hd Geolnformatica 8:4, 311-346, 2004
‘$ © 2004 Kluwer Academic Publishers. Manufactured in The Netherlands.

Complex Spatial Query Processing™

NIKOS MAMOULIS

Department of Computer Science and Information Systems, University of Hong Kong, Pokfulam Road,
Hong Kong

E-mail: nikos@csis.hku.hk

DIMITRIS PAPADIAS

Department of Computer Science, Hong Kong University of Science and Technology, Clear Water Bay,
Hong Kong

E-mail: dimitris@cs.ust.hk

DINOS ARKOUMANIS

Department of Electrical and Computer Engineering, National Technical University of Athens, Zographou
15773, Greece

E-mail: dinosar@dbnet.ntua.gr

Received May 29, 2003; Revised April 12, 2004; Accepted June 10, 2004

Abstract

The user of a Geographical Information System is not limited to conventional spatial selections and joins, but may
also pose more complicated and descriptive queries. In this paper, we focus on the efficient processing and
optimization of complex spatial queries that involve combinations of spatial selections and joins. Our
contribution is manifold; we first provide formulae that accurately estimate the selectivity of such queries. These
formulae, paired with cost models for selections and joins can be used to combine spatial operators in an optimal
way. Second, we propose algorithms that process spatial joins and selections simultaneously and are typically
more efficient than combinations of simple operators. Finally we study the problem of optimizing complex spatial
queries using these operators, by providing (i) cost models, and (ii) rules that reduce the optimization space
significantly. The accuracy of the selectivity models and the efficiency of the proposed algorithms are evaluated
through experimentation.

Keywords: spatial query processing, spatial joins, query optimization

1. Introduction

Simple spatial queries, like spatial selections or joins [5], can be evaluated by standalone
algorithms, usually applied on spatial access methods like the R-tree [9]. In many cases,
however, the users pose complex queries that combine information from more than one
spatial (or potentially non-spatial) relations. For instance the query ‘‘find all cities within
100 km of Hong Kong crossed by a river which intersects a forest’” combines a selection on
cities with the spatial join of cities, rivers and forests. In order to evaluate such queries we

*A short version of this paper appeared at the 7th International Symposium ‘‘Advances in Spatial and Temporal
Databases’” (SSTD 2001), Redondo Beach, CA, USA, July 12-15, 2001.



312 MAMOULIS, PAPADIAS AND ARKOUMANIS

eyl
N
>

FORESTS

e
A ey
N TCITY A circle(HK, 100 km)
7 % | # X

RIVERS FORESTS CITIES RIVERS  9CITy r circle(HK. 100 km)

CITIES
(a) (b)

Figure 1. Two evaluation plans for a complex spatial query.

need to associate spatial selection and join processing modules in an optimal way [11]. The
order by which the simple operations can be evaluated is called query evaluation plan. For
a particular complex query there could be numerous evaluation plans. Figure 1 illustrates
two possible ways of combining spatial join and selection operators in order to process the
complex spatial query of the example. The plan of figure 1(a) computes the spatial join
between rivers and forests and writes the intersecting river-forest pairs in a temporary file
T;. A range query finds the cities that qualify the selection ‘‘within 100 km of Hong Kong’’
and the results are written to another temporary file T,. T, and T, are then joined to
produce the query result. On the other hand, the plan of figure 1(b) joins the cities close to
Hong Kong with the rivers relation and then the qualifying results with the forest relation.

The efficient processing of a complex spatial query requires the identification of a plan
that minimizes the evaluation cost. The cost of a specific plan can be estimated using (i)
cost formulae for the operators involved in the plan, and (ii) formulae that estimate the
output size of each sub-query of the plan. The first estimate the cost of each node, which
accumulate to the total cost of the plan. Selectivity estimation of query sub-plans is
essential since it determines the cost of succeeding operators. For example, consider the
plan of figure 1(b). The selectivity of the selection operator (i.e., the number of cities that
satisfy the selection) determines the cost of the join that follows. Availability of the
appropriate formulae allows for query optimization methods (e.g., dynamic programming)
that efficiently browse through the space of valid evaluation plans in order to identify one
of low cost.

Estimating the selectivity of a complex sub-query seems a trivial task, since selectivity
formulae for joins and selections are available (e.g., Papadias et al. [25] and Theodoridis
and Sellis [31]). However, the relative positions of selection windows affects the skew of
the joined rectangles from each dataset. Thus, the selectivity of a spatial join between two
datasets restricted by spatial selections depends heavily on the area covered by the
selection windows. If the windows are disjoint and far from each other, most probably the
query result will be empty. On the other hand, if they overlap the join is likely to have
results. Consider, for example, the plan of figure 2(a), where R, R, are spatial relations,
Oy Oy spatial selections (e.g., window queries) and R a third, not necessarily spatial,
relation. Figures 2(b) and (c) illustrate example results of the selections applied to the
corresponding dataset. Clearly the cost of the last join depends on the selectivity of the first
(spatial) one. The output of the spatial join, however, does not depend solely on the results



COMPLEX SPATIAL QUERY PROCESSING 313

b.* o
B "y B Sod Wi

s, A

e [T
/ \ k9 °p o 6 Wy

R Ry ) Dlég-':g_‘n.,

I I ook o |

Tyl Tw2

(a) a query plan (b) g1 (Ry) (d) o1 (R)) Moz (Ry)

Figure 2. Example dependency between spatial operators.

of the window queries, but also on their relative position. As figure 2(d) shows, the output
size of the join increases with the intersection area of the windows since only objects
inside or near the intersection may participate in the result. If the windows are far apart, the
result of the spatial join is expected to be empty.

Notice that this property stems directly from the interdependence between the results
produced by spatial operators. The fact that all spatial operators apply on the (same) spatial
attribute of the relations introduces intermediate results that are skewed with respect to
succeeding operators. This problem seldom arises in relational databases because the
selection conditions in most cases apply on different attributes than the join predicates, and
the selections do not introduce skew to the join domains.

In this paper, we study the processing and optimization of complex spatial queries that
involve combinations of spatial selections and joins. Given a query where n relations are
joined on their spatial attribute and potentially restricted by selection windows, we provide
accurate formulae that estimate its output size. Following the common conventions in
spatial query optimization, we assume that the input data are uniformly distributed and that
the predicate is intersect (overlap). The proposed formulae use catalog information about
the mean sizes of the objects in spatial relations to estimate the query result. Our estimates
can be applied for arbitrarily distributed datasets using local statistics like 2-D-histograms.
They are also appropriate for spatial queries with predicates other than intersect (e.g.,
meets, covers), since such queries can be transformed to intersection queries (see Papadias
et al. [24] for a case study). In addition, the methods are not strictly limited to the spatial
domain, because dependencies between operators can also be found in other database
applications.

Going a step further, we propose novel, composite algorithms that process spatial joins
and selections simultaneously and are typically more efficient than combinations of simple
operators. The algorithms are extensions of spatial join algorithms [20], [21] that apply on
R-trees. Finally, we study the problem of optimizing complex spatial queries using these
composite operators, by providing (i) cost models, and (ii) rules that reduce the
optimization space significantly.

The rest of the paper is organized as follows. Section 2 provides background on
selectivity estimation of simple spatial queries and describes spatial join algorithms that
operate on R-trees. In Section 3, we provide accurate selectivity estimation formulae for



314 MAMOULIS, PAPADIAS AND ARKOUMANIS

complex spatial queries that involve multiple joins and selections. Section 4 discusses how
these models can be used by a query optimizer based on existing spatial join operators. In
Section 5, we propose extensions of spatial join algorithms which process spatial
selections and joins simultaneously. We also show how they can be included in a spatial
query optimizer and prove that not only they are more efficient than combinations of
simple operations, but they also reduce the query optimization search space to that of
multiway spatial joins. Finally, Section 6 concludes the paper with a discussion.

2. Background

Spatial database systems [10] organize and manage large collections of multidimensional
data. Spatial relations, apart from conventional attributes, contain one attribute that
captures the geometric features of the stored objects. For example, the last attribute in
relation City (CName, PostalCode, Population, CRegion) is of spatial type polygon. In
addition to traditional data structures (e.g., B-trees) for alphanumeric attributes, spatial
relations are indexed by multidimensional access methods [8], usually R-trees [9], for the
efficient processing of queries such as spatial selections (or window queries) and spatial
joins. Selections (e.g., ‘‘cities in Germany’”) apply on a single relation, while spatial joins
(e.g., “‘cities crossed by a river’”) combine two relations with respect to a spatial predicate
(typically intersect, which is the counterpart of the relational equi-join).

Complex spatial queries include spatial and non-spatial selections and joins. They can
be processed by combining simple operators in a processing tree (plan) like the one
illustrated in figure 1(a). The efficiency of an operator depends on whether its input
(inputs) is (are) indexed. For instance, the cost of a window query applied on an R-tree is
typically linearly related to the size of the window. On the other hand, if the selection
applies on intermediate results, the whole input needs to be scanned independently of the
selectivity of the operator. The same applies for join operators. The most efficient spatial
join method is the R-tree join (RJ) [5], which matches two R-trees. Some methods [18],
[20] join an R-tree with some non-indexed dataset (e.g., an intermediate result of another
operator). Others [2], [16], [17], [23] organize two non-indexed inputs in intermediate file
structures (e.g., hash buckets) in order to join them efficiently in memory.

Selection and join operators are combined to form an evaluation plan for a given
complex query. In order to optimize query processing, we need accurate selectivity and
cost estimation models for the various operators involved. Typically, a complex query has
a large number of potential execution plans with significant cost differences. This number
increases exponentially with the number of involved relations (see Mamoulis and Papadias
[21] and Silberschatz et al. [29] for an analysis on spatial and non-spatial domains).
Optimization algorithms search either in a deterministic (e.g., dynamic programming [21],
[29]) or a randomized way (e.g., hill climbing [14]) to find a cheap plan.

In the remainder of this section, we review existing selectivity estimation models for
simple spatial query types. Next, we describe in detail some R-tree based spatial join
algorithms, which we extend in Section 5 to composite operators that process spatial



COMPLEX SPATIAL QUERY PROCESSING 315

selections and joins simultaneously. Finally, we illustrate a dynamic programming
algorithm used to optimize multiway spatial joins.

