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8: 
COMPLEX SAMPLE DATA 
IN STRUCTURAL 
EQUATION MODELING 

Bengt 0. Muthen* 
Albert Satorrat 

Large-scale surveys using complex sample designs are fre- 
quently carried out by government agencies. The statistical 
analysis technology available for such data is, however, limited 
in scope. This study investigates and further develops statistical 
methods that could be used in software for the analysis of data 
collected under complex sample designs. First, it identifies sev- 
eral recent methodological lines of inquiry which taken to- 
gether provide a powerful and general statistical basis for a 
complex sample, structural equation modeling analysis. Sec- 
ond, it extends some of this research to new situations of in- 
terest. A Monte Carlo study that empirically evaluates these 
techniques on simulated data comparable to those in large- 
scale complex surveys demonstrates that they work well in prac- 
tice. Due to the generality of the approaches, the methods cover 
not only continuous normal variables but also continuous non- 
normal variables and dichotomous variables. Two methods de- 
signed to take into account the complex sample structure were 
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investigated in the Monte Carlo study. One method, termed 
aggregated analysis, computes the usual parameter estimates 
but adjusts standard errors and goodness-of-fit model testing. 
The other method, termed disaggregated analysis, includes a 
new set of parameters reflecting the complex sample structure. 
Both of the methods worked very well. The conventional 
method that ignores complex sampling worked poorly, support- 
ing the need for development of special methods for complex 
survey data. 

1. INTRODUCTION 

Large-scale surveys using complex sample designs are frequently car- 
ried out by government agencies. For example, the National Center 
for Health Statistics produces an annual survey of the nation's civilian, 
noninstitutionalized population regarding basic health issues; the Bu- 
reau of Labor Statistics sponsors the National Longitudinal Surveys, 
which collect data on labor market experiences of several different 
subpopulations; and the National Center for Education Statistics spon- 
sors educational assessments such as the National Education Longitu- 
dinal Study. The multivariate statistical analysis technology available 
for such data is, however, limited in scope. 

This study investigates and further develops multivariate sta- 
tistical methods for the analysis of data collected under complex 
sample designs. Recent methodological lines of inquiry for complex 
sample data are discussed as they pertain to structural equation 
modeling. The study extends some of this research to new situations 
of interest. Two methods designed to take into account complex 
sample structure are investigated in a Monte Carlo study. One 
method, termed aggregated analysis, computes the usual parameter 
estimates but adjusts standard errors and goodness-of-fit testing. 
The other method, termed disaggregated analysis, includes a new 
set of parameters reflecting the complex sample structure. Due to 
the generality of the approaches, the methods cover not only con- 
tinuous normal variables but also continuous nonnormal variables 
and dichotomous variables. 

To introduce the complex sampling issues typically found in 
large-scale surveys, the features of two such surveys will be described. 
The 1988 National Health Interview Survey (NHIS) included a large 
supplement concerning alcohol consumption patterns sponsored by 
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the National Institute on Alcohol Abuse and Alcoholism (NIAAA). 
Its features are typical of those found in large-scale, national surveys. 
The population is the civilian, noninstitutionalized U.S. population. 
The NHIS is a complex multistage probability sample. A total of 
1,900 primary sampling units (PSUs) defined by counties are strati- 
fied into 52 self-representing (SR) and 73 non-self-representing 
(NSR) strata. The SR strata are PSUs with the largest populations 
and are included in the sample with probability one. From each NSR 
stratum, two PSUs are chosen, without replacement and proportional 
to size (Durbin 1967). Within each PSU, three substrata are used: 
housing units from the building permit frame, housing units in the 
area frame to be oversampled (the study oversamples black persons), 
and other housing units in the area frame. Within each substratum, 
households are grouped into clusters of secondary sampling units 
(SSUs), also called segments. For substratum one, four housing units 
are expected, while for the other two substrata, eight households are 
expected. Selection of SSUs is by systematic sampling with a random 
start. All households within a sampled SSU are targeted for an inter- 
view. For the NHIS88 supplement, a household member 18 years of 
age or older was randomly selected. The NHIS88 alcohol survey re- 
sulted in 43,809 interviews. 

Another major survey, the National Longitudinal Study of the 
High School Class of 1972 (NLS), concerns educational data. In this 
survey, the population consists of persons who were twelfth-grade 
students in U.S. schools during 1971-72. The sample design for the 
base year drew two schools without replacement from each of 600 
strata. Equal probability selection was used, with the major excep- 
tion that schools in low-income areas and with a high proportion of 
minority enrollment were oversampled. In a second stage, 18 stu- 
dents in each school were selected by simple random sampling. Start- 
ing with the fifth follow-up, an unequal probability subsample of the 
participating students was chosen, with oversampling of certain tar- 
geted student groups. 

In reviewing the complex sample features that must be taken 
into account in statistical analyses of such data, it is convenient to 
distinguish between issues related to stratification and unequal inclu- 
sion probabilities on the one hand and issues related to clustering on 
the other hand. In the NHIS88 example, the stratification and over- 
sampling features cause the households to have different probabili- 
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ties of being selected. This is reflected in the basic weights, which are 
inverse to the probabilities of inclusion. In the NLS, the over- 
sampling of certain student categories for follow-up is another impor- 
tant source of unequal weights. If these are not taken into account, 
biased parameter estimates may result unless sample selection is 
based on variables that are exogenous in the model. 

Clustering is exemplified by the NHIS hierarchical data struc- 
ture in which households are observed within segments and segments 
are observed within PSUs. Observations on sample units that share 
segment or PSU membership may be correlated, and if this is ig- 
nored the standard errors of the parameter estimates are usually 
underestimated. Correlated observations may be a particularly im- 
portant issue when students are observed within classes and classes 
within schools, as in the NLS. 

It is also important to make distinctions among analytic ap- 
proaches to estimation and testing. Several such distinctions appear 
in the literature. These will be described along with the distinctions 
used in this study. Many find it convenient to distinguish design- 
based and model-based analyses. This usually refers to the statistical 
philosophy of inference (e.g., see Skinner, Holt, and Smith 1989, p. 
17). Design-based (randomization theory) approaches have been de- 

veloped mainly by sampling statisticians interested in estimating fi- 
nite population quantities (such as the population total and the linear 
regression function for all members of the population), whereas 
model-based approaches are more in line with conventional statisti- 
cal modeling where estimators are derived by assuming a certain 
(super- ) population model, which is probably only approximately 
true for all members of the population (e.g., see Hansen, Madow, 
and Tepping 1983, and discussions of this paper). Design-based infer- 
ence refers to the sampling distribution of repeated samples gener- 
ated by the sampling design, whereas model-based inference refers 
to the sampling distribution generated by the model. Another dis- 
tinction may be drawn between aggregated and disaggregated ap- 
proaches to analysis (Skinner et al. 1989, p. 8). In an aggregated 
analysis, model parameters are defined without conditioning on the 

design variables, whereas in a disaggregated analysis they are de- 
fined conditionally. 

This study concerns both design- and model-based issues and 

aggregated and disaggregated modeling. Typically, design-based anal- 
ysis uses weights in parameter estimation and Taylor linearization or 
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sample reuse methods to compute standard errors of estimators so 
that these properly reflect the likely variation in the estimates due to 
repeated sampling. Disaggregated modeling includes design features 
explicitly in the model by using additional parameters-for example, 
allowing for model heterogeneity across strata and clusters. Examples 
include the use of design variables as explanatory variables in regres- 
sion, and inclusion of variance components corresponding to the vari- 
ous levels of clustering. This type of analysis is often model based. 

One may claim that a design-based approach is less ambitious 
than a model-based approach. For example, one may view a design- 
based regression analysis as merely attempting to estimate the best 
overall regression model in a heterogeneous population, with the aim 
of obtaining test statistics that are valid in repeated sampling. In 
contrast, the model-based disaggregated approach may be viewed as 
an attempt not only to conduct correct tests but also to disentangle 
population heterogeneity by providing, for example, variance pa- 
rameter estimates broken down into components for households, 
segments, and PSUs. Such approaches may, however, be more sensi- 
tive to model misspecification. It will be of interest to study whether 
design-based analysis features can be incorporated into model-based 
disaggregated analyses. More detailed examples will be given below 
in the discussion of disaggregated structural equation modeling. 

The outline of the paper is as follows. Section 2 reviews previ- 
ously developed design- and model-based methods for handling data 
from complex samples. Section 3 reviews conventional models and 
estimation procedures that do not take into account the sample de- 
sign. Sections 4 and 5 describe the two principal statistical proce- 
dures for structural equation modeling with complex sample data, 
one being an aggregated approach, and the other a disaggregated 
approach. Section 6 presents the results of a Monte Carlo study that 
illustrates the promise of these approaches by comparison with a 
data analysis that ignores the sample design. Section 7 summarizes 
the discussion. 

2. PRIOR APPROACHES TO COMPLEX SAMPLE DATA 

2.1. Univariate, Design-Based Methods 

To date, most statistical developments for complex samples have 
focused on univariate, design-based methods, placing special empha- 
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sis on taking sampling weights into account in the estimation of 
parameters and computing the proper standard errors of parameter 
estimates. Kish and Frankel (1974) pointed to three methods for 
computing standard errors that are now classic: Taylor expansion 
(linearization), balanced repeated replication (BRR), and jacknife 
repeated replication. Today, one may add bootstrap techniques to 
this list (e.g., see Rao and Wu 1988). For overviews of these meth- 
ods, see Wolter (1985) and Rust (1985). 

The Taylor expansion method (e.g., see Woodruff 1971) is 
applied to estimators such as linear regression with weighting. The 
probability weights are utilized in Horvitz-Thompson estimators 
(Cochran 1977, ch. 9A.7) for the sums of squares and cross-product 
matrices to provide estimates of the population regression coeffi- 
cients, and a first-order Taylor expansion yields large-sample approxi- 
mations to the standard errors of the estimates (e.g., see Shah, Holt, 
and Folsom 1977; Holt, Smith, and Winter 1980, Procedure 3). More 
recently, Binder (1983) gave a general method for obtaining esti- 
mates and standard errors for generalized linear models in a variety 
of common applications, including ordinary regression, logistic re- 

gression, and log-linear models for categorial data. A unifying ap- 
proach to obtaining standard errors via Taylor linearization was 

given. Related quasi-maximum likelihood methods were discussed in 
Skinner et al. (1989) and McCullagh and Nelder (1989). 

A general approach to estimation of logit models for weighted 
data was taken by Landis et al. (1987), who used a Taylor expansion 
to provide a covariance matrix for logits, and fitted models by gener- 
alized least squares with Wald tests. The BRR technique was also 

proposed for a general set of estimators. For categorical data, chi- 

square testing adjusted for complex sampling was also considered in 
Rao and Thomas (1988) and references therein. 

