
Complex spaces with locally product 
metrics: general theory. 

D. LOVELOCK (Pretoria) (*) (**). 

Summary- - Locally product complex spaces are introduced wi th  part icular  reference to the 
Calculus of  Variations on complex manifolds. The 9oedesics of  such spaces possess unu- 
sual features associated with the fact that many of the connection coefficients are ten. 
serial in  character. A restricted par t ia l  covariant derivative is introduced together with 
a curvature tensor. The latter is found to be invar iant  under a large class of gauge-like 
transformations. This invariance property leads natural ly  to the introduction of  almost 
totally decomposable complex spaces. Necessary and sufficient conditions for a locally 
product complex Riemannian space to be almost totally decomposable are discussed. The 
counterpart of  the Einstein tensor is also exhibited. 

§ 1. - I n t r o d u c t i o n .  

We consider a 2 n-dimensional  real manifold X2~ (of class C ~) referred 
to local coordinates (xJ, yi), (i, j ,  . . . -  1, . . . ,  n). 

Corresponding to each point P of X~, we introduce complex numbers  zJ, 

(1.1) zY --_- xJ + iyJ,  (i 2 ~ - -  1), 

which may be regarded as the complex coordinates of P (with respect  to 
the given coordinate system). If  there exist complex coordinate neighbourhoods 
U(zi), U(zO, (where zJ refer  to another local coordinate system), such that in 
the intersect ion of these neighbourhoods we have 

i ~j = ~j(zh)' 
(1.2) r 

where -~(z ~) are holomorphic funct ions of z h, the space X2~ is said to admit a 
c o m p l e x  s t r u c t u r e .  Under  these c i rcumstances  X2~ is called a c o m p l e ~  space  

of complex dimension n and is usual ly  denoted by C~. 
Wi th  (1.1) we may associate the conjugate complex 

zJ* ~ x '  - -  iyJ ,  

so that (1.2) carries with it the corresponding conjugate complex transformation 

(1.3) z J* = zr(zh*). 

(*) On leave of absence from the Department of mathematics, The University, Bristol. 
(**) Entrata in RedaMone il 30 ottobre 1968, 
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The 2n quanti t ies  XJ, XJ* defined over C~ will be the components of a 
contravariant  vector  field if, under (t.2) and (1.3), they trasnform according to (~) 

~j ~/X h, - ~z]* Xto ,"  

The form of the general t ransformation laws for tensors should be clear 
from this example.  

A metric may be defined over C~ by introdvcing a tensor g of covariaut  
valency 2, such that the <<distance>> between two given points z ~, z ~* and 
z ~ + dz ~, z ~* + dz ~* is given by 

ds2 -~ g~j dzhdzj -F ghj *dzhdzj* q- gh*j *dzh*dzj* , 

where it is usual ly assumed that ghj, ghj,, gh*j. are symmetric.  
Those complex spaces C. which are such that 

gkj* ----- 0 

are called Locally  Product  Complex~ Fins ler  Spaces if, in addition, the g are 
functions of (z ~, z ~*, z ~, z~*), where a dot denotes differentiat ion with respect  
to an arbi t rary  parameter  "~. We shall denote such spaces by C ~. If  

t ghj ~ g~j(z ~, z ~ ~, z~), 

g~ j g~*j*~ , z i* , z~*), 

we say that C ~ is tangent  decomposable, whereas  if 

t gh/--  ghj( , ),. 

( g.i* =g.j.(z'*, z~*), 

we speak of a totally decomposable C~. If  the g are functions of $~ and z ~* alone, 
C F is called a Locally  Product  Complex R i e m a n n i a n  Space, and will be de- 
noted by C~. 

An investigation of locally product  metrics on a real Riemannian space 
has been made (2), but  no detailed analysis appears  to exist  for either C~ or 
C~. It  is the purpose of this paper  to consider certain problems in the Cal. 
culus of Variations on complex manifolds which give rise to C r spaces and 
to discuss the unusual  features  which such spaces possess, with part icular  

(1) Unless otherwise stated the summation convention is used throughout this paper. 
(~) See Tachibana [6] and Yano [7], Chapter X. 
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reference to the geodesics. Many of these features  are still present  in the 
Riemannian case. i n  order to gain insight into the general  problem, C~ spaces 
are therefore investigated and the concept of a restr icted part ial  covariant  
derivative is introduced. This leads to a natural  definition of a restr icted 
curvature  tensor. This curvature  tensor is found to be invariant  under  a lar- 
ge class of t ransformations which  are gauge- l ike  in character.  The significance 
of this t ransformation is discussed by introducing the notion of an almost 
totally decomposable  space. 

