diagram, but now summing
over the indices (

k∏
j=1

(
N

pj

)−1) ∑
I1,··· ,Ik

tr
(
ψI1ψ̄I2 · · ·ψIiψ̄I1 · · ·

)
. (3.13)

The combinatorial prefactor turns counting of events in the sum into probabilities of those
events. As was shown in [33], in the large N limit, the intersections are independently
Poisson distributed pij = |Ii ∩ Ij | ∼ Pois

(pipj
N

)
, and there are no triple (or higher) inter-

sections with probability that goes to 1 in the large N limit. Therefore, in (3.12), the sum
over m is now restricted only to m = 2.

Thus, we should consider independently pairs of chords Ii, Ij . First, we need to make
sure that we do not get a vanishing result. For an index i appearing only in a single chord,
it appears in one ψI and one ψ̄I and therefore it does not vanish. Any index i appearing
in two chords (a higher number of chords can be neglected in the large N limit as was just
mentioned) will necessarily give a vanishing result if the two chords are intersecting (just
because one chord gives a σ+ and a σ−, and there is one end of the other chord between
these two, such that no matter whether it is a σ+ or a σ− we would have σ2

± = 0). By
this logic, a non-zero pij is allowed only in the first four possibilities appearing in figure 4.
For each such pair of chords (that are not intersecting and therefore get no (−1) factors)
we need to sum over the number of elements pij with the Poisson probability distribution;
their contribution from (3.11) is

∞∑
pij=0

(pipj/N)pij
pij !

e−pipj/N2pij = epipj/N . (3.14)

For all the other combinations of pairs of chords, we must have pij = 0 and therefore
they contribute simply

e−pipj/N (3.15)

from the Poisson distribution. In addition, if they intersect, they also give a factor of
(−1)pipj from (3.11) (for which as mentioned, pij = 0 necessarily in the large N limit).

Let us emphasize that while (3.11) is exact, in this subsection the large N approxi-
mation is used in two arguments. The first is that for 1 � p � N the intersections pij
are independently Poisson distributed with a finite parameter in the double-scaled large N
limit (3.1). Secondly, it is important that under the same approximation, we could assume
there are no intersections of three or more Ij sets, simplifying (3.11) significantly.

These rules are summarized conveniently in figure 4. Using these rules we can now
calculate physical observables in the double-scaled complex SYK model. In the ensuing
sections we calculate the partition function and correlation functions of generic operators.

– 11 –



J
H
E
P
0
2
(
2
0
2
1
)
1
1
3

(a)

exp
(
pipj
N

)
exp

(
pipj
N (2e−µ cosh(µ) − 1)

)

Chord configuration Value Value in the presence of
a chemical potential µ

(b)
exp

(
pipj
N

)
exp

(
pipj
N (2eµ cosh(µ)− 1)

)

(c) exp
(
pipj
N

)
exp

(
pipj
N (2e−µ cosh(µ)− 1)

)

(d) exp
(
pipj
N

)
exp

(
pipj
N (2eµ cosh(µ)− 1)

)

(e)
exp

(
−pipj

N

)
All other of the form

exp
(
−pipj

N

)

(f) (−1)pipj exp
(−pipj

N

)
(−1)pipj exp

(−pipj
N

)

(g) 1
(

eµ

cosh(µ)

)pi

(h) 1
(

e−µ

cosh(µ)

)pi

(i) 1 cosh(µ)NFor every diagram

Figure 4. Rules for evaluating oriented chord diagrams (when an orientation is not shown, it
means that it does not matter). The values when we have a chemical potential, to be used later
(which are derived in section 4), are also shown.

4 Partition function

In this section we obtain the canonical and grand canonical partition functions.

4.1 Canonical partition function

For simplicity, we first apply the rules that we already found in order to calculate the
ensemble averaged partition function (without a chemical potential)

Z(β) = 〈tr e−βH〉J . (4.1)
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Figure 5. An oriented chord diagram contributing to 〈trH8〉J and the corresponding unoriented
chord diagram.

Figure 6. Two possibilities for non-intersecting H-chords.

The calculation proceeds by expanding out the above quantity in moments

mk = 〈tr Hk〉J = Jk
∑
CD

(
N

p

)−k ∑
I1···Ik

tr
(
ψ̄I1ψ

I2 · · · ψ̄I2ψI1 · · ·
)
, (4.2)

then evaluating each moment using the result from the previous section, and then resum-
ming the moments. In the last equality, we carried out the ensemble average to obtain a
sum over oriented chord diagrams (abbreviated as CD). This is the result for even k. For
odd k the moments vanish due to the ensemble average.

Note the simplification here in comparison to (3.13), in that the ψ̄ψ are contracted in
pairs. Pictorially, the corresponding oriented chord diagrams consist of adjacent pairs of
chords of opposite orientation, so that each such pair can be replaced by a single unoriented
chord; we will refer to such an unoriented chord as an H-chord (since each end of it
corresponds to a single Hamiltonian insertion). This is demonstrated in figure 5.

The goal is to calculate the contribution of every chord diagram in (4.2), by applying
the rules of figure 4. To begin with, since there is an even number of intersections of
oriented chords, and all pi = p, the sign of every diagram is positive. The remaining task
is just to find the number of pairs of oriented chords of the form of the first four pairs
appearing in figure 4 (as they are assigned the same value). Every H-chord is of this form,
so that we already have k/2 such pairs. Every other pair of oriented chords belongs to
a pair of H-chords. Any intersecting pair of H-chords manifestly does not give anything
of the form of figure 4a, 4b, 4c or 4d, while every non-intersecting pair of H-chords (see
figure 6) gives exactly two pairs of oriented chords of the form of figure 4a, 4b, 4c or 4d.9

Denote the number of intersections of H-chords by κH ; then the number of pairs of
H-chords that do not intersect is κ̄H =

(k/2
2
)
− κH . The total number of pairs of oriented

chords of the form of figures 4a–4d is then k
2 + 2κ̄H (and the number of pairs not of this

9If two H-chords are not intersecting, then either they are disjoint, or one of them is embedded in the
other one. In the first case, the two pairs of chords of the same orientation belong to figures 4a–4d, while
in the latter case, these are the two pairs of chords of opposite orientation.
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form is just
(k

2
)
−
(
k
2 + 2κ̄H

)
). Thus we arrive at

mk = Jk
∑
CD

exp
[
p2

N

{
k

2 + 2κ̄H −
[(
k

2

)
−
(
k

2 + 2κ̄H
)]}]

=
(
Je

p2
2N

)k ∑
unoriented CD

(
e−

4p2
N

)κH
=
(
Je

λ
2
)k ∑

unoriented CD

(
e−4λ

)κH
,

(4.3)

where λ = p2/N is what we keep fixed as N → ∞. This is just as in the real SYK where
for every intersection one gets a factor of e−2p2/N , whereas in the complex SYK model this
factor gets modified to e−4p2/N . In the next subsection we give an analytic expression for
the partition function (evaluating the sum over chord diagrams) in the more general case
when having a chemical potential.

4.2 Grand canonical partition function

We now move on to calculate the ensemble averaged grand canonical partition function of
the complex SYK model which is given by

Z(β, µ) = 〈tr e−βH−2µQ〉J , (4.4)

where Q is defined in (2.6). As before we will use the moment method and compute (at
this stage, without any restriction on µ)

mk(µ) = 〈tr Hke−2µQ〉J ; (4.5)

note that we are not expanding the charge term. We will see, however, that resummation
is difficult for finite µ 6= 0 that is independent of N , since the sum over k diverges. We
note that the divergence originates from very large values of k, where the computation is
not reliable. To remedy this we can either (i) scale µ appropriately with N , or (ii) go to
the fixed charge basis. We will do each of those below.

Computing the individual moments uses techniques similar to the ones used before.
The moments now read

mk(µ) = Jk
∑
CD

(
N

p

)−k ∑
I1···Ik

tr
[
ψ̄I1ψ

I2 · · · ψ̄I2ψI1 · · · exp
(
−µ2

N∑
i=1

(ψ̄iψi − ψiψ̄i)
)]

.

(4.6)
In the representation (3.8), the chemical potential term is represented by

exp
(
−µ2

N∑
i=1

(ψ̄iψi − ψiψ̄i)
)

=
∏
i

e−
µ
2 (ψ̄iψi−ψiψ̄i)

=
(
eµ

e−µ

)
⊗
(
eµ

e−µ

)
⊗ · · · .

(4.7)
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Similarly to section 3.3, let us provide the rules for computing oriented chord diagrams
(that will also be valid beyond the partition function) in the large N limit, where now we
allow the presence of a chemical potential.

Earlier, the first step was to apply the σ3’s resulting in a sign. This clearly remains
the same (we do not use the trace here, so this is unaffected by the presence of a chemical
potential). Non-zero pij of intersecting chords give vanishing contribution to the trace
and therefore the only signs we get are (−1)pipj for intersecting chords. In the partition
function and the correlation functions that we consider here, all intersections are in pairs,
so overall the sign is plus.

Then, for every site i, if it does not appear in any chord, we simply have tr
(
eµ

e−µ

)
=

cosh(µ). If it appears in at least one chord, then if the first appearance is in a ψ (that is, the
first chord in which i appears goes to the right) we get tr ( 2 0

0 0 )
(
eµ

e−µ

)
= eµ times 2 to the

power of the number of chords it appears in minus one; if the first appearance is in a ψ̄ (the
first chord goes to the left), we would get instead of eµ, a factor of tr ( 0 0

0 2 )
(
eµ

e−µ

)
= e−µ.

In the large N limit there are no triple intersections of the index sets Ij , and therefore
the only options we have are summarized by

• Each index i appearing in no chord gives cosh(µ),

• Each index i appearing in 1 chord going to the right gives eµ,

• Each index i appearing in 1 chord going to the left gives e−µ,

• Each index i appearing in 2 chords going to the right gives 2eµ,

• Each index i appearing in 2 chords going to the left gives 2e−µ .

For simplicity, let us start first with the case that all the indices in the various Ij are
distinct. We can first assign a value of cosh(µ)N which would be the case if there were no
chords. An index in a chord, if it goes to the right, should be assigned eµ instead of cosh(µ)
so that a chord going to the right gets (eµ/ cosh(µ))pi (and µ→ −µ if it goes to the left).
For the partition function, there are the same number of chords of each orientation, the
e±µ factors cancel, and altogether we simply get an extra factor of (cosh(µ))N−kp in mk(µ)
relative to the case without the insertion of a chemical potential.

Now let us see how this counting changes for the general case, where the Ij are not
necessarily distinct. Recall that in the large N limit, the different intersections are in-
dependent and they do not overlap, so we can consider each pij separately. The allowed
non-zero pij were given in figures 4a, 4b, 4c and 4d. Let us start with figure 4a. In order
to allow an intersection of the corresponding two index sets, we need to take two indices,
one from each of those two chords, and turn them into one index which is common to the
two chords, and one which does not appear in any chord. In the counting of the previous
paragraph, the two indices were together assigned the value of one (since they are of oppo-
site orientation). However, now they should be assigned a value of 2e−µ cosh(µ) (where the
cosh(µ) corresponds to the additional index not appearing in any chord). Therefore, the
additional rule with respect to the previous paragraph, is to assign each index of this type
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the value of 2e−µ cosh(µ). Similarly, each index in the second, third, and fourth pair of
figure 4 should be assigned a value of 2eµ cosh(µ), 2e−µ cosh(µ), 2eµ cosh(µ) respectively.

All that is left is to weight those possibilities by the Poisson distribution. For example,
for the case of figure 4a we have

∞∑
pij=0

(pipj/N)pij
pij !

e−pipj/N2pij
(
e−µ cosh(µ)

)pij = exp
(
pipj
N

(2e−µ cosh(µ)− 1)
)
, (4.8)

and similarly for the rest. For the pairs of chords that must have pij = 0 we simply get
exp [−pipj/N ]. These rules for evaluating a chord diagram in the presence of a chemi-
cal potential are summarized in figure 4, and can be used in the calculation of various
observables.10

We shall now specialize to the partition function, and recast this into the language
of (the unoriented) H-chords. We have already enumerated the possibilities for allowed
pij > 0, corresponding to figures 4a, 4b, 4c, and 4d, in terms of H-chords. First, for every
one of the H-chords (and there are k/2 of those), we get the pair of figure 4a. Therefore
for every such pair of chords we have (setting pi = pj = p in (4.8))

exp
(
p2

N
(2e−µ cosh(µ)− 1)

)
. (4.9)

For intersecting H-chords there are no pij > 0 allowed. There are κ̄H non-intersecting
pairs, of the forms shown in figure 6. For each of those, there are two pairs corresponding
to two of figures 4a–4d as mentioned before, one giving again exp

(
p2

N (2e−µ cosh(µ)− 1)
)

while the other (in which µ→ −µ) gives exp
(
p2

N (2eµ cosh(µ)− 1)
)
.

Putting everything together one obtains

mk(µ) = Jk cosh(µ)N−kp
∑

unoriented CD

exp
{
p2

N

[
−
((

k

2

)
−
(
k

2 + 2κ̄H
))

+ k

2
(
2e−µ cosh(µ)− 1

)
+ κ̄H

(
2e−µ cosh(µ)− 1

)
+ κ̄H (2eµ cosh(µ)− 1)

]}

= Jk cosh(µ)N−kp
(
eλ

1−sinh(2µ)
2

)k (
eλ

sinh2(µ)
2

)k2 ∑
unoriented CD

(
e−4λ cosh2(µ)

)κH
(4.10)

(where recall that κH is the number of intersections of H-chords, and k̄H is the number of
pairs of H-chords that do not intersect). The ensemble averaged grand canonical partition
function is obtained formally by resumming mk(µ)

Z(β, µ) =
∞∑
k=0

(−β)k
k! mk(µ) . (4.11)

10As mentioned, these rules are general (valid for any arrangement of complex fermions in the trace) and
in particular hold for the N = 2 supersymmetric SYK model analyzed in [36]. The large N analysis there
corresponds to a scaling µ ∼ 1/

√
N which is mentioned below in subsection 4.3.1. In this case, the chemical

potential enters only in the values assigned to the entire diagram and single chords (rules in figures 4g–4i),
with no contribution of the chemical potential coming from pairs of chords.
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There are two new features of this result when compared to the case µ = 0. The first
is that for each intersection of the H chords we get the factor

q(µ) ≡ e−4λ cosh2(µ) (4.12)

which explicitly depends upon the chemical potential. A second feature is that for every
pair of H chords that do not intersect we got a factor of e4λ sinh2(µ). Due to this factor
a term like

(
eλ

sinh2(µ)
2

)k2
appears in the expression of the moments. This term changes

the game in two ways. The first is that the presence of a term of the form ck
2 makes

it difficult to rewrite mk(µ) as
∫
dEρ(E)Ek. The second is that this term blows up as

k → ∞, preventing us from resumming the series in a straightforward way. In the next
section we consider fixed charge sectors where this problem does not occur, but for now we
will proceed with a fixed chemical potential.