Comparisons of these standard, design-based methods seem 
to indicate that the Taylor method gives slightly better results in the 
estimation of sampling variances, while BRR and other replication 
methods give better confidence interval coverage (e.g., see Kish and 
Frankel 1974; Rao and Wu 1985; see also Flyer, Rust, and Mor- 

ganstein 1989). The differences are often not large, however, and 
both types of methods have been found quite acceptable in many 
situations (e.g., see Shah et al. 1977; Bean 1975; Wilson, 1989). 
Bean's study is important from the point of view of the NHIS, since 
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her conclusions were based on a large number of repeated samples 
from the 1969 U.S. Health Interview Survey data. Bean also found 
that tests and confidence intervals generated from either of these 
complex sample variance estimators could be well approximated by 
normal distribution theory. 

2.2. Univariate, Model-Based Methods 

Univariate, model-based methods generally deal with either unequal 
inclusion probabilities or clustering, but not both. Consider first 
those studies that take into account unequal inclusion probabilities. 
Estimation of finite population means was studied in Little (1983) 
and regression modeling in, for example, Holt, Smith, and Winter 
(1980), Nathan and Holt (1980), Pfeffermann and Holmes (1985), 
and Pfefferman and LaVange (1989). For regression models, these 
authors considered maximum likelihood estimation including design 
variables as covariates. They contrasted the performance of these 
techniques with the design-based approach of probability-weighting 
involving variance estimation by Taylor expansion. Limited simu- 
lations reported in these papers appear to indicate that modeling 
approaches can give considerably better mean square error perfor- 
mance than the probability-weighted approach, particularly because 
they yield considerably smaller variance estimates. When a model is 
incorrectly specified, however, this advantage may be lost. 

An interesting example involving heteroscedastic residuals in 
model-based regression is given in Skinner et al. (1989, pp. 65-67). 
Little (1989) considered models with parameters that vary randomly 
across strata, leading to Bayesian estimation. This approach gives a 
modeling rationale for probability-weighted estimation. 

Consider next model-based methods that take into account 
effects of clustering. A classic article in this area is by Scott and 
Smith (1969), who take a random parameter, Bayesian, approach. 
This in effect specifies a variance component model that explicitly 
models the correlations among observations within the clusters (see 
also Fuller and Battese 1973). More recently, Malec and Sedransk 
(1985) and Battese, Harter, and Fuller (1988) have suggested similar 
variance component models for samples with clustering (see also 
Scott and Holt 1982). A host of articles have dealt with related 
random effects modeling in the regression context, particularly for 
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longitudinal studies, including both continuous and categorical de- 
pendent variables; see Laird and Ware (1982) and, for recent over- 
views, Diggle, Liang and Zeger (1994), Longford (1993), and Rutter 
and Elashoff (1994). These approaches also pertain to hierarchically 
obtained data (e.g. members within a household), with both random 
intercepts and random slopes. They have recently become popular in 
educational research with students observed within classrooms and 
schools; see, for example, Bock (1989) and Bryk and Raudenbush 
(1992). Estimation of (super- ) population parameters is most often 
carried out by maximum likelihood, while group- (cluster- ) specific 
quantities are estimated by empirical Bayes methods. These develop- 
ments do not take into account the unequal probabilities of selection 
usually encountered in complex surveys. 

Longford (1989, 1993), provides an interesting application of 
variance component (or random coefficient regression) techniques to 
complex sampling, which is of direct relevance to this study. He con- 
sidered data from the National Assessment of Educational Progress 
(NAEP), which has a multistage sample design with 32 strata, from 
each of which two PSUs were selected with replacement. Schools 
were sampled within each PSU, and students were sampled within 
schools. Minority groups were oversampled and sampling weights 
adjusted for nonresponse. Using simulated data with characteristics 
like those of the NAEP, Longford contrasted the performance of the 
design-based jackknife with maximum likelihood estimation of a 
three-level variance component model. Longford concluded that the 
computationally intensive jackknife procedure was outperformed by 
the variance component approach. Although estimated means were 
not appreciably different under the two procedures, means could be 
estimated with considerably more precision using the variance compo- 
nent approach. 

2.3. Multivariate Methods 

Methods for multivariate response models will now be discussed. 
Relatively little statistical research work has been carried out for 
multivariate analysis of data generated from complex samples. There 
are, however, at least two important areas in which multivariate 
methodology is emerging: log-linear modeling and structural equa- 
tion modeling. 
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Complex sampling aspects of log-linear modeling of multi- 
variate categorical data in frequency table form were discussed in, 
for example, Freeman et al. (1976); Landis et al. (1987); and Rao 
and Thomas (1988). These authors consider both unequal selection 
probabilities and clustering. A general weighted least squares (GLS) 
approach is used to estimate parameters and test hypotheses, where 
a set of sample statistics s (here a vector of proportions) is analyzed 
using a suitable weight matrix W. Using W as an approximation to 
the covariance matrix of s yields the approach of generalized least 
squares, and subsequently the Wald statistic. Landis et al. (1987) 
discussed Taylor-series approximations to W, and Rao and Thomas 
(1988) discussed sample reuse methods (jackknife, BRR). Alterna- 
tive approaches include the Rao-Scott "generalized deff matrix" 
weighting, and, for hypothesis testing, Fay's jackknifed chi-square 
test and the Rao-Scott first- and second-order corrections to the 
simple random sample chi-square (see Rao and Thomas 1988). 

Weighted least squares (WLS) estimators of this type are also 
considered in structural equation modeling where s contains the ele- 
ments of the sample covariance matrix (e.g., see Joreskog and 
Sorbom 1989; Bentler 1989; McDonald 1980; Muthen 1987). A com- 
mon alternative is maximum likelihood estimation under normality 
assumptions. WLS estimation with a general weight matrix W has 
been considered, for example, in Browne (1982, 1984). An adapta- 
tion to take complex sampling into account when estimating s and W 
has recently been discussed in Skinner et al. (1989, ch. 3) and in 
Satorra (1992), but it does not appear to have been used in practice. 
In the current chapter's terms, this type of modeling may be de- 
scribed as aggregated. 

Disaggregated, model-based, multivariate methodology analo- 
gous to the univariate case of variance component estimation and 
random effects regression is now emerging (see also Skinner et al. 
1989, ch. 8). Maximum likelihood estimation of covariance structure 
models with latent variables, including random effects for hierarchi- 
cal data, was considered in Goldstein and McDonald (1988), Mc- 
Donald and Goldstein (1989), Lee (1990), Longford and Muthen 
(1990), and Muthen (1989a). Muthen (1990) considered maximum 
likelihood estimation of a factor analysis model for a two-level data 
structure with individuals observed within groups (see also Muthen 
1991). This type of modeling can take into account correlations 
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across observations that result from clustering, extending the vari- 
ance component approach to multivariate response models with la- 
tent variables. As pointed out in Muthen (1990), such an analysis 
appears to be computationally feasible, but to date the statistical 
developments have been very limited and no general software has 
been developed. Muthen (1994a) discusses multilevel covariance 
structure approaches using conventional structural equation model- 
ing software, and gives an overview of work to date. Multivariate 
approaches will be further discussed in the following sections. 

3. CONVENTIONAL STRUCTURAL EQUATION 
MODELS AND METHODOLOGY 

In this section, standard approaches to structural equation modeling 
are described. This includes model specification, estimation schemes, 
standard errors of estimates, and goodness-of-fit statistics. 

The statistical methodology outlined in this section provides 
a general framework which accommodates both aggregated and dis- 
aggregated modeling. Aggregated modeling may involve analysis of 
heterogeneous populations (e.g. see Muthen, 1989a) and issues re- 
lated to this will be discussed below. The proposed methodology for 
calculation of standard errors and test statistics takes into account 
not only complex sampling but also nonnormality of variables. For 
this reason, the methodology is also preferable for simple random 
samples. First, the general model is described. This is followed by a 
discussion of estimation and testing under simple random sampling, 
assuming that observations are independently and identically distrib- 
uted (iid). 

3.1. The model 

Consider a p-dimensional vector of observed variables Yi and an 
m-dimensional vector of latent variables r7i for observation unit i. 
Assume that for a certain population the following structural equa- 
tion model holds: 

Yi = v + Ari + Ei, (1) 

rli = a + B li + i, 
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where v is a p x 1 measurement intercept vector, A is a p x m matrix 
of measurement slopes, e is a p x 1 measurement error residual 
vector, a is an m x 1 vector of structural intercepts, B is an m x m 
matrix of structural regression slopes with zero diagonal elements 
such that (I - B) is not singular, and ; is an m x 1 vector of structural 
residuals. Equation (1) specifies the measurement part of the model 
and (2) specifies the structural regression part. For the special case of 
v = 0, A = I, and e = 0, a regression model is obtained, with 
coefficients estimated in B. For the special case of a = 0 and B = 0, a 
factor analysis model is obtained with factor loadings estimated in A. 
The covariance structure for (1) and (2) covers essentially all struc- 
tural equation models presented to date. For simplicity, mean struc- 
ture models and multiple-group analyses will not be discussed here, 
but all techniques are directly generalizable to these situations (e.g., 
see Muthen 1983, 1984, 1987). 

With usual assumptions, the covariance matrix of y is 

= A(I - B)-'I(I - B)-'A' + 0, (3) 

where t is the m x m covariance matrix of ; and 0 is the p x p 
covariance matrix of e. The covariance structure model parameters 
are contained in the arrays A, B, t and 0. Let these parameters be 
assembled in the q x 1 parameter vector K. The model structure may 
then be expressed as X(K). In conventional structural equation model- 
ing, K is estimated by fitting l(K) to S, the covariance matrix for a 

sample of n observations on y. 

3.2. Estimation and Testing Under Iid Assumptions 

This section discusses inferential procedures that involve not only 
normal variables but also nonnormal variables. The distributions of 
the variables measured in surveys are frequently very skewed be- 
cause they measure behaviors in which only a minority of the popula- 
tion is engaged. Moreover, from a statistical point of view, we show 
that techniques for nonnormal data are special cases of techniques 
for complex sample data. 

