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Abstract
In this paper, we consider a relation of non-degenerate closed 2-forms and com-

plex structures on compact real parallelizable nilmanifolds.

1. Introduction1. Introduction

Let Γ\G be a compact complex parallelizable manifold, where G is a simply connected
complex Lie group, and Γ is a lattice in G. H. C. Wang [9] has proven that if Γ\G has
a Kähler structure, then G is abelian, in particular, Γ\G is biholomorphic to a complex
torus. If (Γ\G, J) has a pseudo-Kählerian structure, then G is 2-step solvable ([8], [11, 12]).
Dorfmeister-Guan [6] have proven that a compact homogeneous pseudo-Kähler manifold
is biholomorphic to the product of a homogeneous rational manifold and a complex torus.
Thus, we are interested in the case of compact non-homogeneous complex manifolds which
have a non-degenerate closed 2-form. By a compact real parallelizable manifold we mean a
compact manifold of the form Γ\G, where G is a simply connected real Lie group, and Γ is
a lattice in G, that is, a discrete co-compact subgroup of G. It is known due to Auslander [2]
that a solvmanifold has a solvmanifold of the form Γ\G as a finite covering, where G is a
simply connected solvable Lie group, and Γ is a discrete subgroup.

In this paper, we consider a relation of non-degenerate closed 2-forms and complex struc-
tures on compact real parallelizable nilmanifolds, and we prove following result.

Theorem 1.1. There exists a compact real parallelizable nilmanifold Γ\N and its complex
structures J1, J2 such that (Γ\N, J1) has a pseudo-Kähler structure and no holomorphic
symplectic structures, however (Γ\N, J2) has a holomorphic symplectic structure and no
pseudo-Kähler structures.

2. Non-degenerate closed 2-forms and complex structures2. Non-degenerate closed 2-forms and complex structures

In this section, we consider a relation of non-degenerate closed 2-forms and complex
structures on compact real parallelizable manifolds.

Definition 2.1. Let (M, J) be a complex manifold. A pseudo-Kähler structure on (M, J) is
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a real closed non-degenerate (1, 1)-form. Let dimC M = 2m. Then a holomorphic symplectic
structure is a closed holomorphic 2-form on (M, J) of maximal rank 2m.

Note that if Ω is a holomorphic symplectic form on (M, J), then Ω + Ω̄ is a symplectic
form on M.

Proposition 2.2 ([5]). Let Γ\N be a compact complex parallelizable nilmanifold. If Γ\N
has a pseudo-Kähler structure, then Γ\N is a complex torus.

Let N be a simply connected real nilpotent Lie group, and n its Lie algebra. It is well
known that N has a lattice if and only if n has a rational structure, i.e., there exists a rational
Lie subalgebra nQ such that n � nQ ⊗ R.

Let us consider following nilpotent Lie groups N1,N2 with left-invariant complex struc-
tures:

N1 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 w1 w3

0 1 w2

0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ wi ∈ C
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ×

{(
1 w4

0 1

)
w4 ∈ C

}
,

N2 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 z̄1 z3

0 1 z2

0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ zi ∈ C
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ×

{(
1 z̄4

0 1

)
z4 ∈ C

}
.

Let Γ1, Γ2 be lattices in N1, N2, respectively. Then,

W1 =
∂

∂w 1
,W2 =

∂

∂w 2
+ w1

∂

∂w 3
,W3 =

∂

∂w 3
,W4 =

∂

∂w 4

is a basis of left-invariant vector fields of type (1, 0) on N1, and

τ1 = dw1, τ2 = dw2, τ3 = dw3 − w1dw2, τ4 = dw4

is its dual basis. Thus,

dτ1 = dτ2 = dτ4 = 0, dτ3 = −τ1 ∧ τ2.

Hence, Γ1\N1 has the following two holomorphic symplectic structures Ω1, Ω2, which are
not cohomologous:

Ω1 = τ1 ∧ τ3 + τ2 ∧ τ4,

Ω2 = τ1 ∧ τ4 + τ2 ∧ τ3.