Otherwise, apart from these new ingredients, the sum over chord diagrams has the
same form as in the double-scaled SYK model with Majorana fermions. Therefore, the
analytic evaluation of this sum over the (unoriented) chord diagrams appearing in the
moments (4.10) can be done exactly in the same manner (for a review see section 2.3
of [35]). This leads to the following result

mk(µ) = cosh (µ)N−kp
(
eλ

1−sinh(2µ)
2

)k (
eλ

sinh2(µ)
2

)k2

×
∫ π

0

dθ

2π
(
q(µ), e±2iθ; q(µ)

)
∞

(
2J cos θ√
1− q(µ)

)k
(4.13)

where the q-Pochhammer symbol is defined by

(a; q)n =
n−1∏
j=0

(1− aqj) (4.14)

and (a1, a2, · · · ; q)n stands for the product ∏j(aj ; q)n (similarly the ± notation means the
product of the corresponding terms with each sign).

In the λ→ 0 limit, we expect this result for the partition function to agree with that
in [39]. This is indeed verified in appendix A.

4.3 Partition function at different scalings of the chemical potential

In general, one should specify how µ scales with N . We saw that for 0 6= µ ∈ R independent
of N , the sum over k in the partition function naively diverges. In this subsection we
consider various scalings of µ of the form

µ = µ̄

Nα
(4.15)

with α > 0 and µ̄ fixed. In this case the effect of the k2 term is subleading and can
be ignored, and therefore there is no problem in evaluating the sum (up to subleading
corrections in N). In the following we consider several possibilities for α.
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4.3.1 α = 1/2

For α = 1/2 we find that (in the expression below we have kept terms only up to or-
der O(N0))

Z(β, µ̄) = eµ̄
2/2
∫ π

0

dθ

2π
(
q, e±2iθ; q

)
∞

exp
[
−2βJ cos θ√

1− q eλ/2
]

= eµ̄
2/2Z(β, µ = 0)

(4.16)

where q = e−4λ and Z(β, µ = 0) is the partition function of the complex SYK model with
zero chemical potential.

4.3.2 α = 1/4

There is another interesting scaling for the chemical potential in which α = 1/4. In this
case we find that the partition function takes the following form (again keeping terms only
up to order O(N0))

Z(β, µ̄) = exp
(1

2 µ̄
2√N − 1

12 µ̄
4
)

×
∫ π

0

dθ

2π
(
q, e±2iθ; q

)
∞

exp
[
−2βJ cos θ√

1− q exp
(
λ

2 −
1
2 µ̄

2√λ
)]

.

(4.17)

The main change is that the range of energies has changed, as can be seen from the
coefficient of β in the exponent (the extremal values of the energy are given at cos(θ) = ±1).
Note that for α > 1/4 the change in the range of the energies is subleading in N . The non-
trivial µ̄ dependent finite (N independent) change in the energies happens only for α = 1/4.
Indeed, for α < 1/4 the energies are suppressed exponentially ∼ exp

(
−#Npositive power).

The overall factor in front counts the effective number of states and will also appear in
correlation functions. It can therefore be normalized away.

5 Canonical partition function at fixed charges

In the previous section, we coupled the chemical potential to the U(1) charge operator (2.6).
The state |0〉, satisfying ψi|0〉 = 0 (note that it is not the ground state) has U(1) charge
−N/2. Then the states of charge n are ψ̄i1 · · · ψ̄in+N/2 |0〉, and the full range of charges of
states in the Hilbert space goes from −N/2 to N/2 with spacings of a unit charge. For
simplicity we take N to be even.

In this section we extract the canonical partition function in the fixed charge ensemble
by defining

z = e2µ = eiχ (5.1)

and projecting on the fixed charge sector

Z(β, n) = 1
2πi

∮
γ
dz

Z(β, z)
zn+1 =

∞∑
k=0

(−β)k

k!

[ 1
2π

∫ π

−π
dχ e−inχmk(χ)

]
(5.2)
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where γ is a closed contour encircling the origin. To be precise, in the convention used
here, the charge (corresponding to Q) is (−n).

Note that for an imaginary chemical potential, the sum over k converges. This is
because in the expression of the moments, the sign in front of the k2 term in the exponent
is now negative. With this issue solved, we can use the moment method to compute a finite
fixed charge partition function.

In the ensuing subsection we estimate the χ-integral of the moments mk(χ) by a large
N saddle point.

5.1 Large N evaluation

We will assume that the charges n scale as Nα for some α > 0. Then, we can approximate
the χ-integral of the moments mk(χ) using a saddle point∫ π

−π
dχ e−inχmk(χ) = Jk

∫ π

−π
dχ e−inχ+(N−kp) log cos(χ/2)g(χ)k2

×
∫ π

0

dθ

2π
(
q(χ), e±2iθ; q(χ)

)
∞

(
2f(χ) cos θ√

1− q(χ)

)k
(5.3)

where we have defined the following functions

g(χ) = exp
(
−1

2λ sin
(
χ

2

)2
)
, f(χ) = exp

(
λ

2 e
−iχ
)

exp
(
λ sin

(
χ

2

)2
)
,

q(χ) = exp
(
−4λ cos

(
χ

2

)2
)
.

(5.4)

The saddle point, for large n and N , is encoded in the term

Ck = exp
[
−inχ+ (N − kp) log cos χ2

]
. (5.5)

We have kept the n dependence since we allow for n to increase with N as well (the most
we can have is n ∝ N).11 The saddle point is then given by

χ = −2 tan−1
( 2in
N − kp

)
. (5.6)

Plugging this back into (5.5), keeping k, λ fixed, and p =
√
λN →∞, we obtain

Ck = exp
[
− 2n tanh−1

(2n
N

)
− N

2 log
(

1− 4n2

N2

)
+
√
λNk

2 log
(

1− 4n2

N2

)
− 2n2λk2

N2 − 4n2 +O

( 1√
N

)]
.

(5.7)

In addition, in (5.3) we have an explicit factor of

g(χ)k2 = exp
[
− 2n2λk2

4n2 − (N − kp)2

]
= exp

[
− 2n2λk2

4n2 −N2 +O

( 1√
N

)]
, (5.8)

11When n is fixed, the pre-exponential terms are as important as exp(−inχ), but then the saddle point
is trivially at χ = 0.
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which was evaluated at the saddle point. We notice that the bothersome k2 terms in
the last two expressions cancel exactly. At the saddle point, the function f(n) and the
parameter q(n), which are now functions of the charge, are

q(n) = exp
(
− 4λ

1− 4n2

N2

)
, f(n) = exp

[1
2

(
1− 4Nn

N2 − 4n2

)
λ

]
. (5.9)

Putting everything together, we have the following result for the integral in (5.3)

∫ π

−π
dχ e−inχmk(χ) =

√
8π
N

1
1− 4n2/N2 exp

[
− 2n arctanh

(2n
N

)
− N

2 log
(

1− 4n2

N2

)]

×
∫ π

0

dθ

2π
(
q(n), e±2iθ; q(n)

)
∞

×
{

2J cos(θ)√
1−q(n)

exp
[√

λN

2 log
(

1− 4n2

N2

)
+ λ

2

(
1− 4Nn

N2−4n2

)]}k
.

(5.10)

Since n is an integer going from −N/2 to N/2, we have that 4n2/N2 ≤ 1 which implies
that the log is well defined. More importantly, the expression for the integral is of the form

mk =
∫
dθρ(θ;n)E(θ;n)k

from which we can read the range of energies and the full density of states of the model,
for each charge sector n separately.

A few comments are in order

1. The main observation is that the model has the q-Gaussian density of states as in
the Majorana SYK model, for each charge sector, but with a rescaled energy E, and
— more interestingly — a renormalized intersection weight q(n) that depends on the
charge density. We expect this to carry over to the computation of any correlation
function, as we will verify in sections 7 and 8. In particular, when n/N → ±1/2
then q(n)→ 0. This means that the model becomes more and more strongly coupled
and, at least in terms of the macroscopic density of states and correlation functions,
becomes more and more like the standard unitary or orthogonal RMT ensembles
(i.e., anything that can be computed using a single trace in the Hilbert space at time
scales that do not scale like N , or correspondingly, at the level of the analogue of free
probability theory).

In the gravity dual this should probably be interpreted as stronger and stronger
coupling in the bulk. This is to be expected since when the charge is large, the
electric flux backreacts more strongly on spacetime. Here we also see that when
chords intersect in the bulk the suppression factor (proportional to q(n) nominally)
becomes larger, until in the large charge limit q(n)→ 0 and particles are not allowed
to cross.
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2. A second comment has to do with the range of energies in the charge n sector, which is

|E| ≤ 2J√
1− q(n)

exp
[√

λN

2 log
(

1− 4n2

N2

)
+ λ

2

(
1− 4Nn

N2 − 4n2

)]
(5.11)

which for n ∝ N shrinks exponentially fast with e−C
√
N . The results here apply for

any scaling of the charges n ∼ Nα with 0 < α ≤ 1. The case of α = 3/4 is special
because in this case the range of energies is finite. Defining a fixed r as

n

N3/4 = r , (5.12)

the range of the energies in the charge n ∼ N3/4 sector is

|E| ≤ 2Jeλ/2√
1− q exp

(
−2r2√λ

)
(5.13)

where q = e−4λ.

3. Finally, the prefactor in (5.10) is easy to understand. Using the fact that∫ π
0
dθ
2π (q, e±2iθ; q)∞ = 1, the total number of states in the charge n sector is (in the

N →∞ limit) given by12

2N
2π

∫ π

−π
dχ e−inχm0(χ) = 2√

2πN
· 1√

1− 4n2/N2

× exp
[
N log(2)−2n arctanh

(2n
N

)
− N

2 log
(

1− 4n2

N2

)]
.

(5.14)

We know that the exact number of states of charge n (that is ψ̄i1 · · · ψ̄in+N/2 |0〉) is
given by (

N

n+N/2

)
; (5.15)

using Stirling’s formula for N ! and (N/2 ± n)! in the large N limit, this binomial
coefficient becomes the same as (5.14).

From eq. (5.10) (after inserting the factor of 2N that comes from restoring the nor-
malization of the trace) and eq. (5.2), we find that the partition function in the canonical
ensemble reads

Z(β,Q) = 2√
2πN

1√
1− 4Q2 exp

[
NQ log

(1− 2Q
1 + 2Q

)
+ N

2 log
( 4

1− 4Q2

)]

×
∫ π

0

dθ

2π
(
q(Q), e±2iθ; q(Q)

)
∞

× exp
{
− 2βJ cos θ√

1− q(Q)
eλ/2

(
1− 4Q2

)p/2
exp

( 2λQ
1− 4Q2

)}
,

(5.16)

12Assuming no particular degeneracy of states at E = 0. Also, we have restored the total number of
states 2N which was implicit because of our normalization tr 1 = 1.
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where (using the definition (2.7))

Q = − n
N
, q(Q) = exp

(
− 4λ

1− 4Q2

)
. (5.17)

The range of charges −N/2 ≤ n ≤ N/2 translates to −1/2 ≤ Q ≤ 1/2, which is the
convention of [39].

5.2 Fixed charge canonical ensemble in the limit λ → 0

Our interest in this section is the limit λ → 0 at a fixed Q of (5.16). This limit was
computed in [34] (see eq. (4.13) there) where we should substitute instead of λ there the
value λ̄ = 4λ

1−4Q2 . We find that the free energy F (T,Q) = −T logZ(T,Q) has the following
low temperature expansion in the λ→ 0 limit

F (T,Q) = − J√
λ

(
1− 4Q2

) p
2 + 1

2

− T
[
N

(
Q log

(1−2Q
1+2Q

)
+ 1

2 log
( 4

1−4Q2

))
− π2

8λ(1−4Q2) + · · ·
]

+O(T 2).

(5.18)

We can compare this result with the findings of [39]. The canonical free energy of the
complex SYK model has a low temperature expansion (2.9). We find from (5.18) that

E0(Q) = − J√
λ

(
1− 4Q2

) p+1
2 , (5.19)

S(Q) = N

[
Q log

(1− 2Q
1 + 2Q

)
+ 1

2 log
( 4

1− 4Q2

)]
− π2

8λ(1− 4Q2) . (5.20)

These agree with (2.10) and (2.11). Thus, the large p limit of the model (appendix C
of [39]) is indeed reproduced by λ→ 0.

6 U(M) symmetric SYK model

In this section we consider a generalization of the U(1) model discussed in the previous
sections to a model with U(M) global symmetry. We will find that the basic machinery
developed for solving the U(1) model generally carries over to this case as well, with some
differences pointed out below. In this section we outline the calculation of the partition
function of the U(M) SYK model in the double scaling regime and relegate the details to
appendix B.