Under the conventional assumption of iid, and normally dis- 
tributed observations on y, the sample covariance matrix S contains 
the sufficient statistics for estimating K. In this case, two common 
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fitting functions are normal theory maximum likelihood (NTML) 
and normal theory GLS (NTGLS), 

FNTML = In I + trace (,1S-) - In I S I -p (4) 

FNTGLS = trace[( - S)S-1]2. (5) 

The expression for FNTGLS is a special case of the general weighted 
least squares fitting function 

FWLS = (s - )'W-1(s - ,) (6) 

where s and a- refer to the p* = (p(p + 1)/2)-dimensional vectors of 
distinct elements of S and X, respectively. If in (6), W is taken as a 
consistent estimate of the asymptotic covariance matrix of s, then 
FWLS is known as a generalized least-squares estimator or minimum 

chi-square analysis (Ferguson 1958; Fuller 1987, sect. 4.2; see also 
Satorra 1992). In the special case where y is multivariate normal, the 
asymptotic covariance matrix of s has a particularly simple structure, 
depending only on second-order moments, 

WNT = 2D +(L (S )D+', (7) 

where D+ is an "elimination" matrix (see Magnus and Neudecker 
1988) and ? denotes the Kronecker product. A consistent estimator 
of (7) is obtained by replacing , with S. The use of WNT in (6) leads to 
(5) (e.g., see Satorra 1992). 

For arbitrary distributions, the asymptotic covariance matrix 
of s-say r-has elements 

Yijkl 
= 

O'ijkl 
- 

o'ijo'kl (8) 

(e.g., see Browne 1982), when these moments exist. Define the p*- 
dimensional data vector di for observation i, 

(Yil 
- 

)(yil 
- 

y1) 
(Yi2 - Y2)(Yil - Y1) 

di-- (Yi2 - Y2)(Yi2 - Y2) (9) 

(Yip - Yp)(Yip - Yp)i 

where Yiv is the ith observation on variable v(v = 1, 2, . . . , p) and Yv 
is the corresponding mean. For sample size n, we thus have 
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(n - 1)- di = s (10) 
i=1 

A consistent estimator of F is obtained as the sample covari- 
ance matrix of the di involving fourth-order moments (e.g., see 
Browne 1982, 1984; Chamberlain 1982; see also Satorra 1992) 

F (n - 1)1 (di - d)(di - d)' (11) 
i 

Taking F as W in the weighted least squares fitting function of (6) 
gives the asymptotically distribution free (ADF) estimator proposed 
by Browne (1982) for covariance structure analysis of nonnormal 
continuous variables. 

Consider now standard errors of parameter estimates and 
tests of model fit. Define the p* x q matrix of derivatives 

A = ao(K)/IK. (12) 

Estimating K with the weighted least squares fitting function of (6), it 
is well-known that a Taylor expansion gives the asymptotic covari- 
ance matrix 

acov(iK) = n-l(A 'W-lA) 'W-1WlA(A'WA1)-1 (13) 

(e.g., see Ferguson 1958; Browne 1984; Fuller 1987; and Satorra 
1992). When W = F, the above asymptotic variance matrix simpli- 
fies to 

acov(K) = n-1(A'W-A)-1 (14) 

Expression (14) is commonly used for both NTGLS and ADF. The 
same expression can be shown to hold for NTML (e.g., Satorra 
1989). The above variance matrices can be consistently estimated 
by evaluating A = A(K) at KZ and replacing F by its consistent esti- 
mate (11). 

The expression in (13) shows that W need not be the same as 
F. For example, W may be calculated via the computationally simple 
normal theory expression in (7) to give normal theory parameter 
estimates. Using the general F expression of (11) in (13) provides a 
proper covariance matrix for these estimates even under nonnor- 
mality. Such an approach is strongly preferable to ADF from a com- 
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putational point of view when the number of variables is large. When 
obtaining standard errors via (13), the large matrix F need not be 
inverted. In contrast, in the ADF approach F must be inverted even 
if standard errors are not required (see [6] and [14]). 

Under normal theory, the conventional model test of fit of Ho 
against an unrestricted covariance matrix is obtained as the likeli- 
hood ratio statistic nF, where F = F(K) is the value of the fitting 
function ([4] or [5]) at its maximum. For (6) a corresponding Wald 
statistic is obtained. This quantity is distributed as chi-square with p* 
- q degrees of freedom. Relaxing the restriction of normality, 
Browne (1984) gave a more general expression for a chi-square 
goodness-of-fit test. Consider the following quadratic form on the 
residuals (Browne 1984; Satorra and Bentler 1990, 1994; Satorra, 
1990, 1992): 

nT= (s - )' A(s - () (15) 

where 6- = o~(K) and A is a consistent estimator of 

W - WA(A'WA)-A'W = Al(I'W-Al)-1Al', (16) 

where Al is an orthogonal complement of A. 
Robustness to nonnormality is obtained by using W = F-1 of 

(11). Satorra (1989) shows that this also holds when the optimum of 
F is obtained via NTML. A simpler, mean-corrected expression is 
the scaled chi-square, nFa&, where 

a = trace[(W - WA('WAA)-1'W)^]/r, (17) 

where r is the degrees of freedom of the model. The above scale- 
corrected chi-square statistic was introduced into covariance struc- 
ture analysis by Satorra and Bentler (1988) (see also Satorra 1992 
and Satorra and Bentler 1994). A mean- and variance-corrected chi- 
square may also be computed (e.g., see Satterthwaite 1941; Satorra 
and Bentler 1994). 

To summarize this subsection on conventional estimation and 
testing, we distinguish three approaches to analysis. First, under 
normal theory analysis, parameter estimates are obtained using the 
NTML or NTGLS fitting functions, and standard errors and the chi- 
square test of model fit are computed using the conventional formu- 
las of (14) and nF. In ADF analysis, parameters are estimated using 
the weighted least squares fitting function of (6), setting W to the 
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ADF-type F of (11), standard errors are computed via (14), and a 
chi-square model test is obtained as nF. With robust normal theory 
analysis, parameter estimates are obtained by the NTML or NTGLS 
estimators. Using the normal theory W and the ADF-type F, stan- 
dard errors are computed via (13), and the chi-square test of model 
fit is computed either as the residual chi-square of (15), or as the 
scaled chi-square of (17). 

Muthen and Kaplan (1985, 1992) carried out Monte Carlo 
studies of normal theory analysis and ADF analysis using factor 
analysis on nonnormal data. They found that normal theory analysis 
gave good inferences for small models (around five variables), but 
inflated chi-square values and a downward bias in standard errors for 
larger models (ten or more variables). ADF analysis gave good stan- 
dard errors and chi-square tests for small models and large samples 
(of at least size 1,000), while larger models did not show good re- 
sults. Larger models produced inflated chi-square values and a down- 
ward bias in standard errors that was comparable to or worse than 
that of normal theory analysis. Apparently the asymptotic properties 
of ADF are not realized for the type of models and the finite sample 
sizes often used in practice. The method is also computationally 
demanding when there are many variables. This means that while 
ADF analysis may be theoretically optimal, it is not a practical 
method. Robust normal theory analysis appears to be an attractive 
alternative. To date, however, there is very limited experience with 
this approach. Muthen and Kaplan (1985, 1992) showed that normal 
theory estimates usually show very little bias even under non- 
normality. A few studies with small models have recently reported 
promising results with regard to the robust standard errors and ro- 
bust chi-square for nonnormal data (e.g., see Satorra and Bentler 
1994; Chou, Bentler, and Satorra 1989; Satorra 1990), but nothing 
has been reported for models of realistic size. Robust normal theory 
analysis appears to warrant further study, and this will be carried out 
here in connection with complex sampling. 

4. COVARIANCE STRUCTURE ANALYSIS FOR COMPLEX 
SAMPLES: AGGREGATED APPROACH 

Consider now a sample of observations on y obtained under complex 
sampling. In this case iid observations cannot be assumed. As a 
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typical example, consider the data structure of the NHIS88, which in 
an idealized version can be described as follows: there are observa- 
tions on a vector Yijkl, where i = 1, 2, . . refers to strata; j = 1, 
2, . . . , J refers to PSUs; k = 1, 2, . . ., K refers to segments; and 1 
= 1, 2, . . . , L refers to households (with a single person observed 

per household). In this section, aggregated modeling will be consid- 
ered; this is followed by disaggregated modeling in Section 5. 

4.1. Aggregated Modeling 

Aggregated structural equation modeling analysis refers to analysis 
of the conventional E = E(K) covariance structure model of (3). The 
inference procedures related to nonnormality that were discussed in 
the previous section also provide a useful basis for complex sample 
analysis. In particular, we propose that robust normal theory analysis 
can be generalized to complex samples. A consistent estimator of the 
F matrix can be formulated for complex sampling situations, and the 
use of this F estimator provides standard errors and chi-square tests 
of model fit that are robust not only to complex samples but also to 
nonnormality of the variables. We will first consider the estimation of 
F under a relatively simple complex sampling design and then intro- 
duce further complexities. The basic idea for estimating F is a classic 
and simple one that may be summarized as follows. When estimating 
a mean say, from complex sampling the mean estimate can be ob- 
tained as a linear combination of cluster means. If the clusters are 
independently sampled, the variance of the cluster means can be 
calculated using SRS formulas and applied to the sample mean. The 
structure of the sample below the cluster level need not be known. 

Due to unequal selection probabilities and clustering, the r 
estimator of (11) is no longer consistent under complex sampling. 
Surveys provide weights corresponding to the inverse of the probabil- 
ity that a person or household is sampled. This probability is calcu- 
lated as the product of conditional probabilities of selection at each 

stage of sampling. Usually, nonresponse, first-stage ratio adjust- 
ments, and poststratification ratio adjustments are also factored into 
the weights. In national samples, such inflation weights are used in 
Horvitz-Thompson type estimators such that the sum of the weighted 
sample observations provides an unbiased estimator of the popula- 
tion total. Equal weighting of the observations would bias the esti- 
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mate of the total because of such factors as oversampling of certain 
subpopulations. 

