CompleX spaces with locally product
metrics: general theory.

D. LoverLock (Pretoria) (*) (*¥).

Summary - Locally product complex spaces are iniroduced with particular reference to the
Calenlus of Variations on complex manifolds. The goedesics of such spuces possess unu-
sual features associated with the fact that many of the connection coefficients are ten-
sorial in character. A restricted partial covariant derivative is introduced together with
a curvature tensor. The latter is found fo be invariant under a large class of gauge~like
transformations. This invariance property leads naturally to the introduction of almost
totally decomposable complex spaces. Necessary and sufficient conditions for a locally
product complex Riemannian space to be almost totally decomposadle are discussed. The
counterpart of the Einslein tensor is also exhibifed.

§ 1. - Introduction.

We consider a 2 n~dimensional real manifold X,, (of class O~) referred
to local coordinates (x/, @), (2, 4, ... = 1, ..., n).
Corresponding to each point P of X, we infroduce complex numbers 2/,

(L.1) d=w iy, @F=-—1),

which may be regarded as the complex coordinates of P (with respect to
the given coordinate system). If there exist complex coordinate neighbourhoods
U#), U#), (where 2/ refer to another local coordinate system), such that in
the intersection of these neighbourhoods we have

‘ Ej = z_j(zh)a
(1.2) ‘

( det + 0,

3
Lk

where 2i(2") are holomorphic functions of #*, the space X, is said to admit a
complex structure. Under these circumstances X, is called a complex space
of complex dimension » and is usually denoted by C,.

With (1.1) we may associate the conjugate complex

& = af — iy,
so that (1.2) carries with it the corresponding conjugate complex transformation

(1.3) o = 22",

{*} On leave of absence from the Department of Mathematics, The University, Bristol,
{**) Entrata in Redazione il 30 ottobre 1968,
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The 2n quantities X/, X* defined over C, will be the components of a
contravariant vector field if, under (1.2) and (1.3), they trasnform according to (')

- =, ot
XJ =y Xﬁ} XZ == azk*

azk Xﬁ* .

The form of the general transformation laws for tensors should be clear
from this example.

A metric may be defined over C, by infrodvecing a tensor g of covariant
valency 2, such that the «distance»> between two given points 2, #* and
# + de, &% + de” is given by

ds® = g de*de) 4 gupde'dal™ + gue=det*de’®,

where it is usually assumed that g, g+, gw= are symmetric.
Those complex spaces (, which are such that

gy =0

are called Locally Product Complex Finsler Spaces if, in addition, the g are
functions of (¢, 2%, ¢, #*), where a dot denotes differentiation with respect
to an arbitrary parameter t. We shall denote such spaces by CI. If

3 gn = ghj(z;’ & v:’ 2,
G = Q@' &7, 2%),

we say that CF is tangent decomposable, whereas if

g == gﬁj(zi ’ &),

Grsje =Qryple” , &),

we speak of a fotally decomposable CF.If the g are functions of 2 and " alone,
CF is called a Locally Product Complex Riemannian Space, and will be de-
noted by C%.

An investigation of locally product metrics on a real Riemannian space
has been made (), but no detailed analysis appears to exist for either C} or
Or. 1t is the purpose of this paper to consider certain problems in the Cal-
culus of Variations on complex manifolds which give rise to O spaces and
to discuss the unusual features which such spaces possess, with particular

(!) Unless otherwise stated the summation convention is used throughout this paper.
(?) See Tachibana [6] and Yano [7], Chapter X.
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reference fo the geodesics. Many of these featnres are still present in the
Riemannian case. In order fo gain insight into the general problem, CF spaces
are therefore investigated and the concept of a restricted partial covariant
derivative is introduced. This leads to a natural definition of a restricted
curvature tensor. This curvature tensor is found to be invariant under a lar-
ge class of transformations which are gauge-like in character. The significance
of this transformation is discussed by introducing the notion of an almost
totally decomposable space.

§ 2. - Locally Product Complex Finsler Spaces.

‘We shall econsider real scalar Lagrange functions L of the form
2.1) L=1L{E, &, &, &%,

where
2 e gpf - iyf,
B = ol — iy,

(x7, y real, i = — 1) and the dot denotes differentation with respect to an
arbitrary real parameter t. In order to ensure that the so-called action in-
tegral associated with (2.1), viz.