Consider complex fermions with two kinds of indices ψ̄iα , ψiβ . The index i ranges
from 1 to N , and the index α is a U(M) flavor index that ranges from 1 to M . These
fermions transform in the (anti) fundamental representation of U(M), and satisfy the anti-
commutation relation

{ψ̄iα, ψjβ} = 2δji δβα . (6.1)

Here we consider an SYK-like Hamiltonian which is invariant under a global U(M)
symmetry ∑

J
i1···ip
j1···jp ψ̄ipαp · · · ψ̄i1α1ψ

j1α1 · · ·ψjpαp , (6.2)
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where an unconstrained summation over all upper and lower indices is to be understood.
This model appears also in, e.g., [47, 48]. For Hermiticity of the Hamiltonian we demand
that (J i1···ipj1···jp)

∗ = J
j1···jp
i1···ip . The Hamiltonian is, therefore, just a product of SU(N) currents

with random coefficients.
Depending on symmetry properties of the tensor J , the model has many variants. A-

priori, the only symmetry property of the tensor J i1···ipj1···jp is invariance under exchange of
pairs (im, jm)↔ (in, jn), so that exchanging separately say im ↔ in does not produce the
same interaction term. However, for simplicity, we will consider a single coupling for every
set of sites i1 < · · · < ip and j1 < · · · < jp. Other variants can be treated using a similar
set of tools, and the results slightly differ. Concretely, the Hamiltonian that we consider is

H =
∑

1≤i1<···<ip≤N
1≤j1<···<jp≤N

J
i1···ip
j1···jp ψ̄ipαp · · · ψ̄i1α1ψ

j1α1 · · ·ψjpαp , (6.3)

where an unconstrained summation over the upper and lower flavor index α is to be un-
derstood. Correspondingly, we assume that the variance of the random coupling J is:

〈J i1···ipj1···jpJ
j1···jp
i1···ip 〉J = J̃2M−p

(
N

p

)−2

. (6.4)

Our goal in this section is to calculate the ensemble averaged partition function

Z(β, µ) = 〈tr exp
(
−βH −

M∑
α=1

µαQ
α

)
〉J (6.5)

in the limit of large N but finite M and finite λ = p2/N . In the above equation, Qα,
defined as

Qα = 1
2

N∑
i=1

(
ψ̄iαψ

iα − ψiαψ̄iα
)
, (6.6)

are generators of the Cartan subalgebra in U(M).
As in the U(1) model, we calculate (6.5) by expanding out in moments

mk(µ) = 〈tr Hke−
∑

α
µαQα〉J . (6.7)

Note that as before, we are not expanding the chemical potential terms. Averaging over
the disorder pairs up the Hamiltonians, thereby giving rise to a sum over unoriented chord
diagrams (such as the one in figure 1). Each unoriented chord (which we refer to as an
H-chord) represents a contraction of the site indices across a pair of Hamiltonians. Since
the structure of the site indices of the U(M) Hamiltonian (6.3) is the same as the U(1)
Hamiltonian (2.2), it follows from section 3.2 that each H-chord can be decomposed into
two oriented chords. Now here comes the first point of departure with respect to the
U(1) model. Consider an oriented chord and the associated chord of opposite orientation,
which together constitute the unoriented H chord. Each oriented chord is associated with
a multi-site index; however, there are two different flavor indices on its ends, because
the flavor indices are contracted separately between the two oriented chords at each end
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(associated to an Hamiltonian insertion). This implies that we cannot consider oriented
chords separately, but rather we have to simultaneously consider the pairs of oriented
chords, that is the unoriented chords, as the basic objects. Therefore, the chord diagram
rules are not given in terms of a value assigned to every oriented chord and pairs of oriented
chords, as was done in figure 4, but rather in terms of unoriented chords and pairs of those
(see for example figure 13). As before, it is enough to consider at most pairs of chords in
the large N limit.

The rules obtained for unoriented chords of the U(M) model in the presence of a
chemical potential are as follows (they are worked out in appendix B)

1. For every H-chord there is a factor of

exp
(

λ

A(µ)2

M∑
α=1

e−2µα

(coshµα)4

)
. (6.8)

2. For every pair of H-chords that do not intersect, there is a factor of

exp
(

4λ
A(µ)2

M∑
α=1

(tanhµα · sechµα)2
)
. (6.9)

3. For every pair of H-chords that intersect, there is a factor of

exp
(
− 4λ
A(µ)2

M∑
α=1

1
(coshµα)4

)
. (6.10)

In the above formulas, A(µ) is the following function of µα

A(µ) =
M∑
α=1

1
(coshµα)2 . (6.11)

With these rules, it is now straightforward to write down the generic moment which is
found to be

mk(µ) =J̃k
M∏
α=1

[
(coshµα)N

]
(A(µ)/M)kp/2 exp

(
kλ

2A(µ)2

M∑
α=1

e−2µα

(coshµα)4

)

× exp
((

k/2
2

)
4λ
A(µ)2

M∑
α=1

(tanhµα · sechµα)2
)
·
∑
CD

exp
(
−4κHλ
A(µ)

)
. (6.12)

In the above expression, the sum in the second line is over all unoriented chord diagrams
(as in figure 1) with k/2 H-chords. As a consistency check, setting M = 1 reproduces the
result of the U(1) model (4.10).

For general M with no chemical potentials, (6.12) becomes

mk = J̃k exp
(
kλ

2M

)∑
CD

exp
(
−4κHλ

M

)
. (6.13)
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This takes the same form as in Majorana SYK, where the effective q in this model is

q = exp
(
− 4p2

MN

)
. (6.14)

The factor of MN in the denominator corresponds to the total number of fermions in
the system.

7 Two-point function

In this section we will compute two point functions in the complex SYK model, and the
first issue is to discuss what are the natural operators in the theory. We will be interested
in operators of the form

M =
∑

1≤i1<···<ipM≤N
1≤j1<···<jp̄M≤N

(
J (M)

)j1···jp̄M
i1···ipM

ψi1 · · ·ψipM ψ̄jp̄M · · · ψ̄j1

≡
∑
I,I′

(
J (M)

)I′
I
ψI ψ̄I′ .

(7.1)

The coefficients (J (M))I′I are again taken to be random Gaussian variables with variance

〈(J (M))I
′
1
I1

(
(J (M))I

′
2
I2

)∗
〉JM = J2

M

(
N

pM

)−1(
N

p̄M

)−1

δI1I2δI′1I′2 . (7.2)

These coefficients are uncorrelated with the random coefficients JI′I in the Hamiltonian.
Given an operator M , we have denoted by pM the number of ψ’s in the operator, and

by p̄M the number of ψ̄’s. We will refer to the sum pM + p̄M as the “size” of the operator.
The difference pM − p̄M determines the charge. In this section, we will take the size of the
operator to be double scaled as well, or more precisely

pM , p̄M ∝
√
N, as N →∞ . (7.3)

We will refer to such operators as double scaled random operators.
In section 8 we will compute 4-point functions of such operators and in section 9 we

will discuss “longer” operators. Before computing the two point function we turn to explain
why this is the right class of operators.

7.1 Why double scaled random operators?

The rationale for requiring random couplings was discussed in [34, 35]. Let us briefly review
the arguments there (and then somewhat rephrase them).

1. “Single trace” probes should be in the same statistical class as the energy momentum
tensor.

Consider an AdS black hole, which we think about as some core set of degrees of
freedom governed by a suitable random Hamiltonian. Note that an AdS2 might
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appear as an IR of an altogether different UV theory, and the degrees of freedom with
which we describe the black hole may or may not be simply related to the degrees
of freedom of that UV theory. We then probe the black hole using the available
bulk probes, such as single trace operators or their analogues. The Hamiltonian in
quantum mechanics, or the local energy-momentum tensor in higher dimensions, is
one such operator. Probing with the full Hamiltonian does not provide any more
information beyond the partition function, but the local energy momentum operator
does (if the theory is higher dimensional). Since the full Hamiltonian is a random
operator when acting on a suitable set of degrees of freedom describing the BH, we
can expect that the local energy momentum operator will also be effectively described
by some random (local) operator acting on these d.o.fs.
But the local energy-momentum tensor is just one operator in a tower of single trace
operators with which we can probe the system. In N = 4 SYM we can use its primary
tr(X2) to probe the black hole, or we can just as well use any other of the tr(Xn)
operators. If the former is a random operator on the states of the black hole, we
can expect that all single trace operators would be random operators. If we have
some idea about the statistical ensemble of the Hamiltonian, we can expect that the
ensemble for all the other single trace operators will be of a similar nature. This
lands us on the proposal for the observables above, after we allow for a more general
charge and mass.

2. Universality of the observables

It is important to note that there is actually a large number of models with different
microscopic details, yet with a double scaling limit which reduces to the same set of
chord partition functions (for example, the model originally discussed in [33]). This
is consistent with expectations from gravity, where, if one is interested in the AdS2
part of space-time, one glues it to an external region in order to break conformal
invariance. There is a broad range of possibilities for such different UV spaces (one
usually thinks about it in the other direction — AdS2 appears as the IR near horizon
limit of many different backgrounds). The probes which are legitimate in the entire
theory are really defined on the boundary of spacetime, i.e., the boundary of the UV
region, which is not strict AdS2 physics. Different random microscopic models, or
different embeddings of AdS2 in bigger spaces, come with an altogether different set
of particles and hence observables. So on top of the Hamiltonian we are actually
instructed to be able to define a large set of observables (1) which are independent of
the microscopics of the AdS2 model, (2) for which we freely specify quantum numbers
such as mass and spin, and (3) which obey factorization of correlation functions. Our
class of random operators is precisely like that.

7.1.1 Double scaled random operators as consistent truncations

We can also phrase this choice of operators in the language of consistent truncations. By
a consistent truncation one means truncating the set of fields of GR/String theory to a
smaller set of fields, setting all the others to zero. We require that the fields that we kept

– 26 –



J
H
E
P
0
2
(
2
0
2
1
)
1
1
3

close under the equations of motion. I.e., none of the fields that we have set to zero will
have a tadpole for any configuration of the fields that we kept (at least for those that satisfy
the equations of motion).

Suppose we are given a random Hamiltonian and as many as we want (but finite)
number of random operators of any length, all with random coefficients. We will refer to
these operators as the basic set of operators. Suppose we consider any additional operator,
with random coefficients (with zero mean) which are drawn independently of any of the
coefficients in the basic set. It is obvious then that the 1-point function of the additional
operator is zero, in any trace which contains as many insertions of the Hamiltonian and
basic set operators as we want. So in any correlator of operators from the basic set we will
not excite any quanta of any independent random operator outside the basic set, which
is just the statement that independent random operators can be consistently truncated.
Going back to the picture above that different realizations come with different particles
(observables), we can just refer to them as different consistent truncations of a richer theory.

7.2 Two-point function in a fixed chemical potential

The two point function that we will be interested in is

G(τ) = − 1
Z(β, µ)〈Tr

[
e−βKTτ

(
eτKMe−τKM̄

)]
〉J,JM . (7.4)

Tτ specifies the τ ordering of the product and K, defined in (2.17), is the sum of the
Hamiltonian and the fermion number operator. The notation 〈· · · 〉JM stands for the average
over the random operators and 〈· · · 〉J,JM for the average over the ensemble of both the
Hamiltonian and operator couplings.

The calculation of the two-point function proceeds by calculating the moments as
follows. Define the moments

mk1,k2(µ) ≡ exp
(2τµ(p̄M − pM )

β

)
〈trMHk1M̄Hk2 exp

[
−µ2

N∑
i=1

[ψ̄i, ψi]
]
〉J,JM . (7.5)

Then the 2-point function for τ > 0 is

G(τ) τ>0= − 1
Z(β, µ)

∞∑
k1,k2=0

(−τ)k1

k1!
(τ − β)k2

k2! mk1,k2(µ) (7.6)

and for τ < 0 we just take the result for (7.6), plug τ → −τ , exchange pM ↔ p̄M , and
multiply by (−1)pM+p̄M .

Performing the average over the disorder, the moments become (we denote k = k1 +
k2 below)

〈trMHk1M̄Hk2 exp
[
−µ2

N∑
i=1

[ψ̄i, ψi]
]
〉J,JM

= JkJ2
M

∑
CD

(
N

p

)−k(
N

pM

)−1(
N

p̄M

)−1

(7.7)

×
∑
I1···Ik

∑
IJ

tr
[
ψI ψ̄J · ψ̄I1ψI2 · · · ψ̄I3ψI4 · · ·ψJ ψ̄I · · · exp

[
−µ2

N∑
i=1

[ψ̄i, ψi]
]]

.
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Figure 7. A diagram contributing to the moments of the 2-point function with k = 6, and the
corresponding unoriented diagram.

This time, in addition to the H-chords that comprise a pair of oriented chords with
opposite orientation, there are also two oriented chords representing the I index and J

index contractions of the external operators; we distinguish them by drawing those as
dashed chords (see figure 7 for an example). Note the two dashed chords correspond to
index sets of different sizes in general. Nevertheless, we can just as well assign a (dashed)
unoriented chord, to be referred to as an M -chord, corresponding to this pair of oriented
operator chords.

The sum over the index sets I, J, I1, · · · , Ik with the binomial coefficients and the trace
in (7.7) (in the presence of a chemical potential) was evaluated in general in section 4.2, with
the resulting rules for a given chord diagram shown in figure 4. Once again, at largeN , there
are no minus signs since each oriented dashed chord (just as the solid chords) intersects
an even number of oriented solid chords. For the 2-point function, if all I, J, I1, · · · , Ik
are distinct then the trace equals (eµ)pM−p̄M cosh(µ)N−kp−pM−p̄M (corresponding to the
contributions from figures 4g–4i). The full answer is obtained by multiplying this by the
value assigned to every pair of oriented chords according to figure 4. All that remains
is to read the number of pairs of oriented chords of each sort from the number of total
unoriented chords (H-chords and the dashed M -chord) and the intersections of them. We
denote again by κH the number of intersections of H-chords, and by κHM the number of
intersections of the M -chord with H-chords. This is done in appendix C. Putting all the
ingredients there together, we obtain for the moments

mk1,k2(µ) = J2
MJ

keµ(1−2Tτ)(pM−p̄M )(cosh(µ))N−kp−pM−p̄M ·

× exp
{
p2

N

[
k2

2 sinh(µ)2 − k

2 (sinh(2µ)− 1)
]

− ppM
N

[
k1

1− e2µ

2 + k2
1− e−2µ

2

]

− pp̄M
N

[
k1

1− e−2µ

2 + k2
1− e2µ

2

]
+ pM p̄M

N
e2µ
}

×
∑
CD

exp
{
−4κH

p2

N
cosh(µ)2 − 2κHM

p(pM + p̄M )
N

cosh(µ)2
}
.