In line with (9), we define instead a weighted p* x 1 data 
vector dij for stratum i and PSU j, using weights wijkl corresponding to 
the inverse selection probabilities, 

(Yijkll 
- 

Y)(Y ijkll -Y1) 
K L (Yijkl2- Y2)(Yijkll -Y1) 

di = E Wijkl (Yikl2 - Y2)(Yijk 
- Y2) (18) 

k=l 1=1 

\ (Yijklp-Yp)(Yijklp Yp) I 

where the y variables refer to the elements of the p-dimensional 
weighted mean vector, 

I J K L 

y - iE EI WijkYijkl' (19) 
i=1 j=l k=l 1=1 

and n is taken to be the sum of the weights instead of the total 
number of observations. The reduced vector of sample covariance 
matrix elements for the whole sample, taking weights into account, is 

I J 

ST=nl dij, (20) 
i=1 j=1 

where ST denotes the p* x 1 vector of distinct elements of the 
weighted (total) sample covariance matrix S. For stratum i, consider 
the mean vector, 

di = J-lj di. (21) 
j=1 

Assuming that samples selected within different strata are indepen- 
dent and that the dij variables are iid within strata, 

var(sT) = n-2 Jvar(dij), (22) 
i=1 

where an unbiased and consistent estimator of var(dij) is obtained as 

var(dij) = (J - 1)-1(di - di)(di - di)'. (23) 
j=1 
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The variance estimator defined by (22) and (23) is a special case of 
the "non-parametric" variance estimator of Skinner et al. (1989, pp. 
46-47) and the "random group estimator" of Wolter (1985, p. 33). It 
was recently proposed for covariance structure modeling in complex 
samples by Satorra (1990). The variance estimator gives an ADF- 
type r. This means that robust, or distribution-free, standard errors 
and chi-square tests of model fit can be obtained with normal theory 
estimates in the way described in the previous section, providing a 
robust normal theory analysis suitable for complex samples. The 
great advantage of this estimator is that details of the sampling within 
PSUs need not be taken into account, because of the aggregation to 
the PSU level in (18). In terms of the introductory literature over- 
view, this approach to estimating standard errors and computing chi- 
square may be characterized as a Taylor linearization method. The 
approach is general in that it can be used for parameters of any 
model that fits into the structural equation modeling framework. 

Consider now some complications in the use of this estimator 
of r. It is clear from (23) that at least two PSUs per stratum need to 
be available. If some strata have only one PSU, as is the case with 
"self-representing" strata, such strata may be combined or split into 
random parts. Alternatively, second-level cluster variables, such as 
NHIS segments, may be redefined as PSUs (Parsons 1990). 

The assumption that the dij variables are iid within strata is 
reasonable if PSUs are selected with replacement within each stra- 
tum with constant probability (WR sampling). This assumption is 
violated, however, when PSUs are selected as in the NHIS, using 
PSU selection without replacement with unequal probabilities pro- 
portional to size (UNEQWOR sampling). Parsons, Chan, and Cur- 
tin (1990), using NHIS data, compared the estimates of standard 
errors for totals and means obtained using WR and UNEQWOR 
procedures. They found that the WR approach overestimated the 
standard errors for means and proportions by up to 20 percent in 
some cases, although the bias was typically less than 10 percent. For 
totals the overestimation was considerably more severe. The issue of 
how to properly take ratio-adjustments in poststratification into ac- 
count was discussed in Parsons and Casady (1986) and Parsons et al. 

(1990). Their results suggest that ignoring the effects of poststrati- 
fication on variance estimation may not be serious. 

Consider the estimation of F with sampling of PSUs within 
strata without replacement and with unequal probabilities propor- 
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tional to size (UNEQWOR). Since the UNEQWOR feature is in- 
volved in the NHIS, as well as many other surveys, this case deserves 
special attention. Let rij denote the probability of selecting PSU j in 
stratum i and let 7rij' denote the joint probability of selecting PSUs j 
and j'. Assume that mi0 second-stage units are selected without re- 
placement from each PSU, with Mij population units available. Using 
notation similar to that of (18), define the data vector dijkl, where the 
last two indices refer to the second stage units, 

(Yijkll -Yl)(Yijkll- Y1) 

(Yijkl2 
- 

Y2)(Yijk1 
- ) 

dijkl Wijkl (Yijkl2 
- 

2)(Yijkl2 
- Y2) (24) 

\(Yijkp Yp)(Yijklp Yp) / 

and consider the variance of 

I J K L 

ST= Zn E dijkl (25) 
i=1 j=l k=l 1=1 

Drawing on standard sampling theory using the Yates-Grundy estima- 
tor (e.g., see Cochran, 1977, p. 301; Wolter 1985, p. 15; Shah, et al. 
1989, p. A-7), we obtain the variance estimator in the multivariate 
case, 

I J J 

var(sT) = n2 wijj,(dij - dij)(dij- dij) 

i=1 Mi 
+ E r11m11(1- - )SoI], (26) 

where 

d,i is defined as in (18), 

Sij = (mij 
- 1)-1 (dijkl- dij.)(dijkl- dij.)t (28) 

j=1 

and 

K L 

di = (mo)-'1 dijkl (29) 
k=l 1=1 
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This UNEQWOR variance formula may be further refined to better 
take into account the features of a particular application. For exam- 
ple, the NHIS involves both self-representing strata (in which a single 
PSU is selected with certainty) and non-self-representing strata (in 
which two PSUs are selected UNEQWOR). It also has three sub- 
strata within PSUs, as indicated in the introduction. For this situation 
Parsons and Casady (1986), and Massey et al. (1989) suggested a 
variance estimator similar to (26) with Sij instead defined as a within 
substratum variance estimator. Non-self-representing strata contrib- 
ute terms as in (26), while self-representing strata contribute only 
within-substratum variance terms (see Massey et al. 1989, pp. 31-32). 

4.2. Correlation Structure Analysis with Dichotomous Variables 

This section presents a counterpart to robust normal theory analysis 
that extends robust standard errors and chi-square tests of model fit 
to analysis of statistics other than the sample covariance matrix S for 
continuous variables (this discussion draws on Muth6n 1992; see also 
Muthen 1993). For example, Muthen (1989b) proposed the use of 
tetrachoric correlations in the factor analysis of binary items. In 
Muthen (1978, 1984) a weighted least squares procedure was pro- 
posed for the estimation and calculation of standard errors and chi- 
square test of model fit. An estimated matrix F was computed as a 
consistent estimate of the asymptotic covariance matrix of the sam- 
ple tetrachoric correlations (see Muthen 1978). In this way, the 
Muthen (1978) estimator is analogous to the ADF estimator for 
continuous variables. In practice it suffers from the same type of 
computational and statistical limitations for large models as ADF 
does. The approach presented here avoids these limitations. 

In the dichotomous case, correlations are analyzed and there 
is no issue of scale dependency. Because of this, a simple analogue to 
robust normal theory analysis for continuous variables would be to 
obtain model parameter estimates by unweighted least squares, us- 

ing W = I, the identity matrix, in (13), (14), and (17). Alternatively, 
for correlations with widely differing variability, we may use a W with 
standard deviations of the estimated correlations as diagonal ele- 
ments and zeros elsewhere. It remains to determine a proper estima- 
tor of F. 

Assuming underlying multivariate normality for a set of di- 
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chotomous variables y, Muthen (1978) considered the [p + p(p - 1)/ 
2]-dimensional sample vector t of z values (thresholds) for each 
variable and tetrachoric correlations for each pair of variables created 
from the vector of univariate and bivariate proportions u. Asymptoti- 
cally, the covariance matrix of t can be expressed as a function of the 
covariance matrix of u, as follows, 

var(t)= [- ]-var(u)[ -]'1, (30) 
api dp' 

where p is the population vector of thresholds and tetrachoric correla- 
tions and Xr is the population vector of unvariate and bivariate proba- 
bilities. Muthen (1978) obtained an ADF-like weighted least squares 
analysis using a consistent estimator of var(t) under iid as F. 

Consider now the computation of F for analysis of tetrachoric 
correlations under complex sampling. This development will be lim- 
ited to the case of WR sampling in line with (18)-(23). Using a p- 
dimensional observation vector Yijkl of Os and ls, consider the [p + 
p(p - 1)/2]-dimensional data vector dij, 

Yijkll 

Yijklp 

d K1 = 

L 
Yijkl2Yijkll di = i i wijkl (31) 

k=1 1=1 Yijk3Yijkll 

Yijkl3Yijkl2 

YijklpYijklp -l 

so that the vector of univariate and bivariate proportions may be 
expressed as 

u = n-1l dij (32) 
i=1 j=1 

Using the conventional estimator of var(dij) given in (23), the vari- 
ance estimator for t is then obtained in line with (22) and (30) by 
inserting estimated parameters into the expression 

a7var( = n r Jv1. (3 
var(t) = n2[-J( var(d.) ]L (33) 

ap' =1 Op' 
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This new approach to the analysis of tetrachoric correlations prom- 
ises to provide a computationally efficient way of obtaining complex- 
sample-robust standard errors and chi-square tests of model fit. It is 
clear that the approach is directly generalizable to ordered categori- 
cal data in line with Muthen (1984). 

5. DISAGGREGATED MODELING 

As described in the literature review, disaggregated modeling ap- 
proaches attempt to take the sample design into account in the 
model. Variance component models for clustered data are a typical 
example. Consider the same prototypical example as before, assum- 
ing observations on a p-dimensional vector Yijkl, where i = 1, 2, . . . 
I refers to strata; j = 1, 2, . . . , J refers to PSUs; k = 1, 2, . . . , K 
refers to segments; and 1 = 1, 2, . . . , L refers to households (with a 

single person observed per household). As a starting point, consider 
the simple mixed model 

Yijkl 
= A + ai + bij + Cijk + dijkl, (34) 

where u, is a vector of overall means; ai is a vector of fixed, stratum- 
specific effects; and b, c, d are uncorrelated vectors of random ef- 
fects corresponding to the PSU, segment and household levels of 
nesting, having zero means and covariance matrices to be estimated. 
The task of aggregated modeling may be viewed simply as that of 
obtaining proper estimates of ,, the ais and their standard errors, 
taking account of differences across PSUs and segments, which are 
random given the cluster sampling. Disaggregated modeling, how- 
ever, places special emphasis on estimating and comparing the com- 
ponents of variation at the various levels of the data hierarchy. The 
individual-level variation can be compared to the variation due to 

segments and PSUs. This individual-level variation may be viewed as 
disaggregated, purged of the sociodemographic differences that are 
involved in segment and PSU variation. In this way, the disaggrega- 
ted variance component approach has a higher level of ambition than 
aggregated modeling. 

The sizes of the PSU and segment variance components influ- 
ence the sizes of the PSU and segment intraclass correlations (icc's; 
e.g., see Koch 1983; Skinner et al. 1989), taken as the ratio of between 
cluster variance to total variance. The intraclass correlation measures 
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the degree of similarity within the same cluster. The larger the in- 
traclass correlation, the larger the deviation from the assumption of 
independence between observations and the larger the distortion of 
conventional iid-based inference procedures. This distortion is usually 
expressed as the design effect (deff). For a univariate mean estimator 
K and single-stage cluster sampling, with clusters of equal size, 

varc(K) deff = = 1 + (c - )p, (35) 
varSRS(K) 

where varC denotes the (correct) variance under cluster sampling, 
varSRS denotes the variance assuming simple random sampling, c is 
the common cluster size, and p is the icc (e.g., see Cochran 1977, pp. 
240-42; Skinner et al. 1989, ch. 2). 

