COMPLEX STRUCTURES, TOTALLY REAL AND TOTALLY GEODESIC SUBMANIFOLDS OF COMPACT 3-SYMMETRIC SPACES, AND AFFINE SYMMETRIC SPACES

Koji Tojo

(Received March 16, 2007, revised April 21, 2008)

Abstract

We construct invariant complex structures of a compact 3-symmetric space by means of the canonical almost complex structure of the underlying manifold and some involutions of a Lie group. Moreover, by making use of graded Lie algebras and some invariant structures of affine symmetric spaces, we classify half dimensional, totally real and totally geodesic submanifolds of a compact 3-symmetric space with respect to each invariant complex structure.

1. Introduction. It was Gray [5] who classified 3-symmetric spaces (see also Wolf and Gray [20]), proving that each 3 -symmetric space admits an invariant almost complex structure called the canonical almost complex structure, which is not integrable in general. According to [5], it is known that for a compact Riemannian 3-symmetric space G / H with a compact simple Lie group G, the dimension of the center $Z(H)$ of H is either 0,1 or 2 (see also [20, Theorem 3.3]), and if the dimension of $Z(H)$ is not zero, then H is a centralizer of a toral subgroup of G. Therefore, it follows from Wang [19] that there exists a G-invariant complex structure I on G / H if $\operatorname{dim} Z(H) \neq 0$. Moreover, invariant (almost) complex structures on G / H had been investigated by Borel and Hirzebruch [2] (see also Nishiyama [12] and Wolf and Gray [20]). In the present paper, first we describe invariant complex structures on a compact Riemannian 3-symmetric space G / H with $\operatorname{dim} Z(H) \neq 0$, by means of the canonical almost complex structure and some involutive automorphisms of G (Section 3).

Half-dimensional totally real and totally geodesic submanifolds of Hermitian symmetric spaces are (non-Hermitian) symmetric R-spaces. Takeuchi [16] described those submanifolds by using graded Lie algebras of the first kind. In our previous papers [17, 18], we classified half dimensional, totally real and totally geodesic submanifolds of naturally reductive, compact Riemannian 3-symmetric spaces with respect to the canonical almost complex structures. In particular, when $\operatorname{dim} Z(H) \neq 0$, these submanifolds are obtained from graded Lie algebras of the second kind. More precisely, let \mathfrak{g} be the Lie algebra of G and \mathfrak{g}^{*} a noncompact dual of \mathfrak{g} with a Cartan involution τ and the corresponding Cartan decomposition $\mathfrak{g}^{*}=\mathfrak{k}+\mathfrak{p}$. For

[^0]any graded triple ($\mathfrak{g}^{*}, Z, \tau$) associated with a gradation of the second kind, we put
$$
\sigma:=\operatorname{Ad}\left(\exp \frac{2 \pi}{3} \sqrt{-1} Z\right), \quad H:=G^{\sigma}
$$
where G^{σ} denotes the set of fixed points of σ in G. It is obvious that σ is an inner automorphism of order 3 on G. Let K be the analytic subgroup of G with Lie algebra \mathfrak{k}, and N the K-orbit in G / H at the origin $o:=\{H\} \in G / H$. Then N is a half dimensional, totally real and totally geodesic submanifold of a compact Riemannian 3-symmetric space G / H with respect to the canonical almost complex structure. Conversely, any such submanifold is obtained in this manner. On the other hand, a symmetric pair of type K_{ε} was introduced by Oshima and Sekiguchi [14], and subsequently Kaneyuki [9] proved that any symmetric pair of type K_{ε} is obtained from graded Lie algebras of the first kind or of the second kind.

The main purpose of the present paper is to classify the 'real forms' of a compact Riemannian 3 -symmetric space G / H, i.e., half dimensional, totally real and totally geodesic submanifolds of G / H with respect to each G-invariant complex structure, by making use of symmetric pairs of type K_{ε} and their invariant geometric structures (Section 5).

The organization of this paper is as follows:
In Section 2, we recall several notions and facts regarding 3-symmetric spaces and graded Lie algebras used throughout the paper.

In Section 3, we describe invariant complex structures of a compact Riemannian 3symmetric space G / H with $\operatorname{dim} Z(H) \neq 0$ in terms of the canonical almost complex structures and involutions on G / H (see Proposition 3.3 and Corollary 3.4).

In Section 4, we prove that any half dimensional, totally real and totally geodesic submanifold of G / H with respect to each G-invariant complex structure is also totally real with respect to the canonical almost complex structure (Proposition 4.5).

In Section 5, by making use of symmetric pairs of type K_{ε} and their noncompactly causal structure (cf. Hilgert and Ólafsson [7]), we describe each invariant complex structure I and classify every real form with respect to I of G / H with $\operatorname{dim} Z(H) \neq 0$ (Proposition 5.5, Theorem 5.6).
2. Preliminaries. 2.1. Riemannian 3 -symmetric spaces. In this subsection we recall relevant notions and results on compact Riemannian 3-symmetric spaces. Let G be a Lie group and H a compact subgroup of G, and let \langle,$\rangle be a G$-invariant Riemannian metric on G / H. A Riemannian homogeneous space $(G / H\langle\rangle$,$) is called a Riemannian 3-symmetric$ space if it is not isometric to a Riemannian symmetric space and there exists an automorphism σ of order 3 on G satisfying the following:
(i) $G^{\sigma}{ }_{0} \subset H \subset G^{\sigma}$, where G^{σ} is the set of fixed points of σ and $G^{\sigma}{ }_{0}$ the identity component of G^{σ}, and
(ii) the transformation of G / H induced by σ is an isometry.

We note that, except for the condition that $(G / H,\langle\rangle$,$) is not isometric to a Riemannian sym-$ metric space, the definition of Riemannian 3-symmetric spaces in this paper is equivalent to that in [5] (see Proposition 5.1 and Theorem 5.4 of [5]).

In this paper, for each automorphism φ of G, we denote the differential of φ at $e \in G$ by the same symbol as φ.

Let $(G / H,\langle\rangle,, \sigma)$ be a Riemannian 3-symmetric space with an automorphism σ of order 3 on G. Let \mathfrak{g} and \mathfrak{h} be the Lie algebras of G and H, respectively, and let $\mathfrak{g}=\mathfrak{h}+\mathfrak{m}$ be an $\operatorname{Ad}(H)$ - and σ-invariant decomposition of \mathfrak{g}. We note that \mathfrak{h} coincides with the set \mathfrak{g}^{σ} of fixed points of σ. Under the canonical identification of \mathfrak{m} with the tangent space $T_{o}(G / H)$ of G / H at $o=\{H\}$, we define an isometry J of $(\mathfrak{m},\langle\rangle$,$) by$

$$
\begin{equation*}
\sigma=-\frac{1}{2} \operatorname{Id}+\frac{\sqrt{3}}{2} J, \quad \mathrm{Id}=\text { the identity map of } \mathfrak{m} . \tag{2.1}
\end{equation*}
$$

It is known that J induces a G-invariant almost complex structure on G / H, which is denoted by the same symbol as J. We call J the canonical almost complex structure (see [5]).

Lemma 2.1 ([5]). For $X, Y \in \mathfrak{m}$, we have

$$
[J X, J Y]_{\mathfrak{h}}=[X, Y]_{\mathfrak{h}}, \quad[J X, Y]_{\mathfrak{m}}=-J[X, Y]_{\mathfrak{m}} .
$$

Next, we describe an inner automorphism of order 3 on a compact simple Lie algebra. Let \mathfrak{g} be a compact simple Lie algebra and \mathfrak{t} a maximal abelian subalgebra of \mathfrak{g}. We denote by \mathfrak{g}_{c} and \mathfrak{t}_{c} the complexifications of \mathfrak{g} and \mathfrak{t}, respectively. Let $\Delta\left(\mathfrak{g}_{c}, \mathfrak{t}_{c}\right)$ be the root system of \mathfrak{g}_{c} with respect to \mathfrak{t}_{c}, and let $\Pi\left(\mathfrak{g}_{c}, \mathfrak{t}_{c}\right)=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ be a fundamental root system of $\Delta\left(\mathfrak{g}_{c}, \mathfrak{t}_{c}\right)$ for some lexicographic ordering. We define $H_{j} \in \mathfrak{t}_{c}, j=1, \ldots, n$, by

$$
\begin{equation*}
\alpha_{i}\left(H_{j}\right)=\delta_{i j} . \tag{2.2}
\end{equation*}
$$

Then each inner automorphism of order 3 on \mathfrak{g} is given by the following lemma (cf. Wolf and Gray [20] and Helgason [6]).

Lemma 2.2. Let G be a compact simple Lie group with Lie algebra \mathfrak{g}, and σ an inner automorphism of order 3 on G. Let $\delta=\sum_{p=1}^{n} m_{p} \alpha_{p}$ denote the highest root of $\Delta\left(\mathfrak{g}_{c}, \mathfrak{t}_{c}\right)$. Then σ is conjugate to $\operatorname{Ad}\left(g_{i}\right)$ for an element g_{i} of G which has one of the following forms:
(1) $g_{0}=\exp \left\{(2 \pi \sqrt{-1} / 3) H_{i}\right\} \quad\left(m_{i}=3\right)$,
(2) $g_{1}=\exp \left\{(2 \pi \sqrt{-1} / 3) H_{i}\right\} \quad\left(m_{i}=2\right)$,
(3) $g_{2}=\exp \left\{(2 \pi \sqrt{-1} / 3)\left(H_{j}+H_{k}\right)\right\} \quad\left(m_{j}=m_{k}=1\right)$,
(4) $g_{3}=\exp \left\{(2 \pi \sqrt{-1} / 3) H_{i}\right\} \quad\left(m_{i}=1\right)$.