(7.8)

7.3 Two-point function in a fixed charge sector

In this subsection we compute the 2-point function in the model, where the external states
in the trace have a given fixed charge (−n). In order to do that, we change the time
evolution of the operators in the previous subsection from K to the usual Hamiltonian
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H, and keep K only in the overall exponential inside the trace. That is, we start with
tr
[
e−βKeτHMe−τHM̄

]
and perform the same projection to a fixed charge as in the partition

function. This results simply in the omission of the exp [2τµ(p̄M − pM )/β] term in (7.5).
As done for the partition function, in order to perform fixed charge projection we first

change variables 2µ = iχ, which results in13

mk1,k2(χ) ≡〈trMHk1M̄Hk2 exp
[
− iχ4

N∑
i=1

[ψ̄i, ψi]
]
〉J,JM

= J2
MJ

keiχ(pM−p̄M )/2(cos(χ/2))N−kp−pM−p̄M ·

× exp
{
p2

N

[
−k

2

2 sin
(
χ

2

)2
− k

2 (i sin(χ)− 1)
]

− ppM
N

[
k1

1− eiχ
2 + k2

1− e−iχ
2

]

− pp̄M
N

[
k1

1− e−iχ
2 + k2

1− eiχ
2

]
+ pM p̄M

N
eiχ
}

×
∑
CD

exp
{
−4κH

p2

N
cos(χ/2)2 − 2κHM

p(pM + p̄M )
N

cos(χ/2)2
}
.

(7.9)

As before we calculate
∫
dχ e−inχ mk1,k2(χ) (where n is an integer assuming N is even) via

a saddle point approximation, along the lines of section 5.1. The terms in the exponent
that scale with a positive power of N are

exp
[
−inχ+ i

χ

2 (pM − p̄M ) + (N − kp− pM − p̄M ) log cos χ2

]
. (7.10)

This has a saddle point (at least for non-finite n) at

χ = 2i tanh−1
( (pM − p̄M )− 2n
N − kp− pM − p̄M

)
≡ 2i tanh−1

(
X

N − kp− pM − p̄M

)
(7.11)

where X is defined to be

X = pM − p̄M − 2n . (7.12)

Plugging the saddle point expression (7.11) for χ back in (7.10) gives

exp
[
− 1

2(N − kp− pM − p̄M ) log
(

1− X2

(N − kp− pM − p̄M )2

)

−X tanh−1
(

X

N − kp− pM − p̄M

)]

= exp
[
− 1

2N log
(

1− X2

N2

)
− X

2 log
(1 +X/N

1−X/N

)
+ 1

2N log
(

1− X2

N2

)
ε

− NX2

2 (N2 −X2)ε
2 +O(Nε3)

]
,

(7.13)

13Note that we denote these moments by mk1,k2 as well, but this is distinguished from the definition
in (7.5) by the omission of the first exponential factor; this is implied in the notation by the argument
being χ.
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where we have expanded in small ε defined as

ε ≡ kp+ pM + p̄M
N

(7.14)

and the correction go at most as O
(

1√
N

)
(here and below).

There is also the term in mk1,k2(χ)

exp
{
− p2k2

2N sin(χ/2)2
}

= exp
[
p2k2

2N
X2

N2 −X2 +O(N−1/2)
]
. (7.15)

The 2-point function at a fixed charge sector must be finite when we sum over k (as the
2-point function itself is finite). Indeed, the k2 terms in (7.13) and (7.15) cancel exactly.

Completing the saddle point calculation with the second derivative term, and perform-
ing some simplifications, we find

1
2π

∫
dχe−inχmk1,k2(χ)

= 2
J2
M

(
Jep

2/(2N)
)k

√
2πN

exp
[
− 1

2(N + 1) log
(

1− X2

N2

)
− X

2 log
(1 +X/N

1−X/N

)

+ 1
2(kp+pM+p̄M ) log

(
1− X2

N2

)
− X2/N2

2 (1−X2/N2)
1
N

((pM + p̄M )2+2kp(pM+p̄M ))

+ kp2

N

X/N

1−X2/N2 + pM p̄M
N

(
N −X
N +X

)
− pp̄M

N

(
− X

N −X
k1 + X

N +X
k2

)
+ ppM

N

(
− X

N +X
k1 + X

N −X
k2

)]
×
∑
CD

exp
[

−1
1−X2/N2

(
4p2

N
κH + 2p(pM + p̄M )

N
κHM

)]
. (7.16)

With the following definition

q(n) = exp
[
−4p2

N

1
1− 4n2/N2

]
, q̃(n) = exp

[
−2p(pM + p̄M )

N

1
1− 4n2/N2

]
(7.17)

the sum over chord diagrams is the same as in the 2-point function analysis in [34, 35],
giving for the moments in the fixed charge sector

1
2π

∫
dχe−inχmk1,k2(χ) = 2J2

M√
2πN

eSM
∫ π

0

∏
j=1,2

[
dθj
2π

(
q(n), e±2iθj ; q(n)

)
∞

]

×
(
q̃(n)2; q(n)

)
∞(

q̃(n)ei(±θ1±θ2); q(n)
)
∞

×
(

2Jep2/(2N) cos θ1√
1− q(n)

eA+B1

)k1 (2Jep2/(2N) cos θ2√
1− q(n)

eA+B2

)k2

,

(7.18)
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where the quantities SM , A,B1, B2 are defined as follows

SM = −1
2(N + 1) log

(
1− X2

N2

)
− X

2 log
(1 +X/N

1−X/N

)
(7.19)

+ 1
2(pM + p̄M ) log

(
1− X2

N2

)
− 4n2

2 (N2 − 4n2)
(pM + p̄M )2

N
+ pM p̄M

N

(
N + 2n
N − 2n

)
,

A = p

2 log
(

1− X2

N2

)
− p(pM + p̄M )

N

4n2

N2 − 4n2 −
p2

N

2nN
N2 − 4n2 , (7.20)

B1 = ppM
N

2n
N − 2n −

pp̄M
N

2n
N + 2n , (7.21)

B2 = −ppM
N

2n
N + 2n + pp̄M

N

2n
N − 2n . (7.22)

From the expression for the moments (7.18) we obtain the result for the 2-point function of
operators of size ∼ O(N1/2) in a charge (−n) sector (keeping terms to the order in which
we are working)

〈tre−βHM(τ)M̄(0)〉(−n)
J,JM

= 2J2
M√

2πN
eSM

∫ π

0

∏
j=1,2

[
dθj
2π

(
q(n), e±2iθj ; q(n)

)
∞

] (
q̃(n)2; q(n)

)
∞(

q̃(n)ei(±θ1±θ2); q(n)
)
∞

× exp
(
−2Jτep2/(2N) cos θ1√

1− q(n)
eA+B1 − 2J(β − τ)ep2/(2N) cos θ2√

1− q(n)
eA+B2

)
.

(7.23)

Normalizing (7.23) by the partition function gives the result for the two-point function
for τ > 0 (the analog of (7.4) for fixed charge). For τ < 0 we need the expression for
〈tre−βHM̄(0)M(τ)〉(−n)

J,JM
(multiplied by (−1) for a fermionic operatorM) which is obtained

from (7.23) by the replacement pM ↔ p̄M and τ → −τ as mentioned above. In the following
subsection, we evaluate the integrals in (7.23) in the conformal regime.

7.3.1 Conformal limit

The expression (7.23) is the two-point function of the operatorM in a fixed charge sector for
a generic value of p2/N . In this subsection we consider the p2/N → 0 limit corresponding
to the usual SYK within the conformal regime√

1− q(n)→
√
λ(n) , λ(n) = 4p2

N

1
1− 4n2

N2

. (7.24)

The conformal behavior of the two-point function takes the familiar form, and in this
subsection we will also obtain small corrections to it in the large N limit. In this regime
we can calculate the spectral asymmetry factor and we will match it to known results.
Moreover, we will consider a different asymmetry measure of the two-point function and
find it in this theory.

In the real SYK case, the coupling JMS used in [5] is related to the J used in [35] by
JMS =

√
λJ (as q → 1). Since here J is always accompanied by an exp

[
p2/(2N)

]
factor,

we define
J =

√
1− q(n)Jep2/(2N) . (7.25)
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This definition of J depends on the charge, and is simply a convenient definition; it is not
meant to provide an alternative definition for the coupling in the complex SYK model.

The p2/N → 0 limit is described conveniently using the variables y related to θ through
θi = π − λ(n)yi. Under the parametrization

q̃ = ql, l = pM + p̄M
2p , (7.26)

when λ(n)→ 0 we have the following limits for the q-Pochhammer symbols (as in [35])∫ π

0

dθ

2π (q(n), e±2iθ; q(n))∞ −→
λ(n)3(q(n); q(n))3

∞
2π2

∫ ∞
0

dy 2y sinh(2πy) , (7.27)

(q̃(n)2; q(n))∞
(q̃(n)ei(±θ1±θ2); q(n))∞

−→ λ(n)2l−3

(q(n); q(n))3
∞

Γ(l ± iy1 ± iy2)
Γ(2l) . (7.28)

In this limit, the expression for the two-point function becomes

〈tre−βHM(τ)M̄(0)〉(−n)
J,JM

= 2J2
M√

2πN
eSM

(
λ(n)3(q(n); q(n))3

∞
2π2

)2
λ(n)2l−3

(q(n); q(n))3
∞∫ ∞

0
dy1dy2 4y1y2 sinh(2πy1) sinh(2πy2)Γ(l ± iy1 ± iy2)

Γ(2l)

· exp
(2J τ cos(λy1)

λ(n) eA+B1 + 2J (β − τ) cos(λy2)
λ(n) eA+B2

)
.

(7.29)

We evaluate the integrals following [10]; we parametrize y1 = y2 + ω, and we will see that
there will be a saddle point at large y2 so that we will also use ω � y2. Therefore we have

〈tr e−βHM(τ)M̄(0)〉(−n)
J,JM

= 2J2
M√

2πN
eSM

λ(n)2l+3(q(n); q(n))3
∞

4π4 s

×
∫ ∞

0
dy2dω (y2 + ω)y2 exp(2π(y2 + ω)) exp(2πy2)Γ(l ± i(y1 + y2))

Γ(2l)

× Γ(l ± iω) exp
{

2J

λ(n)
[
τ cos(λy2 + λω)eA+B1 + (β − τ) cos(λy2)eA+B2

]}
. (7.30)

If we assume that l is an integer, then we get the following simplification

Γ(l ± i(y1 + y2)) ≈ (2y2)2l−1π

sinh π(y1 + y2) ≈ 22ly2l−1
2 π exp(−π(2y2 + ω)) . (7.31)

With this simplification we have

〈tr e−βHM(τ)M̄(0)〉(−n)
J,JM

= 2J2
M√

2πN
eSM

λ(n)2l+3(q(n); q(n))3
∞

π3

∫
dy2dω 22l−2y2l+1

2
Γ(l ± iω)

Γ(2l)

× exp
{

2πy2 + πω + 2J eA

λ(n)
[
τ cos(λy2)eB1 + (β − τ) cos(λy2)eB2

− ωλτ sin(λy2)eB1 + · · ·
]}
. (7.32)
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If 1� y2 � 1/λ(n), then we can expand the cosine functions. There is a saddle point for
the y2 integral in this regime. The y2 dependent piece of the exponent is

2πy2 −
2J eA

λ(n)
(
τeB1 + (β − τ)eB2

)
λ2y2

2/2 + · · · . (7.33)

The saddle point is at
y∗2 = π

J eAλ [τeB1 + (β − τ)eB2 ] . (7.34)

We look at the range
1� βJ � 1/λ, τJ � 1/λ (7.35)

(corresponding to low temperatures but not comparable to N) so that the conditions on y2
above are indeed satisfied. Doing the saddle point estimation for the y2 integral together
with going to real time τ = it and changing the integration variable ω = ω′ β2π , we get14

〈tr e−βHM(t)M̄(0)〉(−n)
J,JM

= 2J2
M√

2πN
eSM

λ(n)2l+3(q(n); q(n))3
∞

π3

(
π

J eAλ [iteB1 + (β − it)eB2 ]

)2l+3/2

× 22l−2 exp
[

2J eA

λ(n) (it eB1 + (β − it)eB2) + π2

J eAλ [it eB1 + (β − it)eB2 ]

]

× β

2π

∫ ∞
−∞

dω
Γ
(
l ± iβω2π

)
Γ(2l) exp

{
ωβ

2 − it
eB1−B2ω

1− it
β + it

β e
B1−B2

}
. (7.36)

The last integral is the one obtained in [10] where the time is renormalized. In the limit of
low temperature we have t� β, so the last line becomes

(−1)lβ
(
β

2π

)2l−1 1
(teB1−B2)2l , (7.37)

and in total we find

〈tr e−βHM(t)M̄(0)〉(−n)
J,JM

= 2J2
M√

2πN
eSM

λ(n)2l+3(q(n); q(n))3
∞

π3

[ 1
J λβeA+B2

]2l+3/2 π5/2

2 ·

× exp
{

2J eA

λ(n)
[
iteB1 + (β − it)eB2

]
+ π2

J λeA [iteB1 + (β − it)eB2 ]

}
·

× (−1)lβ2l 1
(teB1−B2)2l .

(7.38)

This result exhibits a conformal behavior, plus small corrections to the scaling form, coming
from the second line in (7.38).

14Strictly speaking, requiring in addition that βJ � 1/λ1/3 would guarantee that we can drop the
quartic and higher order terms in the expansion of cos(λy2).
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As explained in [39] and reviewed in (2.19), the spectral asymmetry factor can also
be obtained through the Green’s function of a single fundamental fermion in a confor-
mal regime

e2πE =
〈tr e−βHM(t)M̄(0)〉(−n)

J,JM

〈tr e−βHM̄(−t)M(0)〉(−n)
J,JM

where t > 0, for M a single fermion. (7.39)

As mentioned above, G(t < 0) is obtained by exchanging pM ↔ p̄M and t → −t.
Let us allow for the moment |n| to scale up to the maximal N/2, and remember that
pM ∼ O(N1/2).

Before concentrating on the conformal regime, let us consider a slightly different mea-
sure of asymmetry obtained from correlation functions. Specifically we take the same ratio
of correlation functions as in (7.39), with generic operators, but consider the t → 0 limit
using the IR correlation function (7.38). This gives (note that B1|pM↔p̄M = B2)

〈tr e−βHM(t)M̄(0)〉(−n)
J,JM

〈tr e−βHM̄(−t)M(0)〉(−n)
J,JM

→ exp
[
SM − SM |pM↔p̄M + 4l(B2 −B1)

+
(

2l + 3
2

)
((A+B2)|pM↔p̄M −A−B2)

+ 2J β

λ(n)
(
eA+B2 − e(A+B2)|pM↔p̄M

)
+ π2

J λ(n)β
(
e−(A+B2) − e−(A+B2)|pM↔p̄M

) ]
.