2.1. Selectivity estimation of simple spatial query types

There has been extensive research on the accurate estimation of the selectivity and cost of
spatial operators. The selectivity of spatial selections has been studied as a prerequisite for
the I/O cost estimation of R-tree window queries [15], [28], [31]. Given a spatial dataset R
of N d-dimensional uniformly distributed rectangles in a rectangular area r (workspace),
the number of rectangles that intersect a window query w (output cardinality—OC) is
estimated by the following formula:

OC(R,w) = N- ﬁmin(l,sdiw‘j), (1)

where 5, is the average length of the projection of a rectangle s € R at dimension d. W, and
7, are the corresponding projections of w,r respectively. The last factor (product) of
equation 1, called Minkowski sum, is the selectivity of the window query (i.e., the
probability that a random rectangle from R intersects w). This probability at some
dimension d equals the sum of projections s; and w; on that dimension normalized to the
workspace. Equation 1 can be extended for the output cardinality of an (intersection)
spatial join between two relations Ry and R, as follows [32]:

: Sia + 524
OC(R,,R,) =N, "N, - Hmin(l, 4 ) (2)
d=1 Ta

Ny, N, denote the cardinalities of the datasets, and 5, 4,5, , correspond to the average
length of the projection of rectangles s; e R; and s, € R, on dimension d. In other words,
the expected number of rectangle pairs that intersect is equal to the number of results
after applying N, window queries of area s, on R;. The selectivity of multiway spatial
joins can be accurately estimated only for acyclic and clique (i.e., complete) query
graphs. Let R,...,R, be n spatial datasets joined through a query graph Q, where
Q;; = true, iff rectangle r; €R; should intersect rectangle ;€ R;. When Q is acyclic, the
number of qualifying object combinations can be estimated by:

. T () SatSa
OCR,,....R,,0)=][N- ]I Hmm(l,’r_d’). (3)

i=1 Vi,j:0;; = TRUE d = |

The above formula actually restricts the Cartesian product of the datasets using the
selectivities of the query edges, which are independent. When the query graph contains



316 MAMOULIS, PAPADIAS AND ARKOUMANIS

cycles, the pairwise selectivities are no longer independent. For instance, if a intersects b
and b intersects c, the probability that a intersects ¢ is relatively high because the
rectangles are expected to be close to each other. Thus equation 3 is not appropriate for
such cases. For the special case where Q is complete (clique) a closed formula that
estimates the output of the multiway join is proposed in Papadias et al. [25]:

OC(R,,...,R HN H w D) Z H 5a (4)

i=1 di=1 j=1j#i
This formula can be derived by the observation that if {s;,s,,...,s,_;} is a clique then
{81,82,---,8,_1,8,} is also a clique iff s, intersects the common area of all rectangles in
{s1,82,...,8,_1}. Equations 1 through 4 are accurate for uniform datasets covering the

same workspace r. In real life applications these assumptions may not hold, therefore
researchers have extended some of them for skewed datasets. A histogram-based method
that estimates the selectivity of window queries is presented in Achaya et al. [3]. This
method decomposes the space irregularly using buckets that cover objects of similar
density and keeps statistical information for each bucket, considering that its contents are
uniform. A similar technique that divides the objects using a quad-tree like partitioning is
presented in Aboulnaga and Naughton [1]. Another method that applies only on point
datasets and uses theoretical laws is proposed in Belussi and Faloutsos [4]. Regarding the
selectivity of spatial joins, relatively little work has been done. In Mamoulis and Papadias
[20] and Theodoridis et al. [32] the space is decomposed using a regular grid and
uniformity is assumed for each cell. The output of the join is then estimated by summing
up the estimations from each cell. In Faloutses et al. [7] an interesting law that governs
the selectivity of distance spatial joins (i.e., is joins that return point pairs within a
distance parameter) is presented.

As discussed in the introduction, the relative positions of selection windows determine
the skew of the joined rectangles from each dataset. Thus existing formula that focus
exclusively on spatial selections or joins are not applicable. In Section 3, we study the
selectivity of complex spatial queries, where the dependency of operators affects the query
result.

2.2. R-tree based spatial join algorithms

The R-tree join algorithm (RJ), proposed in Brinkhoff et al. [5], computes the spatial join
of two inputs provided that they are both indexed by R-trees. The R-tree [9] is a well-
known hierarchical index that indexes minimum bounding rectangles of objects in space.
RJ synchronously traverses both trees, starting from the roots and following entry pairs
that intersect. Let N4 be an intermediate node from R-tree R4, and N be an intermediate
node from R-tree Rp. RJ is based on the following observation: if two entries £, € N4 and
Ep € Ny do not intersect, there can be no pair (0,4, 05) of intersecting objects, where 0,4, 0g
are under the sub-trees pointed by E4 and Ep, respectively. A simple pseudocode for RJ is



COMPLEX SPATIAL QUERY PROCESSING 317

RJ(Rtree_Node N4, Ng)
for each E, eN, do
for all EgeNy with E4, N Eg # @ do

if N4 is a leaf node then /* Ny is also a leaf node */
output (E4, Ep)

else /* Ny,Np are intermediate nodes */
ReadPage(E 4.ref ); ReadPage(Ep.ref);

RJ(E 4.ref, Eg.ref);

Figure 3. The R-tree join algorithm.

given in figure 3. The pseudocode assumes that both trees have the same height, yet it can
be easily extended to the general case by applying range queries to the deeper tree when
the leaf level of the shallow tree is reached.

Figure 4 illustrates two datasets indexed by R-trees. Initially, RJ is run taking the tree
roots as parameters. The qualifying entry pairs at the root level are (A, B,) and (A,, B,).
Notice that since A; does not intersect B,, there can be no object pairs under these entries
that intersect. RJ is recursively called for the nodes pointed by the qualifying entries until
the leaf level is reached, where the intersecting pairs (a;, b,) and (a,, b,) are output.

Two CPU-time optimization techniques were proposed for RJ in Brinkhoff et al. [5].
The first, called search space restriction, reduces the quadratic number of pairs to be
evaluated when two nodes are joined. If an entry E, € N, does not intersect the MBR of
Ep € Np (that is the MBR of all entries contained in Ng), then there can be no entry Ep € N,
such that £, and E overlap. In figure 4, entry a4 of node A,, does not intersect node B, so
it cannot intersect any entry inside B,. Using this observation, space restriction performs
two linear scans in the entries of both nodes before applying entry intersection tests, and
prunes out from each node the entries that do not intersect the MBR of the other node. The
second technique is based on plane sweep [27] and applies sorting in 1-D in order to
reduce the computation time of the overlapping pairs between the nodes to be joined.

RJ was extended in Mamoulis and Papadias [21] to process multiway spatial joins, i.e.,

R,: Forests R»: Rivers
Az E.
|(.'| a, (:3| |(r4|ns| ] |b| b, | ‘bﬂty‘ |
]
by
_dl a = S =
1
el | 4 by - 1"

Figure 4. Two spatial datasets indexed by R-trees.



318 MAMOULIS, PAPADIAS AND ARKOUMANIS

ST(Query Q[1[1, RTNode N[ ])
for i: = 1 to n do
D; : = space-restriction(Q,N,i); [*prune domains*/
if D; = @ then RETURN; /*no qualifying tuples may exist for this combination of nodes*/
for each te find-combinations(Q,D) do [* for each solution at the current level */
if N are leaf nodes then /*qualifying tuple is at leaf level*/
Output(7);
else /*qualifying tuple is at intermediate level*/
ST(Q, t.ref[ 1); /* recursive call to lower level */

Domain space-restriction(Query Q[ ][], RTNode N[ ], int i)
read N;; [*read node from disk*/

D;:= @
for each entry E; e N; do
valid : = true; /*mark E;, as valid*/
for each node N;, such that Q;; = true do /*an edge exists between N; and N;*/

if E;, N N.MBR = @ then { /* E;, does not intersect the MBR of a neighbor node to N;*/
valid : = false; /* E; . is pruned*/
break;
if valid = true then /* E; , is consistent with all node MBRs*/
D;,:=D; YE;,
return D;;

Figure 5. R-tree synchronous traversal.

spatial joins between multiple datasets. An example of such a query is ‘‘find all cities
which intersect a river which crosses a forest’’ and can be processed by synchronously
traversing three R-trees that index relations cities, rivers and forests. A multiway spatial
join between n spatial relations is formally defined by a query graph, consisting of n nodes
(one for each relation) and at least n — 1 edges representing the join predicates between the
relations. In the query graph of the example there is an edge connecting cities and rivers
and another on connecting rivers with forests. The generalized extension of RJ for n inputs
is called synchronous traversal (ST) and can be used as an alternative of combining
pairwise spatial join algorithms in a processing tree. A simple pseudocode of the algorithm
is given in figure 5. ST is recursively called for n-tuples N[ ] of R-tree nodes (initially the
roots of the trees), following combinations of entries that may lead to join results until it
reaches the leaves of the R-trees where qualifying object tuples are output. Parameter
O[ ][] is a 2-D array that captures the query graph. For simplicity we assume that all
possible join predicates are intersect. Thus if Q[i][j] = true, there is a join intersection
predicate between relations i and j. In our example, Qlcities|[rivers] =true,
Qlrivers][forests] = true, and Q|cities|[forests] = false. The algorithm initially prunes the
node domains D, using the space restriction technique described above; if a node entry E;
in node N; does not intersect the MBR of a node N;, then it may not intersect any entry
below it. Thus if Q[i][ ] = true, such entries can be pruned, since they cannot lead to query
results. Find-combinations is the ‘‘heart’” of ST; i.e., the search algorithm that finds tuples
teD; xD,x --- xD,, that satisfy Q. In order to avoid exhaustive search of all



COMPLEX SPATIAL QUERY PROCESSING 319

- i

(a) Level 2 (root) entries (b) Level 1 entries (c) Slot index over level 1

Figure 6. An R-tree and a slot index built over it.

combinations, ST employs a sophisticated search method based on plane sweep and a
backtracking heuristic [12].

Slot index spatial join (SISJ) [20] is a hash-based (pairwise) spatial join algorithm
appropriate for the case where only one of the two joined relations is indexed by an R-tree.
It uses the existing R-tree to define a set of hash buckets. If S is the desired number of
partitions (tuned according to the available memory), SISJ will find the topmost level of
the tree such that the number of entries is larger or equal to S. These entries are then
grouped into S (possibly overlapping) partitions called slots. Each slot contains the MBR
of the indexed R-tree entries, along with a list of pointers to these entries. Figure 6
illustrates a 3-level R-tree (the leaf level is not shown) and a slot index built over it. If
S =09, the root level contains too few entries to be used as partition buckets. As the number
of entries in the next level is over S, they are partitioned in nine (for this example) slots.
The grouping policy used by SISJ (see Mamoulis and Papadias [20] for details) is based on
the R*-tree insertion algorithm [6]. After building the slot index, all objects from the non-
indexed relation are hashed into buckets with the same extents as the slots. If an object
does not intersect any bucket it is filtered; if it intersects more than one bucket it is
replicated. The join phase of SISJ loads all data from the R-tree under a slot and joins them
(in memory) with the corresponding hash-bucket from the non-indexed dataset.

2.3. Optimization of multiway spatial joins

Processing multiway joins by integration of pairwise join algorithms is the standard
approach in relational databases where the join conditions usually relate different
attributes. In spatial joins, however, the conditions refer to a single spatial attribute for all
inputs, i.e., all datasets are joined with respect to spatial properties. Motivated by this fact,
Mamoulis and Papadias [21] combine ST with pairwise join operators to form query
evaluation plans (e.g., similar to the ones of figure 1). The leaves of the plan correspond to
the joined relations and the intermediate nodes to the join algorithms. The algorithms are
implemented as iterators, i.e., the output of one node of the plan is produced on-demand
from the operator above. ST can be used to join two or more indexed inputs, whereas SISJ
and HJ (see Lo and Ravishankar [17]) are used for pairwise joins where one or both inputs
are not indexed.