REMARK 2.3. (1) In the case (4), we see that the pair $\left(\mathfrak{g}, \mathfrak{g}^{\sigma}\right)$ is (Hermitian) symmetric.
(2) Let $\mathfrak{z}\left(\mathfrak{g}^{\sigma}\right)$ be the center of \mathfrak{g}^{σ}. If $\sigma=\operatorname{Ad}\left(g_{k}\right)$ for $k=0,1,2$, then the dimension of $\mathfrak{z}\left(\mathfrak{g}^{\sigma}\right)$ is equal to k.
2.2. Graded Lie algebras. In this subsection we recall several notions and results on graded Lie algebras. Let \mathfrak{g}^{*} be a noncompact semisimple Lie algebra over \boldsymbol{R}. Let τ be a Cartan involution of \mathfrak{g}^{*} and

$$
\begin{equation*}
\mathfrak{g}^{*}=\mathfrak{k}+\mathfrak{p},\left.\quad \tau\right|_{\mathfrak{k}}=\operatorname{Id}_{\mathfrak{k}},\left.\quad \tau\right|_{\mathfrak{p}}=-\operatorname{Id}_{\mathfrak{p}}, \tag{2.3}
\end{equation*}
$$

the Cartan decomposition of \mathfrak{g}^{*} corresponding to τ. Take a gradation of the ν-th kind on \mathfrak{g}^{*} :

$$
\begin{gather*}
\mathfrak{g}^{*}=\mathfrak{g}_{-v}^{*}+\cdots+\mathfrak{g}_{0}^{*}+\cdots+\mathfrak{g}_{v}^{*}, \quad \mathfrak{g}_{1}^{*} \neq\{0\}, \quad \mathfrak{g}_{v}^{*} \neq\{0\}, \tag{2.4}\\
{\left[\mathfrak{g}_{p}^{*}, \mathfrak{g}_{q}^{*}\right] \subset \mathfrak{g}_{p+q}^{*}, \quad \tau\left(\mathfrak{g}_{p}^{*}\right)=\mathfrak{g}_{-p}^{*}, \quad-v \leq p, q \leq v .}
\end{gather*}
$$

It is known that there exists a unique element $Z \in \mathfrak{p} \cap \mathfrak{g}_{0}^{*}$, called the characteristic element of the gradation (2.4), such that

$$
\begin{equation*}
\mathfrak{g}_{p}^{*}=\left\{X \in \mathfrak{g}^{*} ;[Z, X]=p X\right\}, \quad-v \leq p \leq v . \tag{2.5}
\end{equation*}
$$

A triple $\left(\mathfrak{g}^{*}, Z, \tau\right)$ is called a graded triple. Let

$$
\mathfrak{g}^{*}=\sum_{i=-v}^{v} \mathfrak{g}_{i}^{*}, \quad \overline{\mathfrak{g}}^{*}=\sum_{i=-\bar{v}}^{\bar{v}} \overline{\mathfrak{g}}_{i}^{*}
$$

be two graded Lie algebras. These gradations are said to be isomorphic if $v=\bar{v}$ and there exists an isomorphism $\phi: \mathfrak{g}^{*} \rightarrow \overline{\mathfrak{g}}^{*}$ such that $\phi\left(\mathfrak{g}_{i}^{*}\right)=\overline{\mathfrak{g}}_{i}^{*}$ for $-v \leq i \leq \nu$.

Let \mathfrak{a} be a maximal abelian subspace of \mathfrak{p}, and let Δ denote the set of restricted roots of \mathfrak{g}^{*} with respect to \mathfrak{a}. We denote by $\Pi=\left\{\lambda_{1}, \ldots, \lambda_{l}\right\}$ a fundamental root system of Δ with respect to a lexicographic ordering of \mathfrak{a}. We call subsets $\left\{\Pi_{0}, \Pi_{1}, \ldots, \Pi_{m}\right\}$ of Π a partition of Π if $\Pi_{1} \neq \emptyset, \Pi_{m} \neq \emptyset$ and

$$
\Pi=\Pi_{0} \cup \Pi_{1} \cup \cdots \cup \Pi_{m} \quad \text { (disjoint union) }
$$

Let Π and $\bar{\Pi}$ be fundamental root systems of noncompact semisimple Lie algebras \mathfrak{g}^{*} and $\overline{\mathfrak{g}}^{*}$, respectively. Partitions $\left\{\Pi_{0}, \Pi_{1}, \ldots, \Pi_{m}\right\}$ of Π and $\left\{\bar{\Pi}_{0}, \bar{\Pi}_{1}, \ldots, \bar{\Pi}_{n}\right\}$ of $\bar{\Pi}$ are said to be equivalent if there exists an isomorphism ϕ from the Dynkin diagram of Π to that of $\bar{\Pi}$ such that $m=n$ and $\phi\left(\Pi_{i}\right)=\bar{\Pi}_{i}, i=0,1, \ldots, m$.

Let $\left\{\Pi_{0}, \Pi_{1}, \ldots, \Pi_{m}\right\}$ be a partition of $\Pi=\left\{\lambda_{1}, \ldots, \lambda_{l}\right\}$. We define a map $h_{\Pi}: \Delta \rightarrow$ Z by

$$
\begin{equation*}
h_{\Pi}(\lambda):=\sum_{\lambda_{i} \in \Pi_{1}} k_{i}+2 \sum_{\lambda_{i} \in \Pi_{2}} k_{i}+\cdots+m \sum_{\lambda_{i} \in \Pi_{m}} k_{i}, \quad \lambda=\sum_{i=1}^{l} k_{i} \lambda_{i} \in \Delta . \tag{2.6}
\end{equation*}
$$

Then there exists a unique $Z \in \mathfrak{a}$ such that $\lambda(Z)=h_{\Pi}(\lambda)$ for all $\lambda \in \Delta$. Since $h_{\Pi}(\lambda) \in$ \boldsymbol{Z} for all $\lambda \in \Delta$, there exists a gradation whose characteristic element equals Z, which is called the gradation defined by a partition $\left\{\Pi_{0}, \Pi_{1}, \ldots, \Pi_{m}\right\}$ of Π. Moreover, Kaneyuki and Asano [10] proved the following theorem.

THEOREM 2.4 ([10]). Let \mathfrak{g}^{*} be a noncompact semisimple Lie algebra over \boldsymbol{R} and Π a fundamental root system of \mathfrak{g}^{*}. Then the correspondence

$$
\left\{\Pi_{0}, \Pi_{1}, \ldots, \Pi_{m}\right\} \mapsto \text { the gradation defined by }\left\{\Pi_{0}, \Pi_{1}, \ldots, \Pi_{m}\right\}
$$

induces a bijection between the set of equivalence classes of partitions of Π and the set of isomorphism classes of gradations of \mathfrak{g}^{*}.

Define $h_{i} \in \mathfrak{a}, i=1,2, \ldots, l$, by

$$
\begin{equation*}
\lambda_{j}\left(h_{i}\right)=\delta_{i j} \tag{2.7}
\end{equation*}
$$

and denote the highest root of Δ by

$$
\begin{equation*}
\delta_{\mathfrak{a}}:=\sum_{i=1}^{l} n_{i} \lambda_{i} . \tag{2.8}
\end{equation*}
$$

According to Faraut, Kaneyuki, Korányi, Lu and Roos [4, pp. 115, Proposition I.2.7], the following Proposition holds.

Proposition 2.5 ([4]). Let $Z \in \mathfrak{a}$ be a characteristic element of a graded Lie algebra of the second kind defined by a partition of Π. Then

$$
Z=h_{i}, \quad \text { or } h_{j}+h_{k},
$$

with $n_{i}=2$ and $n_{j}=n_{k}=1$.
Finally, we clarify the relation between H_{i} and h_{j}. Let \mathfrak{t}^{*} be a Cartan subalgebra of \mathfrak{g}^{*} containing \mathfrak{a}. We denote by \mathfrak{g}_{c} and \mathfrak{t}_{c} the complexifications of \mathfrak{g}^{*} and \mathfrak{t}^{*}, respectively. Suppose that $\Delta\left(\mathfrak{g}_{c}, \mathfrak{t}_{c}\right)$ and Δ have compatible orderings.

Lemma 2.6. Let λ_{i} be any root in Π.
(1) If there exists a unique $\alpha_{j} \in \Pi\left(\mathfrak{g}_{c}, \mathfrak{t}_{c}\right)$ such that $\left.\alpha_{j}\right|_{\mathfrak{a}}=\lambda_{i}$, then $h_{i}=H_{j}$.
(2) If there exist two fundamental roots $\alpha_{j}, \alpha_{k} \in \Pi\left(\mathfrak{g}_{c}, \mathfrak{t}_{c}\right)$ such that $\left.\alpha_{j}\right|_{\mathfrak{a}}=\left.\alpha_{k}\right|_{\mathfrak{a}}=\lambda_{i}$, then $h_{i}=H_{j}+H_{k}$.

Proof. (1) From the classification of the Satake diagrams (cf. Araki [1] and [6]) for $\alpha_{p} \in \Pi\left(\mathfrak{g}_{c}, \mathfrak{t}_{c}\right), p \neq j$, it follows that $\left.\alpha_{p}\right|_{\mathfrak{a}}=0$ or $\left.\alpha_{p}\right|_{\mathfrak{a}}=\lambda_{q}$ for some $q, q \neq i$. Thus we have

$$
\alpha_{p}\left(h_{i}\right)=\left.\alpha_{p}\right|_{\mathfrak{a}}\left(h_{i}\right)=0, \quad \alpha_{j}\left(h_{i}\right)=\lambda_{i}\left(h_{i}\right)=1,
$$

which implies that $h_{i}=H_{j}$.
(2) Similarly as above, for $\alpha_{p} \in \Pi\left(\mathfrak{g}_{c}, \mathfrak{t}_{c}\right), p \neq j, k$, it follows that $\left.\alpha_{p}\right|_{\mathfrak{a}}=0$ or $\left.\alpha_{p}\right|_{\mathfrak{a}}=\lambda_{q}$ for some $q, q \neq i$. Therefore

$$
\alpha_{p}\left(h_{i}\right)=\left.\alpha_{p}\right|_{\mathfrak{a}}\left(h_{i}\right)=0, \quad \alpha_{m}\left(h_{i}\right)=\left.\alpha_{m}\right|_{\mathfrak{a}}\left(h_{i}\right)=\lambda_{i}\left(h_{i}\right)=1, \quad m=j, k,
$$

which implies that $h_{i}=H_{j}+H_{k}$.
3. Invariant complex structures and J. In this section we use the same notation as in Section 2.1. Let $(G / H,\langle\rangle,, \sigma)$ be a compact, simply connected Riemannian 3-symmetric space such that G is a compact simple Lie group, σ is inner and the dimension of the center $Z(H)$ of H is not zero. In this case, H is a centralizer of a toral subgroup of G and so H is connected. Moreover, it is known that $(G / H,\langle\rangle,, \sigma)$ admits a G-invariant complex structure (cf. Wang [19]). In the remaining part of this paper we assume that a compact Riemannian 3 -symmetric space $(G / H,\langle\rangle,, \sigma)$ is of inner type such that G is a compact simple Lie group, H is a centralizer of a toral subgroup of G and \langle,$\rangle is induced from a biinvariant metric on G$.