A similar formula was obtained by Scott and Holt (1982) for 
a linear regression slope with a single explanatory variable x. Using 
the Fuller and Battese (1973) regression model with a clustered 
residual structure, they found the following approximation to the 
design effect: 

varc 
- 1 + (c - l)ppx, (36) 

varSRS 

where p, and Px are the iccs for the regression residual E and the x 
variable, respectively. Comparing (35) and (36) gives an explanation 
for the commonly observed phenomenon that deffs are larger for 
means than for regression coefficients (e.g., see Skinner et al. 1989, 
p. 68). 

Standard errors of conventional (SRS) analysis are underesti- 
mated as soon as positive iccs are observed. Cluster size is an impor- 
tant factor as well. For example, the NHIS has an average of six 
households per segment, so by (36) a segment icc for E of 0.1 to- 
gether with an icc for x of 0.2 would result in a deff of only 1.1. This 
means that the standard error from a conventional analysis underesti- 
mates the true value by only 5 percent. On the other hand, the PSU 
cluster size is on average in 240 the NHIS. With PSU icc values of the 
same magnitudes, this would give a deff of 5.8 and an underestima- 
tion of the standard error by about 58 percent. Design effects for 
multivariate analysis are given in Skinner et al. (1989, pp. 43-44), 
where it is noted that these have a direct influence on model testing 
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by the Wald statistic under iid. Much more, however, needs to be 
known about design effects in multivariate analyses. 

Extensions of covariance structure modeling to clustered data 
have recently emerged. Multivariate variance component analysis 
analogous to (34), but with latent variable structures for the random 
effects, has been proposed by Goldstein and McDonald (1988), Mc- 
Donald and Goldstein (1989), Lee (1990), Longford and Muthen 
(1990), Muthen and Satorra (1989), and Muthen (1990, 1991). These 
developments concern ML estimation under the assumption of multi- 
variate normality. Since variables from different levels of clustering 
may be entered into the analysis, these approaches are also termed 
multilevel techniques. These approaches are highly relevant to the 
model-based analyses of disaggregated models envisioned in this 
chapter. 

Consider the special case of factor analysis in (1), where B = 0 
and assume for simplicity that the sampling design is single-stage 
cluster sampling. Let g = 1, 2, . . ., G denote the clusters and i = 1, 
2, . . ., ng denote the individual observations within clusters, where 
the ng are the varying cluster sizes. Assume the multilevel factor 
model 

Ygi = v 
+ Ag + Ai 

+ Eg + Egi , (37) 

var(ygi) = ET = ;B + 1W, (38) 

EB -= ATBAB + OB, (39) 

Ew = AwIwAw' + 0w, (40) 

where the subscript B stands for across-cluster variation and the 
subscript W stands for within-cluster variation. Muthen (1991) stud- 
ied an application of this model where g and i represented eighth- 
grade classrooms and students in U.S. schools, respectively, and the 
vector y contained mathematics achievement test scores. Math abil- 
ity, as represented by r7, can be divided into a class and student 
component. Between-class variation is largely due to tracking into 
classes based on previous math performance, and different curricular 
emphases following this tracking. 

In this context it is interesting to contrast aggregated and disag- 
gregated modeling. Note that if AB = Aw = A, it follows that 

ET = A TA' + OT, 
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where VT and 0T are sums of the corresponding between- and within- 
parameter matrices. This shows that a factor model holds true also 
for YT. It has the same number of factors and the same loading 
pattern as on the within (and between) level. The multilevel analysis 
estimates the factor and residual covariance matrices V and 0 for 
both the between and within level. A conventional, aggregated, 
analysis of ET estimates the sum of the between and within matrices. 
The conclusions drawn may differ substantially. For example, Mu- 
then (1991) considered an example with equal Ew matrices within a 
set of mathematics classes that varied considerably in class means. 
Reliability of variables estimated from the factor model was consider- 
ably smaller using the disaggregated, multilevel model than the con- 
ventional, aggregated model. 

It can be argued that the inference should concern the within 
parameters in Vw and 0w and not the (total) parameters in VT and 
OT. Studying the within parameters is a way of disentangling hetero- 
geneous subpopulations (see also Muthen 1989a). For example, in 
terms of the Muthen (1991) analysis of math achievement, the regres- 
sion coefficient (factor loading) for each observed achievement score 
regressed on the factor is taken to be the same in each of the class- 
rooms, but the intercepts vary over classrooms. In this application, 
the classrooms vary greatly in terms of their factor values due to 
selection of students into eighth-grade math classes and the inter- 
cepts increase with rising factor values due to greater opportunities 
for learning in the more advanced classes. Given this, the within- 
class regressions have a flatter slope than the overall regression 
where classroom is ignored. The reliability estimates from the overall 
analysis are then inflated in the sense that they are not valid for any 
of the classrooms while the within-class estimates are valid in this 
sense. In addition, the between-class (co- ) variation of math scores 
obtained in such a disaggregated analysis informs about the nature of 
the heterogeneity among the classes. 

On the other hand, interest may instead focus on a model that 
is not conditional on design features. The particular mix of sub- 
populations seen in the total population might be of primary interest. 
In this case VT and OT would seem to be the appropriate parameters 
for the inference and an aggregated model estimated via ST, as in a 
conventional analysis, would be appropriate. Note, however, that 
models that hold true in subpopulations do not necessarily hold true 
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in the total population (cf. Muthen 1989a), even when they have the 
same factor pattern. In terms of the math achievement example, it 
can be argued that the reliability estimates are not intended for 
assessing reliability within a given classroom but in an overall sense 
for the total population of students. 

Following Muthen (1990), ML estimation of the disaggregated 
model under normality may be briefly described as follows. Assume 
independent observations g = 1, 2, ..., G on the data vector, 

dg' = (Ygl,Yg2, . ,Ygng ), (42) 
where each ygi is of length p. Assuming equality of Ew across groups, 
the mean vector and covariance matrix of dg are 

=dg lfng ? Ly, (43) 

Edg = [Ing ? EW + lng lng 1' B], (44) 

where ( denotes the (right) Kronecker product, I denotes the iden- 
tity matrix, and 1 denotes a vector of unit elements. It may be shown 
(Muthen 1990) that the log likelihood can be expressed as 

G 

I{log I LB + ng1 w I +trace[(EB + ngl Ew)- (Yg - I)(yg - /)']} 
g=l 

+ (n - G)log I Ew I + (n - G)trace[EwlSpw], (45) 

where Spw is the regular pooled-within sample covariance matrix, 

G n 

SPW = (n 
- 

G)- E , (Ygi 
- 

g)(Ygi 
- 

Yg)'. (46) 
g=l i=l 

Note that the sample statistics involved in (45) include not only Spw 
but also the cluster means yg. The computations are considerably 
more involved than in conventional covariance structure modeling 
because there are G additional terms (see the first line of [45]). 

With an unrestricted mean vector , and equal cluster sizes nl, 
n2,., nG = c (balanced data), a greatly simplified expression is 

obtained, as (45) can be written as 

G{log I Ew + CEB I +trace[(1w + CB)-1SB] - log I S I -P} 

+ (n - G){log I Ew I +trace[Ew1] - log I Spw I -p}, (47) 

where SB is the between covariance matrix, 

G 

SB = (G - 1)-1lng(yg 
- 

y)(Yg 
- y)', (48) 

g=l 
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with y denoting the overall sample mean vector. 
It has been proposed by Muthen (1990, 1991) that the fitting 

function (47) be used in the general unbalanced case, terming this 
estimator MUML (Muthen's ML-based estimator) to contrast it with 
the full information ML (FIML) estimator obtained via (45). In the 
unbalanced case, c of (47) corresponds to an average-like cluster size 

G 
= [n2 - n2][n(G- 1)]1 (49) 

g=l 

Muthen (1989a, 1990) pointed out that MUML estimation can be 
carried out as a special case of ML analysis by conventional, 
multiple-group structural equation software. MUML is obviously 
identical to FIML for balanced data, in which case the particular 
multiple-group analysis by conventional software gives the correct 
standard errors and likelihood ratio chi-square test of model fit. 
MUML is still a consistent estimator with unbalanced data, but like 
several estimators discussed under design-based analysis, MUML is 
then a limited information moment-fitting estimator. Preliminary ex- 
perience with real and simulated data indicates that MUML estima- 
tion performs very well in the unbalanced case and gives estimates 
close to those of FIML (e.g., see Muthen 1994a). In this way, 
MUML provides a computationally feasible estimator of multilevel 
covariance structure models. The estimator can be generalized to 
multiple stages of clustering in a straightforward fashion. 

5.1. Disaggregated Analysis Under Nonnormality 

As mentioned in the introductory literature review, model-based, 
disaggregated analysis is sensitive to model misspecification. One 
important example of possible misspecification is when the normal 
density assumed in (45) is used with nonnormal data. Here, we will 
discuss briefly a very simple, but potentially quite useful, approach 
to disaggregated analysis under nonnormality. 

Current research (e.g., see Muthen 1991) suggests that conven- 
tional analysis of Spw in (46) for single-stage cluster sampling gives 
estimates of within parameters that are very close to those provided 
by FIML for the multilevel model. This is a reasonable expectation 
since Spw is an unbiased and consistent estimator of Sw (e.g., see 
Muthen 1990). Such an analysis provides estimates of the disaggrega- 
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ted within part of the multilevel model, while between parameters 
are not estimated. Given an interest in disaggregated modeling, one 
could argue that the within parameters are the most important ones 
of the multilevel model. 

Under normality and iid assumptions, the sample covariance 
matrix Spw follows a Wishart distribution with n - G degrees of 
freedom. Because of this, conventional normal theory analysis via 
(4) or (5) is appropriate. Consider now an analysis of Spw that is 
robust against both complex sampling and nonnormality of variables. 
To be comparable to the multilevel model discussion above, a single- 
stage cluster sampling procedure will be considered, with G clusters 
of size n1, n2, . . ., nG. We will term this robust normal theory analy- 
sis of Spw. The estimates are obtained using (4) or (5) on Spw. The 
robust standard errors and chi-square are obtained as follows. De- 
fine the data vector, 

/ \ 

(Ygil 
- 

Ygl)(Ygil --Y gl) 

G (Ygi2 - Yg2)(Ygil 
- 

Ygl) 
dg = ng (Ygi2 

- 
g2)(Ygi2 -Yg2) (50) 

(Ygip Y~ gp) (Ygip Y~ gp) 

so that the vector of distinct elements of Spw in (46) may be expressed 
as 

G 

w= (n - G)- dg. (51) 
g=l 

If independent observations in the clusters can be assumed, it follows 
in line with (23) that the covariance matrix can be consistently esti- 
mated as 

G 

var(pw) = (n 
- 

G)-2 G(G 
- 

1)- (dg - 
d)(dg 

- 
d)', (52) 

g=l 

where d is the mean of dg over the G observations. Robust standard 
errors and chi-square are then simply obtained as before via (13) and 
(15)-(17). This type of analysis can also be generalized to stratified 
multistage cluster-sampling designs. According to substantive consid- 
erations, a decision can be made about which sampling level should 
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be chosen for the pooled-within calculations in (50). A similar ap- 
proach to robust standard errors and chi-square testing may be at- 
tempted for the MUML estimator. 