Given a multiway join query graph Q, a dynamic programming (DP) algorithm is used



320 MAMOULIS, PAPADIAS AND ARKOUMANIS

to compute the optimal plan in a bottom-up fashion. At step i, for each connected sub-
graph Q; with i nodes, DP finds the best decomposition of Q; to two connected
components, based on the optimal cost of executing these components and their sizes.
When a component consists of a single node, SISJ is considered as the join execution
algorithm, whereas if both parts have at least two nodes, HJ is used. The output size is
estimated using the size of the plans that formulate the decomposition. DP compares the
cost of the optimal decomposition with the cost of processing the whole sub-graph using
ST, and sets as optimal plan of the sub-graph the best alternative. After finding the optimal
plan for each sub-graph of Q level-by-level, eventually DP outputs the optimal plan and
estimated cost of the whole query. In Sections 4 and 5, we show how to extend this
methodology for generic complex queries, which may include multiple spatial joins and
selections.

The experimental study of Mamoulis and Papadias [21] suggests that optimal evaluation
plan of a multiway spatial join varies depending on the data characteristics; joins of dense
datasets are processed best by plans that include ST as a module, whereas joins of sparse
datasets are handled best by combinations of pairwise algorithms.

3. Selectivity of complex spatial queries

In this section, we describe the first contribution of this paper, which is a selectivity
estimation formula for complex spatial queries. Such queries involve a number 7 of spatial
relations R, R,, . .., R, joined though a query graph Q, and window queries apply on some
relations. When only one selection window w; that applies on a single dataset R; exists,
selectivity estimation is rather simple. Since the result is the same independently of the
order according to which operators are applied, we can assume that the selection follows
the join. The output cardinality can then be estimated by multiplying the corresponding
join formulae with the selectivity of the window query:

k — —
OC(Join,w;) = OC(Join) - [ min( S0t W"), (5)
d

=1

T'q

where OC(Join) can be any of equations 2, 3 or 4.

The problem is more complicated when two or more spatial selections exist on the
joined datasets. A simple approach is to assume that the join workspace is the common
area of all selections, and apply a single selection on the multiway join result using this
area. This, however, would be inaccurate since the common area of selection windows
may be empty, while there may exist objects that qualify the query, especially if the non-
intersecting windows are close to each other and the data rectangles are large.



COMPLEX SPATIAL QUERY PROCESSING 321

3.1. Selectivity of a pairwise join restricted by two selections

Let us first confine our study to the special case where a pair of joined datasets R; and R,
are restricted by two query windows wy and w,, respectively. Based on the extents of w;
and w, we will try to identify the area that should be intersected by rectangles from each
dataset in order to participate in the join. Thus, we will compute the query selectivity in
three steps: (i) determine a number of candidate join objects from each dataset using
wy, W,, (i1) estimate the workspace area of the join, and (iii) compute the join selectivity
using the number of candidates, the estimated workspace area and the average rectangle
extents according to equation 2.

Let w; ; be the projection of w; on dimension d,w; ;; and w; 4, be the starting and the
ending point of w; 4, Tespectively, and w;; be the length of w,»;d. Consider also similar
notations for the corresponding properties of the average extents of a rectangle s, in dataset
R; (e.g., 5;4 is the average projection of s; on dimension d). We define two updated
windows w}, w}, as follows:

/ L I
Wids ‘= max{wl,d,s, Wods = S2,d}7
/ N J—
Wide = min{wy g, W 4, + 524},
/ L N
Wods = maX{Wz,d,s> Wids =S l,d}7

;. _
Wy ge = Min{Ws 4, Wi 40 + 514}

In order for a rectangle from R; to be candidate for the join and intersect w;, it should
intersect w}. For instance, consider the selection windows w,w, and the updated ones
wi,wj in figure 7(a). Object a, belonging to R and intersecting wy, cannot participate in
the join because it may not overlap some object from R, that intersects w,. On the other
hand, object b that intersects w/ is a potential query result.

Intuitively, w) and w/, define the area where the spatial join is restricted. The number of
rectangles that participate in the join from dataset R; is determined by the selectivity of the
corresponding w’. Notice that the end points set by equations 6a—6d do not always define
valid intervals, since the lower end point may be greater than the upper end point. This

; - 5is
o~ v =M

rectangles [@ St < =
1 D L ’T\

4 4 [ 2

5[] ’ / . ] =
| i o B 2

w; 1 o 5 -
1 - L B A me——
B c,/ 52, . 2/'
wy 27w, i 5]
(a) Updated windows w; , w; (b) Generation of ¢, ¢, (¢) Join workspace ¢

Figure 7. Generation of the join workspace.



322 MAMOULIS, PAPADIAS AND ARKOUMANIS

situation may arise when the actual windows do not intersect and there is a large distance
between them. In this case (if w} , . > w; ; , for some 7, d), the length of the corresponding
projection is negative, and the selectivity of w , is positive only when 5,4 > w/ ;. — W} ;
otherwise, the selectivity of the complex query is zero. ' ' -

So far, we have calculated the windows w} and w/ that should be intersected by each
rectangle from R; and R,, respectively, in the result. These windows can be used in
combination with equation 1 to determine the number of join candidates from each dataset.
The next step is to estimate the workspace of the join c, i.e., the area where the query
results lie. The rectangles from R; that may participate in the join are inside a window c¢;,
which is generated by extending w:.’d with 5;; at both sides on each dimension. For
instance, in figure 7(b) we know that join candidates from R, are included in ¢;. Since ¢,
and ¢, do not cover the same area, we need to average them in order to acquire a unique
rectangle ¢ that reflects best the area where the spatial join is restricted. Figure 7(c)
provides an example of this normalization. Formally:

{Wll,d,x - m’ W,Z,d,.v - m} - ‘wll‘d.,x - m - WIZ,dJ + m|

€4y = Max 7 , (7a)
. . {W,l d.e + m’ W,Z,dA,e + m} + |Wll d.e + m - W/Zﬁd,e - m|
C4e *= Min 5 . (7b)

Figure 8 shows some more 1-D examples with four representative window configurations
over one pair of datasets. In case 3, the workspace is non-empty, although the original
windows do not intersect. In case 4, the updated windows w|, w) are invalid; a rectangle
from R; should intersect both endpoints of the invalid window w’ in order to be a
candidate join object. However, the average length of a rectangle s, e R, is smaller than
the distance of the endpoints of w/, thus the join is considered to have zero selectivity.

Given the join workspace c, selectivity can be computed using the existing formulae for
spatial selections and joins. Summarizing, the output cardinality of a query that includes
the spatial join of two datasets R, R, restricted by window queries w, w,, respectively, is
estimated by the following formula:

case 1 case 2 case 3 case 4
W —_— W U — i
I e i | 1 —1
W
W | SE—| W — w. — —
2 W, —§ . W v
855 55 5 2 Wi Le Wi
W, I i 2 2 "'I' ~— I‘
5 W W +5, Wy W
w P W — wy - He
5 w s . 5iws
| 1 s w 5 Spwy 8
& c 1 1 1 €
5, W, 5y ; w, s . S3w, 8
“ .\lfj_'f\._‘ © P 2
2 2 N, 242 Sin ene, Sip ¢ e

¢

Figure 8. Windows that define the selectivity of a complex pairwise join.



COMPLEX SPATIAL QUERY PROCESSING 323

_|_
OC(R,, Ry, wy, wy) = OC(R,,w}) - OC(Ry, wh) * Hmm( Sia SZd) ®)

Cq

3.2.  Selectivity of multiway joins with selections

Equation 8 can be extended for complex spatial queries that join n datasets, potentially
restricted by spatial selections. Selectivity is again computed in three steps. During the first
step, the updated window w! is calculated for each dataset R;, using the windows of the
neighbors in the join graph Q. At the second step, depending on Q, the workspace area of
each join edge or of the whole graph is computed. Finally, the multiway join selectivity is
estimated using (i) the selectivity of w} for each R,, (ii) the workspace area(s), and (iii)
equations 3 and 4.

The updated selection window w/; for each R; is estimated using the initial windows and
the query graph. It turns out that the calculation process is not simple, since the update of a
window w; to w} may restrict the already updated window wj( of a neighbor R;. This process
is demonstrated in the example of figure 9, where three datasets are joined by a chain query
and three windows restrict the joined rectangles. Assume that we attempt to calculate the
updated window w/ for each w; using the following formulae:

wﬁds := max{w, , ,, max{w; ; ; — 5, Q,»,- = true}}, (9a)

W;,d - mll’l{Wl Jd.er 1’1’111’1{ Jd.e + 54 s} da true}} (9b)

First wy is restricted to w) using w; and s, (figure 9(c)). Then w;, is restricted to w/, using
wy, 81, ws and s3 (figure 9(d)). Observe that the left point end of w, has changed, and this
change should be propagated to w/ (figure 9(e)), which is shortened on the left side. In
general, each change at a window should be propagated to all neighbor windows in the
query graph.

The problem of window updates is similar to achieving local consistency in constraint
satisfaction problems [33]. Therefore, we use a variation of an arc consistency algorithm
[19] to estimate the final w’ for each R;. The algorithm first places all selection windows in
a queue. If a dataset R; does not have a selection window we set w; =r, i.e., the workspace
of the datasets. Then the first window w,from the queue is picked and updated according to
the current windows of the neighbors. If there is a change in wy, the windows of all

s
) , B2 ,' .52
Row Wir——— W, — W — . Wy F——y
R Sq 1 - 5 1
2 'Ti W, —_ W, W, - W, b——
Ry0 =
W, ——— W3 —_— Wiy | Wy | e——

(a) Query  (b) Three windows (c) Update of w, tow, (d) Update of w,tow;  (e) Second update of w;

Figure 9. Selection window update propagation in a network of joined datasets.



324 MAMOULIS, PAPADIAS AND ARKOUMANIS

window_propagation(window wl ], Query Q[ ][ ])
initialize queue;
for each R; do
if w; does not exist then w; :=r;
queue.insert(w;);
while not queue.empty() {
wr = queue.getfirst();
for each dimension d do
Wy g5 = max{wy , ., max{w; ,; —5; 5,05 = true} };
Wrae = min{ws g, min{w; ,, + 54, Q5 = true} };
if wy has changed
for each j, Oy = true do
if w; not in queue then queue.insert(w;);

Figure 10. The window_propagation algorithm.

neighbors not currently in the queue are inserted in it because the changes need to be
propagated to them. The process continues until the queue is empty. The pseudocode of the
algorithm is given in figure 10.

After the execution of the window_propagation algorithm, each window w; will be
transformed to the minimum intersection window w}. Window w’, is determined by the end
points of the most restricted window w; on each dimension. The path connecting R; with R;
contains at most n —2 graph nodes (where n is the number of datasets involved in the
query), meaning that the end points of the window w! can be adjusted at most n — 1 times
per dimension. Thus, the worst case complexity of the algorithm is O(d - n?), and its
computational overhead in the optimization process is trivial.