On the other hand,

Z1 =
∂

∂z 1
, Z2 =

∂

∂z 2
+ z̄1
∂

∂z 3
, Z3 =

∂

∂z 3
, Z4 =

∂

∂z 4

is a basis of left-invariant vector fields of type (1, 0) on N2, and

ω1 = dz1, ω2 = dz2, ω3 = dz3 − z̄1dz2, ω4 = dz4

is its dual basis. Thus,

dω1 = dω2 = dω4 = 0, dω3 = −ω̄1 ∧ ω2.
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Hence, Γ2\N2 has the following pseudo-Kähler structure ω, and holomorphic symplectic
structure Ω:

ω = Re(ω1 ∧ ω̄3 + ω2 ∧ ω̄4),

Ω = ω1 ∧ ω4 + ω2 ∧ ω3,

where Re(ω1 ∧ ω̄3 + ω2 ∧ ω̄4) denotes the real part of ω1 ∧ ω̄3 + ω2 ∧ ω̄4.
We can easily see that N1 and N2 are isomorphic as real Lie groups. Indeed, let Wi =

Ui +
√−1Vi, Zi = Xi +

√−1Yi (i = 1, 2, 3), where Ui, Vi, Xi, and Yi are real vector fields.
Then the structures of Lie algebras of N1 and N2 are following:

[U1,U2] =
1
2

U3, [−V1,V2] =
1
2

U3,[−V1,U2] = −1
2

V3, [U1,V2] =
1
2

V3,

[X1, X2] =
1
2

X3, [Y1, Y2] =
1
2

X3,[Y1, X2] = −1
2

Y3, [Y1, Y2] =
1
2

Y3,

and the other brackets being zero. In particular, we can assume that Γ1 = Γ2.

Remark 2.3. Let us consider the following subgroups of N1

Γ1 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 μ1 μ3

0 1 μ2

0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ μi ∈ Z[
√−1]

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ×
{(

1 μ4

0 1

)
μ4 ∈ Z[

√−1]
}

H1 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 w1 0
0 1 0
0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ w1 ∈ C
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ×

{(
1 w4

0 1

)
w4 ∈ C

}
.

Then Γ1 ∩ H1\H1 is a holomorphic Lagrangian submanifold of (Γ1\N1,Ω).

We generalize our examples above to the other Lie groups. Let us consider the following
Lie algebra over R:

g = a � b,

where a is abelian, and b is an ideal. Take bases of Lie subalgebras a and b:

a = spanR{U1
1 , . . . ,U

1
p},

b = spanR{V1
1 , . . . ,V

1
q }.

Consider the complexification gC of g. Since gC = g +
√−1g, R(gC) has the following basis:

{U1
1 , . . . ,U

1
p,U

2
1 , . . . ,U

2
p,V

1
1 , . . . ,V

1
q ,V

2
1 , . . . ,V

2
q },

where U2
i =
√−1U1

i , V2
j =
√−1V1

j . Let J be a complex structure on R(gC) defined by

JU1
i = U2

i (JU2
i = −U1

i ), JV1
j = V2

j (JV2
j = −V1

j )

for i = 1, . . . , p, j = 1, . . . , q. Note that (R(gC), J) is a complex Lie algebra.

Let R(GC) be the simply connected real Lie group corresponding to R(gC). We have the
following.

Proposition 2.4 ([7], [10]). If g has a non-degenerate closed 2-form, then (R(GC), J) has
a left-invariant holomorphic symplectic form.
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We define other complex structure on R(gC) by the following:

J̃U1
i = −U2

i (J̃U2
i = U1

i ), J̃V1
j = V2

j (J̃V2
j = −V1

j )

for i = 1, . . . , p, j = 1, . . . , q.

Proposition 2.5. J̃ is integrable on R(GC).

Proof. We show that the Nijenhuis tensor NJ̃ vanishes. Let X ∈ a, Y ∈ b. Note that
J ◦ ad(Z) = ad(Z) ◦ J for Z ∈ R(gC). Then,

NJ̃(X, Y) = [X, Y] + J̃[J̃X, Y] + J̃[X, J̃Y] − [J̃X, J̃Y]

= [X, Y] + J[−JX,Y] + J[X, JY] − [−JX, JY]

= 2([X, Y] + [JX, JY])

= 2([X, Y] + J2[X, Y]) = 0.

The other cases are similar, and hence omitted. �

Moreover, assume that b is a direct sum: b1 + b2, where b1 is abelian and [a, b] ⊂ b2, and
that dim a = dim b2. We take bases of the Lie subalgebras b1 and b2:

b1 = spanR{V1
1 , . . . ,V

1
r },

b2 = spanR{W1
1 , . . . ,W

1
p}.