In this section we construct invariant complex structures on a 3 -symmetric space $(G / H,\langle\rangle,, \sigma)$ by means of J and some involutive automorphisms of G. Let \mathfrak{g} and \mathfrak{h} be the Lie algebras of G and H, respectively. Since σ is inner, there exists a maximal abelian
subalgebra \mathfrak{t} of \mathfrak{g} contained in \mathfrak{h}. Let $\Delta\left(\mathfrak{g}_{c}, \mathfrak{t}_{c}\right)$ be the root system of \mathfrak{g}_{c} with respect to \mathfrak{t}_{c} and \mathfrak{g}^{α} the root space for $\alpha \in \Delta\left(\mathfrak{g}_{c}, \mathfrak{t}_{c}\right)$. We take the Weyl basis $\left\{E_{\alpha} \in \mathfrak{g}^{\alpha} ; \alpha \in \Delta\left(\mathfrak{g}_{c}, \mathfrak{t}_{c}\right)\right\}$ of \mathfrak{g}_{c} so that

$$
A_{\alpha}:=E_{\alpha}-E_{-\alpha}, \quad B_{\alpha}:=\sqrt{-1}\left(E_{\alpha}+E_{-\alpha}\right) \in \mathfrak{g}, \quad B\left(E_{\alpha}, E_{-\alpha}\right)=1
$$

where B denotes the Killing form of \mathfrak{g}. The following lemma is obvious.
Lemma 3.1. For $T \in \mathfrak{t}_{c}$ and $\alpha \in \Delta\left(\mathfrak{g}_{c}, \mathfrak{t}_{c}\right)$, we have

$$
\operatorname{Ad}(\exp T)\left(E_{\alpha}\right)=e^{\alpha(T)} E_{\alpha}
$$

Since $\mathfrak{t} \subset \mathfrak{h}$, there is a subset Δ_{0} of $\Delta\left(\mathfrak{g}_{c}, \mathfrak{t}_{c}\right)$ such that

$$
\begin{equation*}
\mathfrak{h}_{c}=\mathfrak{t}_{c}+\sum_{\alpha \in \Delta_{0}} \mathfrak{g}^{\alpha} . \tag{3.1}
\end{equation*}
$$

Let I denote a G-invariant complex structure of $(G / H,\langle\rangle,, \sigma)$. Then we have $\mathfrak{m}_{c}=\mathfrak{m}_{+} \oplus \mathfrak{m}_{-}$ (direct sum), where $\mathfrak{m}_{ \pm}$denote the $\pm \sqrt{-1}$-eigenspaces of I, respectively. Set $\mathfrak{a}^{+}:=\mathfrak{h}_{c}+\mathfrak{m}_{+}$. Since I is G-invariant, it follows that $m_{ \pm}$are $\operatorname{ad}(\mathfrak{h})$-invariant, and furthermore \mathfrak{a}^{+}is a Lie subalgebra of \mathfrak{g}_{c} (cf. Borel and Hirzebruch [2] and Nishiyama [12]). Since $\mathfrak{t}_{c} \subset \mathfrak{h}_{c} \subset \mathfrak{a}^{+}$, there exists a subset Δ^{+}of $\Delta\left(\mathfrak{g}_{c}, \mathfrak{t}_{c}\right)$ such that

$$
\begin{equation*}
\mathfrak{a}^{+}=\mathfrak{h}_{c}+\sum_{\alpha \in \Delta^{+}} \mathfrak{g}^{\alpha} . \tag{3.2}
\end{equation*}
$$

Moreover, since I is integrable, it follows that

$$
\begin{align*}
& \Delta\left(\mathfrak{g}_{c}, \mathfrak{t}_{c}\right)=\Delta_{0} \cup \Delta^{+} \cup\left(-\Delta^{+}\right) \quad \text { (disjoint union) }, \\
& \alpha \in \Delta_{0} \cup \Delta^{+}, \quad \beta \in \Delta^{+}, \quad \alpha+\beta \in \Delta\left(\mathfrak{g}_{c}, \mathfrak{t}_{c}\right) \Rightarrow \alpha+\beta \in \Delta^{+}, \tag{3.3}
\end{align*}
$$

(cf. [12]), and hence by [2] (see also [12, Theorem 1]), there exists a fundamental root system $\tilde{\Pi}=\left\{\tilde{\alpha}_{1}, \ldots, \tilde{\alpha}_{n}\right\}$ of $\Delta\left(\mathfrak{g}_{c}, \mathfrak{t}_{c}\right)$ such that $\Pi(\mathfrak{h}):=\tilde{\Pi} \cap \Delta_{0}$ is a fundamental root system of Δ_{0} and

$$
\begin{equation*}
\Delta^{+}=[\tilde{\Pi}]^{+}-[\Pi(\mathfrak{h})]^{+} \tag{3.4}
\end{equation*}
$$

Here, $[\tilde{\Pi}]^{+}$and $[\Pi(\mathfrak{h})]^{+}$denote the sets of positive roots generated by $\tilde{\Pi}$ and $\Pi(\mathfrak{h})$, respectively. Note that

$$
\begin{equation*}
\left.I\right|_{\mathfrak{g}^{\alpha}}=\sqrt{-1} \operatorname{Id}_{\mathfrak{g}^{\alpha}}\left(\alpha \in \Delta^{+}\right),\left.\quad I\right|_{\mathfrak{g}^{\beta}}=-\sqrt{-1} \operatorname{Id}_{\mathfrak{g}^{\beta}} \quad\left(\beta \in-\Delta^{+}\right) . \tag{3.5}
\end{equation*}
$$

Conversely, if there exists a subset Δ^{+}of Δ satisfying (3.3), then the linear automorphism I of $\mathfrak{m}=\sum_{\alpha \in \Delta^{+}}\left(\boldsymbol{R} A_{\alpha}+\boldsymbol{R} B_{\alpha}\right)$ given by (3.5) induces a G-invariant complex structure on G/H (cf. [12]).

Since $\sigma^{3}=\mathrm{Id}$, it follows from Lemma 3.1 that for $\alpha \in \Delta^{+}$and a primitive cubic root of unity $\xi=e^{2 \pi \sqrt{-1} / 3}$, we have $\sigma\left(E_{\alpha}\right)=\xi E_{\alpha}$ or $\sigma\left(E_{\alpha}\right)=\xi^{2} E_{\alpha}$. Define subsets $\Delta_{1}{ }^{+}, \Delta_{2}{ }^{+}$of Δ^{+}by

$$
\begin{equation*}
\Delta^{+}{ }_{i}:=\left\{\alpha \in \Delta^{+} ; \sigma\left(E_{\alpha}\right)=\xi^{i} E_{\alpha}\right\}, \quad i=1,2 . \tag{3.6}
\end{equation*}
$$

Let $\mathfrak{z}(\mathfrak{h})$ be the center of \mathfrak{h}. Then, by Remark 2.3 (2), the dimension of $\mathfrak{z}(\mathfrak{h})$ is 1 or 2. Moreover

Lemma 3.2. (1) If $\operatorname{dim} \mathfrak{z}(\mathfrak{h})=1$, then there exists $\tilde{\alpha}_{i_{0}} \in \tilde{\Pi}$ such that $\tilde{\Pi}-\Pi(\mathfrak{h})=$ $\left\{\tilde{\alpha}_{i_{0}}\right\}, m_{i_{0}}=2$ and

$$
\sigma=\operatorname{Ad}\left(\exp \varepsilon \frac{2 \pi}{3} \sqrt{-1} \tilde{H}_{i_{0}}\right) .
$$

(2) If $\operatorname{dim} \mathfrak{z}(\mathfrak{h})=2$, then there exist $\tilde{\alpha}_{i_{1}}, \tilde{\alpha}_{i_{2}} \in \tilde{\Pi}$ such that $\tilde{\Pi}-\Pi(\mathfrak{h})=\left\{\tilde{\alpha}_{i_{1}}, \tilde{\alpha}_{i_{2}}\right\}$, $m_{i_{1}}=m_{i_{2}}=1$, and

$$
\sigma=\operatorname{Ad}\left(\exp \varepsilon \frac{2 \pi}{3} \sqrt{-1}\left(\tilde{H}_{i_{1}}+\tilde{H}_{i_{2}}\right)\right)
$$

Here $\tilde{\alpha}_{i}\left(\tilde{H}_{j}\right)=\delta_{i j}, \varepsilon=1$ or -1 and we denote the highest root of $\Delta\left(\mathfrak{g}_{c}, \mathfrak{t}_{c}\right)$ with respect to $\tilde{\Pi}$ by $\sum_{i} m_{i} \tilde{\alpha}_{i}$.

Proof. (1) Set $\mathfrak{z}(\mathfrak{h})=\boldsymbol{R} \sqrt{-1} Z$. Since \mathfrak{h} is the centralizer of $\mathfrak{z}(\mathfrak{h})$ in \mathfrak{g}, it follows from (3.1) that

$$
\begin{equation*}
\tilde{\alpha}_{i}(Z)=0, \quad \tilde{\alpha}_{j}(Z) \neq 0, \quad \tilde{\alpha}_{i} \in \Pi(\mathfrak{h}), \quad \tilde{\alpha}_{j} \in \tilde{\Pi}-\Pi(\mathfrak{h}) . \tag{3.7}
\end{equation*}
$$

Then there exists a unique $\tilde{\alpha}_{i_{0}} \in \tilde{\Pi}$ such that $\tilde{\Pi}-\Pi(\mathfrak{h})=\left\{\tilde{\alpha}_{i_{0}}\right\}$. Indeed, if there are $\tilde{\alpha}_{i}$, $\tilde{\alpha}_{j} \in \tilde{\Pi}-\Pi(\mathfrak{h}), i \neq j$, then we obtain $\tilde{\alpha}_{k}\left(\tilde{H}_{i}\right)=\tilde{\alpha}_{k}\left(\tilde{H}_{j}\right)=0$ for any $\tilde{\alpha}_{k} \in \Pi(\mathfrak{h})$, and hence, by (3.1), $\sqrt{-1} \tilde{H}_{i}$ and $\sqrt{-1} \tilde{H}_{j}$ are in $\mathfrak{z}(\mathfrak{h})$. This contradicts the assumption.