@.2) j L,

is parameter invariant, it is necessary and sufficient that L satisfies the
condition (%)

oL -, = 3L -
(2.3) —.Ez'—{——gz‘*:L.

rEy oz

In the sequel we consider only those Lagrangians which are of this form.
From (2.3) it can be shown that (¥

Ll ., ¥L .. 1 EL
2 3zi3eh 2ei2e" 2 aproe

LZ ,?:h* .j* ,

which may be rewritten as

(24) LZ s gjh:z'féh + g]-h*'zfé”* + g]*h*éj*éh*,

(?) For the definition of partial differentiation with respect to a eomplex variable, sce
e.g. Bochner and Martin [2], p. 87. On the necessary and sufficient condition (2.3) see Rund

(4}, p. 17.
() Rund [4], p. 48.
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where we have defined
1 2T 2 /3mi mh
g =7 02 L?/92132",

= 3212/ 3mI 3
(2.5) gy == SFL?[d2702""

G = —;; 1L [oei*3e"

It is evident that the quantities gu, gns, gm+ are symmetric in their lo-
wer indices and in general will be functions of the 4w complex variables
(zi’ zi*’ 'éi, éi*)'

We shall restrict our considerations to holomorphic transformations of
the fype

5= gi(zi)a
(2.6)

;i* - ;"*(zf*},
where we further assume that the Jacobian does not vanish in the region
considered. Under (2.6) the quantities defined by (2.5) will transform like the
components of tensors of covariant valency two (°).

It is the purpose of this paper to consider in detail the comsequences
which arise from assuming that (°)

2.9 gi»=0.

From (2.5) and (2.7) it is evident that (2.4) reduces to

(28) 12 = nglz] + gi*j*éi*éj*’
where
2gy/32" =0,

(2.9) .
3givfoet = 0,

) See e.g. Bochner [1}, p. 786 et seq.
{5) For the case g;;=0, g3 =70, see Rund [4].
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from which we conclude that

gy = gi}'(zh: 5h*> éh))
2.10) '

Gire = Guee 8", &7, 7).
If we introduce a parameter s characterised by
(2.11) I? = (ds/dr),

we see that with (2.8) we may associate a locally product complex Finsler
space with metric

(2.12) ds? = gudside) + gepds™del”.

Furthermore, in view of (2.10), this space is fangent decomposable.
Since L? is homogeneous of degree two in 2/, & it follows that

agi*j* z"* =0

(2.18) i 0 .
"

At ’

’

which, from (2.5), also implies that

(2.14) a_glf o = 0, ae‘fi*f* )
oz ot

However, since L is assumed real we have
(2.15) gy = (g)’,

so that the two equations in (2.13) are not independent but are the complex
conjugates of each other. A similar remark applies to (2.14). In fact we will
in general find that properties associated with gu-dz"de™ of (2.12) may be
derived from the corresponding properties of g, dz'dz’ by taking the conjuga-
te complex.

We adopt the following notation. Upper case Latin letters 4, B, C, ...
(to which the summation convention still applies) are to run from 1 to 2n
where

i when 1< A4 <mn,

& when n4+1<4<2n,

Annali di Matematica 3
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go that, for example,

o= (8 gg;*)’

and (2.12) becomes
(2.16) ds® = gapde’de®.
It is furfhermore assumed that
det |gan| == 0,
which is equivalent to the two conditions
det | gy| =+ 0,
det | gu=] == 0.

However, from (2.15), either of these two conditions is implied by the
other so that in fact we need only demand that dot | gy |=3=0. The quantities

2

g%, g7 and g7 are the elements of the inverse matrices of gus, g and g
respectively. They are uniquely defined and enjoy the properties

e s S o sa
9Pgsc=28¢,  Giga=28].  ggms =28,

It is not difficult to show that

if 0
(g*%) = <‘g gi*j*)
and
In this notation (2.13) and (2.14) read

/ .
L
2z¢
2.17)
A
G2 4 — 0.
9z¢

By means of (2.16) and (2.17) we could, if we so desired, introduce con-
nection coefficients together with partial covariant differentation and the cur-
vature tensors in a manner very similar to that of the real variable Finsler
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space {').

However, if such a procedure is adopted it is difficult fo gain any in-
sight into the properties peculiar to the spaces under consideration. We the-
refore, for the time being, follow a slightly different line of thought.