Let
{α1

1, . . . , α
1
p, β

1
1, . . . , β

1
r , γ

1
1, . . . , γ

1
p, α

2
1, . . . , α

2
p, β

2
1, . . . , β

2
r , γ

2
1, . . . , γ

2
p}

be the dual basis of

{U1
1 , . . . ,U

1
p,V

1
1 , . . . ,V

1
r ,W

1
1 , . . . ,W

1
p,U

2
1 , . . . ,U

2
p,V

2
1 , . . . ,V

2
r ,W

2
1 , . . . ,W

2
p}.

Put
λi = α

1
i +
√−1(−α2

i ), μ j = β
1
j +
√−1β2

j , νk = γ
1
k +
√−1γ2

k

for i, k = 1, . . . , p, j = 1, . . . , r (note that J̃U1
i = −U2

i ). Then, we can take a basis of
left-invariant (1, 0)-forms of (R(GC), J̃) as follows:

{λi, μ j, νk}i,k=1,...,p, j=1,...,r.

Proposition 2.6. If a + b2 has a non-degenerate 2-form ωab2 =
∑

k,h Pkhα
1
k ∧ γ1

h ∈ a∗ ∧ b∗2
which is closed on g. Then, (R(GC), J̃) has a left-invariant pseudo-Kähler structure.

Proof. Let

τ =
∑
k,h

Pkh(λ̄k ∧ νh + λk ∧ ν̄h) = 2
∑
k,h

Pkh(α1
k ∧ γ1

h − α2
k ∧ γ2

h).

Since dωab2 = 0, and τ(X, J̃Y) = 0 for X, Y ∈ g, we see

dτ(X, Y, Z) = dτ(J̃X, J̃Y, J̃Z) = dτ(J̃X, Y, Z) = 0
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for X, Y, Z ∈ g. Let X, Y ∈ b, Z ∈ g. Since τ(JX, JY) = −τ(X, Y),

dτ(J̃X, J̃Y, Z) = −τ([J̃X, J̃Y], Z) + τ([J̃X, Z], J̃Y) − τ([J̃Y, Z], J̃X)

= τ([X, Y], Z) − τ([X, Z], Y) + τ([Y, Z], X)

= −2dωab2 (X, Y, Z) = 0.

Similarly, we see

dτ(J̃X, J̃Y, Z) = 2dωab2 (X, Y, Z) = 0 for X ∈ a, Y ∈ b, Z ∈ g
dτ(J̃X, J̃Y, Z) = −2dωab2 (X, Y, Z) = 0 for X, Y ∈ a, Z ∈ g.

Thus,

ω = τ +
√−1

r∑
j=1

μ j ∧ μ̄ j

is a pseudo-Kähler structure on (R(GC), J̃). �

Example 2.7. Let H(1, n) be the nilpotent Lie group defined by

H(1, n) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
In x z
0 1 y

0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ x, z ∈ Rn, y ∈ R
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ,

where In denotes the identity n×n matrix. H(1, n) is called a generalized Heisenberg group.
Let

N = H(1, n) ×
{(

1 w

0 1

)
w ∈ R

}
.

Then,

Xi =
∂

∂x i
, Y =

∂

∂y
−

n∑
i=1

xi
∂

∂z i
, Zi =

∂

∂z i
,W =

∂

∂w

is a basis of left-invariant holomorphic vector fields on N, and

αi = dxi, β = dy, γk = dzk − xkdy, δ = dw (i, k = 1, . . . , n)

is its dual basis. Then,
n∑

i=1

αi ∧ γi + β ∧ δ
is a symplectic structure. Let

a = span{X1, . . . , Xn}, b1 = span{Y, Z,W}, b2 = {Z1, . . . , Zn}.
Then, [a, b1 + b2] ⊂ b2, and

n∑
i=1

αi ∧ γi ∈ a∗ ∧ b∗2
is non-degenerate 2-form on a + b2 which is closed on the Lie algebra n.