Now, we may put $Z=\tilde{H}_{i_{0}}$ and $\sigma=\operatorname{Ad}\left(\exp \left\{(2 \pi \sqrt{-1} / 3) c \tilde{H}_{i_{0}}\right\}\right)$ for some $c \in \boldsymbol{Z}$. Moreover, since $\sigma\left(E_{\tilde{\alpha}_{i_{0}}}\right)=\xi E_{\tilde{\alpha}_{i_{0}}}$ or $\xi^{2} E_{\tilde{\alpha}_{i_{0}}}$ by Lemma 3.1, we can put $c=1$ or -1 . From the classification of root systems of simple Lie algebras, it is easy to see that if $m_{i_{0}} \geq 3$, then there exists $\alpha \in \Delta\left(\mathfrak{g}_{c}, \mathfrak{t}_{c}\right)$ such that

$$
\begin{equation*}
\alpha=\sum_{j} n_{j} \tilde{\alpha}_{j}, \quad n_{i_{0}}=3 \tag{3.8}
\end{equation*}
$$

By (3.4) and the fact that $\sigma=\operatorname{Ad}\left(\exp \left\{ \pm(2 \pi \sqrt{-1} / 3) \tilde{H}_{i_{0}}\right\}\right)$, we obtain $\sigma\left(E_{\alpha}\right)=E_{\alpha}$, i.e., $E_{\alpha} \in \mathfrak{h}_{c}$. However, we have $\alpha(Z) \neq 0$ from (3.8), and so $E_{\alpha} \notin \mathfrak{h}_{c}$. Hence $m_{i_{0}} \leq 2$. In the case where $m_{i_{0}}=1$, it is known that $(G / H,\langle\rangle,, \sigma)$ is isometric to a Hermitian symmetric space (cf. [20, Theorem 3.3]). Consequently, we obtain $m_{i_{0}}=2$.
(2) Next, we assume that $\operatorname{dim} \mathfrak{z}(\mathfrak{h})=2$. By a similar argument as above, we can see that there exist $\tilde{\alpha}_{i_{1}}, \tilde{\alpha}_{i_{2}} \in \tilde{\Pi}$ such that

$$
\tilde{\Pi}-\Pi(\mathfrak{h})=\left\{\tilde{\alpha}_{i_{1}}, \tilde{\alpha}_{i_{2}}\right\} .
$$

In this case, we have $\mathfrak{z}(\mathfrak{h})=\boldsymbol{R} \sqrt{-1} \tilde{H}_{i_{1}}+\boldsymbol{R} \sqrt{-1} \tilde{H}_{i_{2}}$ and

$$
\sigma=\operatorname{Ad}\left(\exp \frac{2 \pi}{3} \sqrt{-1}\left(a \tilde{H}_{i_{1}}+b \tilde{H}_{i_{2}}\right)\right), \quad a, b \in \mathbf{Z}
$$

Since $\sigma\left(E_{\tilde{\alpha}_{i_{1}}}\right)=\xi^{k} E_{\tilde{\alpha}_{i_{1}}}$ and $\sigma\left(E_{\tilde{\alpha}_{i_{2}}}\right)=\xi^{l} E_{\tilde{\alpha}_{i_{2}}}, k, l=1$ or 2 , it follows that $a, b \not \equiv 0$ $(\bmod 3)$. Hence we may assume that $(a, b)= \pm(1,1)$ or $\pm(1,-1)$. From the classification of
root systems, we can take a root $\alpha=\sum_{k} n_{k} \tilde{\alpha}_{k}$ so that $n_{i_{1}}=n_{i_{2}}=1$. If $(a, b)= \pm(1,-1)$, then $\sigma\left(E_{\alpha}\right)=E_{\alpha}$, and this contradicts the fact that $\alpha \in \Delta^{+}$. Therefore we have

$$
\begin{equation*}
\sigma=\operatorname{Ad}\left(\exp \pm \frac{2 \pi}{3} \sqrt{-1}\left(\tilde{H}_{i_{1}}+\tilde{H}_{i_{2}}\right)\right) . \tag{3.9}
\end{equation*}
$$

Finally, we show that $m_{i_{1}}=m_{i_{2}}=1$. Suppose that $m_{i_{1}}+m_{i_{2}} \geq 3$. Then, from the classification of root systems, it is easy to see that there exists $\alpha=\sum_{j} n_{j} \tilde{\alpha}_{j} \in \Delta^{+}$such that $n_{i_{1}}+n_{i_{2}}=3$. By (3.9), it is easy to see that $\sigma\left(E_{\alpha}\right)=E_{\alpha}$, which is a contradiction. Consequently, we have $m_{i_{1}}=m_{i_{2}}=1$.

Since $\mathfrak{g}^{\sigma}=\mathfrak{g}^{\sigma^{-1}}(=\mathfrak{h})$, we may assume that

$$
\sigma= \begin{cases}\operatorname{Ad}\left(\exp \left\{(2 \pi \sqrt{-1} / 3) \tilde{H}_{i_{0}}\right\}\right) & \text { if } \operatorname{dim} \mathfrak{z}(\mathfrak{h})=1, \tag{3.10}\\ \operatorname{Ad}\left(\exp \left\{(2 \pi \sqrt{-1} / 3)\left(\tilde{H}_{i_{1}}+\tilde{H}_{i_{2}}\right)\right\}\right) & \text { if } \operatorname{dim} \mathfrak{z}(\mathfrak{h})=2 .\end{cases}
$$

Considering (3.6) and (3.10) together with Lemma 3.2, we obtain

$$
\begin{align*}
\Delta^{+}{ }_{1} & =\left\{\begin{array}{l}
\left\{\beta=\sum_{j} n_{j} \tilde{\alpha}_{j} ; n_{i_{0}}=1\right\} \text { if } \operatorname{dim} \mathfrak{z}(\mathfrak{h})=1, \\
\left\{\beta=\sum_{j} n_{j} \tilde{\alpha}_{j} ;\left(n_{i_{1}}, n_{i_{2}}\right)=(1,0) \text { or }(0,1)\right\} \text { if } \operatorname{dim} \mathfrak{z}(\mathfrak{h})=2, \\
\Delta^{+}{ }_{2}
\end{array}= \begin{cases}\left\{\beta=\sum_{j} n_{j} \tilde{\alpha}_{j} ; n_{i_{0}}=2\right\} \text { if } \operatorname{dim} \mathfrak{z}(\mathfrak{h})=1, \\
\left\{\beta=\sum_{j} n_{j} \tilde{\alpha}_{j} ; n_{i_{1}}=n_{i_{2}}=1\right\} \text { if } \operatorname{dim} \mathfrak{z}(\mathfrak{h})=2 .\end{cases} \right. \tag{3.11}
\end{align*}
$$

Now, we shall describe each G-invariant complex structure of G / H in terms of the canonical almost complex structure J of $(G / H,\langle\rangle,, \sigma)$.

Proposition 3.3. (1) For any G-invariant complex structure I of G / H, define a mapping $\varphi: \mathfrak{g} \rightarrow \mathfrak{g}$ by $\left.\varphi\right|_{\mathfrak{h}}:=\operatorname{Id}_{\mathfrak{h}},\left.\varphi\right|_{\mathfrak{m}}:=I \circ J$. Then φ is an involutive automorphism of \mathfrak{g}.
(2) Conversely, let φ be an involutive automorphism of G such that $\left.\varphi\right|_{\mathfrak{h}}=\operatorname{Id}_{\mathfrak{h}}, \varphi \neq \mathrm{Id}$. Then $I:=-\left.\varphi\right|_{\mathfrak{m}} \circ J$ is a complex structure of \mathfrak{m} and induces a G-invariant complex structure of G / H.

Proof. (1) Since I is a G-invariant complex structure, there exists a subset Δ^{+}of Δ satisfying (3.3). As above, we take $\tilde{\Pi}, \Pi(\mathfrak{h})$ and $\Delta^{+}{ }_{i}, i=1,2$, for Δ^{+}. Let β_{i} and γ_{i}, $i=1,2$, be elements in $\Delta^{+}{ }_{i}$. Then it follows from Lemma 3.2 and (3.11) that

$$
\begin{equation*}
\beta_{1}+\gamma_{2}, \quad \beta_{2}+\gamma_{2} \notin \Delta\left(\mathfrak{g}_{c}, \mathfrak{t}_{c}\right) . \tag{3.12}
\end{equation*}
$$

Moreover, from (2.1) and (3.6) we have

$$
\begin{equation*}
J\left(E_{ \pm \beta_{1}}\right)= \pm \sqrt{-1} E_{ \pm \beta_{1}}, \quad J\left(E_{ \pm \beta_{2}}\right)=\mp \sqrt{-1} E_{ \pm \beta_{2}} . \tag{3.13}
\end{equation*}
$$

Therefore, by (3.5) and (3.13), we get

$$
\begin{equation*}
\varphi\left(E_{\beta_{1}}\right)=-E_{\beta_{1}}, \quad \varphi\left(E_{\beta_{2}}\right)=E_{\beta_{2}}, \quad \varphi\left(E_{-\beta_{1}}\right)=-E_{-\beta_{1}}, \quad \varphi\left(E_{-\beta_{2}}\right)=E_{-\beta_{2}} \tag{3.14}
\end{equation*}
$$