The next step of the estimation process is to determine the workspace area ¢ of the
multiway join. This process is performed in a similar way as described in the previous
paragraph. First the coverage area ¢; of each window query w/ is estimated by extending w}
with 5;; at both sides on each dimension. If the query is acyclic the selectivity of each
query edge Q;; is normalized with respect to the corresponding pairwise join workspace.
Therefore equation 3 is modified as follows:

n k .,
S 4+5;

OCRy,....R,,wy,...,.w,,0) = I IOC(R,',WD' | I | I min [ 1,244
=1 Vi j:0,; = TRUEd =1 Cijd

(10)

In equation 10, ¢;, j denotes the workspace of the pairwise join between R; and R;, which
is calculated using w/, w}, s; and s; and equations 7a and 7b. In case of clique graphs, we
need to consider a unique workspace ¢ for the whole multiway join, since all rectangles in
an output tuple mutually overlap. This workspace is defined by extending the common
intersection i of all workspaces c; by the average difference of the ¢’;s from the common
intersection at each side and dimension. Formally:



COMPLEX SPATIAL QUERY PROCESSING 325

I; = max {W; ., — S, 4
d,s 1<1<n{ id,s I,d}a
. , _
, n (ld‘s — Widgs T Si,d)
a1 iy = Y A T, (11a)

i=1

min {wldf —|—s,d}

i;,:
de 1<i<n

( 1de+s1d d )
Cd,e = lde +Z ) (11b)

i=1

The output cardinality of a multiway clique join is then estimated by the selectivities of
the windows and the multiway join selectivity (see equation 4), normalized to the join
workspace c¢. Formally:

k

C(Qlea"'amelv"'7 HOC H I’l—l

i=1 d:l i=1j=

M
“’|

3.3. Experimental evaluation

In this section, we evaluate the accuracy of equations §, 10 and 12. For this purpose, we
generated four series of synthetic datasets with uniformly distributed rectangles in the
square workspace [0, 1)2. The density' of the datasets in the different series is 0.1, 0.2, 0.4
and 0.8. Each dataset consists of 10,000 rectangles. By Uxy we will denote the yth dataset
in the series of density x. For instance, UQ.1a denotes the first dataset in the series having
density 0.1. The lengths of the rectangles are uniformly distributed between 0 and 2 - 5; ,
where 5; ; is the rectangle side that leads to the desired density. For instance, in order to
achieve 0.1 density in a 10,000 rectangles dataset, the average rectangle side should be
1/0.1,/10,000.

Table 1 shows analytical and experimental results on complex pairwise spatial joins.
Each row corresponds to a different pair of datasets and each column to a representative
configuration of selection windows. Clearly, the estimated output is very close to the actual
one. If we define the quantity |estimated — real|/min{estimated, real} as estimation error,
the median estimation error in the experiment is 8%. The overestimated and
underestimated cases are balanced, indicating that the reasoning behind equation 8 is
correct.

In the next experiment, we test the accuracy of equations 10 and 12 for multiway spatial
joins restricted by selections. We use the uniform datasets described above and several
window configurations for chain and clique graphs. Table 2 shows graphically four
configurations of windows applied to six join graphs. The assignment of windows to graph



326 MAMOULIS, PAPADIAS AND ARKOUMANIS

Table 1. Evaluation of the estimation formula for pairwise spatial joins with selections.

W, W | Wl

" W]
& (0.55, 0.55)
W Veos eos (09, 0.505)
% (04 0.9) (0:6,0.5) 0.1,0.5) w
ke *

Estimated  Actual | Estimated Actual| Estimated Actual | Estimated Actual

(0.6, 0.6)

(0.4, 0.4) (0,45, .45)

U0.1a X UO.8a 633 659 167 179 24 19 46 31
U0.2a M} U0.4a 511 506 134 106 18 12 30 35
U0.1a 4 UO.4a 395 406 103 80 12 15 17 17
U0.2a X U0.8a 780 855 207 252 33 36 69 67
U0.1a M U0.1b 169 175 43 45 3 3 1 1
U0.8a X1 U0.8b 1,420] 1,469 384 433 81 81 199 179

nodes is done clockwise, e.g., for the first row w; applies to U0.la, w, to U0.2a,
ws to U0.4a and w, to UO.8a. We have experimented with queries that have windows on
all datasets (e.g., first column) and queries with windows on some datasets. Typically the
estimation is close to the actual result, but the accuracy is not as high as in the case of
binary joins (the median error is now 38%). This happens because of (i) the propagation of
the error in partial results, and (ii) the fact that the intermediate results are more skewed

Table 2. Evaluation of the estimation formulae for multiway spatial joins with selections.

010651 ] (0.25.0.75) Wy w2
(0.15. 0.6) Wy - (0.4,0.9)
(0.2, 0.55) Wy (0.1, 0,65 1
(0.25, 0.5) Wy wy
.F. ol2s 10.1.0.5) 0.6,0.5) Wy "
(055, 2y I—l
(0.b,0.15) (0:5,0.25) 03,0
10.65,0.1) (0.65,0.15)
Estimated  Actual | Estimated Actual | Estimated  Actual | Estimated  Actual
V0.l uo2a 1,136 1,107 1,784 2,464 52 25 40 86
U0.8a Ul4a
s Lo2a 279 395 443 542 3 3 5 6
WE U0Sa 9,352 15,577 14,734 | 22,604 355 425 438 480
U0.4a U.sb
L2 Usa 1,203 1,602 1,931 2,399 32 54 18 21
T0da 0.2 1611 2.506 2.554 4,168 44 17 51 31
U0.4b uIzb
U0.2a U0.2a 251 348 404 555 4 5 2 3




COMPLEX SPATIAL QUERY PROCESSING 327

than the input data. However, this is an unavoidable problem, which also exists in query
optimization of relational queries involving many operators [13].

In general, the experiments prove the accuracy of equations 8, 10 and 12 and support
their use for query optimization. However, the importance of this analysis is not only
restricted to this task. After proper modification the proposed methods can be used to
assure that a query has zero results and, thus avert processing. As explained, if some
updated window w'; is invalid (W] , > W}, , at some d) the average size of the projection
§;4 at this dimension determines whether the query is expected to have any solutions. If in
the above methodology, instead of the average projections we employ the maximum
projections max(5; ;) for each dataset on every axis, we can determine whether the query
definitely has no solution. Thus if w} , - —w} ; , > max(5s; ;) and max(5; ;) is used to derive
w';, processing can be avoided.

3.4. Extension to real data

In real life applications data are not usually uniform, but the distribution and size of the
objects may vary in different areas of the workspace. In such cases, we need models that
take advantage of information about the distribution of the objects to estimate the cost of
complex queries. Formulae for range queries and distance joins [4], [7] on point datasets
are not readily applicable for intersection joins of datasets containing objects with spatial
extent. Techniques that keep statistics using irregular space decomposition are not
appropriate either, due to the fact that two (or more) joined datasets may not have the same
distribution and the space partitions can be totally different. Another limitation of such
methods is that information cannot be maintained incrementally, because they need to read
the whole dataset in order to update statistics. Thus, in order to deal with real data, we
adopt a regular space partitioning and consider that the distribution in each partition is
almost uniform, so that our models can be applied locally within partitions. Similar local
uniformity assumptions have been extensively applied for multi-dimensional histograms
(e.g., Achaya et al. [3]) and cost models for node accesses (e.g., Theodoridis et al. [32]).

In particular, we divide the space using a uniform C x C grid and for each cell we keep
track of the number of objects and the total length of their MBR per axis. Assuming that
the distribution in each cell is uniform, we can use this information to estimate the
selectivity of spatial queries. For example, the selectivity of a range query can be estimated
by applying equation 1 for each cell that is partially covered by the window, summing the
results, and adding the number of objects in cells that are totally covered. The selectivity of
a pairwise or multiway spatial join [20], [32] can be estimated by applying equations 2, 3
and 4 (depending on the query) for each combination of cells from the joined datasets that
cover the same area, and summing up the results. Figure 11(a) illustrates a real dataset (T1)
that contains road segments from an area in California. Figure 11(b) presents a regular
50 x 50 grid that keeps statistical information about the dataset. The z-axis shows the
number of objects per cell. Since the characteristics of the dataset vary significantly
between cells, application of uniformity-based selectivity formulae is not expected to
provide good estimates. The distribution of objects in each cell may not be uniform;



328 MAMOULIS, PAPADIAS AND ARKOUMANIS

o s

(a) Dataset T1 (b) Number of rectangles per cell in a 50 x50 grid

Figure 11. Skew in real dataset T1.

however, the skew is not expected to have major effects in the total estimate. This was
demonstrated in a previous study [20] where the estimation error for pairwise and
multiway joins was within acceptable limits. Moreover, the experimental study in Achaya
et al. [3] suggests that the accuracy of our method (called Equi-Area in this paper)
increases significantly with the number of cells. Some histogram-based selectivity
estimation methods [26] suggest approximating the distribution of data in a cell by a
deviation function instead of assuming uniformity. However, these methods work for
(multidimensional) points; the distribution of objects with spatial extents can hardly be
described by simple functions. Another important advantage of our method is that
statistical information can be maintained incrementally with trivial cost at each insertion/
deletion of a rectangle.

In this section, we show how the methodology of the previous section for uniform data
can be applied to estimate the selectivity of complex spatial queries involving real-life,
skewed datasets. We provide formulae that are based on the existence of the 2-D uniform
grid and the assumption that rectangles in each cell are uniformly distributed.

3.4.1. Selectivity of pairwise joins restricted by selections. We estimate the selectivity
of pairwise joins involving skewed datasets that are restricted by selection windows using
the methodology described in Section 3.1. Figure 12(a) shows a configuration of selection
windows w;, w, and a statistical grid. We first compute the updated w', w} for each cell, as
illustrated in figure 12(b). Instead of using the global statistics about the average rectangle
in a dataset we use the information kept in each cell. Thus the updated windows are not
regular rectangles but their length may vary between grids. After the update there might be
cells which are totally covered by both windows (e.g., cell a in figure 12(b)) or partially
intersected by them (e.g., cell b).

Selectivity is then estimated by summing the join result for each such cell. When a cell
is totally covered by both windows, its selectivity is estimated using equation 2 and
considering the area of the cell as the workspace. Otherwise, we apply the methodology
described in Section 3.1. Thus we (i) estimate the selectivity of w'y, w', in the cell, (ii)
estimate the join workspace ¢, and (iii) apply equation 8.



COMPLEX SPATIAL QUERY PROCESSING 329

W W,

(a) Two windows and a 2-D histogram (b) Irregular updated windows using grid information

Figure 12. Two selection windows and a grid.

3.4.2. Selectivity of multiway joins restricted by selections. As in Section 3.2, we will
study two configurations of multiway join queries that are restricted by selections; acyclic
and clique (complete) join graphs. The first stage of the estimation involves the
computation of the updated windows w'. This is done by applying the window_
propagation algorithm of figure 10. Notice that the updated windows to be considered at
each step of the algorithm may be irregular, depending on the rectangle extents at each cell
(see figure 12).

We estimate the output of acyclic queries with selections incrementally using the
algorithm of figure 13. The algorithm first orders the nodes in the query graph, such that
each R;,i > 1, in the order is connected to some R;,j < i. Then at each step / it computes
the selectivity of the subquery that includes nodes {R,R,, ..., R;} for each cell g, , of the
grid. The number of rectangles that participate in the join at g, , are estimated by the
selectivity of the previous step OC(g, Ry, Ry, ..., R; 1, Wy, wy,...,w;_;) and the
selectivity of w}, OC(g, ,, R;, w;). The join result at this step is determined by edge (R;, R;),
thus, the join workspace ¢, ; ; at cell g, , is determined by extending wi, w} at both edges
and all dimensions by the respective average rectangle extents 5, ;, 5, ; and averaging
as described in Section 3.1. The resulting ¢, ,;; is adjusted in all dimensions to be no
longer than the respective cell extents, i.e., ¢, = min (cxﬁyﬁiﬂj‘d, gx"y"d)Vd.