§ 2. - Locally P roduc t  Complex Fins le r  Spaces. 

W e  shall consider real scalar  Lagrange functions L of the form 

(2.1) L----L(z ~, z ~*, z ~ " 

where 
zJ ----- xJ + iyJ, 

zi* ---- x ] - -  iy~, 

(x J, yJ real, i 2 =  --  1) and the dot denotes differentation with respect  to an 
arbi t rary real  parameter  ,c. In order to ensure that the so-cal led action in- 
tegral associated with (2.1), viz. 

(2.2) ]" Ld% 

is parameter  invariant, it is necessary and sufficient that L satisfies the 
condition (3) 

" .  

(2.3) + = L. 
~z ~ ~z s* 

In the sequel  we consider only those Lagrang ians  which are of  this form. 
From (2.3) it can be shown that (4) 

2 ~ . . . .  
1 ~2L2 . .  ~2L2 -- i $2L2 • • 

2 ~'zj~, z~z~+ ~z~z h* 2 ~zJ*~z'* ' 

which may be rewri t ten as 

(2.4) 
• .° • . • . • , 

L2 ----- gjhzJz h + gjh,zJz h* + g:,h,zi*z h* , 

(a) For the definition of partial differentiation with respect to a complex variabl% see 
e.g. Bochner and 1Kartin [2], p. 37. On the necessary and sufficient condition (2.3)see Rund 
[4], p. ,7. 

(4) l~,na [4], p. 48. 
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where we have defined 

(2.5) 

gjh = ~1 $2L2/Ozj~z h 

gj*h* =- ~ ~2L2/~z~*~z'~*. 

It is evident that the quanti t ies g]~, gjh*, gj*h* are symmetr ic  in their  lo- 
wer  indices and in general  will be functions of the 4n complex variables 
(z ~, z ~* , z ~, ~*). 

We shall restrict  our considerations to holomorphie transformations of 
the type 

(2.6) 
z~ = z-~(z~), 

where  we fur ther  assume that the Jacobian does not vanish in the region 
considered. Under  (2.6) the quantities defined by (2.5) will t ransform like the 
components of tensors of covariant valency two (~). 

It  is the purpose of this paper  to consider in detail the consequences 
which arise f rom a s s u m i n g  that  (6) 

(2.7) g~j, = O. 

]?rom (2.5) and (2.7) it is evident that (2.4) reduces to 

(2.8) L 2 ~ g~jz~# + g~,j,z~*z j*, 

where  

(2.9) 

~g,j/a'z h* = O, 

~g~,~,/v'z ~ = O, 

(~) S e e  e.g. ]3ochner  [1], p. 786 e t  seq.  
(~) F o r  the  case  g~] ~-0 ,  g~,], ~ O, see  l:~uacl [4]. 
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from which we conclude that 

(2.10) 

g~j = g~i(z ~ , z h* , z~), 

g~,j, =__ g~v,(z h , zh*, ~1~*). 

If  we introduce a parameter  s eharacter ised by 

(2.11) L 2 = (ds/dx) 2 , 

we see that with (2.8) we may associate a local ly  p r o d u c t  comple~ F i n s l e r  
space with metric 

(2.12) ds 2 --__ g f l z~d#  + g~*j,dz~*dz j* • 

Furthermore,  in view of (2.10), this space is tangent  decomposable. 

Since L 2 is homogeneous of degree two in zJ, zJ* it follows that 

(2.13) ~g~J b = 0, @,v* b* = 0, 

which, from (2.5), also implies that 

(2.14) 3g,.j zJ = 0, 3g~*J* ~J* = 0. 
~zh ~'z h* 

However,  since L is assumed real we have 

(2.15) g~j = (g~,j,)*, 

so that the two equations in (2.13) are not independent  but  are the complex 
conjugates  of each other. A similar remark applies to (2.14). In fact we will 
in general  find that propert ies  associated with g~,],dz~*dzJ * of (2.12) may be 
derived from the corresponding propert ies  of g~j az~dz] by taking the conjuga- 
te complex. 