We first state

LeMMaA 1: - (a) 9g;/02" and 3gw~-/3" are tensors under the transformation
(2.6).

&) If Xjp-i and X: ]; are tensor fields then so are

nt s
. R L )
BXi4/3 and 3X4 S, /3.
L ey R

Although this result is somewhat unexpected, the proof is obvious.

We now turn to the geodesics which arise from the Lagrange function
(2.8) when L is substituted in the Huler-Lagrange equations corresponding
to (2.2), viz.

a ( oL sL

dz g) T ’
2.18)

d (BL) oL _,

dr \3z#) &

It is evident that the second of these is the conjugate complex of the
first so we need consider only one of them.
From (2.8), (2.9) (2.13) and (2.14) we find

oL _ 1 i

a'zi - Lgl] )

together with

oL _ 1 (ae‘ﬁi hel L oGy Zh*zz*> )
zl

% 2L\eF ~ 3

We substitute these relations in (2.18) and, after simplification by means
of (2.13) and (2.14) we find that the equations characterising geodesics are

2.19) 051+ [, e = T gyl + Fuoi®,

(") Rund [5).
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where

D} i o G
(.4.20) [h?? "/] (azh + i az‘)
and

P 1 agh*‘* ‘o 9gz ‘.
(2.21) Fyr = 3 ‘az; o — 'c)_’{": 2.

From Lemma 1 we see that the Fu: are the componentes of a femsor of
covariant valency two. We notice that the first term on the right hand side
of (2.19) may be removed as usual by choosing ©=s and using (2.11). Howe-
ver, we cannof eliminate the second term which by analogy with the corre-
sponding real variable case, will be called the force vecfor. We remark that
the force vector arises by virtue of the dependence of gy on ¥ and gy on o,
and may therefore be regarded as an «interaction » term.

If we define

aghj . Cg"’*j* é}m

1
2 iy — — gl
(2.2 ) i*h 2 a % Uzh s

together with

5 T % 1 a jEE® 3 ik ¢ P
(2.23 ]

and observe that

then the conjugate complex of (2.19) is

goyd” 4 (W, R = ;If, g 4 Foueh.

From (2.21) and (2.22) we have the identities

aE&* aF}k* aF jxH al‘f B Sg,}
- = e = 2 e I 2 TR Tk 2
e 3% o e oz
(2.24)
aFi*k _ QB}*;, . cF;uﬁr e 9 ‘aijm . Bglw
CEA 851 %" 9

In view of Lemma 1, all these quantities are fensors. When (2.24) is sub-
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stituted back in (2.21) we find

aEh* ", SFL}E* "
e 21 A
dei * dei”

Eh* =

b

so that Fy: is homogeneous of degree one in 2i, &*.
We can thus state

THEOREM 1. - A mnecessary and sufficient condition for the space (2.12) fo
be fotally decomposable is that Fus is independent of bolh 2/ and 2, or, equi-
valently, that Fy. = 0.

In view of the tensorial character of (2.24), these are invariant conditions.

§ 3. - Locally Product Complex Riemannian Spaces.

Although if is possible to continue with a study of locally product Fin-
sler spaces along the lines suggested in the previous section, we notice that
the interesting and unusual features of this theory (viz. Liemma 1 and the
presence of Fiy« in the geodesic equation (2.19)) persist irrespective of the
dependence of g; on . In order to gain some insight into the subject, we
therefore restrict ourselves in the sequel to locally product complex Riemannian
spaces, i.e. to metrics of the form (}) (compare with (2.12))

(3'1) das? = ggdz‘dzf + gg*}*dzl*d{z]*,

where

gy = gy(#", &)
and

Gz == g;*j*(zh, z"*).