Thus we see that complex structures J, J̃ of R(NC) have the properties that the complex
manifold (R(NC), J) admits a left-invariant holomorphic symplectic structure, and the com-
plex manifold (R(NC), J̃) admits a left-invariant pseudo-Kähler structure. Indeed, let
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N2 = (R(NC), J̃) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
In v̄ w
0 1 u
0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ v,w ∈ Cn, u ∈ C
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ×

{(
1 v̄

0 1

)
v ∈ C

}
.

Then,

ζi = dvi, λi = dwi − v̄idu (i = 1, . . . , n), μ = du, ν = dv

is a basis of left-invariant (1, 0)-forms on N2. Thus,

dζi = dμ = dν = 0, dλi = −ζ̄i ∧ μ (i = 1, . . . , n).

Hence,

ω = Re(
n∑

i=1

ζi ∧ λ̄i + μ ∧ ν̄)

is a pseudo-Kähler structure.

By a straightforward computation, we see that (R(NC), J̃) has no left-invariant holomor-
phic symplectic structures for n ≥ 2 and thus (Γ\R(NC), J̃) has no holomorphic symplectic
structures. Indeed, if (Γ\R(NC), J̃) has a holomorphic symplectic structure, then (Γ\R(NC), J̃)
has an invariant holomorphic symplectic structure by results of Console-Fino [3], and An-
gella [1].

Next, considering other complex structure J on R(NC),

N1 = (R(NC), J) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
In z w
0 1 u
0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ z,w ∈ Cn, u ∈ C
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ×

{(
1 v

0 1

)
v ∈ C

}
.

Then,

ζi = dzi, λi = dwi − zidu (i = 1, . . . , n), μ = du, ν = dv

is a basis of left-invariant holomorphic 1-forms on N1. Thus,

dζi = dμ = dν = 0, dλi = −ζi ∧ μ (i = 1, . . . , n).

Hence,

Ω =

n∑
i=1

ζi ∧ λi + μ ∧ ν

is a left-invariant holomorphic symplectic structure. By Proposition 2.2, we see that N1 has
no left-invariant pseudo-Kähker structures. We also see that h((Γ\R(NC), J̃)) = n + 2, and
h((Γ\R(NC), J)) = 2n + 2, where h(M) is the Lie algebra of holomorphic vector fields on a
complex manifold M.

Hence, we have the following main result.

Theorem 2.8. There exists a compact real parallelizable nilmanifold Γ\N and its complex
structures J1, J2 such that (Γ\N, J1) has a pseudo-Kähler structure and no holomorphic
symplectic structures, however (Γ\N, J2) has a holomorphic symplectic structure and no
pseudo-Kähler structures.
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Remark 2.9. There exist other examples which satisfy the properties in Theorem 2.8. For
example, let H(q, p) be the nilpotent Lie group defined by

H(q, p) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
Ip A C
0 Iq B
0 0 Iq

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ A,C are p × q matrices, B is a diagonal matrix

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ .

We denote by h(q, p) the Lie algebra of H(q, p). Put N = H(q1, p1) × H(q2, p2). Then, N is
a generalization of the example above (the example above is N = H(1, n) × H(1, 0)). Then

h(q1, p1) × h(q2, p2) = span{Xi j, Yj, Zi j, X′st, Y
′
t , Z
′
st}i=1,...,p1, j=1,...,q1,s=1,...,p2,t=1,...,q2

with nontrivial equations
[Xi j, Yj] = Zi j, [X′st, Y

′
t ] = Z′st

for i = 1, . . . , p1, j = 1, . . . , q1, s = 1, . . . , p2, t = 1, . . . , q2.
Consider the Lie subalgebras a and b defined by

a = span{Xi j, X′st}i=1,...,p1, j=1,...,q1,s=1,...,p2,t=1,...,q2 ,

b = span{Yj, Y ′t , Zi j, Z′st}i=1,...,p1, j=1,...,q1,s=1,...,p2,t=1,...,q2 .

Assume that q1 = q2. Then N has a left-invariant symplectic structure which satisfies the
condition in Proposition 2.6 (cf.[4]). Thus, we see that (R(NC), J) admits a left-invariant
holomorphic symplectic structure and no left-invariant pseudo-Kähler structures, and
(R(NC), J̃) admits a left-invariant pseudo-Kähler structure. By a straightforward compu-
tation, we see that (R(NC), J̃) has no left-invariant holomorphic symplectic structures for
p1 ≥ 2.
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