In particular, we have $I \circ J=J \circ I$ and $\varphi^{2}=\mathrm{Id}$.
Next, we shall show that $\varphi \in \operatorname{Aut}(\mathfrak{g})$. For $X, Y \in \mathfrak{h}$ we obtain

$$
\varphi[X, Y]=[X, Y]=[\varphi(X), \varphi(Y)],
$$

because $[X, Y] \in \mathfrak{h}$ and $\left.\varphi\right|_{\mathfrak{h}}=\operatorname{Id}_{\mathfrak{h}}$. Since $\beta_{1}+\gamma_{1} \in \Delta^{+}{ }_{2}$ if $\beta_{1}+\gamma_{1} \in \Delta\left(\mathfrak{g}_{c}, \mathfrak{t}_{c}\right)$, it follows from (3.14) that

$$
\varphi\left[E_{\beta_{1}}, E_{\gamma_{1}}\right]=\left[E_{\beta_{1}}, E_{\gamma_{1}}\right]=\left[\varphi\left(E_{\beta_{1}}\right), \varphi\left(E_{\gamma_{1}}\right)\right] .
$$

Similarly, we obtain

$$
\begin{aligned}
& \varphi\left[E_{\beta_{1}}, E_{-\gamma_{1}}\right]=\left[E_{\beta_{1}}, E_{-\gamma_{1}}\right]=\left[\varphi\left(E_{\beta_{1}}\right), \varphi\left(E_{-\gamma_{1}}\right)\right], \\
& \varphi\left[E_{\beta_{2}}, E_{-\gamma_{1}}\right]=-\left[E_{\beta_{2}}, E_{-\gamma_{1}}\right]=\left[\varphi\left(E_{\beta_{2}}\right), \varphi\left(E_{-\gamma_{1}}\right)\right], \\
& \varphi\left[E_{\beta_{1}}, E_{-\gamma_{2}}\right]=-\left[E_{\beta_{1}}, E_{-\gamma_{2}}\right]=\left[\varphi\left(E_{\beta_{1}}\right), \varphi\left(E_{-\gamma_{2}}\right)\right],
\end{aligned}
$$

and hence $\varphi[X, Y]=[\varphi(X), \varphi(Y)]$ for any $X, Y \in \mathfrak{m}$. Furthermore, since I and J are G-invariant, it is obvious that

$$
I \circ J \circ \operatorname{ad}(X)=\operatorname{ad}(X) \circ I \circ J, \quad X \in \mathfrak{h},
$$

which implies that $\varphi[X, Y]=[\varphi(X), \varphi(Y)]$ for $X \in \mathfrak{h}$ and $Y \in \mathfrak{m}$. We have thus proved (1).
(2) Let φ be an involutive automorphism of G such that $\left.\varphi\right|_{\mathfrak{h}}=\operatorname{Id}_{\mathfrak{h}}$ and $\varphi \neq \mathrm{Id}$. Since \mathfrak{h} contains a maximal abelian subalgebra of \mathfrak{g}, an involution φ is inner. Therefore, since J is G-invariant, φ is inner and H is connected, it follows that $\varphi \circ J=J \circ \varphi$ and $I:=-\left.\varphi\right|_{\mathfrak{m}} \circ J$ is a complex structure of \mathfrak{m} such that I is $\operatorname{Ad}(H)$-invariant. Hence I induces a G-invariant almost complex structure of G / H, denoted by the same symbol I. Now, we see that the Nijenhuis tensor

$$
S_{I}(x, y)=[I x, I y]-[x, y]-I[x, I y]-I[I x, y]
$$

x, y being vector fields of G / H, is identically zero. To prove this, it only has to show that $S_{I}=0$ at o, since S_{I} is a tensor and I is G-invariant. Let $\pi: G \rightarrow G / H$ be the canonical projection and W an open subset in \mathfrak{m} such that $0 \in W$ and the mapping

$$
\pi \circ \exp : W \rightarrow \pi(\exp W)
$$

is diffeomorphic. For $X \in \mathfrak{m}$, we denote by X_{*} the vector field on $\pi(\exp W)$ defined by

$$
\left(X_{*}\right)_{\pi(\exp x)}:=(d \exp x)_{*}(X) .
$$

According to Nomizu [13], the Levi-Civita connection ∇ of $(G / H,\langle\rangle,, \sigma)$ at o is given by

$$
\begin{equation*}
\left(\nabla_{X_{*}} Y_{*}\right)_{o}=\frac{1}{2}[X, Y]_{\mathfrak{m}}, \quad X, Y \in \mathfrak{m} \tag{3.15}
\end{equation*}
$$

and therefore we get

$$
\begin{equation*}
\left[X_{*}, Y_{*}\right]_{o}=[X, Y]_{\mathfrak{m}} . \tag{3.16}
\end{equation*}
$$

By the definition of X_{*} and G-invariance of I and J, it follows that

$$
\begin{equation*}
I\left(X_{*}\right)=(I X)_{*}, \quad J\left(X_{*}\right)=(J X)_{*} . \tag{3.17}
\end{equation*}
$$

By making use of (3.16) and (3.17), for $X, Y \in \mathfrak{m}$ we have

$$
\begin{align*}
S_{I}\left(X_{*}, Y_{*}\right)_{o}= & {\left[I\left(X_{*}\right), I\left(Y_{*}\right)\right]_{o}-\left[X_{*}, Y_{*}\right]_{o}-I\left(\left[X_{*}, I\left(Y_{*}\right)\right]_{o}\right)-I\left(\left[I\left(X_{*}\right), Y_{*}\right]_{o}\right) } \\
= & {\left[(I X)_{*},(I Y)_{*}\right]_{o}-\left[X_{*}, Y_{*}\right]_{o}-I\left(\left[X_{*},(I Y)_{*}\right]_{o}\right)-I\left(\left[(I X)_{*}, Y_{*}\right]_{o}\right) } \\
= & {[I X, I Y]_{\mathfrak{m}}-[X, Y]_{\mathfrak{m}}-I\left([X, I Y]_{\mathfrak{m}}\right)-I\left([I X, Y]_{\mathfrak{m}}\right) } \tag{3.18}\\
= & \varphi\left([J X, J Y]_{\mathfrak{m}}\right)-[X, Y]_{\mathfrak{m}}-\varphi\left(J[X, \varphi(J Y)]_{\mathfrak{m}}\right) \\
& -\varphi\left(J[\varphi(J X), Y]_{\mathfrak{m}}\right) .
\end{align*}
$$

Applying Lemma 2.1 and the commutativity of φ and J to (3.18), we obtain

$$
\begin{align*}
S_{I}\left(X_{*}, Y_{*}\right)_{o} & =-\varphi\left([X, Y]_{\mathfrak{m}}\right)-[X, Y]_{\mathfrak{m}}-\varphi\left([X, \varphi(Y)]_{\mathfrak{m}}\right)-\varphi\left([\varphi(X), Y]_{\mathfrak{m}}\right) \\
& =-\varphi\left([X, Y]_{\mathfrak{m}}\right)-[X, Y]_{\mathfrak{m}}-[\varphi(X), Y]_{\mathfrak{m}}-[X, \varphi(Y)]_{\mathfrak{m}} \tag{3.19}
\end{align*}
$$

Let $\mathfrak{m}(\varphi, \pm 1)$ be the ± 1-eigenspaces of $\left.\varphi\right|_{\mathfrak{m}}$. If $X, Y \in \mathfrak{m}(\varphi,-1)$, then $[X, Y]_{\mathfrak{m}} \in \mathfrak{m}(\varphi, 1)$ and it follows from (3.19) that

$$
S_{I}\left(X_{*}, Y_{*}\right)_{o}=-\left\{[X, Y]_{\mathfrak{m}}+[X, Y]_{\mathfrak{m}}-[X, Y]_{\mathfrak{m}}-[X, Y]_{\mathfrak{m}}\right\}=0 .
$$

Similarly, if $X \in \mathfrak{m}(\varphi,-1), Y \in \mathfrak{m}(\varphi, 1)$, then

$$
S_{I}\left(X_{*}, Y_{*}\right)_{o}=-\left\{-[X, Y]_{\mathfrak{m}}+[X, Y]_{\mathfrak{m}}-[X, Y]_{\mathfrak{m}}+[X, Y]_{\mathfrak{m}}\right\}=0
$$

Finally, we suppose that $X, Y \in \mathfrak{m}(\varphi, 1)$. Then we have

$$
S_{I}\left(X_{*}, Y_{*}\right)_{o}=-\left\{[X, Y]_{\mathfrak{m}}+[X, Y]_{\mathfrak{m}}+[X, Y]_{\mathfrak{m}}+[X, Y]_{\mathfrak{m}}\right\}=-4[X, Y]_{\mathfrak{m}} .
$$

To complete the proof of (2), we show that $[X, Y]_{\mathfrak{m}}=0$ for any $X, Y \in \mathfrak{m}(\varphi, 1)$. Noting Lemma 2.2 and Remark 2.3, we may assume that there exist a maximal abelian subalgebra \mathfrak{t} of \mathfrak{g} contained in \mathfrak{h}, the root system $\Delta\left(\mathfrak{g}_{c}, \mathfrak{t}_{c}\right)$ and a fundamental root system $\Pi\left(\mathfrak{g}_{c}, \mathfrak{t}_{c}\right)=$ $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ such that

$$
\sigma=\operatorname{Ad}\left(\exp \frac{2 \pi}{3} \sqrt{-1} Z\right)
$$

where $\sqrt{-1} Z \in \mathfrak{t}$ is one of the following forms:

$$
\text { (i) } \sqrt{-1} Z=\sqrt{-1} H_{j_{1}}\left(m_{j_{1}}=2\right), \quad \text { (ii) } \sqrt{-1} Z=\sqrt{-1}\left(H_{j_{2}}+H_{j_{3}}\right) \quad\left(m_{j_{2}}=m_{j_{3}}=1\right) .
$$