We  adopt the following notation. Upper  case Lat in letters A,  B ,  C, ... 
(to which the summation convention still applies) are to run from 1 to 2n 
where 

A = t i w h e n  l < A <_n, 

i* w h e n  n + l < A <_ 2n, 

Annali di Matematica 
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so that, for example,  

and (2.12) becomes 

(&16) 

g~.~., / ' 

d s2~gABdzAdz  B . 

It  is fur thermore  assumed that 

det l gA~ ! ~ 0, 

which is equivalent  to the two conditions 

l 
det lg~jl ~ 0, 

det t g~*J* l :4: O. 

However, from (2.15), ei ther of these two conditions is implied by the 
other so that in fact we need on ly  d e m a n d  that  dot t g~j [:4: 0. The quantit ies 
gAS, g~i and g~*i* are the elements of the inverse matr ices of g.4B, g and g~.j. 
respectively. They are uniquely  defined and enjoy the properties 

and 

g~Bgsc 8A ~j " 

It  is not difficult  to show that 

g'*J,g/~. = ~**. 

g~J ~ (F'J*)*. 

In  this notation (2.13) and (2.14) read 

~g__/. ~c __ 0, 
~z c 

(2.17) 

~z c 

By means of (2.16) and (2.17) we could, if we so desired, introduce con- 
nection coefficients together with partial  covariant differentat ion and the cur- 
vature  tensors in a manner  very similar  to that of the real variable Finsler  
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space (7). 
However,  if such a procedure  is adopted it is diff icul t  to gain any in- 

sight into the proper t ies  pecul iar  to the spaces under  consideration.  We the. 
refore, for the t ime being, follow a sl ightly different  l ine of thought .  

We first state 

LEMMA 1: - (a) ~gq/~z h* and 8g~,j,/3z ~ are tensors under the transformation 
(2.6). 

. ~  , . ,  i ~ 

(b) I f  X! .... !~ and X'~ L are tensor fields then so are 
11 ""Is ]1"" ]s 

~x~: .~; /~-  a .d  ~x.~ r / ~  
" ' "  " * " I s  

Although this result  is somewhat  unexpected,  the proof is obvious. 
We now turn  to the geodesics which arise from the Lagrange  function 

(2.8) when L is subst i tu ted in the Euler -Lagrange  equat ions corresponding 
to (2.2), viz. 

(2.18) t t 
d ( ~ L )  ~L 

-~  ~ - -  ~z~-, = O. 

It  is evident  that  the second of these is 
first so we need consider  only one of them. 

F rom (2.8), (2.9) (2.13) and (2.14) we find 

the conjugate  complex of the 

together  with 

3L 1 .. 
~Z i ~ gqZl, 

8L 1 [~_g~j_.. ~gh*]* "zh.zj, ~ 
~ z  ~ = 2-L \ az ~ z~zj + ~ }" 

We subst i tute  these relat ions in (,,.18) and, after  s implif icat ion by means  
of (2.13) and (2.14) we find that  the equations characterising geodesics are 

(2.t9) k ° .  

g,~iJ + [hj, i]zUJ = L g,~z, + F~,,,z h°, 

(7) Rund [5]. 
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where 

(2.20) 

and  

(2.2i) 

[hi, i] = ~  \~z ~ + ~+ ~z~] 

1 3g~,]. • $g~ z i .  

From Lemma 1 we see that the F~h, are the componentes of  a tensor of 
covariant valency two. W e  notice that the first  term on the right hand side 
of (2.19) may be removed as usual  by choosing z-----s and using (2.11). Howe- 
ver, we cannot  el iminate the second term which by analogy with the corre- 
sponding real variable  case, will be called the force vector. We remark that 
the force vector  arises by vir tue of the dependet~ce of g~ on z ~* and g~,i, on z ~, 
and may therefore be regarded as an (<interaction >> term. 

If  wo define 

(2.22) 

together with 

(2.23) 

and observe that 

1 ~ghj" c~g~,,j, ' .  

j ,  k*] = 2  \ ~z~, + 3z J* ~-~] '  

F i b *  ,'n * = (F~*h) , 

[ii, k]----[i'j*, F]*, 

then the conjugate complex of (2.19) is 

V h ,  - ,  • . j ~  • .. • g~,/zJ* + [ ~ , i*]z~*~ / = L g~v,z+* + V~,~z ~. 