5.2. Design-Robust Disaggregated Modeling 

The introductory literature review makes it clear that while model- 
based disaggregated modeling has much to offer in terms of efficient 
estimation, it also suffers from a lack of robustness to misspecifi- 
cation, due to such features as nonnormality and population hetero- 
geneity, among others. In the previous section, the case of Spw was 
used to illustrate a simple type of model-based complex sample 
analysis that was robust against nonnormality. It is also desirable, 
however, that any model-based analysis be robust against the com- 
plexities of the design. It is unlikely that exactly the same covariance 
structure model holds within different strata and clusters, as was 
assumed in the multilevel modeling described above. The full- 
population model is perhaps best characterized as a mixture model 
involving heterogeneous subpopulations. In this section, model- 
based analysis is combined with the design-based features of weight- 
ing and the use of design covariates to address this type of model 
misspecification. 

Ignoring unequal probability sampling may lead to incorrect 
inferences for the full population model. Taking the simple example 
of Spw analysis further, we may use design weights in the computation 
of dg in (50) to avoid biases related to unequal selection probabilities. 

Covariance structure modeling may also use design variables as 
covariates following ideas described by Pfeffermann and LaVange 
(1989) for regression models. They used information on homoge- 
neous clusters of households called enumeration districts, obtaining 
data characterizing the enumeration districts from the U.S. census, on 
variables such as median family income, proportion of nonwhites, 
poverty level, and urbanicity. In many applications it is reasonable to 
assume that model parameters vary as functions of such sociodemo- 
graphic variables. Muthen (1989a) considered related ideas in connect- 
ing conventional structural equation modeling to multilevel modeling 
(see also Skinner 1986). In the factor analysis framework, design vari- 
ables can be included as regressors in a MIMIC structural equation 
model (see Muthen 1989a), where the factors behind a set of response 
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variables are regressed onto the design variables. This provides a 
disaggregated model where the factor model is assumed to hold condi- 
tionally on the regressors, while unconditionally a simple factor model 
may not hold. In the MIMIC approach, the means can vary as func- 
tions of the regressors. Certain direct effects from the regressors to the 
response variables can also be identified and estimated, and such 
effects allow for variable-specific differences in means across the lev- 
els of the regressors (design variables). 

The multilevel model discussed earlier can also incorporate 
design variables. As an example, Muthen (1990) included class-level 
information on teaching activities in a model on student-level perfor- 
mance. Essentially, this is an empirical Bayes approach, where pa- 
rameters vary randomly across cluster units (e.g., see Muthen and 
Satorra, 1989). Covariance structure modeling that allows for varia- 
tion in level-related parameters such as means and intercepts is 
feasible by the FIML/MUML approach (Muthen 1990, 1991). More 
research, however, will be needed in order to handle more general 
parameter variation, such as that used for measurement slopes. 

6. MONTE CARLO EVALUATION OF ESTIMATORS 
FOR COMPLEX SAMPLES 

The performance of the complex-sample structural equation analyses 
proposed in the previous sections has not, with very few exceptions, 
been examined on real or simulated complex sample data. It is impor- 
tant to study the proposed methods under conditions comparable to 
those encountered with large-scale surveys to see if they are feasible 
for practical use. When this type of methods investigation has been 
carried out, it has relied on subsampling from real datasets. There 
have been relatively few Monte Carlo studies (e.g., see Rust 1985; 
Flyer, Rust, and Morganstein 1989). 

We sought to obtain a precise picture of the behavior of these 
estimators by choosing a model that is correct and varying its parame- 
ter values to study different population conditions. A Monte Carlo 
study was conducted to study the methods under such controlled 
settings. Data were generated according to a model with variance 
components corresponding to cluster levels. This data simulation 
scheme also enables a precise assessment of the multilevel, model- 
based approach. 
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Three methods will be studied for both regression and factor 
analysis models. First, normal theory estimation via the ML fitting 
function of (4) will be carried out, with calculation of standard errors 
and, for the factor analysis model, the chi-square test of model fit via 
conventional normal theory. This is the normal theory analysis re- 
ferred to earlier. For simplicity, this analysis approach will be called 
Method 1. Second, robust normal theory analysis will be carried out 
with ML estimation of parameters, and complex sample standard 
error and chi-square calculations via (13) and (17). This approach will 
be called Method 2. Finally, multilevel analysis will be carried out via 
FIML under normality assumptions. Since the data correspond to the 
balanced case, this means that the fitting function of (47) will be used 
with its normal theory standard errors and likelihood-ratio chi-square 
test of fit. This approach will be called Method 3. Note that Method 1 
and Method 2 estimate the aggregated model that holds for ET, while 
Method 3 estimates a disaggregated model with both between and 
within parameters. Method 1 ignores complex sampling, Method 2 
represents a design-based approach to standard errors and chi-square, 
while Method 3 represents a model-based approach. 

To mimic large-scale surveys, the Monte Carlo study needed 
to utilize larger models and larger and more complex datasets than 
are used in methods illustrations commonly seen in the structural 
equation modeling literature. To provide realistic values for the simu- 
lation parameters, the NLS, NHIS85, and NHIS88 datasets were 
investigated with respect to intraclass correlations (iccs). These ices 
were estimated by methods described in Muthen (1991). 

There are large variations in the size of intraclass correlations 
size across surveys due to what is being measured, how the clusters 
are formed, and the nature of the populations being studied. As an 
example, consider the school intraclass correlations for a set of attitu- 
dinal variables related to career interests, estimated from the base- 
year NLS data. For these high school seniors, the iccs ranged from 
0.00 to 0.03. Similarly, Muthen (1994b) found iccs ranging from 0.02 
to 0.06 for attitudes toward mathematics among U.S. seventh to 
tenth graders, in a survey where students were sampled within 
schools. In contrast to this, Muthen (1991) found class iccs of about 
0.5 with mathematics achievement for U.S. eighth graders and school 
iccs of about 0.15. 

Variations in the size of the ices are similarly wide in the 
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NHIS. To cover a range of survey applications, several different 
levels of iccs will be used in the Monte Carlo study, with particular 
emphasis on small iccs in situations with large cluster sizes. 

The Monte Carlo simulations were constructed using a simpli- 
fied version of the NHIS sampling scheme. Within each of a number 
of strata, two PSUs were selected iid. Within each PSU, a number of 
units were sampled iid. Balanced data with equal numbers of units 
within PSUs were then simulated. Equal probability sampling was 
performed throughout, so that sampling weights were one. The key 
complexity of the data occurs because of clustering. Effects of vari- 
ous sizes of intraclass correlations and cluster sizes are the main 
concern. Nonnormality of variables was, however, introduced to 
make the data more realistic. The data were generated in line with 
the model of (34), simplified as 

Yijk = bii + Cijk, (53) 

so that strata had equal means and there was no further nesting 
within PSUs. The study varied the sizes of intraclass correlations and 
clusters. The number of strata was also varied. Both normally and 
nonnormally distributed variables were considered. A regression 
model and a factor analysis model were studied. 

6.1. Data-Generation Models 

The data were generated according to regression and factor analysis 
models. In the regression case, a vector y of five observed variables 
was used. The first variable was taken as the dependent variable, 
while the remaining four were taken as regressors. In the factor 
analysis case, a vector y of ten observed variables was used. This is a 
large number of variables in covariance structure simulation con- 
texts. In real-data situations, ten variables may be considered a 
small- or medium-sized model. For each of the two model types, y is 
generated as a sum of two multivariate normal vector components, 
each with mean vector zero and its own covariance matrix. 

Let the term between (B) refer to the bii component and let 
within (W) refer to the cijk component. Different models are obtained 
by different choices of the covariance matrices ZB and 5w for the two 
component vectors. Given this data-generation scheme, the multi- 
level model given previously describes the data correctly and fully. 
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We may therefore discuss the two models in terms of the between 
and within parts of the multilevel model. The sum of the between 
covariance matrix EB and the within covariance matrix 2w will be 
referred to as the total covariance matrix, ET. The 2w and EB matrices 
will be chosen so that the models hold for 2T, Zw, and ZB, although 
not always with the same parameter values. This means that the 
model structure is correct in all cases considered. In the over- 
identified factor model, the chi-square variables therefore refer to 
central chi-square distributions. 

Regression Models. Denoting the dependent variable by y and the 
4 x 1 vector of regressors by x, the regression model used to gener- 
ate data may be written in multilevel terms as 

Ygi= a+ * (x + x) + E + E6, (54) 

where the asterisked x and e components are independent between 
and within components of the respective variable vector x and vari- 
able E. Note that this variance component model can be analyzed by 
the multilevel covariance structure methods presented earlier. Esti- 
mation of a is then ignored. The intraclass correlation is set at 0.4 for 
all x variables and at values of 0.05, 0.10, and 0.20 for e. The R2 value 
is set at 0.4 for ET. This is accomplished by assuming p coefficients of 
0.323 for all x variables, between and within correlations of 0.2 for all 
pairs of x variables, and between variances of 0.6 and within vari- 
ances of 0.4 for all x variables. For the E intraclass correlation (icc) of 
0.05, the between- and within-R2 values are 0.84 and 0.30, respec- 
tively. For the E icc of 0.10, the corresponding values are 0.73 and 
0.31. For the e icc of 0.20, the values are 0.57 and 0.33. 

Factor Analysis Models. The factor model used to generate the 
data may be written in terms of the multilevel model in (37), with 
between and within matrices given in (39) and (40), using AB = Aw = 
A and diagonal OB and 0w matrices. The total covariance matrix 2 is 
given as in (41). A two-factor model was chosen. The loading matrix 
A was taken to have a simple structure, with the first five variables 
loading only on the first factor and the last five variables only on the 
second factor. All loadings were taken to be one. The two factors are 
correlated. The correlation between the factors was set at 0.5 for 
between, within, and total. All ten observed variables were taken to 
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have the same intraclass correlation, which took on the values 0.05, 
0.10, and 0.20. The within parameters were held constant across icc 
values. All within residual variances were set at 4, within factor 
variances at 2, and the within factor covariance at 1. The variable- 
factor correlations were therefore all 0.58. For the icc of 0.05, all 
between residual variances were 0.25, between factor variances 
0.0658, and the between factor covariance 0.0329. The variable- 
factor correlations were all 0.42. For the icc of 0.10, all between 
residual variances were 0.5, between factor variances 0.167, and the 
between factor covariance 0.0835. The variable-factor correlations 
were all 0.50. For the icc of 0.20, all between residual variances were 
taken to be 1, between factor variances 0.5, and the between factor 
covariance 0.25. The variable-factor correlations were all 0.58. 

