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Complex Scaled Tangent Rotations (CSTAR) for Fast
Space–Time Adaptive Equalization of Wireless TDMA

Massimiliano (Max) Martone,Member, IEEE

Abstract—A new update algorithm for space–time equalization
of wireless time-division multiple access signals is presented. The
method is based on a modified QR factorization that reduces the
computational complexity of the traditional QR-decomposition
based recursive least squares method and maintains numerical
stability. Square roots operations are avoided due to the use of
an approximately orthogonal transformation, defined complex
scaled tangent rotation.

Index Terms—Adaptive equalizers, decision feedback equaliz-
ers, land–mobile radio cellular systems.

I. INTRODUCTION

T HE SPACE–TIME equalization concept was first pro-
posed in [1] and subsequently applied to wireless time-

division multiple access (TDMA) in [2] where it was con-
jectured the implicit optimality of the scheme. The use of
different feed forward filters at the antennas and one single
feedback filter was demonstrated to be effective because it was
able to simultaneously combat signal fading, intersymbol and
cochannel interference. The implementation of the joint update
requires special attention because low signal-to-noise ratio
and fast frequency selective fading channels result generally
in ill-conditioned adaption. Recursive least squares based on
QR decomposition [3] is a well-known and numerically well-
behaved method to perform the filters update. However, the
high computational complexity of the method has always been
considered a remarkable problem. We propose in this work a
new algorithm based on an approximated QR factorization
which improves in terms of computational efficiency over
existing schemes mainly because square roots operations are
avoided. The approach uses a generalization of the scaled
tangent rotation of [5] to update the Cholesky factor of the in-
formation matrix without needing to form it. The performance
of the method is compared to more traditional algorithms by
means of computer simulations in fixed point arithmetic for a
realistic scenario, as specified in the standard IS-136 [6], [7]
for cellular communications in the U.S.

II. SPACE–TIME QR-BASED MMSE EQUALIZATION

Consider a two-antenna receiver.1 At the th antenna
delayed and attenuated replicas of the signal are received
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1We treat here the two-antenna case because it is of high practical interest

although no particular problem is in the generalization of the method to more
than two antennas.

. The impulse response of the two multipath diversity
channels can be expressed as

, where and are
the delay, amplitude, and phase of theth path, respec-
tively, as received at theth antenna. The complex baseband
modulated signal is , where

are the complex symbols defining the
signal constellation used for the particular digital modulation
scheme.2 The filter is a square root raised cosine shaping
filter with rolloff factor equal to 0.35 and is the signaling
interval. The baseband signal received at theth antenna
is where

, is the carrier frequency,
and is additive Gaussian noise. is sampled at

rate ( is an integer usually in the range )
and square root raised cosine filtered to obtain the complex
I/Q fractionally spaced samples , . The optimum
combining/equalization scheme has two feedforward filtering
sections (one per antenna) and one feedback filtering section
(see Fig. 1). Since the algorithm jointly optimizes the taps
of these filters as to minimize the mean squared error using
samples of the received signal taken at different points in time
and in space, this architecture is called space–time minimum
mean-square error (MMSE) equalizer. We can express the
output of the MMSE space–time equalizer in vector notation as

where3

The adaptive algorithm minimizes the mean-squared error
defined as , and the goal of
the adaption process is to adjust (size )
to converge toward the solution

The sequence is generated using the known

2This is�=4 DQPSK in the U.S. standard for cellular communications [6].

3Note thatc
(k)

l
(n), k = 1; 2 are fractionally spaced taps, whilecb

l
(n)

are symbol spaced taps. Moreover,c(n) is updated once per symbol.
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Fig. 1. The space–time MMSE equalizer architecture.

training symbols (during training) and using past decisions
(during data demodulation, in decision directed mode).

The QR Approach:The equalization problem can be recon-
ducted to solving at each step the problem

(1)

where is the forgetting factor [3],
is the data matrix, and

with
. The normal equationsdefine the

desired minimizer as .
The use of orthogonal transformation to solve least squares
problems is well established as is the inadvisability of using
the normal equations [3]. Suppose that a matrix is
known from the previous step such that ,
with orthogonal and upper triangular matrix, then
the problem stated in (1) is equivalent to

(2)

where

because Euclidean distance is preserved by orthogonal trans-
formations. The traditional QR-RLS approach [3] obtains

from the solution of the triangular linear system
where is obtained by

sweeping the row vector in (2) through orthog-
onal transformations represented by and is
obtained applying the same orthogonal transformations to

III. CSTAR TRANSFORMATION AND THE NEW METHOD

The novelty of the method we present is in the following
two points.

1) The algorithm tracks the variation in from step
to step rather than itself. This saves

multiplications.
2) The orthogonal transformations are approximated by

scaled tangent rotations rather than the traditional Givens
rotations. This avoids the need for square root opera-
tions.