From (2.21) and (2.22) we have the identit ies 

(2.24) 

In view of Lemma 1, all these quantities are tensors. W h e n  (2.24) is sub- 
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stituted back in (2.21) we find 

~ i h *  ~ - -  ~ F ~ , ~ j +  . -z~, 
~zi ~zJ* 

so that F~h, is homogeneous o f  degree one in zJ, z]*. 
We can thus state 

T~EORE~ 1. - A necessary and suff icient condition for the space (2.12)to 
be totally decomposable is that Fa, is independent of  bolh zJ and  "zJ*, or, equi- 
valently, that F~h, = O. 

In view of the tensorial charac ter  of (2.24), these are invariant  conditions. 

§ 3. - Locally Product Complex Riemannian Spaces. 

Although it is possible to continue with a study of locally product Fin- 
sler spaces along the lines suggested in the previous section, we notice that 
the interesting and unusual  features of this theory (viz. Lemma 1 and the 
presence of Fa ,  in the geodesic equation (2.19)) persist i rrespective of the 
dependence of gij on z h. In  order to gain some insight into the subject, we 
therefore restrict ourselves in the sequel to locally product  complex R iemann ian  
spaces, i .e.  to metrics of the form (8) (compare with (2.12)) 

(3.1) ds 2 = g~jdz~dzi + g~*i*dz~*dz i*, 

where 

and 

gij = glj(z h , z h*) 

g~,j, = g~,j,(z h, zh*). 

Using the notation introduced in Section 2, we may define the Christoffel 
symbols of the first  and second kinds by 

and 

1 (~oqBc ~gcA ~g~B~ 
[AB, C]---- ~ \ ~z A -+- ~czS ~z c] 

{s) This  impl ies  tha t  t he re  ex is t s  a J o the r  t h a n  I for  w h i c h  Je ~ L 
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respectively. This is consistent with (2.20) and (2.23). In  general  these quan- 

l A l, t ransform under  (2.6) ac tor  - titles are not tensors but, in the case of BC 
ding to 

At this stage we could pursue the programme outlined following (2.17) 

and introduce the partial  covariant derivative of a tensor field yA~..~ by -~B1 ... B s 

~ A  .... Ar - -  ~ X ; :  "''Ar'~ c r I AF" I xAI'"Ap'--IHAp'+ 1"''At 
(3.4) --B~ . . , ,  l c - -  ... ,,! z + + 

~ l  ( H C  } B . . . .  B, 

p.=l Bp, C '" B~--IHB~.~ -1''" Bs " 

The curvature  tensor HABcD would then be introduced by means of the 
integrabil i ty conditions 

(3.5) X A I,c - -  X ~ ,cB = H / ~ c  X ~ , 

according to which 

(3.6) 

However, as we have already noted, this no,al ien and procedure tends 
to obscure those aspects of the theory which are of interest  to us. In  fact, 
we shall show that the above approaeh, (3.4) to (3.6), may be replaced by a 
similar one which has the advantage of exhibit ing explicitly the unusual  
features of this space. This approach depends upon 

L]~MMA 2. - (a) All  Christoffel symbols involving one or two asterisks are 
tensors under  (2.6). Equivalent ly ,  the only non- lensorial  Christoffel symbols of  

i* the second k ind  are t ~k } and  {j,k. }" 

I/3z h* and  ~{~* }/3z h are tensors. (b) ]*k* 

The proof of this follows directly from (3.3). 
The consequences of the first part  of this Lemma manifest  themselves 

immediately  if the right hand side of (3.4) is expanded fully. I t  is obvious 
that a number  of these terms will in general  involve Christoffel symbols of 
the second kind with one or two asterisks and will consequently be tensors. 
We are thus lead, in a fairly natura l  manner ,  to the definition of the restric- 



D. LOVELOCK: Complex spaces with locally product metrics: general theory 63 

te~ partial covariant derivative of a lensor field ~(A,...A~ viz. ~ B  1 .,. B s 

p A~, -cA1 .., A~_  1HA,t@I ... A r (3 .7)  ==,,...X'A'"'A',, ; C = ~X~',:::;:/~zc + £ , z  c--,,...,, ~ + 
F = I  

s 
~ "[t H V A 1  ,,, .4 r 

~__lJ- B~ C ' ~ B  1 ,., B ~ I H B ~ +  1 ... Ba 

where 

~.BAc  

I B A c  ] i f  t B A c  } is not a tensor, 

0 i f  1 B A c ]  i s a  tensor. 