Let OC(g,,,1) = OC(g, R, Ry, ..., R;, Wi, W), ..., w}) be the output of the query at
step i for cell g, . In summary, OC(g.,,) is estimated by multiplying the selectivities of w/
and the previous sub-query OC (g, ,, i — 1) and the join selectivity based on the estimated
workspace:

Cxyijd

k [ —_
. Sevid T Sy i
0C(8,:1) = OC(g,,1 = 1) OC(R;, g, w)) - [ ] min (1M> (13)
d=1
For clique queries the process is simpler. We assume that the multiway join has a unique
workspace which does not vary between join edges, as explained in Section 3.2. Thus, for
each dimension we estimate the common intersection of all workspaces c; and extend it
by the average difference of the ¢;s from it all each side and dimension. Naturally, as in



330 MAMOULIS, PAPADIAS AND ARKOUMANIS

selectivity _estimation(window w[ |, Query Q[ ][ ])
window_propagation(w, Q);
order datasets: V i > 1, R; connected to some R;,j < i
estimate the selectivity of the first edge (R,,R,);
for i =3 tondo
let R; be the node connected to R;,j < i;
for each cell g, of the grid do
compute OC(g..,, R;,w)); /* OC(R;,wi) on g/
compute the joifl workspace ¢; ;.
estimate the join results using equation 13;
sum up estimations for each cell and return result;

Figure 13. Selectivity estimation for acyclic queries.

the previous cases the common workspace might not be a regular window, but we
estimate each extent at each cell of the grid. The selectivity of the multiway clique join is
then estimated by equation 12 for each cell after performing the appropriate
normalization of the workspace according to the cell’s extent at each dimension.

3.4.3. Experiments. We evaluated the accuracy of the proposed extension of our
methodology to handle skewed data by using some real datasets from Geographical
Information Systems. The characteristics of the data used in the experiments are provided
in table 3. T1 and T2 are two layers of an area in California with large density differences.
The last four datasets capture layers of Germany’s map. In the first experiment, we test the
accuracy of our methodology for pairwise joins restricted by selections. We compare the
accuracy of equation 8 which assumes uniformity with the method of Section 4.1 using a
50 x 50 statistical grid. In equation 8, instead of the actual average rectangles sides, we
used normalized averages taking under consideration that the query workspace is not
rectangular, but depends on the area covered by the joined datasets.

Table 4 shows the estimates of these methods and the actual query results for various
joined pairs and the window configurations of table 1. The first column for each
configuration of windows shows the estimation of equation 8, the second the estimation of
the histograms method and the third the actual result of the query. The results show that
both methods are not as accurate as in the case of uniform datasets. Observe that for

Table 3. Description of real data used in the experiments.

Abv. Description Cardinality (N) Density
T1 California roads 131,461 0.05
T2 California rivers and railroads 128,971 0.39
G1 German utility network 17,790 0.12
G2 German roads 30,674 0.08
G3 German railroads 36,334 0.07

G4 German hypsography 76,999 0.04




COMPLEX SPATIAL QUERY PROCESSING 331

Table 4. Evaluation of the accuracy of the 50 x 50 grid on pairwise joins with selections.

Wy wy wy

W Wy
: (055, 0.55)
(0.9, 0,505}
Wy " -
0405 06,05 XS] Wy
Wy *

No Grid Grid Actual|No GridGrid Actuall Ne Grid Grid Actual|No Grid Grid Actual

(0.6, 0.6}

(0.4, 0.4) (045, §.45)

T1p] T2 | 3,629]5,722{ 7,548 917]1,333) 2,061 27 21 27 0 0 2
Gl X G2 393] 893[ 958 100 | 329 309 6 5 3 1 0 2
G11x] G3 4221 1,085[ 1,105 107] 356( 310 6 8 4 2 0 1
Gl1[x G4| 606]2,069] 1,703 154 | 778 541 6 16 8 0 0 0
G2 X G3 407| 893] 1,353 103] 319( 418 4 4 6 0 0 0
G2 X G4 505]1,573[ 1,284 127 | 630[ 436 4 7 6 0 0 0
G3I< G4] 498]1,823| 1,370 125| 639 404 3 8 5 0 0 -+

queries where the windows have some overlap (first and second), applying the grid method
is better than assuming uniformity, whereas in queries with trivial window overlap, using
histogram information has small effect. The reason is that the number of results is very
small and estimations are more error sensitive.

In the next experiment, we study how accuracy is affected by the granularity of the grid.
For the first two window configurations and various grid sizes we estimated the output of
various joins. Figure 14 presents for each join pair and grid size the estimated selectivity
divided by the actual query output. Observe that typically the accuracy increases with the
detail of the grid, although this is not a rule (see, for instance, G1 < G3 in figure 14(a)).
Nevertheless, very large grids are expensive to store and maintain.

We also studied the accuracy of grids for multiway join queries and the estimates were
less precise due to the effects of error propagation. Table 5 presents some results when
uniformity is assumed and when a 50 x 50 grid is used. We experimented with two

---[}-- TIxT2 —A— GIxG2 ---X--- GIxG3
—¥— Gl xG4 —&— G2xG3 s-e - G2xG4 —=— G3xG4

1.44 1.84

124 1.6
1.4+

: 12

0.8 !
0.8

0.6
0.6

041 0.4+ rrs

0.24 nugrid 10x 10 20x20 50x50 100x100 0.2 norid 10x 10 20%20  50%x50 100x 100

(a) Grid accuracy: first window configuration (b) Grid accuracy: second window configuration

Figure 14. Accuracy of grids for various joins.



332 MAMOULIS, PAPADIAS AND ARKOUMANIS

Table 5. Evaluation of the accuracy of the 50 x 50 grid on multiway joins with selections.

B 10.25,0.75) W =
(0.15. 0.6) w, S
(0.2.055) | | " .1, 043 Wy

0.25.0.5 wy .
wy -
500 (0.9, 0.505), W)
= W
0.1,05 4
wls. p.35) (0.1,05) 06,05 | ws | '
(0[55, 0.2)

06, 0.15) (0.5,0.25) (0.9, 0.1y
(0.65, 0.1) (0.65, 0.15)

No Grid Grid Actual |No Grid Grid Actual|No Grid Grid Actual |No Grid Grid Actual
68 319] 1,036 108 650( 1.856 2 1 0 9 28 0

15 88 266

(3]
wn

164 264 0 2 0 0 3 0

multiway join configurations of the Germany’s layers and with the four selection window
configurations of table 2. In general, using the grid is better than assuming uniformity. The
estimates are inaccurate for windows with overlap, but the error is within expected bounds
given the increased deviation in pairwise joins and the propagation. On the other hand, in
the last two queries where the results are small, error propagation may have large effects
(see the last query of the first raw).

We expect windows in typical queries to have some overlap. Thus, the grid can be used
without major errors in optimization. On the other hand, when the actual query result is
very small, the relative estimation error can be too large. Notice, however, that large
relative errors in small results do not significantly affect much estimates in the cost of
query operators, since the actual difference translates to few page accesses. The
computation cost of the output estimates was negligible. For multiway join queries with
selections when the grid is used (the most expensive case) the running time did not exceed
few milliseconds, indicating that the estimates can be used for efficient query
optimization.

4. Optimization of complex spatial queries using existing operators

The selectivity formulae for complex queries can be used in combination with cost
formulae of spatial query operators to optimize queries that involve multiple joins and
selections. This can be achieved by extending the dynamic programming algorithm
described in Section 2.3 to consider potential selection operators. First the join graph Q is
enriched with edges of the type (R;, w;) from each dataset R; to a newly created node that
symbolizes the selection window on R;. Figure 15(a) shows how a complex spatial query
can be transformed to an extended graph. The adapted DP begins by computing the cost of
each edge. At step i, it computes the cost and selectivity of connected sub-graphs with i
nodes based on the costs and selectivity of sub-graphs computed in the previous steps. The



COMPLEX SPATIAL QUERY PROCESSING 333

R, Ry R; R, R, R;

Ow, Oy, Ow; Ow; T

(a) Extended graph that (b) Extended graph with
includes selections updated windows

Figure 15. Graphs for the complex query o, (R,) > R, > g, (R3).

only difference with the version of DP for multiway joins is that for sub-graphs, which
include selection nodes, ST is not considered as a processing method.

4.1. Using the updated windows to restrict the join inputs

As discussed in Section 3, there is interdependence between windows that restrict the
joined relations. We have shown how from the initial windows w; we can derive a series of
updated windows w! which are smaller. More importantly, it may occur that the rectangles
of an unrestricted dataset R; in the query expression are in fact restricted because of the
implicit relation of R; with the selection window w; of some dataset R; with which it is
joined. Therefore it is possible to accelerate the execution of a complex query by using the
updated window w/ for each R; instead of the initial w;. Notice that in order to replace
some w; with the corresponding w/} in query processing, w/ should be defined using the
maximum projection max (5; ), VR;, d as explained in the previous section. Figure 15(b)
shows how the query graph is transformed when the updated windows w’ for each R; are
used. Even though w, does not exist, an implicit w) can be applied to restrict the rectangles
from R,.

The introduction of updated windows can increase the optimization space, since some
datasets may not be initially restricted by some condition. However (i) the new
optimization space can include plans which are cheaper than the cheapest plan that uses
original windows, and (ii) certain rules can reduce the optimization space significantly, as
will be explained in the following.

4.2.  Window redundancy

Selections, when applied after the join of some datasets, filter the join results accordingly.
Theoretically a complex query can be processed by first computing the multiway join of all
datasets and then applying the corresponding selections to each join tuple. Some of these
selections may be redundant, in the sense that the query result is the same if they are not
applied at all. An example of a redundant selection is window w5, in figure 15(b). The
execution of this selection after all joins is redundant since it is implied by the other
selections. On the other hand, as explained in the previous paragraph, w) can be useful
when applied before the join, because it can reduce its input significantly.



334 MAMOULIS, PAPADIAS AND ARKOUMANIS

In general a window wj; is redundant if for each dimension d,w}, > w,,  and
W) 4o < Wa 4. i.€., the original window contains the updated window. For example, in the
query ““find all cities in Germany crossed by a European river’’ the condition that the river
should be European is redundant, since all rivers which go through Germany are known
(or expected) to be European, due to the geographic position of Germany.

4.3.  Rules that reduce the optimization space
Summarizing, the following rules may reduce the space of query optimization significantly:

i. The order of selections applied on join results is not important. After the join results
the selection operators are actually filter operators with trivial cost. This rule applies
also for relational query processing plans.

ii. A selection condition w’ for some R; is either applied before the participation of R; in
some join, or right after the join. Clearly, the result of a join is non-indexed and its
filtering by a selection operator does not affect negatively the cost of a successive join.
For instance plan (o,, (R; >< R5)) < R3 is always at most as expensive as g, ((R; <
R;) >< R3), because the result of Ry < R; is at least as large as the result of a,, (R >
R») and the last join with R; will be executed using the same operator (e.g., SISJ).

iii. A redundant window w! needs not be used to filter results after a join if the selections
on which w/ depends have been processed before, or are processed in combination
with it. Consider for example the query of figure 15(b), and assume that all joins have
been processed using ST. Plan o,/ s ., (R1 < Ry > R3) is equivalent to o, ., (R b<
R, > R3), since w| and w} imply w).

5. Composite spatial operators

Until now we have assumed that selections and joins are evaluated by different operators,
combined in a processing tree. However, it is possible to process multiple logical operators
simultaneously in the same algorithm. In this section, we show how R-tree based join
algorithms can be extended to process both selections and joins.