Here $H_{i} \in \mathfrak{t}_{c}, 1 \leq i \leq n$, is given by (2.2) and $\delta=\sum_{p=1}^{n} m_{p} \alpha_{p}$ is the highest root of $\Delta\left(\mathfrak{g}_{c}, \mathfrak{t}_{c}\right)$ with respect to $\Pi\left(\mathfrak{g}_{c}, \mathfrak{t}_{c}\right)$. Since φ is an involution of inner type, we can put $\varphi=$ $\operatorname{Ad}(\exp \pi \sqrt{-1} T)$ for some $\sqrt{-1} T \in \mathfrak{t}$. In the case (i), for $\alpha_{j} \in \Pi\left(\mathfrak{g}_{c}, \mathfrak{t}_{c}\right), j \neq j_{1}$, we have $E_{\alpha_{j}} \in \mathfrak{h}_{c}$ and so

$$
\varphi\left(E_{\alpha_{j}}\right)=E_{\alpha_{j}}, \quad j \neq j_{1} .
$$

Therefore, it follows from Lemma 3.1 that

$$
T=a H_{j_{1}}+\sum_{j \neq j_{1}} a_{j} H_{j}, \quad a_{j} \equiv 0(\bmod 2)
$$

and hence $\varphi=\operatorname{Ad}\left(\exp a \pi \sqrt{-1} H_{j_{1}}\right)$. Moreover, since φ is a nonidentical involution, it follows from Lemma 3.1 that

$$
\begin{equation*}
\varphi=\operatorname{Ad}\left(\exp \pi \sqrt{-1} H_{j_{1}}\right) \tag{3.20}
\end{equation*}
$$

By Lemma 3.1 and (3.20), it is easy to see that $\mathfrak{m}(\varphi, 1)$ is spanned by the following vectors:

$$
A_{\alpha}=E_{\alpha}-E_{-\alpha}, \quad B_{\alpha}=\sqrt{-1}\left(E_{\alpha}+E_{-\alpha}\right), \quad \alpha=\sum_{j=1}^{n} n_{j} \alpha_{j} \in \Delta\left(\mathfrak{g}_{c}, \mathfrak{t}_{c}\right), \quad n_{j_{1}}=2
$$

Now, set

$$
\Delta(\varphi, 1):=\left\{\alpha=\sum_{j=1}^{n} n_{j} \alpha_{j} \in \Delta\left(\mathfrak{g}_{c}, \mathfrak{t}_{c}\right) ; n_{j_{1}}= \pm 2\right\}
$$

If $\alpha, \beta \in \Delta(\varphi, 1)$ and $\alpha+\beta \in \Delta\left(\mathfrak{g}_{c}, \mathfrak{t}_{c}\right)$, then $\alpha+\beta$ must be of the form $\alpha+\beta=\sum_{j} k_{j} \alpha_{j}$, $k_{j_{1}}=0$, since $m_{j_{1}}=2$. Hence we have $\left[E_{\alpha}, E_{\beta}\right] \in \mathfrak{h}_{c}$ and

$$
[\mathfrak{m}(\varphi, 1), \mathfrak{m}(\varphi, 1)]_{\mathfrak{m}}=\{0\} .
$$

In the case (ii), by a similar argument as above, the involution φ has the following form:

$$
\begin{equation*}
\varphi=\operatorname{Ad}\left(\exp \pi \sqrt{-1}\left(a H_{j_{2}}+b H_{j_{3}}\right)\right), \quad a, b \in \mathbf{Z} \tag{3.21}
\end{equation*}
$$

and so we may assume that

$$
(a, b)=(1,0), \quad(0,1) \quad \text { or } \quad(1,1)
$$

Then $\mathfrak{m}(\varphi, 1)$ is spanned by the following vectors:

- A_{α}, B_{α}, where $\alpha=\sum_{j=1}^{n} k_{j} \alpha_{j} \in \Delta\left(\mathfrak{g}_{c}, \mathfrak{t}_{c}\right), \quad k_{j_{2}}=0, k_{j_{3}}=1$, if $(a, b)=(1,0)$,
- A_{α}, B_{α}, where $\alpha=\sum_{j=1}^{n} k_{j} \alpha_{j} \in \Delta\left(\mathfrak{g}_{c}, \mathfrak{t}_{c}\right), k_{j_{2}}=1, k_{j_{3}}=0$, if $(a, b)=(0,1)$,
- A_{α}, B_{α}, where $\alpha=\sum_{j=1}^{n} k_{j} \alpha_{j} \in \Delta\left(\mathfrak{g}_{c}, \mathfrak{t}_{c}\right), k_{j_{2}}=k_{j_{3}}=1$, if $(a, b)=(1,1)$.

Since $m_{j_{2}}=m_{j_{3}}=1$, we can easily check that $[\mathfrak{m}(\varphi, 1), \mathfrak{m}(\varphi, 1)]_{\mathfrak{m}}=\{0\}$ for each case, and this completes the proof of the proposition.

From the proof of Proposition 3.3, we have the following
Corollary 3.4. Let φ be an involutive automorphism of G such that $\varphi \neq \mathrm{Id}$ and $\left.\varphi\right|_{\mathfrak{h}}=\operatorname{Id}_{\mathfrak{h}}$, and let $\Pi\left(\mathfrak{g}_{c}, \mathfrak{t}_{c}\right)=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}, H_{i}$ and $m_{i}, 1 \leq i \leq n$, be as in Section 2.1.
(1) Suppose that $\operatorname{dim}_{\mathfrak{z}}(\mathfrak{h})=1$ and $\sigma=\operatorname{Ad}\left(\exp \left\{(2 \pi \sqrt{-1} / 3) H_{j_{1}}\right\}\right)$ for some $\alpha_{j_{1}} \in$ $\Pi\left(\mathfrak{g}_{c}, \mathfrak{t}_{c}\right)$ with $m_{j_{1}}=2$. Then

$$
\varphi=\operatorname{Ad}\left(\exp \pi \sqrt{-1} H_{j_{1}}\right)
$$

(2) Suppose that $\operatorname{dim}_{\mathfrak{z}}(\mathfrak{h})=2$ and $\sigma=\operatorname{Ad}\left(\exp \left\{(2 \pi \sqrt{-1} / 3)\left(H_{j_{2}}+H_{j_{3}}\right)\right\}\right)$ for some $\alpha_{j_{2}}, \alpha_{j_{3}} \in \Pi\left(\mathfrak{g}_{c}, \mathfrak{t}_{c}\right)$ with $m_{j_{2}}=m_{j_{3}}=1$. Then

$$
\varphi=\operatorname{Ad}\left(\exp \pi \sqrt{-1} H_{j_{2}}\right), \quad \operatorname{Ad}\left(\exp \pi \sqrt{-1} H_{j_{3}}\right) \quad \text { or } \quad \operatorname{Ad}\left(\exp \pi \sqrt{-1}\left(H_{j_{2}}+H_{j_{3}}\right)\right)
$$

REMARK 3.5. A Riemannian 3-symmetric space $(G / H,\langle\rangle,, \sigma)$ is not Kählerian for any G-invariant complex structure I on G / H. Indeed, for $X, Y \in \mathfrak{m}$, it follows from (3.15)
and Lemma 2.1 together with Proposition 3.3 that

$$
\begin{aligned}
\left(\nabla_{X_{*}} I\right)_{o}\left(Y_{*}\right) & =\frac{1}{2}\left\{[X, I Y]_{\mathfrak{m}}-I\left([X, Y]_{\mathfrak{m}}\right)\right\} \\
& =\frac{1}{2}\left\{[X,-\varphi(J Y)]_{\mathfrak{m}}+\varphi J\left([X, Y]_{\mathfrak{m}}\right)\right\} \\
& =\frac{1}{2} \varphi J\left([\varphi(X)+X, Y]_{\mathfrak{m}}\right),
\end{aligned}
$$

where φ is the involution of \mathfrak{g} such that $I=-\varphi J$. If $\nabla I=0$, then it follows that

$$
\begin{equation*}
[\mathfrak{m}(\varphi, 1), \mathfrak{m}]_{\mathfrak{m}}=\{0\} . \tag{3.22}
\end{equation*}
$$

Therefore, since \langle,$\rangle is biinvariant, we obtain$

$$
\langle[\mathfrak{m}(\varphi,-1), \mathfrak{m}(\varphi,-1)], \mathfrak{m}(\varphi, 1)\rangle=\langle[\mathfrak{m}(\varphi,-1), \mathfrak{m}(\varphi, 1)], \mathfrak{m}(\varphi,-1)\rangle=\{0\}
$$

which implies that

$$
\begin{equation*}
[\mathfrak{m}(\varphi,-1), \mathfrak{m}(\varphi,-1)]_{\mathfrak{m}}=\{0\} . \tag{3.23}
\end{equation*}
$$

Since $\mathfrak{g}=\mathfrak{h}+\mathfrak{m}$ is an $\operatorname{Ad}(H)$-invariant decomposition, we have

$$
\begin{equation*}
[\mathfrak{h}, \mathfrak{m}] \subset \mathfrak{m} \tag{3.24}
\end{equation*}
$$

Moreover, since $\left.\varphi\right|_{\mathfrak{h}}=\mathrm{Id}_{\mathfrak{h}}$, we obtain

$$
\begin{equation*}
[\mathfrak{h}, \mathfrak{m}(\varphi, \pm 1)] \subset \mathfrak{m}(\varphi, \pm 1) \tag{3.25}
\end{equation*}
$$

Put $\mathfrak{l}:=\mathfrak{m}(\varphi,-1)+[\mathfrak{m}(\varphi,-1), \mathfrak{m}(\varphi,-1)]$. Then it follows from (3.22), (3.23) and (3.25) that \mathfrak{l} is an ideal of \mathfrak{g}, which is a contradiction. Consequently, $(G / H,\langle\rangle,, \sigma)$ is not Kählerian.
4. Totally real and totally geodesic submanifolds. In this section we shall investigate a relationship between half dimensional, totally real and totally geodesic submanifolds of $(G / H,\langle\rangle,, \sigma)$ with respect to I and those with respect to J. Let ∇ be the Levi-Civita connection on $(G / H,\langle\rangle,, \sigma)$ and I a G-invariant complex structure on G / H. For vector fields X, Y of G / H, we set

$$
\begin{equation*}
\tilde{\nabla}_{X} Y:=\nabla_{X} Y+I\left(\left(\nabla_{X} I\right)(Y)\right) . \tag{4.1}
\end{equation*}
$$

Then $\tilde{\nabla}$ is an affine connection on G / H, since I and $(\nabla I)(X, Y):=\left(\nabla_{X} I\right)(Y)$ are tensor fields on G / H. Let N be a half dimensional, totally real and totally geodesic submanifold of $(G / H,\langle\rangle,, \sigma)$ with respect to I.