(7.40)

To evaluate this carefully, we note that

A+B2 = p

2 log
(

1− 4n2

N2

)
+ p

2 log
(

1 + 4n(pM − p̄M )− (pM − p̄M )2

N2 − 4n2

)

− 2np(p+ pM − p̄M )
N2 − 4n2 . (7.41)

There are several regimes, depending on the charge n:

1. For large charges, by which we mean n ∼ O(Nα) with α > 3/4, we have that
eA+B2 → 0 strongly,; however, the e−(A+B2) terms diverge strongly with N .

2. Otherwise, for moderate charges, by which we mean n ∼ O(Nα) with α ≤ 3/4, the
term eA+B2 is finite, but then eA+B2 − e(A+B2)|pM↔p̄M ∼ o(1/N), and the same holds
for the e−(A+B2) terms.

Therefore, we are left with (up to O
(
N−1/2

)
corrections)

〈tr e−βHM(t)M̄(0)〉(−n)
J,JM

〈tr e−βHM̄(−t)M(0)〉(−n)
J,JM

→ exp
[
(pM − p̄M ) log

(
N + 2n
N − 2n

)
− 4n
N2 − 4n2 (p2

M − p̄2
M )

+ π2

J λ(n)β
(
e−(A+B2) − e−(A+B2)|pM↔p̄M

) ]
.

(7.42)
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In order to understand this behavior we note the following. If we concentrate on
the scaling n ∼ O(N3/4), the successive k’th moments are reliable, since there are no k
dependent terms that grow or decay with N . Moreover, there are pieces that go as N−1/4

which can be trusted since we only dropped terms that scale as N−1/2 (as p, pM , and
p̄M are of this size) in our approximations in analyzing the large N double-scaled limit.
Therefore, we now concentrate on moderate charges.

This leads us to the following asymmetry measure

〈tr e−βHM(t)M̄(0)〉(−n)
J,JM

〈tr e−βHM̄(−t)M(0)〉(−n)
J,JM

→ exp
{

(pM − p̄M )
[

log
(
N+2n
N−2n

)
− 4n
N2 − 4n2 (pM+p̄M )

]}
.

(7.43)

The argument of the exponent is proportional to the charge of the operator (p̄M − pM ).
While in a conformal regime this is the only dependence on the operator [39, 40], here we
also get a dependence on the dimension (or size) of the operator (pM + p̄M ).

Finally, we go back to the definition in (7.39). As mentioned, the second line in (7.38)
has a time dependence that gives a correction to the scaling behavior. While we will
see below that these time dependent terms should be present in the correlation function
physically, for N → ∞ they go to zero (for any charge n) and we obtain a conformal
behavior. Extrapolating to the case of a 2-point function of a single fermion pM = 1,
p̄M = 0, we have (at the order that we can trust for moderate charges)15

E ≈ 1
2π log 1 + 2n/N

1− 2n/N = 1
2π log 1− 2Q

1 + 2Q . (7.44)

This is the leading contribution for large p of the result (2.14) that was found in [39].

7.3.2 Verifying the time dependent terms

One may be puzzled about the result (7.38) not taking a simple conformal form, because
of the appearance of the second line in this formula. (Recall that this result includes
contributions subleading in N .) In this short subsection we perform a simple check showing
that this time dependence must be there.

If we have external states of charge (−n), then 〈tr e−βHM(t)M̄(0)〉(−n)
J,JM

will contain
contributions of the form exp [it(En − Em)] from intermediate states, where the charge
corresponding to the intermediate states with energy Em is pM − p̄M − n (while that of
En is (−n)). We found that the range of energies at a given charge is given by (5.11)
(being most reliable for charges that scale as N3/4; however we even allow here the general
case n ∼ O(N) so that it will imply the other scalings). Since we are at low temperature,
the dominant contributions from states of energies En and Em will come from the lowest
energies at the given charges. Therefore the difference between the lowest energies from

15As before, the time independent part in the second line of (7.38) does not contribute to the ratio as
N →∞.
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the range (5.11) at these charges is given by

λ(n)
2J

(En,min − Em,min)

= exp
[
p

2 log
(

1− 4n2

N2

)
− 2np2

N2 − 4n2 + 4np(pM − p̄M )
N2 − 4n2 +O(N−1/2)

]

− exp
[
p

2 log
(

1− 4n2

N2

)
− 2np2

N2 − 4n2

]
.

(7.45)

We should compare this energy difference to the coefficient of (it) in the exponent in
the second line of (7.38) (being the dominant time behavior at low temperature) which is

2J

λ(n)
(
eA+B1 − eA+B2

)
= 2J

λ(n) exp
[
p

2 log
(

1− 4n2

N2

)
− 2np2

N2 − 4n2 + 4np(pM − p̄M )
N2 − 4n2 +O(N−1/2)

]

− 2J

λ(n) exp
[
p

2 log
(

1− 4n2

N2

)
− 2np2

N2 − 4n2 +O(N−1/2)
]

= En,min − Em,min.

(7.46)

We see that it matches exactly with the energy differences. This verifies that this expo-
nential dependence on t in the correlator (which goes to zero as N−1/4 for n ∼ O(N3/4))
must indeed be there.

8 Four-point function

8.1 Four-point function of neutral operators

In section 7 we considered the random operator M , and we can just as easily allow several
such operators (as in [35]). In doing this, we introduce a flavor index A and consider the
operators

MA =
∑
I,I′

(
J

(M)
A

)I′
I
ψI ψ̄I′ (8.1)

having independent Gaussian random couplings

〈(J (M)
A )I

′
1
I1

(
(J (M)
B )I

′
2
I2

)∗
〉JM = δABJ

2
MA

(
N

pMA

)−1(
N

p̄MA

)−1

δI1I2δI′1I′2 . (8.2)

In this section we calculate the 4-point function of neutral operators in the presence
of a chemical potential (and then mention fixed charge sectors). Taking two flavors of
operatorsM1,M2, there are two channels that we can consider, namely 〈M1M1M2M2〉 and
〈M1M2M1M2〉 (in this schematic notation we omit the time dependence, and by expecta-
tion value mean disorder averaged and thermal expectation value). The 4-point function
of an operator from one flavor will decompose into these channels. The latter channel,
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Figure 8. An example of a chord diagram contributing to the crossed 4-point function. On the
left is the oriented chord diagram, and on the right is the corresponding unoriented chord diagram.

referred to as the crossed one, is the one encoding the quantum Lyapunov exponent and
we concentrate on it.

As we are restricting to neutral operators we have pM1 = p̄M1 and pM2 = p̄M2. As
before, the crossed 4-point function is determined by the moments, which are given by

mk1,k2,k3,k4 = 〈tr
[
M1H

k1M2H
k2M1H

k3M2H
k4e−2µQ

]
〉J,JM

= JkJ2
M1J

2
M2
∑
CD

(
N

p

)−k(
N

pM1

)−2(
N

pM2

)−2

×
∑

I1,··· ,Ik

∑
I,J,I′,J ′

tr
[
(ψI ψ̄J)ψ̄I1ψI2 ·(ψI

′
ψ̄J ′)· · ·(ψJ ψ̄I)· · ·(ψJ

′
ψ̄I′)· · ·e−2µQ

]
.

(8.3)

The moments reduce to a sum over chord diagrams (abbreviated CD in the equation). We
mark the pair ofM1 operators and connect them by a dashed chord (as before, it is a single
chord in the unoriented case), and similarly for the pair M2. These two dashed chords cross
in this channel. In the sum over chord diagrams we are instructed to sum over all possible
configurations of solid chords. See figure 8 for an example of a chord diagram.

The evaluation of these moments again follows from the rules of figure 4. In appendix C
we count the appearances of every rule of figure 4 according to the unoriented chord
diagram, where similarly to before we denote by κH the number of intersections of H-
chords, κHM1 the number of intersections between H andM1 chords, and similarly for M2.

Combining the ingredients in appendix C, we get

mk1,k2,k3,k4 = JkJ2
M1J

2
M2(coshµ)N−kp−2pM1−2pM2

× exp
{
p2

N

[
k2

2 sinh(µ)2 − k

2 (sinh(2µ)− 1)
]

+ ppM1
N

2k sinh(µ)2

+ ppM2
N

2k sinh(µ)2 + p2
M1
N

e2µ + p2
M2
N

e2µ − 4pM1pM2
N

}

×
∑
CD

exp
{
− 4 cosh(µ)2 p

2

N
κH − 4 cosh(µ)2 ppM1

N
κHM1

− 4 cosh(µ)2 ppM2
N

κHM2

}
. (8.4)

In order to make sense of this (so that there is no problem from the k2 term as discussed
before), we can take for example µ ∼ O(N−1/4) and drop O(N−1/2) corrections, leaving us
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with

mk1,k2,k3,k4 = JkJ2
M1J

2
M2(coshµ)N−kp−2pM1−2pM2

× exp
{
p2

N

k

2 [1− sinh(2µ)] + p2
M1
N

e2µ + p2
M2
N

e2µ − 4pM1pM2
N

}

×
∑
CD

exp
{
− 4 cosh(µ)2 p

2

N
κH − 4 cosh(µ)2 ppM1

N
κHM1

− 4 cosh(µ)2 ppM2
N

κHM2

}
.

(8.5)

For many purposes we can ignore constants common to all the moments, as for example
they do not affect the Lyapunov exponent. This expression for the 4-point function is then
the same as in real SYK [35] (see eq. (2.11) there) with the replacements

Jreal SYK ↔ J cosh(µ)−p exp
[
p2

N

1
2 (1− sinh(2µ))

]

qreal SYK ↔ exp
[
−4p

2

N
cosh(µ)2

]

q̃
(1)
real SYK ↔ exp

[
−4ppM1

N
cosh(µ)2

]
q̃

(2)
real SYK ↔ exp

[
−4ppM2

N
cosh(µ)2

]
.

(8.6)

Similarly to subsection 7.3, starting from (8.4) we can go to a fixed charge sector.
With the appropriate prefactor common to all the moments (that we do not quote), the
4-point function is the same as in the real double-scaled SYK (for the final expression for
the 4-point function see [35]), with the replacements (recall Q = −n/N)

Jreal SYK ↔ J exp
[
p2

2N + 2p2

N

Q
1− 4Q2 + p

2 log
(
1− 4Q2

)]

qreal SYK ↔ exp
[
−4p

2

N

1
1− 4Q2

]

q̃
(1)
real SYK ↔ exp

[
−4ppM1

N

1
1− 4Q2

]
q̃

(2)
real SYK ↔ exp

[
−4ppM2

N

1
1− 4Q2

]
.

(8.7)

8.2 Lyapunov exponent

As before, we can make contact with the usual large N SYK (in which p is independent of
N) by taking the p2/N → 0 limit. In the double scaled SYK model with real fermions, it
was found that the chaos exponent has the following dependence on q [34]

λL = 2πT − 4πT 2

Jreal SYK
√
− log qreal SYK

+ · · · . (8.8)
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Plugging the relations (8.6) (in the regime of small p2/N the exponent in the expression
for Jreal SYK can be set to 1), we find the following Lyapunov exponent

λL = 2πT − 2πT 2

coshµ
(coshµ)p

J

√
N

p2 + · · · . (8.9)

This agrees with the result in [48] (after translating eq. (4.9) there to the conventions here).
Alternatively, from (8.7) and (8.8), one can read off the Lyapunov exponent in a fixed

charge Q

λL = 2πT − 2πT 2

J

√
N

p2

(
1− 4Q2

)(1−p)/2
+ · · · . (8.10)

9 Heavy operators

In this section we discuss how to use heavy operators to disconnect spacetimes, and how
light enough particles can still go between them. More generally, given that we have good
control over double-scaled SYK models at any energy scale, we can provide precise answers
to questions that mix the UV and IR degrees of freedom in the theory. In such a setting
one excites the theory using a high energy operator, and then examines the response of the
low energy gravitational background. Generally, such operators might be singular objects
in the language of the IR degrees of freedom. These include, for example, singularities, the
‘end of the world brane’ (as in [49]) and processes that glue universes such as in [38]. But
with control over the full theory we can carry out “precision measurements” of such objects.

In this section we will discuss some exact results for the simplest of such objects
and study the behavior of massive operators, whose dimension (to the extent that it can
even be defined in the language of the low energy theory) is parametrically large, or even
infinite. Since for neutral operators, the canonical correlation functions in complex SYK
take the form of those in Majorana SYK, we will discuss this in the ordinary Majorana
SYK model [35], and relate it to [38].

The situation is therefore that we are interested in the Hamiltonian (1.1) consisting of
p fermions, and an additional operator

M = ipM/2
∑

1≤i1<···<ipM≤N

(
J (M)

)
i1···ipM

χi1 · · ·χipM (9.1)

with pM fermions, which satisfy

p =
√
λN/2, pM =

√
λMN/2, λ, λM fixed, N →∞ (9.2)

and we use the definitions
q = e−λ, qM = e−

√
λλM . (9.3)

Note that the notations in this section, such as p and λ, stand for quantities in the Majorana
SYK model and should be distinguished from those in previous sections. The similarity in
the analysis shows how different physical systems are described by a similar chord diagram
description.
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For a simple gravitational interpretation we then take λ,E → 0,16 but we still have
the freedom of what to do with λM (or qM ). Generally, since the scaling dimension of the
Hamiltonian is 1 in the IR, then the scaling dimension of an operator of length pM will
be ∼ pM/p =

√
λM/λ. In the limit of λ → 0 and pM/p fixed, the operator becomes a

conformal operator of dimension pM/p. Such an operator does not have a radical effect
on spacetime — it bends the trajectory of the “boundary particle” but in a controlled and
computable fashion. A more interesting set of questions happens when λM is not taken to
zero at the same time as λ, so qM does not go to one, but rather qM is taken to be fixed.
In this case one ends up with an operator whose conformal dimension formally tends to
infinity, or more precisely, one cannot assign to it a conformal dimension.