Using the notation introduced in Section 2, we may define the Christoffel
symbols of the first and second kinds by

. 1 (3gsc °gca 0 4p
4B, 0= 3 (T + 55 — %)

and

32) | £ | =guBe, D)

{8) This implies that there exists a J other than I for which J2 =1,
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vespectively. This is consistent with (2.20) and (2.23). In general these quan-
tities are not tensors but, in the case of A , transform under (2.6) accor-
ding BC

g to
%ﬂwww_wf 2% et

(33) ST |57 53¢ 35 — | BC

02P32C Qo

At this stage we could pursue the programme outlined following (2.17)
and introduce the partial covariant derivative of a tensor field X;II‘_'_'.';’ by

(3.4) ng ..4;,16 — QX? “';f’,:azc + 53 ggp %X;’ ...;p‘,_lHAEH_I oy g
) L oer By | HC o By
8 % H } Ay oo 4,

By By 1HB 1. By

The curvature tensor H.?c; would then be introduced by means of the
integrability conditions

(3.5) X4 1pc — X4 cp = Hp*pc X?,

according to which
24 4 3 (4 E |4 E o)A
2 A —

However, as we have already noted, this notation and procedure tends
to obscure those aspects of the theory which are of interest to us. In fact,
we shall show that the above approach, (3.4) to (8.6), may be replaced by a
similar one which has the advantage of exhibiting explicitly the unusual
teatures of this space. This approach depends upon

Lemma 2. - (a) AU Ohristoffél symbols involving one or two asterisks are
tensors under (2.6). Equivalently, the only non-tensorial Christoffel symbols of

i

the second kind are (i} and {Z.].
(b) @ (i, 132" and 3 { L. }/32" are temsors.

The proof of this follows directly from (3.3).

The consequences of the first part of this Lemma manifest themselves
immediately if the right hand side of (3.4) is expanded fully. 1t is obvious
that a number of these terms will in general involve Christoffel symbols of
the second kind with one or two asterisks and will consequenily be tensors.
We are thus lead, in a fairly natural manner, to the definition of the restric-
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. . . . . A) e 4 f
ted partial covariant deriwvative of a lensor field Xy ™57, viz.

(3.7) X;‘x---;,_ = aX;"" ﬁr/azc + 3Ty APCX? ...;WJHAH_H e d, +
1ren Dg s 1 aee D p=1 1 ee B,
: H -&1...;4?
“.}LElFBP CXBI... By1HBy iy . By,

where

4 % . 4 .

if g % is not a tensor,
_I.‘BAC —_ { B C B O
0 if % 4 is a temsor
B C .

A few remarks on the properties of the restricted partial covariant de
rivative are perhaps in order. It should be clear that (3.7) may be derived
from (3.4) by omitting in the latter all (additive) terms which are tensorial.
As a result of this the restricted partial covariant derivative of a tensor is
once more a tensor, while, if ¢ is a scalar

Q4= acp/SzA.

The usual product rule will also hold. However, we do have to sacrifice
the strict counterpart of Ricei’s Lemma since in general

gaz;c 0,

as may be seen from
Lemma 3.
i =0, g7.,=0, G =0, g =0,
Gy 00 =095/32", g% = 3g7 /3",
Goops v == dgue/3%, g7, = g /2
53,¢=0.

Consequently, a necessary and sufficient condition for Ricci’s Lemma fo
hold strictly (°), viz. gis;c =0, is that the space be totally decomposable.

We now introduce the restricted curvature tensor R.°cp by means of the
integrability conditions

(8.8) X4, gc — X4, cp = RpipcXP.

(°) Of course gupic=0.
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It can be shown that (3.8) will be satisfied if we define Rp?pc according

to the following scheme:

AR RIS M

ik o5 | il k) (v ity toky’
- . . d j

8.9) BT = (Bl Bl = 5 Hk}

Bilpy, = — Rylys, By == (B ),

(. 0
S = e
Rz kL azi

!
%R

i "
Bipe = — Rinl™in

with the remaining fen expressions being zero.

R4%cp is indeed a tensor by virtue of Lemma 2(b).

We remark that E;/y and Ru/s- take the form of the curvature tensor
in the case of a fotally decomposed space, while Ri/;» may be regarded as
some form of «interaction » curvature term. However, it is not true that the
vanishing of R./y characterises a totally decomposed space. This may be seen
by considering the special case of # =2 with the metric

ds® = fl")g(2")(da")® + (d&*F] + Fg'{de")* + (d=*')?],

where f and g are arbitrary function of 2' and 2" respectively. This is an
example of a non-totally decomposed space for which Ri/u=0. We shall
return to this condition lafer.

Many, but not all, of the properties usunally associated with a curvature
tensor are enjoyed by R.®cp. From (3.9) we obviously have
(3.10) RB4Bep=— R,%pc,
together with
8.11) B4%pc + BcPap + BpPca=0.