Lemma 4.1. N is also totally geodesic with respect to $\tilde{\nabla}$.
Proof. First, note that $(G / H,\langle\rangle, I$,$) is an almost Hermitian manifold, since J$ and φ preserve \langle,$\rangle . Let X, Y$ be vector fields of G / H which are tangent to N. Because N is totally geodesic, a vector field $\nabla_{X} Y$ is tangent to N. Moreover, by the assumption on N and the fact that $(G / H,\langle\rangle, I$,$) is an almost Hermitian manifold, it follows that \nabla_{X}(I Y)$ is perpendicular to N, and hence $I\left(\nabla_{X}(I Y)\right)$ is tangent to N. Since

$$
\tilde{\nabla}_{X} Y=\nabla_{X} Y+I\left(\nabla_{X}(I Y)-I\left(\nabla_{X} Y\right)\right)=2 \nabla_{X} Y+I\left(\nabla_{X}(I Y)\right),
$$

it follows that $\tilde{\nabla}_{X} Y$ is tangent to N.
Let \tilde{T} be the torsion tensor of $\tilde{\nabla}$. For $X \in \mathfrak{m}$, let X_{*} be as in the proof of Proposition 3.3. Then

$$
\tilde{T}\left(X_{*}, Y_{*}\right)=\tilde{\nabla}_{X_{*}} Y_{*}-\tilde{\nabla}_{Y_{*}} X_{*}-\left[X_{*}, Y_{*}\right]=\left[X_{*}, Y_{*}\right]+I\left(\nabla_{X_{*}}(I Y)_{*}-\nabla_{Y_{*}}(I X)_{*}\right)
$$

and hence by (3.15) and (3.16) we have

$$
\begin{equation*}
\tilde{T}(X, Y)=[X, Y]_{\mathfrak{m}}+\frac{1}{2}\left(I[X, I Y]_{\mathfrak{m}}-I[Y, I X]_{\mathfrak{m}}\right), \quad X, Y \in \mathfrak{m} \tag{4.2}
\end{equation*}
$$

Since I is G-invariant, we may assume that $o \in N$. Put $U=T_{o} N(\subset \mathfrak{m})$. Then it follows from Lemma 4.1 that $\tilde{T}(U, U) \subset U$. Therefore, by (4.2), we obtain

$$
\begin{equation*}
[X, Y]_{\mathfrak{m}}+\frac{1}{2}\left(I[X, I Y]_{\mathfrak{m}}-I[Y, I X]_{\mathfrak{m}}\right) \in U, \quad X, Y \in U \tag{4.3}
\end{equation*}
$$

On the other hand, the integrability of I implies (see (3.18))

$$
\begin{equation*}
[I X, I Y]_{\mathfrak{m}}-[X, Y]_{\mathfrak{m}}-I[X, I Y]_{\mathfrak{m}}-I[I X, Y]_{\mathfrak{m}}=0 \tag{4.4}
\end{equation*}
$$

Hence, by (4.3) and (4.4), we obtain

$$
\begin{equation*}
[X, Y]_{\mathfrak{m}}+[I X, I Y]_{\mathfrak{m}} \in U, \quad X, Y \in U \tag{4.5}
\end{equation*}
$$

Let φ be an involutive automorphism of G such that $I=-\left.\varphi\right|_{\mathfrak{m}} \circ J$ and let $\mathfrak{m}(\varphi, \pm 1)$ be the eigenspaces of $\left.\varphi\right|_{\mathfrak{m}}$ with eigenvalues ± 1 as in Section 3. Then we have a decomposition $\mathfrak{m}=\mathfrak{m}(\varphi, 1)+\mathfrak{m}(\varphi,-1)$ of \mathfrak{m}. It follows from the proof of Proposition 3.3 that

$$
\begin{equation*}
[\mathfrak{m}(\varphi, 1), \mathfrak{m}(\varphi, 1)]_{\mathfrak{m}}=\{0\} \tag{4.6}
\end{equation*}
$$

For $X \in \mathfrak{m}$, let X_{+}(resp. X_{-}) be the $\mathfrak{m}(\varphi, 1)$-component (resp. $\mathfrak{m}(\varphi,-1)$-component) of X.
Lemma 4.2. For $X, Y \in U$, we have

$$
\left[X_{+}, Y_{-}\right]_{\mathfrak{m}} \in U
$$

Proof. Let X and Y be in U. Since φ and J are commutative, it follows from Lemma 2.1 that

$$
\begin{equation*}
[I X, I Y]_{\mathfrak{m}}=-[\varphi(X), \varphi(Y)]_{\mathfrak{m}} \tag{4.7}
\end{equation*}
$$

Using (4.5) and (4.7), we obtain

$$
\begin{align*}
{[X, Y]_{\mathfrak{m}}+[I X, I Y]_{\mathfrak{m}} } & =\left[X_{+}+X_{-}, Y_{+}+Y_{-}\right]_{\mathfrak{m}}-\left[X_{+}-X_{-}, Y_{+}-Y_{-}\right]_{\mathfrak{m}} \\
& =2\left(\left[X_{+}, Y_{-}\right]_{\mathfrak{m}}+\left[X_{-}, Y_{+}\right]_{\mathfrak{m}}\right) \in U \tag{4.8}
\end{align*}
$$

By (4.5) and the fact that \langle,$\rangle is induced from the Killing form of \mathfrak{g}$, it follows that

$$
0=\left\langle[X, Y]_{\mathfrak{m}}+[I X, I Y]_{\mathfrak{m}}, I X\right\rangle=\left\langle[I X, X]_{\mathfrak{m}}, Y\right\rangle
$$

and hence $[I X, X]_{\mathfrak{m}} \in I U$, i.e.,

$$
\begin{equation*}
I[I X, X]_{\mathfrak{m}} \in U, \quad X \in U \tag{4.9}
\end{equation*}
$$

Then, by Lemma 2.1 and (4.9), it follows that

$$
\begin{align*}
I[I X, X]_{\mathfrak{m}} & =-\varphi J[-J \varphi(X), X]_{\mathfrak{m}}=\varphi[\varphi(X), X]_{\mathfrak{m}} \\
& =[X, \varphi(X)]_{\mathfrak{m}}=\left[X_{+}+X_{-}, X_{+}-X_{-}\right]_{\mathfrak{m}} \tag{4.10}\\
& =2\left[X_{-}, X_{+}\right]_{\mathfrak{m}} \in U, \quad X \in U
\end{align*}
$$

Therefore, by replacing X in (4.10) with $X+Y$, we obtain

$$
\left[X_{+}, X_{-}\right]_{\mathfrak{m}}+\left[Y_{+}, Y_{-}\right]_{\mathfrak{m}}+\left[X_{+}, Y_{-}\right]_{\mathfrak{m}}+\left[Y_{+}, X_{-}\right]_{\mathfrak{m}} \in U,
$$

and hence, by (4.10), we have

$$
\begin{equation*}
\left[X_{+}, Y_{-}\right]_{\mathfrak{m}}+\left[Y_{+}, X_{-}\right]_{\mathfrak{m}} \in U \tag{4.11}
\end{equation*}
$$

Finally, it follows from (4.8) and (4.11) that $\left[X_{+}, Y_{-}\right]_{\mathfrak{m}} \in U$ for $X, Y \in U$.
Next, we consider $\left[X_{-}, Y_{-}\right]_{\mathfrak{m}}$. For $X, Y, Z \in U$, we have

$$
\begin{aligned}
\left\langle\left[X_{-}, Y_{-}\right]_{\mathfrak{m}}, I Z\right\rangle & =-\left\langle\left[X_{-}, I Z\right]_{\mathfrak{m}}, Y_{-}\right\rangle=\left\langle\left[X_{-}, J Z_{+}-J Z_{-}\right]_{\mathfrak{m}}, Y_{-}\right\rangle \\
& =-\left\langle J\left[X_{-}, Z_{+}\right]_{\mathfrak{m}}, Y_{-}\right\rangle+\left\langle J\left[X_{-}, Z_{-}\right]_{\mathfrak{m}}, Y_{-}\right\rangle .
\end{aligned}
$$

Since $\varphi J=J \varphi$ and $\left[X_{-}, Z_{-}\right]_{\mathfrak{m}} \in \mathfrak{m}(\varphi, 1)$, we obtain $J(\mathfrak{m}(\varphi, \pm 1))=\mathfrak{m}(\varphi, \pm 1)$ and $\left\langle J\left[X_{-}, Z_{-}\right]_{\mathfrak{m}}, Y_{-}\right\rangle=0$. Moreover, since $\left[X_{-}, Z_{+}\right]_{\mathfrak{m}} \in \mathfrak{m}(\varphi,-1)$, we obtain

$$
\begin{gathered}
-\left\langle J\left[X_{-}, Z_{+}\right]_{\mathfrak{m}}, Y_{-}\right\rangle+\left\langle J\left[X_{-}, Z_{-}\right]_{\mathfrak{m}}, Y_{-}\right\rangle=-\left\langle J\left[X_{-}, Z_{+}\right]_{\mathfrak{m}}, Y_{-}\right\rangle \\
=-\left\langle J\left[X_{-}, Z_{+}\right]_{\mathfrak{m}}, Y\right\rangle=\left\langle\left[X_{-}, Z_{+}\right]_{\mathfrak{m}}, J Y\right\rangle .
\end{gathered}
$$

Therefore, by Lemma 4.2, we get

$$
\begin{aligned}
\left\langle\left[X_{-}, Y_{-}\right]_{\mathfrak{m}}, I Z\right\rangle & =\left\langle\left[X_{-}, Z_{+}\right]_{\mathfrak{m}}, J Y\right\rangle=\left\langle\left[X_{-}, Z_{+}\right]_{\mathfrak{m}},-\varphi I Y\right\rangle \\
& =\left\langle-\varphi\left(\left[X_{-}, Z_{+}\right]_{\mathfrak{m}}\right), I Y\right\rangle=\left\langle\left[X_{-}, Z_{+}\right]_{\mathfrak{m}}, I Y\right\rangle=0,
\end{aligned}
$$

which implies that

$$
\begin{equation*}
\left[X_{-}, Y_{-}\right]_{\mathfrak{m}} \in U, \quad X, Y \in U . \tag{4.12}
\end{equation*}
$$

From (4.6), (4.12) and Lemma 4.2, we obtain the following lemma.
Lemma 4.3. $[U, U]_{\mathfrak{m}} \subset U$.
Put $\mathfrak{b}:=U+[U, U]\left(=U+[U, U]_{\mathfrak{h}}\right)$. Since N is a totally geodesic submanifold of a naturally reductive homogeneous space $(G / H,\langle\rangle$,$) , the subspace U$ is curvature invariant. Therefore, by Proposition 3.4 [Chapter X, 11], we have for $X, Y, Z \in U$

$$
\begin{equation*}
\frac{1}{4}\left[X,[Y, Z]_{\mathfrak{m}}\right]_{\mathfrak{m}}-\frac{1}{4}\left[Y,[X, Z]_{\mathfrak{m}}\right]_{\mathfrak{m}}-\frac{1}{2}\left[[X, Y]_{\mathfrak{m}}, Z\right]_{\mathfrak{m}}-\left[[X, Y]_{\mathfrak{h}}, Z\right] \in U . \tag{4.13}
\end{equation*}
$$

It follows from Lemma 4.3 and (4.13) that \mathfrak{b} is a Lie subalgebra of \mathfrak{g}. In particular, N is an orbit of a Lie subgroup with Lie algebra \mathfrak{b} of G.