Nevertheless, exact computations in the presence of such objects are just as straight-
forward. We will see that their effect, as seen within the low energy limit, is to split the
AdS2 space into two spaces, touching at an interface, as argued in [38]. If λM is taken to
be even larger, this interface can shrink to a point. We will also see that, even though that
point is singular (from the point of view of the low energy theory), one can compute how
correlation functions “go through it”. Hence, we can have a large amount of control over
the transmission through this space-time singular locus. In this limit, qM simply controls
how many quanta of correlations go through the singularity.

The limit that we will be interested in here is thus

q → 1, qM fixed . (9.4)

It is rather intuitive to understand what happens in this limit. Recall the basic structure
of chord diagrams for the 2-point function, figure 9. The intersections of chords of the
Hamiltonian with the additional chord associated with the operator are assigned a weight
qnM where n is the number of Hamiltonian chords crossing the operator chord. In the
limit of qM → 0 the 2-point function splits into two independent regions consisting of
only Hamiltonian chords, i.e., spacetime splits into two. Finite qM therefore controls, in
a very simple way, how the two spaces are partially connected — in the limit qM → 0
they disconnect and in the limit qM → 1 they connect (with M becoming a weakly coupled
particle on spacetime). In subsection 9.1 we make more precise the notion of these partially
connected spaces, and in subsection 9.2 we turn on probe operators in those spaces by
studying the 4-point function, which describes a particle going from one space to the other.

9.1 Disconnecting universes with massive operators

Consider first the basic formula of a 2-point function for Majorana SYK with coupling J
defined by 〈J2

i1···ip〉J =
(N
p

)−1J 2 (with Ji1···ip the coefficients in (1.1)) as in [34, 35]17

G(β, τ) = 1
Z(β)

∫ π

0

dθ1
2π

dθ2
2π w(θ1)w(θ2) exp

[
− 2J√

1− q ((β − τ) cos θ1 + τ cos θ2)
]

× (q2
M ; q)∞

(qMei(±θ1±θ2); q)∞
,

(9.5)

16We can also take λ fixed and E → 0.
17This is what one obtains for neutral operators in complex SYK from (7.8) (up to an overall constant)

with q = exp
(
−4p2/N

)
, µ = 0, qM = exp(−4ppM/N), and with J → J exp

(
p2/(2N)

)
.
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I II

Figure 9. An example demonstrating the chord diagram structure of the 2-point function in
Majorana SYK.

where the measure factor w(θ) is defined as usual as

w(θ) = (q, e±2iθ; q)∞ . (9.6)

We would like to evaluate this expression in the limit where λ, E → 0 and qM fixed.
We first go to convenient low energy parameters yi defined by

θi = π − λyi , (9.7)

to obtain (see eq. (5.12) in [35] for the limit of the measure)

G(β, τ) = 1
Z(β)

(
λ3(q; q)3

∞
2π2

)2

(q2
M ; q)∞

∫ ∞
0

∫ ∞
0

dy1dy2 y1y2 exp[W (y1, y2)] (9.8)

where W (y1, y2) is a function of y1, y2 given by

W = log(2 sinh(2πy1)) + log(2 sinh(2πy2)) + 2J√
λ

(β − τ) cos(λy1) + 2J√
λ
τ cos(λy2)

−
∞∑
k=0

log
[
1 + q2

Mq
2k − 2qMqk cos(λ(y1 + y2))

]
−
∞∑
k=0

log
[
1 + q2

Mq
2k − 2qMqk cos(λ(y1 − y2))

]
.

(9.9)

In the limit λ → 0, we can further approximate the y1 and y2 integrals via a saddle
point approximation. The saddle point equations are

0 = ∂y1W = 2π coth(2πy1)− 2J
√
λ(β − τ) sin(λy1)

−
∞∑
k=0

2λqMqk sin (λ (y1 + y2))
1 + q2

Mq
2k − 2qMqk cos (λ (y1 + y2))

−
∞∑
k=0

2λqMqk sin (λ (y1 − y2))
1 + q2

Mq
2k − 2qMqk cos (λ (y1 − y2)) , (9.10)

and a similar equation with (y1 ↔ y2, β− τ → τ). We approximate each of the sums using
an integral, which is possible when λ→ 0, giving
∞∑
k=0

2λqMqk sin (λ (y1 ± y2))
1 + q2

Mq
2k − 2qMqk cos (λ (y1 ± y2)) ≈ 2 tan−1

(
qM sin (λ (y1 ± y2))

1− qM cos (λ (y1 ± y2))

)
. (9.11)
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In a similar manner we can approximate

(q2
M ; q)∞ ≈ exp

(
− 1
λ
Li2(q2

M )
)
. (9.12)

The saddle point equations become

2π coth(2πy1)− 2J
√
λ(β − τ) sin(λy1)

− 2 tan−1
(

2qM sin (λy1) (cos (λy2)− qM cos (λy1))
q2
M cos (2λy1)− 2qM cos (λy1) cos (λy2) + 1

)
= 0 ,

2π coth(2πy2)− 2J
√
λτ sin(λy2)

− 2 tan−1
(

2qM sin (λy2) (cos (λy1)− qM cos (λy2))
q2
M cos (2λy2)− 2qM cos (λy1) cos (λy2) + 1

)
= 0 .

(9.13)

Restricting further to low energies 1 � y1, y2 � 1/λ and denoting JMS =
√
λJ , the

solution to the saddle point equations goes to

y∗1 = π

λ

1
JMS(β − τ) + 2qM

1−qM

y∗2 = π

λ

1
JMSτ + 2qM

1−qM

(9.14)

(and we require that 1� JMSβ, JMSτ � 1/λ for y1,2 to be in the right range).
We should plug the above saddle point expressions into the y1 and y2 integrals. To do

this we need to first expand cos(λyi) inside the log in the expression for W (y1, y2):18

W (y∗1, y∗2) = 2πy∗1 + 2πy∗2 + 2JMS

λ
β − JMS

λ
(β − τ)(λy∗1)2 − JMS

λ
τ(λy∗2)2

− 4
∞∑
k=0

log
(
1− qMqk

)
−
∞∑
k=0

2qMqk

(1− qMqk)2

(
(λy∗1)2 + (λy∗2)2

)
+O(λyi)3 .

(9.15)

In the above we approximate the k sum with an integral and using (9.14) we get

W (y∗1, y∗2) = 2πy∗1 + 2πy∗2 + 2JMS

λ
β − JMS

λ
(β − τ)(λy∗1)2 − JMS

λ
τ(λy∗2)2

+ 4
λ
Li2(qM )− 1

λ

2qM
1− qM

(
(λy∗1)2 + (λy∗2)2

)
+O(λy∗i )3

= πy∗1 + πy∗2 + 2JMS

λ
β + 4

λ
Li2(qM ) . (9.16)

Putting it all together, the result of the saddle point estimate of the yi integrals is

G(β, τ) = 1
Z(β)

(
λ3(q; q)3

∞
2π2

)2

exp
(
πy∗1 + πy∗2 + 2JMS

λ
β + 4

λ
Li2(qM )− 1

λ
Li2(q2

M )
)

×
(
π

λ

)3
 1
JMS(β − τ) + 2qM

1−qM

· 1
JMSτ + 2qM

1−qM

3/2

.

18See the comment in footnote 14, with J there replaced here by JMS .
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Similarly, the partition function is19

Z(β) = λ3(q; q)3
∞

2π2

(
π

βJMSλ

)3/2
exp

(
2βJMS

λ
+ π2

βJMSλ

)
(9.17)

where approximately

(q; q)∞ ≈ exp
(
−π

2

6λ

)
. (9.18)

Together we have the final result

G(β, τ) = 1√
4π

 βJMSλ

(JMS(β − τ) + 2qM
1−qM )(JMSτ + 2qM

1−qM )

3/2

× exp
[
π2

λ

1
JMS(β − τ) + 2qM

1−qM

+ π2

λ

1
JMSτ + 2qM

1−qM

− π2

βJMSλ

+ 4
λ
Li2(qM )− 1

λ
Li2(q2

M )− π2

2λ

]
.

(9.19)

We get that the un-normalized 2-point function G̃ = Z(β)G is just (up to a β and τ
independent constant) the product of thermal partition functions

G̃(β, τ) = exp
( 4
λ
Li2(qM )− 1

λ
Li2(q2

M )− 8
λ

qM
1− qM

)
Z(β1)Z(β2) (9.20)

with inverse temperatures

β1 = (β − τ) + ∆(qM ) ,
β2 = τ + ∆(qM ) ,

(9.21)

where
∆(qM ) = 1

JMS

2qM
1− qM

. (9.22)

The effect of non-vanishing finite qM 6= 1 is to increase the values of β1 and β2 by the
same amount ∆(qM ). This effect can also be seen in the standard SYK model by using
the saddle point equations (2.9) and (2.10) of [38]. In that paper the ki are our yi and the
shift in τi is controlled by 1/`, with ` being the scaling dimension of the operator whose
two-point function is under consideration. This is pictorially represented in figure 10. The
formulas, however, do not agree exactly in all the regimes of `/C in their language vs. qM
in our language.

9.1.1 Comments on the qM → 0 limit, or touching space-times

The limit qM → 0 corresponds to even heavier operators. In this limit, the distance
∆(qM )→ 0. This means that the spaces only touch at a point. Otherwise, time evolution in

19This is obtained by taking just one integral in the computation above (the one with β) and plugging
qM → 0. This also indeed agrees (up to a β independent prefactor) with eq. (4.13) in [34].
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∆(qM )

Figure 10. Pictorial representation of the two-point function of a massive operator. The black
curves represent the thermal circle deformed by the presence of this heavy operator (indicated by
red dots). ∆(qM ) represents the geodesic distance between the two insertion points.

each space in general proceeds on its own. More precisely, this is true for any probe operator
of fixed conformal dimension (but light enough particles can go between the two universes,
i.e. particles close to the BF bound in the AdS language). For finite mass operators, in
general, if we put several probe operators in the two spaces, we can consider two sets of
chord diagrams — the “within universes” diagrams where operators (and Hamiltonians)
are contracted within each part of the trace separately, and “between universes” diagrams
where operators (and Hamiltonians) are also contracted between the two parts of the trace.
In terms of figure 9 the first class of diagrams have chords that stay within region I or region
II, and the second class have chords going from I to II. The latter are suppressed by at
least qM relative to the first. So for qM → 0, the evolution of all operators happens within
each spacetime.

This can also be understood in terms of a putative convergence of operators in our
statistical class to the standard large N limit of β-ensemble random matrices. Recall
that [33] if one computes the moments of double scaled operators, then they converge
to those of the semi-circle when p/

√
N → ∞. The operator M (recall that we are now

in the Majorana SYK model) is given by (9.1), and it has
( N
pM

)
independent degrees of

freedom. For pM ∼ N/2, it has the same order of magnitude of parameters as a full
random 2N/2×2N/2 Hermitian matrix, just written in a different basis of operators. In this
case its correlators satisfy planarity constraints and cannot intersect any other contractions
of matrices. In other words, long operators tend to act as β-ensembles random matrices,
and the latter split spacetime into fragments. We see that (at the level of macroscopic
observables computed in a single trace), the same is true even for much smaller operators
pM ∼ A

√
N when A is large.

In the next subsection we will make the computation above more precise by inserting
an additional light operator on each side. We will see that we can compute the lead-
ing transmission through the zero size neck quite easily. In particular we will see which
operators make it between the universes easily and which get stuck at the singularity.
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9.2 Connecting universes

In this section we consider the 4-point function of two heavy operators MM and two light
operators ML. From eq. (4.11) of [35] we have the expression for the crossed four-point
function as follows

〈tre−βHML(τ1)MM (τ2)ML(τ3)MM (τ4)〉J,JM

= qML

∫ π

0

4∏
j=1

{
dθj
2π (q, e±2iθj ; q)∞

}
exp

(
− 2J√

1− q
(
(τ2 − τ3) cos(θ2)

+ (τ1 − τ2) cos(θ3) + (τ3 − τ4) cos(θ1) + (β − τ1 + τ4) cos(θ4)
))

×
(
q2
L, q

2
L; q

)
∞(

qLei(±θ1±θ2), qLei(±θ3±θ4); q
)
∞

(q2
M ; q)∞

(qMei(±θ2±θ3); q)∞

×
∞∑
n=0

qnM
(q2
L; q)n(q; q)n

Qn(cos θ1|qLe∓iθ2 ; q)Qn(cos θ4|qLe∓iθ3 ; q)

(9.23)

where

qML = e−
√
λMλL , qL = e−

√
λλL , qM = e−

√
λλM ,

2p2 = λN , 2p2
M = λMN , 2p2

L = λLN (9.24)

and Qn are the Al Salam-Chihara polynomials defined in terms of the basic hypergeometric
series rφs through

Qn(cos(θ)|a, b; q) = (ab; q)n
an

3φ2

[
q−n, ae±iθ

ab, 0 ; q, q
]
. (9.25)

We now focus on the limit

λ→ 0 , λM →∞ , λλM fixed large (9.26)

such that we go to a gravity regime (the limit on λ) and we can arrange the connection
between the spaces in an expansion in qM . We then also take the limit

λL → 0 , λLλM ≡ λ2
LM fixed, not small , (9.27)

such that the new light field can go between the spaces without suppression.
When qM = 0 only the n = 0 term (which is one) survives in the last line of (9.23)

and the 4-point function factorizes into a product of two 2-point functions
〈tre−βHML(τ1)MM (τ2)ML(τ3)MM (τ4)〉J,JM

= qML

∫ π

0

∏
j=1,2

{
dθj
2π w(θj)

}
exp

(−2J (τ3 − τ4) cos θ1 − 2J (τ2 − τ3) cos θ2√
1− q

)

×
(
q2
L; q

)
∞(

qLei(±θ1±θ2); q
)
∞

×
∫ π

0

∏
j=3,4

{
dθj
2π w(θj)

}
exp

(−2J (τ1 − τ2) cos θ3 − 2J (β − τ1 + τ4) cos θ4√
1− q

)

×
(
q2
L; q

)
∞(

qLei(±θ3±θ4); q
)
∞
.

(9.28)
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τ1

τ2

τ3

τ4

θ1

θ2
θ3

θ4

Figure 11. The effect of very heavy operators, shown in red, causing the 4-point function to
collapse. The light operators are shown in blue.