Define From the previous section
is such that
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with upper triangular. Since

(3)

is the solution of4

(4)

where Hence can be
found by solving the triangular system

(5)

where satisfies

It is then evident that all we need to solve the system (5) can
be obtained by forming

and sweeping the bottom part of this matrix using plane
rotations.5 The orthogonal matrix can be found as a
product of Givens rotation matrices
[3]: . A single Givens
rotation annihilates the -element

of using : ,

,

, , where

and

The considerable drawback of the method is in the com-
putation of the angles for the Givens rotations. Square-root
computations are not easily implemented in DSP processors
and are even more problematic in VLSI circuits. Usually they
involve iterative procedures whose convergence is not always
guaranteed. Scaled tangent rotations (STAR) were proposed in
the context of RLS adaptive filtering for real time-series in [5].
We generalize the rotation to the complex domain but there is a
difference that is important to note. In STAR [5] scaling is nec-
essary to prevent instability caused by the fact that the tangent
function may become infinite. Our modification for complex
signals still contains a scaling operation but the factorsare not
normalized to unityas in [5] because this would involve again
a square-root operation. The CSTAR (complex scaled tangent
rotation) transformation

4Just substitutec(n+ 1) = c(n) + @c(n) in (2) and use (3).
5It should be clear now that by tracking@c(n) we have simplified the

rotation step in~V(n) because the firstL elements of the last column of~V(n)

are equal to zero. We save2L complex multiplications with respect to the
QR-RLS of [3] and, more important, the dynamic range required to represent
the elements of the last column of the augmented matrix~V(n) is reduced.

Fig. 2. MSE performance of the adaptive algorithms at different speeds of
the mobile and 41.2-�s delay interval in each of the diversity channels.

TABLE I
THE CSTAR TRANSFORMATION

in analogy to the Givens rotation is defined in terms of each
as in Table I, where the complex sign function is

and the sweep is applied to the augmented matrix (see
Table II). Observe that the Givens elementary complex rotation
has two remarkable properties. First of all it zeros selectively
one predetermined element of any complex matrix, which is
indeed needed to triangularize the data matrix. Second, it is
an orthogonal transformation, that is is an orthogonal
matrix that preserves the original least squares problem. The
CSTAR elementary transformation maintains the first
property but it is not an orthogonal transformation. Note
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Fig. 3. BER performance of the adaptive algorithms at different speeds of the mobile and 41.2-�s delay interval in each of the diversity channels.

in the flow diagram of the transformation (Table I) that,
whenever scaling is required, we obtain a nonorthogonal

elementary matrix [and of course a nonorthogonal
]. So the CSTAR solution deviates from the optimum

least squares solution.6 However, it is possible to show along
the same guidelines of [5] that the deviation from orthogonality
is limited to the first few adaption steps because as new
samples are processed the scaling operation becomes more
and more unnecessary. In other words, the algorithm has the
property that

(6)

where is the identity matrix and we have used the notation

for the Frobenius norm of a
complex matrix whose generic element is .

Our experimental results show that the effect of this initial bias
is negligible. The algorithm can be summarized as in Table
II. In Table III the computational complexity of the CSTAR
method is compared to the QR approach using Givens rotations
(defined QRG) and the EWRLS (exponentially windowed RLS
of [4]) in terms of real multiplications, reciprocals, square
roots, and additions.

6In fact at any given step

arg min
@c(n)

V
(n+1)
GR

0T
@c(n)� ~Q(n)

0

un+1

2

6= arg min
@c(n)

V
(n+1)
CSTAR

0T
@c(n)�T(n)

0

un+1

2

whereV(n+1)
GR andV(n+1)

CSTAR are the triangular matrices obtained from the
sweep performed applying Givens rotations and CSTAR rotations, respec-
tively.

TABLE II
THE CSTAR ALGORITHM

IV. SIMULATIONS

A TDMA system for cellular communications has been
simulated according to [6] and [7]. We assume a two-ray
Rayleigh fading diversity channel [7]. The
delay interval is the difference in time of arrival between
the two rays at each antenna. The speed of the transmitter
mobile defines the time-varying characteristics of the channel.
The frame is constituted by 162 symbols and 14 of them are
dedicated to the training sequence. Delay interval for both
diversity channels is equal to s (one symbol period)
to describe an environment severely affected by intersymbol
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TABLE III
COMPUTATIONAL COMPLEXITY PER UPDATE

interference. The length of the feedforward sections is 3, the
length of the feedback section is 2. Sampling rate is

. The described algorithm, the EWRLS algorithm (traditional
RLS [4]) and the QR-RLS algorithm (traditional QR-based
RLS, [3]) have been implemented using 24 bits of resolution
in the fixed point arithmetic representation. Fig. 2 shows
performance of the CSTAR algorithm compared to EWRLS
and to QR-RLS in terms of mean squared error estimated and
averaged over 100 runs. The value ofis 0.855 for 100 km/h
and 0.98 for 8 km/h.7 Fig. 3 shows bit error rate (BER) results.
The EWRLS algorithm reveals numerical problems directly
impacting BER performance. The CSTAR algorithm achieves
performance similar to the traditional Givens-based QR-RLS.

V. CONCLUSIONS

We have presented a new method to update the digital
filters of a MMSE 2-antenna space–time decision-feedback
receiver. The algorithm is particularly suited for fixed-point
arithmetic implementations because it preserves the numerical

7In general, low speeds require larger values of� to get the best per-
formance out of the tracking scheme. However, there is marginal BER
degradation if� is kept fixed to0:855.

stability and performance of a QR-based approach but it
is less computationally demanding due to the absence of
square root operations. Experimental results were presented for
the IS-136 North American [6] standard for cellular TDMA
communications to validate the method and to confirm the
effectiveness of the approach.
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