For the factor analyses, the metric of the factors was set by 
fixing a factor loading for each factor. In the multilevel model this 
was carried out on both levels. For the conventional factor model of 
Methods 1 and 2 which consider ET, the number of parameters is 21 
and the number of degrees of freedom is 34. For the multilevel factor 
model of Method 3, the number of parameters and degrees of free- 
dom is twice as large since there is a model for both EB and 2w. 

6.2. Nonnormality 

Nonnormality was introduced only into the factor analysis model. All 
ten of the simulated observed variables in the factor analysis model 
had five categories scored 0, 1, 2, 3, and 4 with category percentages 
3, 6, 13, 30, and 48. The resulting variable may be viewed as a very 
skewed Likert item of a sort commonly observed in real data. This 

strong nonnormality is common in many types of studies. By choos- 

ing the same cut points for all ten variables in the factor model, the 
factor model structure is preserved for the nonnormal data (cf. 
Muthen and Kaplan 1985), although the model will have different 

parameter values than in the normal case. 

6.3. Number of Strata and Cluster Sizes 

To approximate the size of the NHIS88 data, 100 strata with two 
PSUs per stratum were considered. With 240 units in each of the 200 
PSU clusters, 48,000 observations were obtained in all. This huge 
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sample size would correspond to the whole NHIS88 dataset. Often, 
however, subsamples of the data are analyzed: for example, we may 
study NHIS panels comprised of a quarter of the overall sample, or 
12,000 observations. We may interpret such subsamples as a design 
with a smaller cluster size within PSUs. Because the size of the PSU 
clusters will strongly affect the estimation, this factor was varied. For 
the regression model, PSU cluster sizes of 7, 15, 30, 60, 120, and 240 
were used. Since the factor model is computationally more cumber- 
some, only sizes 7, 15, 30, and 60 were studied there. 

The different cluster sizes may be taken to represent different 
survey situations. The size of 7 units may be viewed as representing 
the average number of households per segment in the NHIS88. Sizes 
15 and 30 may be taken as typical class sizes in educational applica- 
tions, and also represent the number of students sampled per school 
in the NLS. Sizes of 60 and above can be taken to represent NHIS88 
PSU sizes. The total number of clusters (PSUs) is likely to be a factor 
in how well the complex sample variance estimation procedures per- 
form. To represent other surveys with fewer strata, cases with 2 PSUs 
per each of 25 strata were also studied. 

6.4. Results of the Monto Carlo Study 

The presentation focuses on chi-square and standard errors, al- 
though results on parameter estimates will also be given for Method 
3 (multilevel analysis under normality) since little is known about 
this method. In structural equation modeling, correct estimation of 
chi-square is as important as correct estimation of standard errors. 
Demands for precise standard error estimation in structural models 
are probably less stringent than in typical survey analysis of means 
and totals. In line with this, the present report will not consider a 
bias in the standard error of less than 10 percent as practically 
significant. 

Results will be discussed for the regression model first, fol- 
lowed by the factor model. For the factor model, results for normal 
data will be presented first, followed by those for nonnormal data. 
Through most of the presentation, cases of 100 strata with 2 PSUs 
per stratum (200 PSUs in total) will be discussed, but at the end a few 
important cases with 25 strata and 2 PSUs (50 PSUs in total) will also 
be covered. With 100 strata the samples sizes for cluster sizes 7, 15, 
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30, 60, 120, 240 are 1,400, 3,000, 6,000, 12,000, 24,000, and 48,000, 
respectively. One thousand replications for each situation were used 

throughout the study. 
Tables 1 through 8 present the results of the Monte Carlo 

study. In these tables, the percentage bias in the estimated standard 
error of a parameter estimate is defined as 100(a-b)/b, where a is the 
mean of the estimated standard error over the 1,000 replications and 
b is the parameter estimate standard deviation over the 1,000 replica- 
tions. For the normal theory parameter estimation of Methods 1 and 

2, no results on bias in the estimation of parameters will be reported, 
since biases are in all cases negligible (see also Muthen and Kaplan 
1985, 1992). It should be noted that the three methods analyze ex- 

actly the same data for each situation studied. 

Regression Model. Table 1 shows the results for the standard error 
of the slope of the regression model with normal data. Method 1 

ignores the complex sampling features and as a result underestimates 
the standard error. As expected, the downward bias increases for 

increasing intraclass correlations and increasing cluster size. Note 
that even for the small icc of 0.05 the bias can get large with cluster 

TABLE 1 
Monte Carlo Summary for Regression Model with Normal Data 

(Standard Error Bias % for Slope) 

Residual Cluster Size 
Intraclass 

Correlation 7 15 30 60 120 240 

Method 1: Normal Theory Ignoring Complex Sampling 
0.05 -5 -13 -21 -33 -45 -58 
0.10 -10 -20 -32 -46 -58 -66 
0.20 -17 -31 -45 -58 -69 -78 

Method 2: Robust Normal Theory 
0.05 -0 -1 -2 -3 -1 -2 
0.10 -0 -1 -2 -2 -1 -2 
0.20 -1 -0 -2 -1 -0 -2 

Method 3: Multilevel Analysis Under Normality 
0.05 4 0 -2 0 0 -1 
0.10 3 0 -3 0 0 1 
0.20 2 0 -3 2 -2 -1 
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sizes above 30. For the smallest icc and cluster size combination, the 
bias can be considered negligible. 

Method 2 (robust normal theory) dramatically improves on 
the standard error performance, and in all cases the remaining slight 
negative bias is quite acceptable. Cluster size appears to have little 
influence. In this model, Method 3 (multilevel analysis under normal- 
ity) estimates the same slope parameter as Methods 1 and 2 and its 
standard error results are therefore directly comparable. Method 3 
imposes an equality constraint on the between and within slopes in 
line with the model used to generate the data. Method 3 also gives a 
quite satisfactory performance. Its performance appears slightly 
worse for the smallest cluster size of 7. Methods 2 and 3 appear to be 
unaffected by the icc value. 

Factor Analysis Model. The remainder of the results are related to 
the factor model. Table 2 gives the results of chi-square testing with 
normal data using Method 1 and Method 2. Four pieces of informa- 
tion are provided: the mean over 1,000 replications, the variance 
over 1000 replications, the reject proportion at an a level of 5 per- 
cent, and the reject proportion at an a level of 1 percent. Since the 
model has 34 degrees of freedom, the expected mean and variance of 
chi-square are 34 and 68, respectively. A key feature is the rejection 
rate at the common a level of 5 percent. With 1,000 replications, the 
95 percent prediction interval around the expected value of 5.0 is 3.6 
to 6.4. 

The Table 2 results for Method 1 show that the combination 
of the smallest icc with the smallest cluster size gives a distortion 
of the conventional chi-square small enough that we may neglect 
it. For larger values, however, the distortion is quite severe. For 
the small icc of 0.05, a severe distortion is obtained at cluster size 
60, a size often exceeded in large-scale surveys. For the smallest 
cluster size of 7, an icc exceeding 0.1 is needed to give a severe 
distortion. 

Consider next the Table 2 chi-square results for Method 2, 
where complex sampling is taken into account. In comparison to 
Method 1, a dramatic improvement has taken place. The scaled chi- 
square approach used with Method 2 appears to overcorrect slightly, 
but quite satisfactory results are obtained. This is a very encouraging 
result, particularly since the model is relatively large. 
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TABLE 2 
Monte Carlo Summary for Factor Model with Normal Data 

(Chi-Square Tests [34 d.f.] Method 1 and Method 2) 

Intraclass Cluster Size Intraclass 
Correlation 7 15 30 60 

Method 1: Normal Theory Ignoring Complex Sampling 
0.05 Chi-Square 

Mean 35 36 38 41 
Var 68 72 80 96 
5% 5.6 7.6 10.6 20.4 
1% 1.4 1.6 2.8 7.7 

0.10 Chi-Square 
Mean 36 40 46 58 
Var 75 89 117 189 
5% 8.5 16.0 37.6 73.6 
1% 1.0 5.2 17.6 52.1 

0.20 Chi-Square 
Mean 42 52 73 114 
Var 100 152 302 734 
5% 23.5 57.7 93.1 99.9 
1% 8.6 35.0 83.1 99.4 

Method 2: Robust Normal Theory Analysis 
0.05 Chi-Square 

Mean 33 33 33 32 
Var 62 61 61 59 
5% 3.6 3.5 3.2 2.8 
1% 0.8 0.8 0.4 0.3 

0.10 Chi-Square 
Mean 33 32 32 31 
Var 62 59 57 56 
5% 3.2 3.3 2.2 2.4 
1% 0.7 0.6 0.2 0.1 

0.20 Chi-Square 
Mean 32 32 31 31 
Var 60 56 55 55 
5% 2.8 2.6 1.7 2.0 
1% 0.5 0.4 0.3 0.4 

Table 3 gives the corresponding standard error biases for 
Method 1 and Method 2. Overall, the Method 1 distortions appear 
less dramatic than those for chi-square. The largest cluster size, how- 

ever, always yields an important distortion, as is also true for the 
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TABLE 3 
Monte Carlo Summary for Factor Model with Normal Data 

(Standard Error Bias % Method 1 and Method 2) 

?~ ~~~~~Intraclass ,Cluster Size 
Intraclass 

Correlation Parameter 7 15 30 60 

Method 1: Normal Theory Ignoring Complex Sampling 
0.05 A 1 -3 -1 -8 

0 -4 -4 -9 -12 
6I 1 -2 -2 -7 

0.10 A -1 -8 -10 -22 
0 -6 -9 -19 -26 

-1 -7 -10 -17 
0.20 A -9 -22 -31 -46 

0 -12 -22 -36 -47 
qf -9 -22 -31 -45 
Method 2: Robust Normal Theory Analysis 

0.05 A 1 -2 2 -2 
0 -3 -2 -5 -4 
I0 1 -0 1 -1 

0.10 A 1 -3 2 -2 
0 -3 -3 -7 -4 

A 11 -2 1 -1 
0.20 A 1 -3 0 -2 

0 -3 -4 -8 -5 
j 0 -3 1 0 

largest icc value. The biases for the icc of 0.05 are much smaller for 
the factor model than for the regression model, but the two are not 
directly comparable because the simulation for the regression case 
had a high intraclass correlation among the x variables. 