This result can be interpreted as follows. The presence of the massive operator MM for
which λM → ∞ such that qM → 0, creates a background where the thermal circle which
was of length β gets deformed into two osculating circles of lengths

β1 = β − (τ2 − τ4) , β2 = τ2 − τ4 , (9.29)

see figure 11. The light operator qL then probes this background and measures the bound-
ary lengths β1 and β2 of these two spaces. This is seen in the expression for the crossed
four-point function which factorizes into a product of two thermal two-point functions with
inverse temperatures β1 and β2.

The main point, however, is that this correlator is finite even in the limit qM →
0. In this limit, no Hamiltonian chords go from one space to the other so the two of
them gravitationally decouple. Nevertheless light states (corresponding to operators whose
dimension is close to zero, which is allowed in quantum mechanics), can go between the
spaces quite easily.
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A Grand potential in the λ → 0 limit

In this section we will calculate the grand potential Ω = −T logZ(T, µ) in the λ→ 0 limit
and compare it to the large p result in [39]. We will work in the scaling µ = µ̄

N1/4 , and keep
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only terms up to O(N0). The partition function in this scaling was found in (4.17) and is
(recalling λ = p2/N)

Z(β, µ̄) = exp
(
N log(2) + 1

2 µ̄
2√N − 1

12 µ̄
4
)
·

×
∫ π

0

dθ

2π
(
q, e±2iθ; q

)
∞

exp
[
−2βJ cos θ√

1− q exp
(
λ

2 −
1
2 µ̄

2√λ
)]

,

(A.1)

where q(µ) = exp
(
−4λ (coshµ)2

)
= exp

[
−4λ+O(N−1/2)

]
so q = e−4λ. Note that we

reinstated a factor of 2N to the partition function, which was implicit before because of
the normalization tr 1 = 1 that was used. We want to evaluate the θ integral in the above
expression for which we use the methods developed in [34, 35]. The q → 1 limit of the
measure factor can be simplified by change of variables θ = π − 4λy∫ π

0

dθ

2π (q, e±2iθ; q)∞ −→
64λ3(q; q)3

∞
2π2

∫ ∞
0

dy 2y sinh(2πy) . (A.2)

For notational convenience, let us define the quantity

δ ≡ exp
(
λ

2 −
1
2 µ̄

2√λ
)
. (A.3)

Then, the θ-integral in (A.1) becomes

64λ3(q; q)3
∞

2π2

∫ ∞
0

dy 2y sinh(2πy) exp
(2βJ cos(4λy)√

1− q δ

)
. (A.4)

Assuming λy � 1 we can expand the cosine in the above equation

64λ3(q; q)3
∞

2π2 exp
( 2βJδ√

1− q

)∫ ∞
0

dy y exp
(

2πy − βJδ√
1− q (4λy)2 + · · ·

)
. (A.5)

The y-integral can then be approximated by a saddle point. We find the saddle point is at
y∗ = (π

√
1− q)/(16βJδλ2) and the saddle-point estimate of the y-integral is

64λ3(q; q)3
∞

2π2 exp
(

2βJδ√
1− q + π2√1− q

16βJδλ2

)(
π
√

1− q
16βJδλ2

)3/2

. (A.6)

The above expression is the q → 1 limit of the expression in the second line of (A.1).
Combining with the terms from the first line and noting that (q; q)3

∞ ≈ exp
(
−π2/(8λ)

)
,

we obtain the following low temperature expansion of Ω(T, µ̄)

Ω(T, µ̄) =− J√
λ

exp
(
−1

2 µ̄
2√λ+ λ

2

)
− T

(
N log(2) + 1

2 µ̄
2√N − 1

12 µ̄
4
)

+ π2T

8λ − T log
(

64λ3

2π2

)
− 3

2T log
(

π

8Jδλ3/2

)
+O(T log T ) . (A.7)

We now compare this result to the large p result in [39], that was quoted in (2.12),
where v there can be expanded

v = 1− 2T
J̃

+ 4T 2

J̃ 2 + · · · (A.8)
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and J̃ is defined in (2.13). With the scaling µ = µ̄
N1/4 , we find that taking the large N

limit first and then doing the low temperature expansion gives

Ω (T, µ̄) =− J√
λ

exp
(
−1

2 µ̄
2√λ

)
− T

(
N log(2) + 1

2 µ̄
2√N − µ̄4

12

)
+ π2T

8λ +O
(
T 2
)
.

(A.9)

We see that this indeed matches with (A.7) (up to smaller O(λ0, log(λ)) terms).

B Details of the U(M) model

Let us introduce the following notation

Σ3 =
N⊗
i=1

σ3 . (B.1)

A convenient matrix representation of the algebra (6.1) (which is a generalization of
eq. (3.8)) is

ψ1α = 12N(α−1) ⊗
(
σ+ ⊗ σ3 ⊗ · · · ⊗ σ3

)
⊗
M−α⊗
i=1

Σ3

ψ2α = 12N(α−1) ⊗
(
12 ⊗ σ+ ⊗ σ3 ⊗ · · · ⊗ σ3

)
⊗
M−α⊗
i=1

Σ3

...

ψNα = 12N(α−1) ⊗
(
12 ⊗ · · · ⊗ 12 ⊗ σ+

)
⊗
M−α⊗
i=1

Σ3

(B.2)

where α is the U(M) fundamental index that runs from 1 toM . For ψ̄ we replace σ+ → σ−
in the above formulas. In this representation we have

exp
(

M∑
α=1
−µα2

N∑
i=1

(
ψ̄iαψ

iα − ψiαψ̄iα
))

=
M⊗
α=1

[(
eµα 0
0 e−µα

)⊗N ]
. (B.3)

The normalized trace of this quantity is simply

tr exp
(

M∑
α=1
−µα2

N∑
i=1

(
ψ̄iαψ

iα − ψiαψ̄iα
))

=
M∏
α=1

(coshµα)N . (B.4)

Next we proceed towards the calculation of the moments (6.7). Let I, J, . . . be index
sets of cardinality p with indices arranged in ascending order. It is the set of site indices
ia (a = 1, 2, · · · , p). Let A,B, . . . be set of cardinality p. It contains the flavor indices αa
(a = 1, 2, · · · , p). Denote by ψ̄IA = ∏1

a=p ψ̄ia,αa and by ψIA = ∏p
a=1 ψ

ia,αa . In this notation
the Hamiltonian is

H =
M∑

α1=1
· · ·

M∑
αp=1

∑
1≤i1<···<ip≤N
1≤j1<···<jp≤N

J
i1···ip
j1···jp ψ̄ipαp · · · ψ̄i1α1ψ

j1α1 · · ·ψjpαp ,

≡
∑
IJA

JIJ ψ̄IAψ
JA .

(B.5)
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The quantity that we would like to evaluate is the following

J̃kM−kp/2
(
N

p

)−k ∑
I1,···Ik

∑
{A,A′}

tr
(
ψ̄I1A1ψ

I2A1 · · · ψ̄I3A2ψ
I4A2 · · · ψ̄I2A′1ψ

I1A′1 · · · e−µrQr
)

(B.6)
which contributes to the k’th moment of the partition function. The above object can
be represented as an oriented chord diagram, with chords of opposite orientation always
occurring in pairs. The chords have an orientation that points from ψIA to ψ̄IA′ . They
represent contraction of the site indices.

Before we calculate these diagrams, let us first determine their sign. The analysis is
a straightforward extension of the U(1) analysis. First note that each chord is associated
with the sites index set I, but also with a pair of flavor index sets A,A′ in general. However,
we will see in the analysis below, that eventually we can restrict to A = A′, so that an
oriented chord can be associated with a pair of index sets I, A.20 For oriented chords that
do not intersect, we do not get any minus signs. Consider a pair of oriented chords IA, JB
that intersect. For any (ia, αa) ∈ IA and (jb, βb) ∈ JB we get a minus sign whenever,
ia + (αa − 1)N < jb + (βb − 1)N , ia + (αa − 1)N > jb + (βb − 1)N and no sign when
ia + (αa− 1)N = jb + (βb− 1)N , where a, b range from 1 to p. The last equality is satisfied
only when ia = jb and αa = βb. Therefore for oriented chords IA, JB that intersect, we
get the following sign

(−1)p2
p∏

a,b=1
(−1)δia,jbδαa,βb . (B.7)

This is similar to the U(1) case where instead of pij we have the intersection between the
index sets where (i, α) are considered as a single index. As a result, the sign in the partition
function will again be positive.

As in the U(1) model, the general strategy to evaluate (B.6) is to first assume that all
the site indices are mutually disjoint. In this case, for the trace to be non-zero, all the A′ in-
dex sets have to coincide with the corresponding A index sets. Every right going chord con-
tributes ∏p

a=1 e
µαa/ coshµαa and every left going chord contributes ∏p

a=1 e
−µαa/ coshµαa .

Since each right going chord is accompanied by a left going chord the net contribution from
a single (unoriented) H-chord is

M∑
α1=1

· · ·
M∑

αp=1

p∏
a=1

(coshµαa)−2 ≡ A(µ)p , A(µ) =
M∑
α=1

(coshµα)−2 . (B.8)

Since there are k/2 such H-chords, we get for the case when the site index sets are mutually
disjoint21

M∏
α=1

(coshµα)NA(µ)kp/2 . (B.9)

20In the analysis of the different situations we do, there are in fact cases where this does not happen,
such as the case where we need a further restriction on the index sets (overlaps beyond the contraction) in
the analysis of diagram 13(a), as well as the case a = b in diagram 13(g). However, these exceptions are
suppressed in large N and do not contribute anyway.

21If the site index sets have no overlap, then we get a factor of (−1)p
2
from (B.7) for every intersection

of an oriented chord with another oriented chord. However, as in the case of the U(1) model, since each
intersecting H chords involve four oriented chord intersections, there are no factors of minus sign.
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(a) (b) (c)

(d) (e) (f)

Figure 12. Oriented chord configurations (plus the reversed orientation counterparts) that domi-
nate in the large N limit.

The next step is to correct this result for non-zero mutual intersection of the site indices
{Ii}. In the large-N limit the intersections among the index sets occurs independently in
pairs with a Poisson distribution and contribution from triple and higher intersections are
subleading which can therefore be ignored. So at the level of chord diagrams, at large-N
the dominant contribution to a diagram comes from all possible pairs of oriented chords.
These configurations are shown in figure 12.

However, these configurations have a hanging flavor index at the nodes which are not
contracted. In a chord diagram, every oriented chord in figures 12 is accompanied with a
chord of opposite orientation and the flavor indices of these two chords are contracted sep-
arately at each node. Therefore we have to simultaneously consider the contribution to the
trace from four oriented chords for every pair of unoriented chords and two oriented chords
for every unoriented chord. The distinct pairs of unoriented chords and its corresponding
oriented version is shown in the figure 13.

Once we know the contribution of each of the configurations above, we then need to
know how many such configurations are there in a given chord diagram. In a chord diagram
with k insertions of the Hamiltonian and κH number of intersections of (unoriented) H-
chords, there are k/2 chords of type 13(g), a total of

(k/2
2
)
− κH chords of type 13(a)

and 13(b) combined and κH number of type 13(c). In the ensuing subsections, we compute
the contribution from each kind of configuration above.

Diagram 13(a). The trace structure for this configuration is∑
{A1,A′1,A2,A′2}

tr
(
ψ̄I1A1ψ

I2A1 · · · ψ̄I2A′1ψ
I1A′1 · · · ψ̄I3A2ψ

I4A2 · · · ψ̄I4A′2ψ
I3A′2 · · · e−µrQr

)
.

(B.10)
The four kind of site intersections that we look at are I1 ∩ I3, I1 ∩ I4, I2 ∩ I3, I2 ∩ I4.

As explained earlier, we cannot look at these intersections independently. Because of the
flavor index contractions, I1 ∩ I3 is paired with I2 ∩ I4 and I1 ∩ I4 is paired with I2 ∩ I3.
Let the number of intersections between Ii and Ij be pij .
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 13. Unoriented H-chord configurations (along with their orientated counterparts) that
dominate in the large N limit. Each of these configurations contribute independently to an unori-
ented chord diagram.

Consider fermions with site index ia ∈ I1, jb ∈ I2, kc ∈ I3 and ld ∈ I4. If pij were zero
for all i, j that is Ii ∩ Ij = ∅ then the contribution to the trace from the fermions shown
above is calculated as follows. Consider a fermion in ψ̄I1A1 , say ψ̄iaαa and the fermion
with the same site index in ψI1A′1 which is ψiaα′a . The product of the two will give a non-
vanishing contribution only when αa = α′a in which case the result is e−µαa . Since this
holds for all a, the sum over A′1 collapses to A1. Let us now write the previous sum a little
more explicitly

∑
α1,...,αp

tr
(

1∏
a=p

ψ̄iaαa
p∏
b=1

ψjbαb
1∏
c=p

ψ̄jcαc
p∏
d=1

ψidαd · (i→ k, j → l, α→ β) · e−µrQr
)
.

(B.11)
Without the insertion of the fermions from the Hamiltonian, the result of the trace is∏M
α=1(coshµα)N as we deduced in the previous section. Now in the above trace, for every

ψ̄iaαa and ψiaαa (in this particular order) a contribution of coshµαa is removed and instead
a factor of e−µαa is multiplied to the result. Similarly for every ψjaαa and ψ̄jaαa (in this
particular order) a contribution of coshµαa is removed and instead a factor of eµαa is
multiplied to the result. Since each of these cases appears equally, the net result of the
trace is

M∏
α=1

(coshµα)N
 M∑
α1=1

· · ·
M∑

αp=1

p∏
a=1

(coshµαa)−2

2

≡
M∏
α=1

(coshµα)NA(µ)2p (B.12)

where we defined the quantity A in eq. (B.8).
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If pij 6= 0 then modulo corrections due to intersection of the site indices, the previous
result will be modified to

M∏
α=1

(coshµα)NA(µ)2(p−
∑

pij) . (B.13)

Next we calculate the correction to this result that comes from the intersection of the site
indices. First, we look at indices in I1 ∩ I3; say ia = kb. Without loss of generality we
set a = b = 1 (if a 6= b, we can always permute the fermions around — the net sign is
always positive in any permutation because they are done in pairs — and relabel the flavor
and the site summation indices). Since these fermions carry a flavor index α we also write
below the accompanying fermion in the I2 and I4 index sets with the same flavor index but
generically different site index j1 ∈ I2 and l1 ∈ I4∑

{α1,α′1,β1,β′1}
tr
(
· · · ψ̄i1α1ψ

j1α1 · · · ψ̄j1α′1ψ
i1α′1 · · · ψ̄i1β1ψ

l1β1 · · · ψ̄l1β′1ψ
i1β′1 · · · e−µrQr

)
.