Furthermore the Bianchi identities are satisfied, viz.
(312) RABCD;E+ RABEC;B+ BABDE;C=O-

On the other hand, if we define

(8.18) B spcp = gseR4%cp,
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we have, in general,

[ RABCD :§: ha -RBACD,

3.14
(14 l R.zco == Bepas,

although we do have equality for By, and R+, By its very construction it
is clear that R,%: may be derived from H,%: (defined by (3.5) or (3.6)) by
omitting from the latier all (additive) tensorial terms.

We briefly return to (3.14) fo investigate under what conditions equality
holds.

LeMMA 4: The following conditions are equivalent:

(a) R pco = — Rpucp;
{(b) Bapcp = RCDAB;
(e) R = 0.

The equivalence of (b) and (c) is obvious since (b) implies that
Rijkl* = Rkl*ij y

and the right hand side is zero by (8.9). To prove the equivalence of (a) and
(¢) we see that from (a) and (3.9) we have

st w = chjil*
== = Lhipips
= — Rikji* s
together with
Rijkl* = - Lk
= — Ry
=S Rikjl* .

A comparison of these sets of equations gives (¢), which proves the
lemma.

In view of (3.14) there exist three essentially different ways of contrac-
ting B,%cp. We therefore introduce the tensors R,s, Vs and K¢ defined by

B.ip= R,%sc,

Vis = R¢ Cup,
(8.15)

and

K4p o QCD-RC “ap

Annali di Matematica 9
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respectively.
By means of (3.9), B may be written out explicitly as

g Rij = hR; hjh; Ri*j* = (Rij)* \

(3.16) X 2 (1
( Fur = — 5 ; hi

A

}; By = (Bue)*,

while Vs takes on the form

s Vij == 0, Vi*j* = O,
(3.17)
? - Vij* = If;x = Rij* + Rj*i.

If we define
(8.18) Bip = g*Rcg,
then K“ is given by the following scheme

K" = — R, K" 1 = (K%)*,

3.19
( ) th*______gij__a,_ §Z

i

From (3.16)~(3.19) it is evident that E,s, Vs and K“5 are intimately re-
lated. The major difference between them lies in the Ej: and K7, terms. We
observe that if R, =0 then V. =20 together with K4z =10 up to K*».

We further remark that in general E,z is not symmetric in its lower
indices (although, naturally, B; and Ry« are symmetric).

We define the scalar curvatures E, V and K by

R — gABRAB’
— pydB
(3.20) V=gV,
and
K= KAA

respectively. If we substitute (3.16)-(3.19) in (3.20) we find that
{ B= R+ (B,
V=20,
(3.21) and
K=-—R.
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The interesting feature resulting from (3.21) is the fact that the scalar cur-
vatures are real.

We now ruturn to the Bianchi identities (3.12) in order to infroduce the
counterpart of the Einstein tensor. In (3.12) we set B=D and multiply
g4 to find

(8.22 (g °Ba®), 2 + (9" Ba® re); 5 + (9% Ba®s5); ¢
=g s Bi®cs + 9%, 8B.4%pc + 9%, c B4’k

By means of (3.10), (3.1b), (3.18) and (3.20) the left hand side of (3.22)
may be written in the form

(R% 4+ KBp— R%p), 5.
Turning to the right hand side of (3.22) we find that in spite of the

non-validity of the strict form of Ricci’s Liemma, the last two terms on the
right hand side vanish. Thus (3.22) reduces to

(3.23) GPp;3 = — g, gRac,
where G®; is defined by
(3.24) Gz = RP; — K®; — R,
and represents the counterpari of the Einslein tensor.
Although the divergence of G®;, viz. GP 5, is not identically zero, it is

zero whenever R; = 0.
Furthermore, if we define

(325) GCE = {Bc GBE,
and

GCE;C = QBCGBE; Cs

it follows that
3.26) Gep, ¢ = G, ¢.

’

However, the right hand side of (3.23) satisfies

AC —— AC
g iRac= — gAC;ER ’
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where

RAC e gBCRAB,
so that (3.23) may be written in the form
(3.27) Gep, ¢ = G, c == guc; tR* = — g%, g Bac.

We define
G = G,

so that, by virtue of (3.20), (3.21) and (3.24), we have

G = 2(1 — n)R.