5.1. A synchronous traversal algorithm that processes spatial selections

Synchronous traversal can be extended to process spatial selections on the joined relations
simultaneously with the (multiway) spatial join. A pseudocode of a straightforward
extension of ST (ST_SS) is given in figure 16. ST_SS, in addition to the query graph Q,
takes as parameter an array w of selection windows, one for each variable involved in the
join. If a relation R; does not have a selection condition, the corresponding condition w; in
ST_SS is void. Clearly, if an entry E; € N; does not intersect the selection window, no data



COMPLEX SPATIAL QUERY PROCESSING 335

[*version 1*/
ST_SS(Query Q[ ][], SelConditions w[ ], RTNode N[ ])
for each i do
D; = apply-selection(w;,N;);
D; = space-restriction(Q,D;,i); [*prune domains*/
if (D; = @) RETURN; /*no qualifying tuples for this combination of nodes*/
for each € find-combinations(Q,D) do /* for each current level solution */
if N are leaf nodes /*qualifying tuple is at leaf level*/
Output(7);
else /*qualifying tuple is at intermediate level*/
ST_SS(Q,w, t.ref[ ]); /* recursive call to lower level */

Figure 16. An extension of ST that processes spatial selections.

indexed by this entry can participate in query results. This spatial selection is applied in
combination with space-restriction.

In the next sub-section, we investigate methods for optimizing ST_SS. We first propose
the reduction of the original selection windows w; to revised ones based on catalog
information about the sizes of the rectangles in the joined datasets. We propose a method
that filters qualifying combinations of entries at a specific level based on implicit
constraints and revises the selection windows at the next level according to these
constraints. Finally, we optimize the order in which nodes are considered in apply-
selection and space-restriction.

5.1.1. Optimization of ST_SS. The first way to improve the performance of ST_SS is
to replace the original window queries w; posed by the user with the updated windows w
derived by the implicit object relations through the join conditions. These windows can be
calculated using the query graph and the maximum rectangle projections per axis, as
described in the previous sections. ST_SS is expected to profit from the window
replacement since the new windows are expected to be smaller than the original and
restrict more the search space. We will refer to this version of the algorithm as ST_SS v.2.
After a combination of entries that satisfy the query constraints is found at level /, ST_SS is
executed at the next level / — 1 taking as parameters the nodes pointed to by these entries.
However the combination of nodes at level / — 1 may not have any solution. Provided that
catalog information for the maximum size s; ; of rectangles at each dataset R; and axis d is
available, we can identify qualifying entry combinations at level / that implicitly cannot
lead to solutions. This is achieved by restricting the windows w/, at the current level using
the boundaries of the entries £}, such that Ql:/» = true. To clarify this, consider the example
query of figure 17. Assume that ST_SS is run for the root nodes of the trees and
(E\,E,,E;) is a qualifying entry tuple returned by find-combinations. Clearly, each
rectangle under E; that participates in a solution under this triple of entries should intersect,
apart from wj, all E; such that Q;; = true. However, this is not possible for any rectangle
under E,, because its maximum length max(s,) is smaller than the distance between E|
and E;.



336 MAMOULIS, PAPADIAS AND ARKOUMANIS

W
L

max, w

R, O i E, —_

| max, —iE

R, ? — 'Z—F'
max,, s

R; O —

Figure 17. A qualifying triple of entries defining an invalid window at the next level.

This implicit filtering (IF) technique can be implemented in three steps. Given an n-
tuple of qualifying entries at level /:

i. Update each intersection rectangle w} with respect to the boundaries of the neighbor
entries:

Wg‘d,x = max{w;,d,m maX{Ej,d,m sz = true}}a

Wide = min{w; ;,, min{E; ,,,Q;; = true}}.

ii. Propagate window changes using the algorithm of figure 10.

iii. If after some window change max(s; ;) < w; ds — w§7 4. at some dimension d, consider
the combination of entries disqualified and proceed to the next combination. In a
different case call ST_SS passing as parameters the references to the respective nodes
and the newly created windows w'.

Observe that the newly created w' can replace the windows for apply-selection and
space-restriction at the next level. Assume that we follow the links of a qualifying triple
(E\ 1, Eyy, E5) to a next level combination of nodes (Ny;_1,N,;_,N5,_). If an entry
E;;_,€N;,_, intersects the newly created window w/ it will also intersect both the w; of
the previous level and all the MBRs of N ji—1, where Q;;=true. Thus updating the
windows at each run of ST_SS improves the performance of the method since multiple
intersection tests are replaced by one; space restriction is not required. More importantly,
the newly created windows w’ for a specific combination are calculated only once, by
applying IF at the previous level, and are passed as parameters. A method similar to IF
which optimizes ST for the processing of multiway spatial joins is proposed in Park et al.
[22]. Figure 18 shows version 3 of ST_SS that uses IF and replaces the multiple
intersection tests at apply-selection and space-restriction by one. Initially, the algorithm
takes as parameters the roots of the R-trees and the updated windows w'.

The order in which the nodes will be considered in apply-selection and space-
restriction may crucially affect the performance of ST_SS in terms of both I/O cost and
CPU time. An R-tree node is not loaded until its entries need to be checked for
consistency by these functions. If for some N; all entries are inconsistent, the nodes N;
not examined yet (j > i in the examination order) need not to be loaded because any
configuration of objects under the current combination of nodes is not consistent. If the
order is chosen in a way that the domains with the highest probability to be pruned are



COMPLEX SPATIAL QUERY PROCESSING 337

[*version 3%/
ST_SS(Query Q[ ][], SelConditions w'[ ], RTNode N[ ])
for each i do
D; = apply-selection(w), N,); [*prune domains*/
if (D; = ©) RETURN; /*no qualifying tuples for this combination of nodes*/
for each t€ find-combinations(Q,D) do [* for each current level solution */
if N are leaf nodes /*qualifying tuple is at leaf level*/
Output(7);
else /*qualifying tuple is at intermediate level*/
create nextw’ from t and w' using Implicit Filtering,
if 7 is still consistent /*no nextw'; is invalid*/
ST(Q, nextw’, t.ref[ 1); /* recursive call to lower level */

Figure 18. ST_SS with implicit filtering.

placed first, inconsistent node combinations are detected early and fewer nodes need to
be loaded and scanned.

ST orders the nodes using a simple heuristic that places the most constrained dataset in
the query graph first [21]. The degree of a graph node is defined by the number of edges
adjacent to it. The datasets are ordered in decreasing order of their degree and the most
constrained ones are examined first in space-restriction. The involvement of selections in
ST_SS changes the definition of variable restriction, since it is not anymore dependent
solely on the query graph, but also on the selection condition of the variables. Luckily, the
replacement of multiple intersection tests in the initial version of ST_SS with a single test
using the updated w’ simplifies the definition of an order in which the nodes can be
optimally considered in the combined apply-selection and space-restriction. Therefore we
define a fourth version of ST_SS which, before each execution of the recursive function
sorts the nodes with respect to increasing selectivity of the windows w/ to the entries of the
current level.

We evaluated the efficiency of the optimization techniques for ST_SS by implementing
the four versions of the algorithm and running the queries of Table 6, using the datasets
described in Section 3. For each dataset an R*-tree [6] was built with page size 8 K. ST_SS
was supported by an LRU buffer of size 128 K. All experiments were run on a Pentium III
workstation (450 MHz) with 128 Mbytes of main memory.

Table 6 shows for each query and each version of the algorithm four measures: (i) the
CPU cost in seconds, (ii) the number of node accesses (i.e., the I/O cost assuming a zero
buffer scheme), (iii) the number of page accesses in the presence of the LRU buffer, and
(iv) the overall cost which is estimated by summing the CPU cost with the I/O cost,
calculated by charging 10 ms for each page access (a typical value [29]). The experiments
show that the optimization techniques typically improve the performance of the method
significantly. Especially for chain queries the performance gain of ST_SS v.4 over the
initial version of the algorithm is large (the difference factor in the total cost is on the
average 2.6 and reaches 6.1 in the best case).



338 MAMOULIS, PAPADIAS AND ARKOUMANIS

Table 6. Evaluation of the optimization techniques for ST_SS.

(0.1, 0.65)
(0.15. 0.6) wy
(0.2, 0.55) Wy (0.1, 0.64)
(0.25,0.5) w3

E .
(0. 4239 i 2 ws.0s08 |
(055.40.2) (0.1,0.5) (0.6, 0.5) wy o b

(0, 0.15) (0.5,0.25) .1, 0.3 s

(0.65, 0.1) (0.65.0.15) (0.9. 0.1

vl v2 v3 vd | vl vi2 v3 wvd] vl v.2 v v4 v.1 vz v3 vd4
l::I“ ' W CPU| 0.89] 0.54| 0.32] 0.32] 1.11] 0.69] 0.36/0.36] 0.77| 0.07| 0.07[ 0.07] 0.53] 0.17| 0.17[0.15
Ul.8a Uda

(0.25,0.75) Wy Wy
wy 0.4,09)

NA|1,017] 587] 349] 329]1,328| 794 433 405] 963 43 34]  29] 596| 191] 123] 120,

ol 71 38 36 36] 129] 69 51| 49 45 13 13] 13 37 291 29 29

total| 1.6 0.92] 0.68] 0.68] 2.4| 1.38] 0.87/0.85] 1.22 02| 02| 02 0.9] 0.46] 0.46[0.44/
lm" CPU| 0.35| 0.25| 0.25| 0.25] 04| 0.35] 0.35] 0.3] 0.19 0.1 0.1] 0.09] 0.17[ 0.17[ 0.17[0.16
U 4a

NA| 382| 261| 261| 243] 453| 334| 334|325] 203 33 33| 30 151 118] 118113
/Ol 56/ 34| 34/ 31 60] 49 49| 45 28 13 13] 13 29 29| 29 29
total] 0.91] 0.59| 0.59| 0.56 1 0.84] 0.84/0.75] 047 0.23] 0.23] 0.22] 0.46] 0.46) 0.46|0.45
CPU| 0.8] 0.55| 0.36] 0.31] 1.23| 0.87] 0.46/0.46] 0.33] 0.14] 0.14] 0.14] 046| 0.19] 0.18]0.15
NA| 892] 581| 334] 317]1.492| 946] 498 478] 330 90| 83 771 500[ 189[ 153|136
/O]  57) 53] 40[ 34 81| 111 711 70 25 17 170 17 75 30[ 30] 29
total| 1.37| 1.08] 0.76] 0.65] 2.04] 1.98] 1.17]1.16] 0.58] 0.31] 0.31] 0.31] 1.21] 0.49]| 0.48]/0.44
‘G CPU| 03] 03] 03] 0.25] 047] 0.39] 0.39/0.35) 0.14] 0.13] 0.13] 0.1] 0.22[ 0.19] 0.19]0.19
N NA| 325] 276] 276] 254] 503| 386] 386) 368 91 58 58] 47| 214 158 158|155
& /O] 46] 33 33| 34] 60 55| 55| 47 19 15 15 15 37] 33 33 32
total| 0.76] 0.63] 0.63| 0.59] 1.07] 0.94] 0.94/0.82] 0.33] 0.28] 0.28] 0.25] 0.59] 0.52] 0.52{0.51
L::IM ‘%" CPU| 0.7[ 0.37| 0.29] 0.27] 1.22| 0.65] 0.39/0.39] 0.31] 0.11] 0.1f 0.1] 0.52] 0.2] 0.18/0.17
Ugdb Ud.2b