A few remarks  on the proper t ies  of the res t r ic ted  par t ia l  covar ian t  de 
r iva t ive  are pe rhaps  in order.  I t  should  be c lear  tha t  (3.7) m a y  be der ived 
f rom (3.4) by omi t t ing  in the la t te r  all (additive) terms which  are tensorial .  
As a resul t  of this  the res t r ic ted  par t i a l  covar ian t  der ivat ive  of a tensor  is 
once more a tensor,  while,  if ~ is a scalar  

~ ; A = 8~/8z  A. 

The usua l  p roduc t  ru le  wi l l  also hold. However ,  we do have  to sacr i f ice  
the str ict  coun te rpa r t  of R icc i ' s  L e m m a  since in genera l  

as may  be seen from 

LEMMA 3. 

g~B; c # O, 

g~j;k = 0, ~J g ;k=O, 

g,/; k* ---- ~gv/~E'*, 

g~*j*; ~ --- @g~,j,/~z k , 

g~*j* ; k* O~ ~*J* --~ g ; ~* -~ 0, 

g~J ; k* = ~g~ /~z ~*, 

g *]* ~g~*j*/~z k, 

B ; C  ~ O ,  

Consequent ly ,  a necessary and sufficient condition for Ricci 's  Lemma to 
hold strictly (~), viz. g.dB; c = O, is that the space be totally decomposable. 

W e  now in t roduce  the restricted curvature tensor Bffco by means  of the 
in tegrab i l i ty  condi t ions  

(3.8) X A; Bc - -  X A; c~ = RD%cX ~. 

(9) Of course gAntc~O. 
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It can be shown that (3.8) will be satisfied if we define RDA~c according 
to the following scheme:  

(3.9) 

" ~ ," v j v ~  ~ j  

Rd~,~ = - -  R/kt* , R~*~*k*l = (Rj~I,)* , 

R i ,  i*tk, = - -  R~,]*k,z  

with  the r e m a i n i n g  ten expressions being zero. 

R~BcD is indeed a tensor by vir tue of Lemma 2(b). 
We  remark that Rdk~ and R~,/*k,~,. take the form of the curvature  tensor 

in the case of a totally decomposed space, while Rdk~, may be regarded as 
some form of <( interaction >> curvature  term. Fiowever, it is not true that the 
vanishing of Rdk~, eharacter ises  a totally decomposed space. This may be seen 
by considering the special case of n = 2 with the metric 

ds 2 ~ f(z~)g(zt*)[(dz~) 2 + (dz2) 2] + f*g*[dz~*) 2 + (dz~*)2], 

where f and g are arbi trary function of z 1 and z 1. respectively. This is an 
example of a non-total ly  decomposed space for which Rdk~,-~ O. W e  shall 
return to this condition later. 

Many, but  not all, of the propert ies  usual ly associated with a curvature  
tensor are enjoyed by /~ABCD. From (3.9) we obviously have 

(3.10) . ~ A B c D  ~ ~ R . 4 B D c ,  

together with 

(3.11) B~ ~ c  + Rc ~.~8 + R ,  %~ = O. 

Fur thermore  the Bianchi identities are satisfied, viz. 

(3,12) RA %,; ~ + RA %c; ,  + RA %E; c = 0. 

On the other hand, if we define 

(3.13) R ~Bc, -= g ~ R  A ECD , 
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we have, in general ,  

(3.14) 
I RABc. ~ - -  RnAc~, 

a l though we do have equali ty for R~jk~ and R~,j,k,~,. By its very const ruct ion it 
is clear that  RABc~ may be der ived from HAnc, (defined by (3.5) or (3.6)) by 
omit t ing from the tat ter  all (additive) tensorial  terms. 

We briefly re tu rn  to (3.14) to invest igate  unde r  what  condi t ions equal i ty  
holds. 

L E ~ X  4: The fol lowing conditions are equivalent: 

(a) RA,c,  = - -  RBAc,; 

(b) BA,cD = RcDA, ; 

(C) R ~ .  = O. 

The  equivalence of (b) and (e) is obvious since (b) implies  that  

R~jk~* ----- Rkl*q, 

and the r ight  hand  side is zero by (3.9). To prove the equivalence of (a) and 
(c) we see that  from (a) and (3.9) we have 

together  with 

- -  Rjkil* 

= R~kjl,. 

A compar ison of these sets of equat ions  gives (c), which proves the 
lemma.  