Hence G is also real.
We remark that if G5 =0 then R'; =0 and B"; = K.
We now state an unexpected result in the form of

THEOREM 2. - Under frasformations of the type
gy ~— [y =1gy

where L = A(2""), the resiricted curvature lensor R.%cp is invariant.

The proof of this theorem follows immediately it is realised that z zk;
J

%

and are invariant under g; — A(2")g;.

As an application of Theorem 2 we return to the remarks following (3.9)
concerning the vanishing of Ri/u«. We conclude that if is ¢mpossible to cha-
racterise totally decomposable spaces by imposing conditions on R.2cp alone.

If we reconsider the geodesic equation (2.19), viz.

(3.28) z‘—i»%jk}zfz — 1 & = giFud”,

in the light of Theorem 2, we have the following state of affairs.

Under transformations of the type g; — A(2")g; the left hand side of (3.28)
is invariant, whereas the right hand side is not. Consequently we may have
spaces with the same curvature properties but with different geodesics. In fact
under the transformation g; — A(z"*)g; we find that

; A N oy o LI L . 3
0w — 5 0Pt (3 = oot 1|y T 0o — )
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Hence, if we demand that g*Fi+ — ¢"Fyx we must have
A= A" == constant.

In view of Theorem 2 it is evident that we should seek conditions for
deciding whether or nof a given space is totally decomposable up to a tran-
sformation of the type g; — A(#*)gy, i.e. whether or not there exist quantities
A = X(e") and f; = f;(¢") for which

g5 =y

In g; can be decomposed in this way, we shall call C* almost totally

decomposable (*°). A problem which is closely related to this (although not
generally equivalent to it) is that of finding necessary and sufficient condi-
tions for gu/g; to be a function of #' alone (assuming g; == 0). If we consider
the (non-tensorial) quantity y% defined by

(8.29) Vi = gulgij,
then

i L 3w gu gy
gz_l*. gy o (gij)2 az‘*’

(no summation!).

For this to vanish we must have

o gy

i g Gri 3!
or,
3.30 %u
(3.30) = 9
where 7 is a vector given by
0 1 bk
(5.31) N = ;@ g Ghic; 1%+

Furthermore, since

i R
{ }=~§gl] Y

(*%) Such spaces should not be confused with almost complex spaces, e.g. Yano [7].
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(3.30) is equivalent to

i 1 »
(3.32) ; A i —— g,

where
nf; — gl*j*‘lzz*.
It is easily seen that (3.32) is valid if and only if
. by 1y
(3.33) L] =3 By

We have thus proved

TarEoREM 3. ~ A necessary and sufficient condition for gul/g; to be inde-
pendent of 2" (assuming gy == 0) is that there exists a vector ns for which

) 1.
ijz* } =3 o
In this case

1
= G G 12 -

When (3.33) is substituted in the identity

eghk . h o k b
2w {'}‘ (9 {9‘ {9
we find
)
(3.34) ggzif = — gy

Obviously (3.30), (3.32), (3.33) and (3.34) are all equivalent conditions. If
we substitute them in Ei/,« we have
M s O N

Byiygs == 8] o + 3 A GG "azi.'

Thus we conclude that under condition (3.33) Filus vanishes if and only if

(3.35) dnm/def = 0.
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In view of our suggested interpretation of Ru/y+ as an interaction cur-
vature, one might suspect that the existence of w» satisfying (3.33) together
with (3.35) (the latter being equivalent to Ry/u:=0) would ensure that C® is

almost totally decomposable. We shall investigate this assertion.
It (8.833) is satisfied then (3.29) implies that g may be written in the form

(3.86) g = (&, &)
From (3.31) and (3.36) we find

1 2o
"Il**-% é—zﬁ"}

which, when substituted in (3.35), shows that ¢ may be decomposed into the
form

(3.37) 9", &%) = Me")p(eh),

where A and p are functions of 2™ and #* respectively.
By substituting (3.37) in (3.36), and absorbing ¢ in fu, We have

ToeoREM 4. - A necessary and sufficient condition for a given space to
be almost totally decomposable is {hat there exisis a wveclor v satisfying

together with

Furthermore, the space is totally decomposable if and only if nu=0.
The last part of this theorem is a consequence of (3.30) and the result
following Lemma 3.

In a sequel to this paper (*') some applications of the above general
theory will be discussed.
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