(B.14)
The summation over the flavor indices gives rise to three and only three distinct cases
(α1 = α′1) 6= (β1 = β′1), (α1 = β′1) 6= (β1 = α′1) and (α1 = α′1 = β1 = β′1) for which the
trace is non-zero. For each case, the trace is easy to calculate. The basic rules are: (1) for
every pair ψiaαa and ψ̄iaαa (in this particular order) there is a contribution of eµαa/ coshµαa
(2) for every pair ψ̄iaαa and ψiaαa (in this particular order) there is a contribution of
e−µαa/ coshµαa (3) for every quadruple ψiaαa . . . ψ̄iaαa . . . ψiaαa . . . ψ̄iaαa there is a contribu-
tion of 2eµαa/ coshµαa and finally (4) for every quadruple ψ̄iaαa · · ·ψiaαa · · · ψ̄iaαa · · ·ψiaαa
there is a contribution of 2e−µαa/ coshµαa . With these rules, the result of the trace is

∑
(α1=α′1) 6=(β1=β′1)

1
(coshµα1 coshµβ1)2 +

∑
(α1=β′1) 6=(β1=α′1)

δj1
(coshµα1 coshµβ1)2

+
∑
α

2e−µα
coshµα

(
e2µα

(coshµα)2 + δj1(· · · )
)

(B.15)

where by δj1 we mean that j1 necessarily should intersect at least one of the other sets
(such as I1, I3, I4). However, the probability of δj1 happening in fact goes to zero at large
N ; there is a finite probability that a set of size p intersects another set of size p, but
imposing that a single site intersects a set of size of the order of p is already suppressed
(going as 1/

√
N). Therefore we can ignore the δj1 terms in the above expression.

Since the site index set I has distinct indices which are ordered, this procedure can
be repeated for every ia and kb in I1 ∩ I3 and the net correction factor to (B.12) due to
non-vanishing p13 is C(µ)p13 (all the corrections here and below are with respect to (B.12))

C(µ) ≡ 1
A(µ)2

 ∑
(α1=α′1) 6=(β1=β′1)

1
(coshµα1 coshµβ1)2 +

∑
α

2eµα
coshµ3

α

 . (B.16)

Next, we look at indices in I2 ∩ I4. The calculation is identical to the previous case
and the net result is simply C(−µ)p24 .
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Finally, we look at the indices in I1 ∩ I4 and I2 ∩ I3. Again the calculation is the
same as in the previous cases except that there is vanishing contribution from the case
α1 = α′1 = β1 = β′1. So let us define

D(µ) ≡ 1
A(µ)2

 ∑
(α1=α′1) 6=(β1=β′1)

1
(coshµα1 coshµβ1)2

 . (B.17)

Then, the correction factors that we get from non-vanishing p23 and p14 is Dp14+p23 . Doing
the sum over the pij

∞∑
pij=0

λpij

pij !
e−λ(#)pij = eλ(#−1) (B.18)

we get that the contribution coming from the diagram 13(a) is

exp [λ (C(µ) + C(−µ) + 2D(µ)− 4)] . (B.19)

We can further simplify the expression

(C(µ) + C(−µ) + 2D(µ)− 4)

= 4
A(µ)2

( ∑
(α1=α′1) 6=(β1=β′1)

1
(coshµα1 coshµβ1)2 +

∑
α

1
(coshµα)2

)
− 4

= 4
A(µ)2

(∑
α

1
(coshµα)2 −

∑
α

1
(coshµα)4

)

= 4
A(µ)2

∑
α

(tanhµαsechµα)2 . (B.20)

Diagram 13(b). The trace structure for this configuration is∑
{A1,A′1,A2,A′2}

tr
(
ψ̄I1A1ψ

I2A1 · · · ψ̄I3A2ψ
I4A2 · · · ψ̄I4A′2ψ

I3A′2 · · · ψ̄I2A′1ψ
I1A′1 · · · e−µrQr

)
.

(B.21)
The calculation of this trace is identical to that in the previous case and gives the same

result. Since the result from these two diagrams is the same we can conclude that for every
pair of the unoriented H chords that do not intersect we have a factor of

exp
(

4λ
A(µ)2

∑
α

(tanhµαsechµα)2
)
. (B.22)

Diagram 13(c). The trace structure for this configuration is∑
{A1,A′1,A2,A′2}

tr
(
ψ̄I1A1ψ

I2A1 · · · ψ̄I3A2ψ
I4A2 · · · ψ̄I2A′1ψ

I1A′1 · · · ψ̄I4A′2ψ
I3A′2 · · · e−µrQr

)
.

(B.23)
First of all we note that the net sign of this chord configuration is positive on account of the
fact that there are four oriented chord intersections. Again, if there are no intersections
(all pij = 0), we get a factor of A2p. For non-empty intersections we get A2(p−

∑
pij)
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times corrections which is evaluated in the same manner as in the subsection B. The only
difference now is that for every index in an intersection (say ia = kb for example when
looking at indices in I1 ∩ I3), whenever all the associated flavor indices are the same (that
is αa = α′a = βb = β′b) we always get a zero no matter which pair of chord intersection we
are looking at. However, when flavor indices are not all equal we get a factor of Dpij . Since
there are four such pij ’s after summing over the pij variables we get a contribution of

exp(4λ(D − 1)) . (B.24)

The factor of D − 1 can be simplified a bit

D − 1 = 1
A(µ)2

 ∑
(α1=α′1) 6=(β1=β′1)

1
(coshµα1 coshµβ1)2

− 1

= − 1
A(µ)2

M∑
α=1

1
(coshµα)4 . (B.25)

Hence, we arrive at the rule that for every pair of unoriented H chords that intersect, we
have a factor of

exp
(
− 4λ
A(µ)2

M∑
α=1

1
(coshµα)4

)
. (B.26)

Individual H-chord contribution: diagram 13(g). For individual chords, we have
the following trace structure:∑

I1I2AA′
tr
(
ψ̄I1Aψ

I2A · · · ψ̄I2A′ψI1A
′ · · · e−µrQr

)
. (B.27)

If there are no intersections I1∩I2 = ∅ (that is p12 = 0), we get a factor ofAp. For I1∩I2 6= ∅,
this factor receives corrections that we evaluate next. For simplicity, we first look at p12 = 1
in which we have ia = jb for some ia ∈ I1 and jb ∈ I2. Unlike the previous diagrams, there
are two distinct cases a = b and a 6= b. For the diagrams we considered previously, the
case a 6= b is the same as a = b because we could relabel the various summation indices
freely for the reason that we were looking at those oriented chords intersections that do
not end in the same Hamiltonian. When we consider intersections between two oriented
chord intersections that end in the same Hamiltonian, we are constrained by the flavor
summation indices and the case a = b distinct from the case a 6= b. Below, we look at these
two cases in turn.

First, consider the case a = b. Without loss of generality say a = b = 1. The fermions
outside the intersection contribute A(µ)p−1. For the remaining fermions we have∑

α1β1

tr(· · · ψ̄i1α1ψ
i1α1 · · · ψ̄i1β1ψ

i1β1 · · · e−µrQr) .

For α1 6= β1 we get a contribution of e−µα1−µβ1/(coshµα1 coshµβ1) and for α1 = β1 we get
2e−µα1/ coshµα1 . Therefore for the case when a = b we have the result

A(µ)p−1

 ∑
α1 6=β1

e−µα1−µβ1

coshµα1 coshµβ1

+
∑
α1

2e−µα1

coshµα1

 . (B.28)
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Now consider the case a 6= b. Without loss of generality assume a = 1 and b = 2 that is
j2 = i1. Start by, considering the following fermions inside the trace∑

α1,α2,α′1,α
′
2

tr(· · · ψ̄i2α2ψ̄i1α1ψ
j1α1ψi1,α2 · · · ψ̄i1α′2ψ̄j1α′1ψ

i1α′1ψi2α
′
2 · · · e−µrQr) .

From the above expression, to get a non-zero trace we see that the contracted i2 index
restricts α2 = α′2 and the contracted j1 index restricts α1 = α′1. When α1 6= α2 the
contribution to the trace is (coshµα1)−2(coshµα2)−2 and when α1 = α2 the contribution
to the trace is 2e−µα1/ (coshµα1)3. Therefore for the case a 6= b we have the result

A(µ)p−2

 ∑
α1 6=α2

(coshµα1)−2(coshµα2)−2 +
∑
α1

2e−µα1

(coshµα1)3

 . (B.29)

As a check, we see that for M = 1 where there is no difference between the cases a = b

and a 6= b and therefore the two results give the same answer.
Next let us estimate how many cases are there like a = b and a 6= b. Since a and b take

values 1, 2, · · · , p, there are a total of p2 pairs of which p are of a = b type and p(p− 1) are
of a 6= b type. This implies that the probability that a = b is 1/p and a 6= b is (p − 1)/p.
Therefore, for large p, cases like a 6= b are much more likely to occur than cases like a = b.

For generic p12, since each site index sets have distinct indices, this procedure can be
repeated independently for every pair ({ia, ib}, {ja, jb}) with ia and jb in I1 ∩ I2 and the
net correction factor due to non-vanishing p12 is

A(µ)−2p12

 ∑
α1 6=α2

(coshµα1)−2(coshµα2)−2 +
∑
α1

2e−µα1

(coshµα1)3

p12

≡ C(−µ)p12 (B.30)

where, we have used the definition in (B.16). Summing over p12, we get that for every
H-chord, there is an associated factor of

exp (λ(C(−µ)− 1)) . (B.31)

The factor of C(−µ)− 1 can be simplified further

C(−µ)− 1 = 1
A(µ)2

 ∑
α1 6=β1

1
(coshµα1 coshµβ1)2 +

∑
α1

2e−µα1

(coshµα1)3 −A(µ)2


= 1
A(µ)2

M∑
α=1

e−2µα

(coshµα)4 . (B.32)

Hence, we arrive at the rule that for every H-chord, there is an associated factor of

exp
(

λ

A(µ)2

M∑
α=1

e−2µα

(coshµα)4

)
. (B.33)

The results in (B.33), (B.22) and (B.26) give rise to the chord diagram rules summarized
in (6.8), (6.9) and (6.10).
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The sum over chord diagrams can then be evaluated using the same transfer matrix
techniques. The appearance of the usual structure of chords originates in the form of the
random couplings in the Hamiltonian, as the chord structure comes from the contraction
of the latter. The group theory structure only changes the weights that chords receive.
Summing the moments for chemical potentials scaling as O(N0) to obtain the partition
function suffers from the same problem as in the U(1) model due to the appearance of a
k2 exponent in (6.12), but other scalings can similarly be analyzed.

C Details of the 2-point and 4-point functions

In the calculation of the 2-point function and the 4-point function in the presence of a
chemical potential (sections 7.2 and 8.1), we need to map pairs of unoriented chords to
pairs of oriented chords, and use figure 4 in order to evaluate the latter. This mapping is
as follows for the 2-point function:

1. There are k/2 H-chords, each giving a pair of oriented chords of figure 4a. For each
of those we should assign

exp
[
p2

N

(
2e−µ cosh(µ)− 1

)]
. (C.1)

2. There are
(k/2

2
)
− κH = k(k−2)

8 − κH pairs of non-intersecting H-chords, each giving
one of figure 4c and 4d, or figure 4a and 4b. So anyway for each of those we have

exp
[
p2

N

(
4 cosh(µ)2 − 2

)]
. (C.2)

3. There are k(k−2)
4 + 2κH remaining pairs of oriented solid chords, each giving e−p2/N .

4. Now we move on to include the dashed chord. There are k1−κHM
2 pairs of figure 4b

with the upper chord dashed for pM , and the same number of pairs of figure 4a with
the upper chord dashed for p̄M . So we get the following expression to the power
k1−κHM

2

exp
[
ppM
N

(2eµ cosh(µ)− 1)
]

exp
[
pp̄M
N

(2e−µ cosh(µ)− 1)
]
. (C.3)

Note that in the current convention, k1 is the number of Hamiltonian nodes enclosed
by the dashed chord.

5. There are k2−κHM
2 pairs of: figure 4c where the left chord is dashed and of size pM ,

and figure 4d where the left chord is dashed and of size p̄M , the product of which is

exp
[
ppM
N

(2e−µ cosh(µ)− 1)
]

exp
[
pp̄M
N

(2eµ cosh(µ)− 1)
]
. (C.4)
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6. There are k
2 + κHM remaining pairs of the pM dashed chord with an oriented solid

chord, and the same for p̄M , not allowed to have common indices, contributing

exp
[
−p(pM + p̄M )

N

]
(C.5)

to the power k
2 + κHM .

7. The pair of oriented dashed chords is of the form figure 4b (with dashed chords) and
so gives

exp
[
pM p̄M
N

(2eµ cosh(µ)− 1)
]
. (C.6)

For the 4-point function the counting is the following:

1. Overall factor of (coshµ)N−kp−2pM1−2pM2 for the entire chord diagram.

2. k/2 unoriented solid chords, each giving exp
[
p2

N (2e−µ coshµ− 1)
]
.

3.
(k/2

2
)
− κH pairs of non-crossing unoriented solid chords, each giving

exp
[
p2

N

(
4 cosh(µ)2 − 2

)]
.

4. The remaining number of pairs of oriented solid chords is k(k−2)
4 + 2κH , each giving

exp
[
−p2/N

]
.

5. The first unoriented dashed chord does not intersect k/2 − κHM1 unoriented solid
chords, each giving exp

[
ppM1
N

(
4 cosh(µ)2 − 2

)]
. Same for the second dashed chord

replacing 1→ 2.

6. There are remaining k + 2κHM1 pairs of oriented first dashed chord - oriented solid
chord, each giving exp

[
−ppM1

N

]
. Similarly for the second one.

7. The dashed chords among themselves give

exp
[
p2
M1
N

(2eµ coshµ− 1)
]

exp
[
p2
M2
N

(2eµ coshµ− 1)
]

exp
[
−4pM1pM2

N

]
. (C.7)
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