In  view of (3.14) there exist  three essential ly different  way~ of contrac- 
t ing RABCD. We therefore in t roduce  the tensors RA~, V.4B and K %  defined by 

(3.15) 

J~AB ~ t~A CBC , 

VdB = RC CAB 

and 

K a n ---- gC•Bc ABD 

AnnaU di Matematica 9 
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respec t ive ly .  
By  means  of (3.9), RAB may be wr i t t en  out  expl ic i t ly  as 

(3.t6) 
{Rh~ . . . .  R.~ = (Rh.)* 

az k* hl ' 

whi le  VA, takes  on the form 

(3.17) ! V~j = O, Ev ,  -~ O, 

{ - -  V~jo = v,,,~ = R~r~ + Rj**, 

I f  we  def ine  

(3.18) Raa ~.= gaCRcB, 

then K~B is g iven by  the fo l lowing scheme 

(3.19) 

K ~  = ~ R~k, K h* k* = (Khk) * , 

K~* = - -  g~J 3z ~---w* ij ' Kh* ~ = (Kh~*)*" 

F r o m  (3,16)-(3.19) it is ev ident  tha t  RAs, V ~  and  KAB are  in t imate ly  re- 
lated. The  ma jo r  d i f f e rence  bet~ ,een them lies in the Rjh, and KJI,, terms.  W e  
obse rve  that  if RAB----0 then V~B-~-0 together  wi th  K:%---~ 0 up to Khj,. 

W e  fu r the r  r e m a r k  that  in genera l  RAB is not symmet r i c  in its lower  
ind ices  (al though,  na tura l ly ,  R~j and  R~,j, are  symmetr ic) .  

W e  def ine  the sca lar  c u r v a t u r e s  R, V and K by  

(3.20) 

R ~ gAB.R~,, 

V -= g'~" VAB, 

and 

K . ~ K A 4  

respec t ive ly .  If  we subs t i tu te  (3.16)-~3.19) in (3.20) we  f ind that  

R ----- R~ + (/~q)*, 

V =  0, 

(3.21) and 

K ~ - - R .  
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The interest ing feature result ing from (3.21) is the fact that the scalar  cur- 

va tures  are real. 
We now ru tu rn  to the Bianchi  identities (3.12) in order to introduce the 

counterpar t  of the Einstein tensor. In  (3.t2) we set B ~  D and mult iply 
gAC to find 

(3.22) (g~CR.~ %,); E + (gACR~ "ec); ,  + (gACRA ",E) ; c 

= gAC ; ~ t t~" C, "-? gAC ,R~  %c "4" gAC ; cRy"  ,F. 

By means of (3.10), (3.15), (3.18) and (3.20) the left hand side of (3.22) 
may be wri t ten in the form 

(R~  + K B E - -  R B E); , .  

Turn ing  to the right hand side of (3.22) we find lhat in spite of the 
non-val id i ty  of the strict form of Ricci's Lemma, the last two terms on the 
right hand side vanish. Thus (3.22) reduces to 

(3.23) 

where GBz is defined by 

(3.24) GBE --~ R'E - -  KBE ~ R5 %,  

and represents  the counterpart  of  the E ins te in  tensor. 

Although the divergence of G'E, viz. GBE;B, is not identically zero, it is 
zero whenever  Re] ~- O. 

Furthermore ,  if we define 

(3.25) GcE= gsc GBE , 

and 

GcE; c ~ gBCGBz; c,  

it follows that 

(3.26) Gce;C = GC c. 

However, the right hand side of (3.23) satisfies 

gAC zRAc ---- -- gAc; ER ac , 
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where  

R Ac ~ gBC.~=4 B , 

so that (3.23) may be wri t ten in the form 

(3.27) Gc~; c = G%; c = g~c; ER ~c = - -  g~C ~:Bac. 

We define 

so that, by virtue of (3.20), (3.21) and (3.24), we have 

G = 2 ( I  - - n ) R .  

Hence G is also real. 
We remark  that if GA~----0 then R~j----0 and R~*/= K~*/. 
We now state an unexpected result  in the form of 

TREORE~ 2. - Under trasformations of the type 

where k ~ k(zh*), the restricted curvature tensor R f f  c~ is invariant. 

The proof of this theorem follows immediately  it is realised that (~,lJi t 

and j'k* are invariant  under  g~j -* ),(zh*)g~j. 

As an application of Theorem 2 we re turn  to the remarks  following (3.9) 
concerning the vanishing of Bjh~,. We eonclude that it is impossible to cha- 
raeterise totally decomposable spaces by imposing conditions on Rffc~ alone. 