NA| 835] 424| 290| 276)1.441] 721| 460 437) 325 35] 32| 321 572 225 171[138

/O] 78] 35| 35 30) 98 58] 53] 56 16| 12 12| 12 42 30 30 29

total| 1.48| 0.72| 0.64] 0.57) 2.2| 1.23| 0.92/0.95] 047 0.23] 0.22| 0.22] 0.94] 0.5] 0.48]/0.46
Lm“ CPU| 0.31] 0.22| 0.22| 0.21] 0.38] 0.29] 0.29]0.29] 0.09] 0.08] 0.08] 0.08] 0.13] 0.13] 0.13]0.13
U b

NA| 267| 195] 195 190] 424| 297| 297|300 52 24) 24| 24 115| 92| 92| 92
VOl 34 29] 29| 29] 62| 52| 52| 45 14 12 12| 12 28] 28 28] 28
total| 0.65] 0.51] 0.51) 0.5 1 0.81] 0.81/0.74] 0.23 02 02| 02] 041 041 041 U.4l|

Observe that the node accesses reflect the CPU time of the algorithm. The number of
local problems, or else the number of executions of the recursive function, determines the
CPU cost, as explained in Section 5. The difference between the computational costs of
versions 1 and 4 is typically greater than the respective difference in I/O accesses. This is
due to the existence of the LRU buffer, which absorbs the large difference in node
accesses. For example for the configuration of the first row and the windows of the third
column, the node accesses due to ST _SS v.4 are 33 times fewer than the ones of the initial
version, whereas the respective difference in I/Os is just 3.4.

Although the optimization techniques can improve significantly the performance of
ST_SS, they are based on catalog information which may not be available, or may be hard
to maintain. For instance, the maximum rectangle projection max(5;,) in a dataset is not
incrementally maintainable, as opposed to the average projection 5;,. In many cases,
however, the datasets are static, or such information seldom changes, rendering the
optimization of ST_SS feasible.



COMPLEX SPATIAL QUERY PROCESSING 339

5.1.2. Cost estimation of ST_SS. For the buffer scheme used in the experiments of the
previous section, in most of the cases the I/O cost of ST_SS dominates its computational
cost, but the difference is not large. If a larger buffer (e.g., 512K) is used the I/O cost is
lower, and the algorithm becomes I/O bound. The presence of the LRU buffer
complicates the estimation of the I/O cost. On the other hand, the computational cost can
be predicted using the formulae of Section 3 and catalog information about the R-trees.
The number of solutions at an R-tree level determines the number of problems to be
solved at the next level, or else the number of node accesses. Thus, if we assume that
each solution at level / causes n node accesses at level / — 1 and a local problem to be
solved, the estimation of the computational cost (and the I/O cost if no buffer is used) is
easy. Thus equations 10 and 12 can used in order to determine the number of problems
solved by ST_SS as follows:

h—1

NpropLems(sT_ss) = 1 + ZSCI(QJ?L,;’ R W wy,). (13)
=1

In the above equation / denotes an R-tree level, R;; the number of entries of R-tree R; at
level / and & the height of the trees.” The selectivity factor at the right side of the
equation is calculated using the formulae of Section 3 and the average length of the
entries of the trees at each level and dimension. Thus in order to estimate the number of
solutions at level / we need for each R-tree the number of entries at this level and the
average length of their projections at each dimension. Nproprepms multiplied by n
provides an estimate for the number of node accesses of ST_SS. The computational cost
can be estimated following the analysis of Mamoulis and Papadias [21] for each local
problem of ST.

The optimization techniques affect the cost estimation accuracy for ST_SS since (i) a
significant part of solutions at a specific level can be pruned due to implicit constraints, and
(ii) a significant part of problems may finish early due to the elimination of a node N; when
its entries do not intersect a (potentially very strict) updated window w’. As shown in the
experiments of the previous section, the number of node accesses and the CPU cost can be
significantly reduced after applying the optimization techniques.

The current formula is accurate only for the initial version of the algorithm (ST_SS). We
can easily adapt it to estimate the number of problems run by ST_SS v.2 by simply
replacing in the window propagation algorithm, the average rectangle sides at the high
levels with the maximum rectangle sides of the actual data (leaf level). Thus max(5; ;) is
used for the computation of w', and the average entry extents per level are used for the
selectivity of the query. The cost of ST_SS v.3 and ST_SS v.4 is hard to estimate due to the
fact that there is no closed formula that captures the implicit relationships of an arbitrary
pair of nodes in an acyclic (and incomplete in general) graph. However when the join
graph is a clique the cost of ST_SS v.2 is expected to be approximately the same as that of
ST_SS v.3 (and ST_SS v.4) due to a lack of implicit constraints. The experimental results
of table 6 justify this statement.



340 MAMOULIS, PAPADIAS AND ARKOUMANIS

5.2. Extending SISJ to include spatial selections

SISJ can be extended to process a pairwise join where the indexed dataset is restricted by a
selection window w. The adapted SISJ_SS algorithm consists of the following steps:

i. Find the topmost R-tree level where the number of entries that intersect w is at least
as large as the number of slots S, by following only entries that intersect w.
ii. Divide the entries into S slots.
iii. Hash the rectangles from the non-indexed set into buckets having the same extents as
the slots.
iv. Load the data under each slot, filter them using w, and match them with the
corresponding bucket.

There are two issues to be discussed regarding the above extension. The first is whether
we can improve its performance using catalog information about the maximum rectangle
side in the indexed dataset. We can achieve larger degree of filtering while hashing the
non-indexed dataset by restricting the boundaries of the slots, using w and max(3y).
Moreover, as explained in Section 3, we can restrict the selection window w to w' using
its implicit relationships with other selection windows in the join graph. The second issue
is what happens when w is small enough for the slot level to be the leaf level of the tree.
In this case, we expect the memory to be large enough to fit all rectangles that intersect w.
Therefore, we have a single partition for the indexed set. The rectangles of the non-
indexed set are filtered using the MBR of this partition and are matched in memory using
plane sweep.

The cost of SISJ_SS is simple to estimate. Using catalog information about the extents
of the R-tree entries we can estimate the slot level and the number of I/Os required to
reach this level and find the slots. This is the cost of executing a window query w against
the R-tree until a specific level. Then by extending w using max(s;) we can estimate the
number of rectangles from the non-indexed dataset that will not be filtered and will be
hashed into the buckets. This number is equal to the selectivity of the extended window
ext(w) on the non-indexed data. The cost of the match phase is the remaining cost of the
window query on the R-tree plus the cost to load the hash buckets from the second
dataset. Thus the total cost of SISJ_SS consists of (i) the cost of the window query w on
the R-tree, (ii) the cost of reading the non-indexed data and (iii) the cost of writing and
reading back the hashed data.

5.3.  Query optimization using composite operators

Composite join algorithms that process non-indexed datasets (e.g., an extension of the
spatial hash join algorithm [17]) are meaningless, because there is no index that needs to
be preserved by them. The selection can be executed before the join as a filter of the inputs
instead of being combined with the join. The introduction of ST_SS and SISJ_SS
complicates optimization since the number of potential plans for a complex query



COMPLEX SPATIAL QUERY PROCESSING 341

increases. In this section, we discuss some properties that reduce the search space and
show the superiority of composite operators.

Lemma 1: A plan where a spatial selection on a dataset is executed after a join that
involves the dataset has at least the cost of a plan where the selection is executed
concurrently with the join using a composite operator.

Proof: It suffices to show that ST_SS and SISJ_SS are at most as expensive as ST and
SISJ, respectively. This statement is true, since the cost of the join algorithms can only be
decreased when a selection is included in them. The methods having trivial
computational overhead (the filtering of R-tree entries/nodes using the selection
windows) usually reduce the search space while executing the join. [

As aresult, the plans of figure 19(b) and (d) are superior to those of figure 19(a) and (c),
respectively (notice that we use RJ_SS to denote ST_SS with only two inputs). The lemma
reduces the optimization space to exactly the one that the problem had before the inclusion
of composite operators; each combination of selections after some join is replaced by the
composite join operator that includes the selections. Now let us see whether we can further
reduce the optimization space by investigating the superiority of composite operators in
comparison with selections followed by simple join operators. Consider the pairwise join
of two datasets R, R,, restricted by selection conditions w,, w,, respectively. The query
can be executed using one of the plans depicted in figure 20. Notice that we use HJ to
denote a spatial hash join algorithm that applies on non-indexed data (e.g., Lo and
Ravishankar [17]).

Theoretically, all plans reach a stage where the selections have been executed and the
join follows. RJ_SS follows entry pairs that intersect the windows and each other until a
level, where the selections do not prune any pair (i.e., all pairs are included in the selection
windows). SISJ_SS executes the selection until a specific level of the indexed input and
then hashes the other input (where the selection has already taken place) in buckets. The
same applies for HJ, which hashes both selected results into buckets before the join. If the
selections produce few results that fit in memory, all algorithms are expected to be
equivalent, since the join will take place in memory with trivial cost and the selection has
almost the same cost for each algorithm. Assume now that the results of the selections do
not fit in memory. In this case, when we reach the stage that the selections have been

— RI 88, - SISJ_SS,,
‘ > | ' >

RJ /\ SISJ / \

/\ R, R> /I><]\ any plan R;

R Ry any plan R;
(a) (b) (c) (d)

Figure 19. Combining selections with joins is always more efficient than evaluating them after the joins.



342 MAMOULIS, PAPADIAS AND ARKOUMANIS

[ RI_SS, v, <] SISI_SS,, <] SISJ_SS,, 1] HJ
NN N
R Ry Ty, R, Ty, R, Ty, G,
: ; Vo
(a) (b) (©) (d)

Figure 20. The four plans of o, (R|) > 0,,(R,).

processed, RJ_SS is expected to be more efficient than the other plans because it takes
advantage of the indexes to perform the join without writing intermediate results to disk.
This advantage of RJ_SS over the other plans is equivalent to the advantage of RJ over
SISJ and HJ at joining large spatial datasets without selections (see Mamoulis and
Papadias [20] for a qualitative comparison of the three methods). Regarding the relative
performance of SISJ_SS and HJ, when the selection results do not fit in memory, SISJ_SS
is expected to be more efficient than HJ, because it uses the R-tree entries to guide the hash
process and reads the indexed input at most once. Thus the plan of figure 21(a) is always
superior to the one of figure 21(b) and:

Lemma 2: A plan where a spatial selection on a dataset is executed before a join is at
least as expensive as a plan where the selection is executed within the join using a
composite operator.

Thus, during the optimization of complex spatial queries, the potential plans contain
only ST_SS, SISJ_SS, and HJ in their nodes as opposed to ST, SISJ and HJ for multiway
spatial joins [21]. The plain operators ST and SISJ are not considered because the inclusion
of the implied windows w’, assigns a selection window to every dataset. Of course ST and
SISJ can still be used for other queries that do not include spatial selections, but only joins
and non-spatial selections. Therefore the query optimization search space for complex
spatial queries is the same as the search space for multiway spatial joins. Moreover, we
expect the optimization process to produce plans similar to those for multiway joins, i.e.,
dense datasets will be joined best using large ST_SS plans, and sparse ones using

] SISJ_SS.,, <] HI
/N /N
any plan R, any plan O,
k
(a) (b)

Figure 21. A case where SISJ_SS is always more efficient than HJ.