Consider next the standard error performance for Method 2. 
As for the regression model, a slight negative bias remains. The size 
of this bias, however, is negligible in all cases. Taken together with 
the chi-square results, we conclude that Method 2 performs very 
well. 

Tables 4 and 5 pertain to Method 3 and the use of the 
multilevel factor analysis model for the case of normal data. In this 
case, the set of parameters is different and direct comparisons with 
Methods 1 and 2 are not possible. Instead, Method 3 should be 
judged on its own merits. Since the factor analysis parameter estima- 
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TABLE 4 
Monte Carlo Summary for Factor Model with Normal Data (Parameter Esti- 

mate Bias % [First column] and Standard Error Bias % [Second column]; 
Method 3: Multilevel Analysis Under Normality) 

Intraclass Cluster Size 
Intraclass 

Correlation Parameter 7 15 30 60 

0.05 

AW 0 1 
0w -0 -5 
gtw 0 -1 
AB 4 -13 

OB -3 -17 

B 1 1 -18 
0.10 

Aw 0 2 0 0 
ow -0 -4 -0 -0 

2w 0 2 0 -1 
AB 6 -16 2 -8 

OB -2 -6 -2 -5 

OB 4 -4 6 -1 
0.20 Aw 0 -1 0 -2 0 2 0 1 

Ow -0 -1 -0 0 -0 -4 -0 -4 

iAw 0 -1 -0 2 -0 2 0 0 
AB 4 -11 3 -7 2 -5 0 -2 

OB -2 -4 -1 -5 -1 -5 -1 -4 

qfB 4 -5 4 -7 2 1 3 3 

tion in Method 3 is a quite recent development, results for parameter 
bias will be presented. To our knowledge, Method 3 factor analysis 
has not been studied at all in Monte Carlo studies and has had very 
little practical use to date. Convergence problems were frequently 
encountered in the simulations; for small icc values and small cluster 
sizes, we often obtained inadmissible negative estimates of the be- 
tween variance components. Although reparameterizations and re- 
stricted estimation are in principle possible, this was not carried out 
here. Instead, Tables 4 and 5 report only on cases with larger icc 
values and larger cluster sizes. 

Table 4 presents the Method 3 parameter and standard error 
biases for both within and between parameters in the case of normal 
data. The between parameters are the only ones that show parame- 
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TABLE 5 
Monte Carlo Summary for Factor Model with Normal Data (Method 3: 

Multilevel Analysis Under Normality Chi-Square Tests [68 d.f.]) 

,~~~~~Intraclass ,Cluster Size 
Intraclass 

Correlation 7 15 30 60 

0.05 

Chi-Square 
Mean 69 
Var 139 
5% 6.6 
1% 0.9 

0.10 

Chi-Square 
Mean 69 69 
Var 146 140 
5% 5.8 6.3 
1% 1.6 0.9 

0.20 

Chi-Square 
Mean 69 69 69 69 
Var 136 131 145 140 
5% 5.9 5.4 6.0 6.4 
1% 1.1 1.1 1.8 1.2 

ter bias. This is to be expected, since they draw on the scarcer infor- 
mation available on between-cluster variation. The zero parameter 
bias of the within parameter estimates is in line with the lack of large- 
sample bias in the estimates from Methods 1 and 2. The bias in the 
between parameters appears to be consistently positive for A and 4', 
while negative for 0. On the whole, however, the Method 3 parame- 
ter estimate bias is negligible. 

Table 4 also gives the Method 3 standard error results. Al- 
though the within parameters show negligible bias, the between pa- 
rameters have a nonnegligible negative bias for smaller icc values. 
For the icc value of 0.20, however, the results are quite acceptable. 

Table 5 gives the Method 3 chi-square results. Here, chi- 
square refers to the likehood-ratio chi-square under normality. Note 
that the number of degrees of freedom for the multilevel model is 68. 
It is seen that the Method 3 chi-square behavior is excellent. 

Tables 6 and 7 report on the case of nonnormal variables. For 
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TABLE 6 
Monte Carlo Summary for Factor Model with Nonnormal Data (Intraclass Cor- 

relation 0.10. Chi-Square Tests*) 

Cluster Size 

Chi-Square 7 15 30 60 

Method 1: Normal Theory Ignoring Complex Sampling 
Mean 40 43 47 55 
Var 94 101 125 182 
5% 17.6 25.4 39.7 64.8 
1% 6.7 9.9 19.4 42.8 

Method 2: Robust Normal Theory Analysis 
Mean 33 32 32 31 
Var 63 60 59 59 
5% 3.3 2.7 2.2 1.7 
1% 0.6 0.5 0.3 0.6 

Method 3: Multilevel Analysis Under Normality 
Mean 73 75 
Var 165 171 
5% 12.6 14.3 
1% 3.7 5.0 

*The degrees of freedom are 34 for methods 1 and 2 and 68 for method 3. 

TABLE 7 
Monte Carlo Summary for Factor Model Nonnormal Data 

(Intraclass Correlation 0.10. Standard Error Bias %) 

Cluster Size 

Parameter 7 15 30 60 

Method 1: Normal Theory Under Complex Sampling 
-12 -15 -19 
-21 -26 -35 
-12 -15 -21 

Method 2: Robust Normal Theory Analysis 
-1 -1 -0 
-1 0 -3 

1 0 -1 
Method 3: Multilevel Analysis Under Normality 

-12 
-29 
-13 

-26 
-10 
-10 

-28 
-42 
-29 

-2 
3 
1 

-19 
-36 
-20 

-10 
-9 
-6 
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simplicity, only the icc value of 0.10 will be used. To be precise, this 
icc value refers to the variables before categorization and will be 
somewhat different for the categorized variables. For example, in 
the case with the largest cluster size, the icc estimate for the catego- 
rized variables was 0.08. 

Table 6 gives the chi-square results for all three methods. As 

expected, Method 1 gives strongly inflated values. By contrast with 
Table 2, the inflation is still strong for the smallest cluster size of 7, 
reflecting the added effect of nonnormality. Method 2 works very well 
in the nonnormal case. It is of great practical significance that this way 
of taking the complex sample into account can also protect against 
distortions due to deviations from normality. Method 3 is not expected 
to work well under nonnormality since it builds on the normality 
assumption in deriving the likelihood-ratio chi-square test. It appears 
even more sensitive to deviations from normality than Method 1. 

Table 7 gives the standard error results for the nonnormal 
case, for all three methods. Methods 1 and 3 give severely biased 
results, while Method 2 again works well. Again, Method 3 was not 

expected to work well in this situation. 
In Table 8 the number of clusters (PSUs) has been reduced 

from 200 to 50. The aim was to study how well Method 2 works when 

TABLE 8 
Monte Carlo Summary for Factor Model 50 

PSUs with Normal Data (Method 2: Robust Normal 
Theory Analysis, Chi-Square Tests [34 d.f.]; 

and Standard Error Bias %) 

Cluster Size 

7 15 30 60 

Chi-Square 
Mean 34 33 33 32 
Var 63 65 69 60 
5% 4.7 3.8 3.6 2.3 
1% 0.5 0.9 0.9 0.3 

Standard Error Bias % 
A -4 -5 -0 2 
0 -4 -3 -7 -4 
1fr -7 -2 1 3 
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a smaller number of clusters is used to create the nonparametric 
variance estimator. In this case, normal variables are once again 
generated and an icc of 0.10 is used. The results are encouraging in 
that the behavior of both chi-square values and standard errors is still 
very good. 

6.5. Monte Carlo Conclusions 

The results of the Monte Carlo study are very enlightening. Both 
Methods 2 and 3 perform well. The poor performance of Method 1, 
which ignores the complex sample features, shows that complex sam- 
ple methods like Methods 2 and 3 are needed. Much more research 
about Methods 2 (robust normal theory analysis) and 3 (multilevel 
analysis under normality) remains to be conducted, on topics such as 
design features (unequal probability sampling, weighting, and unbal- 
anced data) and additional forms of statistical evaluation (such as 
coverage and power issues). The results so far are, however, very 
promising and provide a basis on which to develop further methods, 
including those discussed in the statistical methods section but not 
explored in the Monte Carlo study. Still more interesting statistical 
methods await development in the area of multivariate complex sam- 
ple analysis. 

Structural equation modeling using Method 2 promises to be a 
future standard for complex sample analysis and for the analysis of 
simple random samples. The simple and well-behaved normal theory 
estimates are used together with standard errors and chi-square com- 
puted via a nonparametric, or distribution-free variance estimator. 
This variance estimator is likely to perform well whenever there is a 
large enough number of clusters. This study suggests, however, that 
a number of clusters as small as 50 may be sufficient. Not only does 
this variance estimator protect against distortions due to complex 
sampling, but it also adjusts for deviations from normality in the 
variables. 

Although Method 2 addresses the estimation of the usual co- 
variance structure model for the whole population, Method 3 ad- 
dresses a less aggregated model. Method 3 uses a multilevel model 
with parameters for different levels of the sampling. The distinction 
between within- and between-cluster parameters may be particularly 
interesting in cases of naturally occurring clusters, such as schools 
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and classes. The method may, however, be viewed simply as a way to 
disentangle population heterogeneity and focus the analysis on the 
disaggregated within-cluster parameters, while the between parame- 
ters merely describe the sampling procedure. If the model is cor- 
rectly specified, this also provides a more efficient analysis than 
Method 2. The Monte Carlo study suggests that the Method 3 within 
parameters and their standard errors can be estimated very well for 
normally distributed variables. Much more research on statistical 
and computational matters is, however, warranted for these types of 
multilevel models. 

7. SUMMARY 

The statistical research of this study resulted in two potential solu- 
tions appropriate for analyzing complex sample data with covariance 
structure models. One is a general, aggregated, solution for handling 
complex sampling that is also robust against the nonnormal variable 
distributions that are often seen in survey data. The solution is gener- 
alizable to dichotomous and ordered categorical variables. Monte 
Carlo results suggest that this solution works well with both normal 
and nonnormal data, and also in situations with relatively few clus- 
ters and small cluster sizes. This solution can be used with many 
sampling designs and it improves analyses even under simple random 
sampling. 

The other, disaggregated, solution takes a different approach 
to handling problems of complex sampling. It describes features of the 
cluster sampling using variance component parameters. Its strength is 
that it provides a more detailed description of the population. The 
Monte Carlo study results suggest that this solution behaves well with 
normal data. The solution is sensitive to violations of normality; how- 
ever, this study suggests ways this solution might be made robust 
against nonnormality. 
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