If we reconsider the geodesic equation (2.19), viz. 

(3.28) 
}.. L ~, = g'JFj,~" 

in the light of Theorem 2, we have the following state of affairs. 
Under  transformations of the type g~j ~ k(zh*)g~] the left hand side of (3.28) 

is invariant,  whereas the right hand side is not. Consequently we may have 
spaces with the same curvature properties but with different geodesics. In  fact 
under  the t ransformation g~i--*" k(zh*)g ~] we find that 

~ "~l 
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Hence,  if we demand that gZiF~, - ~  , ~ v  ~ we must have 

k ~--- k* = constant. 

In view of Theorem 2 it is evident that we should seek conditions for 
deciding whether  or not a given space is totally decomposable up to a tran- 

h a sformation of the type g~i -+ )~(z )g~j, i.e. whether  or not there exist  quanti t ies  
),-----),(z h*) and /~i ~ f~J(zh) for which 

In gi+ can be decomposed in this way, we shall call C~ almost  to tal ly  

decomposable (~0). A problem which is closely related to this (although not 
general ly equivalent  to it) is that of finding necessary and sufficient  condi- 
tions for ghk/g~j to be a function of g alone (assuming g~j :C 0). If we consider 
the (non-tensorial)  quant i ty  ~,h~ defined by 

(3.29) ~'h~ = ghk/g~j, 

then 

~,~i 1 ~ghk ghk ~g~j 
thk  

~g* g~j Oz z* (g~j)~ ~g* , (no summat ion! ) .  

For  this to vanish we must have 

gii ~ = ghk ~ZZ~,, 

o r ~  

(3.30) ~g~k 
~z~, = gh~7~*, 

where ~ ,  is a vector  given by 

(3.31) 

Fur thermore ,  since 

1 hk 

~'tl* = n g gh~; l*. 

J* I 1 Ogh~ 
hk  = - -  2 if*j* ~z ~* ' 

(10) Such spaces should not be confused with almost complex spaces, e.g. ¥ano [7]. 
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(3.30) is equivalent  to 

(3.32) hk = - -  ~ gh~ , 

where 

(3.33) 

It is easily seen that (3.32) is valid if and only if 

i ) 1 
l jr* = 

We have thus proved 

TI:[EORE~J[ 3. - A necessary and sufficient condition for gh~/g~i to be inde- 
pendent of  z ~* (assuming g~j ~ O) is that there exists a vector ~ for which 

In  this case 

jl* = 2  j 'v"  

1 hk 

When (3.33) is substi tuted in the identity 

3z l* r t* r l* 

we find 

9 hr, 

(3.34) 3ghk 

Obviously (3.30), (3.32), (3.33) and (3.34) are all equivalent conditions. If 
we substitute them in RhY~z* we have 

Thus we conclude that under condition [3.33) R~dk~. vanishes i f  and only i f  

(3.35) ~l,/3z ~ ----- O. 
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In  view of our  suggested in terpre ta t ion  of -Rh]k** as an interact ion cur- 
vature,  one might  suspect  that  t h e  existence of ~z* satisfying (3.33) together  
with (3.35) (the lat ter  being equivalent  to Rjk~-----0) would ensure  that  C~ is 

almost  totally decomposable.  We shall invest igate this assertion. 
If  (3.33) is satisfied then (3.29) implies  that  gh~, may be wri t ten in the form 

(3,36) gh~ = ~(z', ~z*)fhk(Z~). 

From (3.31) and (3.36) we find 

3z l* ' 

which, when  subst i tu ted in (3.35), shows that  ~ may be decomposed into the 
form 

(3.37) ¢¢(z ~, zJ*)= ),(zJ*)~(zh), 

where  ), and f~ are funct ions  of z]* and z h respectively.  
By subst i tu t ing (3.37) in (3.36), and absorbing ~ in fhk, We have 

THEOREM 4. - A necessary and sufficient condition for a given space to 
be almost totally decomposable is that there exisls a vector ~ ,  satisfying 

together with 

t i  I 1 

Furthermore, the space is totally decomposable i f  and only i f  ~ ,  = O. 
The last part  of this theorem is a consequence of (3.30) and the resul t  

following L e m m a  3. 
In  a sequel  to this p a p e r ( " )  some appl icat ions  of the above general  

theory will be discussed. 
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