COMPLEX SPATIAL QUERY PROCESSING 343

combinations of ST_SS, SISJ_SS and HJ (see Mamoulis and Papadias [21] for a detailed
study).

6. Conclusions

In this paper, we have extensively studied the problem of processing complex spatial
queries that involve multiple spatial joins and selections. This work completes the study of
Mamoulis and Papadias [21] for multiway spatial joins. Our first contribution is the
definition of selectivity formulae for complex spatial queries. We presented formulae that
estimate the output of such queries and evaluated them through experimentation. The
results prove the accuracy of the formula, the relative error being 8% for binary joins and
38% for queries of four inputs. These numbers are comparable with previous work on
selectivity of spatial selections [31] or joins [32], as well as, with error propagation
experiments in the context of relational queries [13]. The proposed models are essential for
the optimization of queries that involve several spatial logical operators, possibly in
addition to some non-spatial ones. We have extended our method for skewed, real-life data
using 2-D-histograms. In this case, the accuracy is not that high due to the persistence of
skew in the cells of the statistical grid, but still the histogram-based method does better
than straightforward application of formulae that assume uniformity.

The value of this study is not limited to spatial query processing, since operator
dependencies may exist in other applications as well. Consider a relational query that
consists of a join between R and S on their common R.x=S.x attribute, and (range)
selections on other attributes of R and S (e.g., R*y < a,S-z € [b,c]). A dependency
between R -y and S.z affects the query results. For instance, in the 30-R benchmark [30]
there are multi-table constraints like O - Orderdate < L - Shipdate (i.e., an order takes
place before the corresponding line items are shipped). The selectivity of queries that
apply selections on these attributes and then join the corresponding tables can be estimated
in a way similar to that presented in this paper (i.e., by restricting the selections, taking
under consideration the constraints, and then estimating the join selectivity on the
restricted area). Another type of related complex queries involve distance joins of high-
dimensional point sets [7]. Our methodology can be applied if high-dimensional selections
exist in conjunction with the joins, since the domain of the query operators is the same.

The interdependence between spatial selections and joins allows their simultaneous
processing by composite operators that take advantage of existing indexes to guide search.
Our second contribution is the extension of ST and SISJ to ST_SS and SISJ_SS,
respectively, which process spatial selections and joins concurrently. Starting from
straightforward versions of these composite algorithms, we optimize their efficiency using
implicit relationships between selection windows and node extents that are joined as well
as catalog information about the maximum extents of the rectangles in the datasets.
Finally, we show that the composite operators are more efficient than combinations of
simple ones and prove that complex spatial query optimization is equivalent to the
optimization of multiway spatial joins. This result is very important because it suggests



344 MAMOULIS, PAPADIAS AND ARKOUMANIS

that the optimization techniques proposed in Mamoulis and Papadias [21] can directly be
applied for complex spatial queries.

The combination of multiple logical spatial operators into a composite physical
operator (e.g., ST_SS) raises questions on whether we can combine spatial and non-spatial
logical operators into hybrid ones. The logical independence of spatial and non-spatial
operators limits the potential of such an approach. Non-spatial query predicates apply to
different attributes than spatial query predicates and, unless there is a dependence that
clusters space according to values of non-spatial attributes, simultaneous processing of
both queries is not efficient. Since this case is not general, we consider that spatial and
non-spatial query parts are processed separately. In the future, we will investigate
additional methods to improve the accuracy of the selectivity estimation formulae caused
by the data skew.

Acknowledgment

This work was supported from grants HKU 7149/03E and HKUST 6180/03E from Hong
Kong RGC.

Notes

1. The density of a dataset is defined as the total area of the objects in it divided by the area of the workspace, or
else as the expected number of objects that intersect a random point in the workspace.

2. Notice that in ST_SS we have assumed that all R-trees have the same height. The extension of the algorithms
and selectivity estimation for R-trees of different height is straightforward.

References

1. A. Aboulnaga and J.F. Naughton. ‘‘Accurate estimation of the cost of spatial selections,”” International
Conference on Data Engineering, 123—134, February—March 2000.

2. L. Arge, O. Procopiuc, S. Ramaswamy, T. Suel, and J.S. Vitter. ‘‘Scalable sweeping-based spatial join,”’
VLDB Conference, 570-581, August 1998.

3. S. Achaya, V. Poosala, and S. Ramaswamy. ‘‘Selectivity estimation in spatial databases,”” ACM SIGMOD
International Conference on Management of Data, 13-24, June 1999.

4. A. Belussi and C. Faloutsos. ‘‘Estimating the selectivity of spatial queries using the correlation fractal
dimension,”” VLDB Conference, 299-310, September 1995.

5. T. Brinkhoff, H.P. Kriegel, and B. Seeger. ‘‘Efficient processing of spatial joins using R-trees,”” ACM
SIGMOD International Conference on Management of Data, 237-246, May 1993.

6. N.Beckmann, H.P. Kriegel, R. Schneider, and B. Seeger. ‘‘The R*-tree: An efficient and robust access method
for points and rectangles,”” ACM SIGMOD International Conference on Management of Data, 322,331, May
1990.

7. C. Faloutsos, B. Seeger, A. Traina, and C. Traina. ‘‘Spatial join selectivity using power laws,”” ACM
SIGMOD International Conference on Management of Data, 177-188, May 2000.

8. V. Gaede and O. Giinther. ‘‘Multidimensional access methods,”” ACM Computing Surveys, Vol. 30(2):123—
169, 1998.



COMPLEX SPATIAL QUERY PROCESSING 345

9

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

24.

25.

26.

217.
28.

29.

30.

31.

32.

. A. Guttman. ‘‘R-trees: A dynamic index structure for spatial searching,”” ACM SIGMOD International

Conference on Management of Data, 47-57, June 1984.

R.H. Giiting. ‘“An introduction to spatial database systems,”” VLDB Journal, Vol. 3(4):357-399, 1994.
G. Graefe. ‘‘Query evaluation techniques for large databases,”” ACM Computing Surveys, Vol. 25(2):73—
170, 1993.

R. Haralick and G. Elliott. ‘‘Increasing tree search efficiency for constraint satisfaction problems,’’
Artificial Intelligence, Vol. 14:263-313, 1980.

Y. Ioannidis and S. Christodoulakis. ‘‘On the propagation of errors in the size of join results,”” ACM
SIGMOD International Conference on Management of Data, 268-277, May 1991.

Y. Ioannidis and Y. Kang. ‘‘Randomized algorithms for optimizing large join queries,”” ACM SIGMOD
International Conference on Management of Data, 312-321, May 1990.

I. Kamel and C. Faloutsos. ‘‘On packing R-trees,”” ACM International Conference on Information and
Knowledge Management, 490-499, November 1993.

N. Koudas and K. Sevcik. ‘‘Size separation spatial join,”” ACM SIGMOD International Conference on
Management of Data, 324-335, May 1997.

ML. Lo and C.V. Ravishankar. ‘‘Spatial hash-joins,”” ACM SIGMOD International Conference on
Management of Data, 247-258, June 1996.

M.L. Lo and C.V. Ravishankar. ‘“The design and implementation of seeded trees: An efficient method for
spatial joins,”” IEEE Transactions on Knowledge and Data Engineering, Vol. 10(1):136-151, 1998.

A. Mackworth. ‘‘Consistency in networks of relations,’” Artificial Intelligence, Vol. 8, 1977.

N. Mamoulis and D. Papadias. ‘‘Integration of spatial join algorithms for processing multiple inputs,”” ACM
SIGMOD International Conference on Management of Data, 1-12, June 1999.

N. Mamoulis and D. Papadias. ‘‘Multiway spatial joins,”” ACM Transactions on Database Systems (TODS),
Vol. 26(4):424-275, 2001.

H. Park, G. Cha, and C. Chung. ‘‘Multiway spatial joins using R-trees: Methodology and performance
evaluation,”” Symposium on Large Spatial Databases (SSD), 229-250, July 1999.

. J.M. Patel and D.J. DeWitt. ‘‘Partition based spatial-merge join,”” ACM SIGMOD International Conference
on Management of Data, 259-270, June 1996.

D. Papadias, N. Mamoulis, and V. Delis. ‘‘Approximate spatio-temporal retrieval,”” ACM Transactions on
Information Systems (TOIS), Vol. 19(1):53-96, January 2001.

D. Papadias, N. Mamoulis, and Y. Theodoridis. ‘‘Processing and optimization of multiway spatial joins
using R-trees,”” ACM Symposium on Principles of Database Systems (PODS), 44-55, July 1999.

V. Poosala. Histogram-Based Estimation Techniques in Databases. Ph.D. Thesis, University of Wisconsin-
Madison, 1997.

F. Preparata and M. Shamos. Computational Geometry. Springer, 1985.

B. Pagel, H. Six, H. Toben, and P. Widmayer. ‘‘Towards an analysis of range query performance in spatial
data structures,”” ACM Symposium on Principles of Database Systems (PODS), 214-221, May 1993.

A. Silberschatz, H.F. Korth, and S. Sudarshan. Database System Concepts. Fourth edition, McGraw-Hill,
2002.

Transaction Processing Performance Council, 30 Benchmark R (Decision Support), Rev. 1.0.1, http://
www.30.org/, 1993-1998.

Y. Theodoridis and T. Sellis. ‘“‘A model for the prediction of R-tree performance,”” ACM Symposium on
Principles of Database Systems (PODS), 161-171, June 1996.

Y. Theodoridis, E. Stefanakis, and T. Sellis. ‘‘Cost models for join queries in spatial databases,”
International Conference on Data Engineering, 476483, February 1998.

. E. Tsang. Foundations of Constraint Satisfaction. Academic Press, London and San Diego, 1993.



346 MAMOULIS, PAPADIAS AND ARKOUMANIS

Nikos Mamoulis received a diploma in Computer Engineering and Informatics in 1995 from the University of
Patras, Greece, and a Ph.D. in Computer Science in 2000 from the Hong Kong University of Science and
Technology. Since September 2001, he has been an assistant professor at the Department of Computer Science,
University of Hong Kong. In the past, he has worked as a research and development engineer at the Computer
Technology Institute, Patras, Greece and as a post-doctoral researcher at the Centrum voor Wiskunde en
Informatica (CWI), The Netherlands. His research interests include spatial, spatio-temporal, multimedia, object-
oriented, and semi-structured databases, constraint satisfaction problems.

Dimitris Papadias is an associate professor at the Computer Science Department, Hong Kong University of
Science and Technology. Before joining HKUST in 1997, he worked and studied at the German National
Research Center for Information Technology (GMD), the National Center for Geographic Information and
Analysis (NCGIA, Maine), the University of California at San Diego, the Technical University of Vienna, the
National Technical University of Athens, Queen’s University (Canada), and University of Patras (Greece). He has
published extensively and been involved in the program committees of all major Database Conferences, including
SIGMOD, VLDB and ICDE.

f A

Dinos Arkoumanis received his Diploma in Electrical and Computer Engineering (1995) and Ph.D. degree
(2001) from the National Technical University of Athens. He is an independent consultant. His research interests
include spatio-temporal indexing, query optimization and mobile services. He is a member of the ACM and the
IEEE Computer Society.