Next, we consider $\varphi(U)$. By (4.6) we have

$$
\varphi\left([X, Y]_{\mathfrak{m}}\right)=-\left[X_{+}, Y_{-}\right]_{\mathfrak{m}}-\left[X_{-}, Y_{+}\right]_{\mathfrak{m}}+\left[X_{-}, Y_{-}\right]_{\mathfrak{m}},
$$

and hence by (4.12) and Lemma 4.2,

$$
\begin{equation*}
\varphi\left([U, U]_{\mathfrak{m}}\right) \subset U \tag{4.14}
\end{equation*}
$$

Since $\mathfrak{m}=U \oplus I U$, it follows that

$$
[\mathfrak{m}, \mathfrak{m}]_{\mathfrak{m}}=[U+I U, U+I U]_{\mathfrak{m}}=[U, U]_{\mathfrak{m}}+[I U, I U]_{\mathfrak{m}}+[I U, U]_{\mathfrak{m}}
$$

For $X, Y, Z \in U$, Lemma 4.3 implies that

$$
\left\langle[I X, Y]_{\mathfrak{m}}, Z\right\rangle=\left\langle[Y, Z]_{\mathfrak{m}}, I X\right\rangle=0
$$

and hence

$$
\begin{equation*}
[I U, U]_{\mathfrak{m}} \subset I U=U^{\perp} \tag{4.15}
\end{equation*}
$$

Moreover, by (4.7) and (4.14), we obtain

$$
\begin{equation*}
[I X, I Y]_{\mathfrak{m}}=-[\varphi(X), \varphi(Y)]_{\mathfrak{m}}=-\varphi\left([X, Y]_{\mathfrak{m}}\right) \in U, \quad X, Y \in U \tag{4.16}
\end{equation*}
$$

Therefore we have a decomposition

$$
\begin{equation*}
[\mathfrak{m}, \mathfrak{m}]_{\mathfrak{m}}=\left([U, U]_{\mathfrak{m}}+[I U, I U]_{\mathfrak{m}}\right) \oplus[I U, U]_{\mathfrak{m}} \tag{4.17}
\end{equation*}
$$

LEMMA 4.4. $\mathfrak{m}=[\mathfrak{m}, \mathfrak{m}]_{\mathfrak{m}}$.
Proof. Let V be the orthogonal complement of $[\mathfrak{m}, \mathfrak{m}]_{\mathfrak{m}}$ in \mathfrak{m}. Since

$$
\left\langle[\mathfrak{m}, V]_{\mathfrak{m}}, \mathfrak{m}\right\rangle=-\left\langle[\mathfrak{m}, \mathfrak{m}]_{\mathfrak{m}}, V\right\rangle=\{0\}
$$

we have

$$
\begin{equation*}
V=\left\{X \in \mathfrak{m} ;[X, \mathfrak{m}]_{\mathfrak{m}}=\{0\}\right\} \tag{4.18}
\end{equation*}
$$

Then $V=(V \cap \mathfrak{m}(\varphi, 1)) \oplus(V \cap \mathfrak{m}(\varphi,-1))$, because $\varphi(V)=V$. By (4.18), a subspace [$V \cap \mathfrak{m}(\varphi, 1), \mathfrak{m}(\varphi,-1)]$ is contained in \mathfrak{h}. However, $[V \cap \mathfrak{m}(\varphi, 1), \mathfrak{m}(\varphi,-1)]$ is contained in the (-1)-eigenspace of φ, and so $[V \cap \mathfrak{m}(\varphi, 1), \mathfrak{m}(\varphi,-1)] \subset \mathfrak{m}(\varphi,-1) \subset \mathfrak{m}$. Hence we have

$$
\begin{equation*}
[V \cap \mathfrak{m}(\varphi, 1), \mathfrak{m}(\varphi,-1)]=\{0\} \tag{4.19}
\end{equation*}
$$

and similarly

$$
\begin{equation*}
[V \cap \mathfrak{m}(\varphi,-1), \mathfrak{m}(\varphi, 1)]=\{0\} \tag{4.20}
\end{equation*}
$$

Now, consider a canonical decomposition $\mathfrak{g}=(\mathfrak{h}+\mathfrak{m}(\varphi, 1)) \oplus \mathfrak{m}(\varphi,-1)$ corresponding to an orthogonal symmetric Lie algebra (\mathfrak{g}, φ). Since \mathfrak{g} is simple and $\mathfrak{m}(\varphi,-1) \oplus[\mathfrak{m}(\varphi,-1)$, $\mathfrak{m}(\varphi,-1)]$ is an ideal of \mathfrak{g}, we have

$$
\begin{equation*}
[\mathfrak{m}(\varphi,-1), \mathfrak{m}(\varphi,-1)]=\mathfrak{h}+\mathfrak{m}(\varphi, 1) \tag{4.21}
\end{equation*}
$$

If $V \cap \mathfrak{m}(\varphi, 1) \neq\{0\}$, then it follows from (4.19) and (4.21) that $[V \cap \mathfrak{m}(\varphi, 1), \mathfrak{g}]=\{0\}$, which contradicts the fact that \mathfrak{g} is simple. Therefore we may suppose that $V \subset \mathfrak{m}(\varphi,-1)$. By (3.24) and (4.18) together with the Jacobi identity, we obtain

$$
\begin{equation*}
[\mathfrak{h}, V] \subset V \tag{4.22}
\end{equation*}
$$

Noting (4.22) together with (4.20), we obtain $[\mathfrak{h}+\mathfrak{m}(\varphi, 1), V] \subset V$. Since $\mathfrak{g}=(\mathfrak{h}+\mathfrak{m}(\varphi, 1)) \oplus$ $\mathfrak{m}(\varphi,-1)$ is a canonical decomposition and the isotropy representation of an irreducible symmetric space is irreducible, we have $V=\{0\}$ or $\mathfrak{m}(\varphi,-1)$. If $V=\mathfrak{m}(\varphi,-1)$, then it follows from (4.20) and (4.21) that $[\mathfrak{m}(\varphi,-1), \mathfrak{m}(\varphi, 1)]=\{0\}$ and $[\mathfrak{g}, \mathfrak{m}(\varphi, 1)]=\{0\}$, which means that $\mathfrak{m}(\varphi, 1)=\{0\}$. However, in this case, a pair $(\mathfrak{g}, \mathfrak{h})$ is symmetric corresponding to (\mathfrak{g}, φ) because $\mathfrak{m}=\mathfrak{m}(\varphi,-1)$. Consequently, we have $V=\{0\}$, and hence $\mathfrak{m}=[\mathfrak{m}, \mathfrak{m}]_{\mathfrak{m}}$.

Combining (4.15), (4.16), (4.17) and Lemma 4.3 together with Lemma 4.4, we obtain

$$
U=[U, U]_{\mathfrak{m}}+[I U, I U]_{\mathfrak{m}}, \quad I U=[I U, U]_{\mathfrak{m}}
$$

Then it follows from Lemma 2.1, Proposition 3.3 and Lemma 4.3 that

$$
\varphi\left([I U, I U]_{\mathfrak{m}}\right)=\left[I^{2} J U, I^{2} J U\right]_{\mathfrak{m}}=[J U, J U]_{\mathfrak{m}}=-[U, U]_{\mathfrak{m}} \subset U
$$

Therefore, by (4.14), we obtain

$$
\begin{equation*}
\varphi(U)=\varphi\left([U, U]_{\mathfrak{m}}\right)+\varphi\left([I U, I U]_{\mathfrak{m}}\right) \subset U \tag{4.23}
\end{equation*}
$$

Proposition 4.5. Let I be a G-invariant complex structure of $(G / H,\langle\rangle,, \sigma)$ and N a half dimensional, totally real and totally geodesic submanifold of $(G / H,\langle\rangle,, \sigma)$ with respect to I. Then N is also totally real with respect to J.

Proof. As before, we may assume that $o \in N$, and put $U=T_{o} N \subset \mathfrak{m}$. By the assumption, we have an orthogonal decomposition $\mathfrak{m}=U \oplus I U$. Then it follows from Proposition 3.3 and (4.23) that

$$
J U=-I \circ \varphi(U)=I U
$$

Hence $\mathfrak{m}=U \oplus J U$ is an orthogonal decomposition of \mathfrak{m}. As stated under Lemma 4.3, N is an orbit of a Lie subgroup of G, and J is G-invariant. Hence we get an orthogonal decomposition

$$
T_{x}(G / H)=T_{x} N \oplus J\left(T_{x} N\right), \quad x \in N
$$

and the proposition is proved.
REMARK 4.6. According to [17], each Riemannian 3-symmetric space ($G / H,\langle\rangle,, \sigma$) and its half dimensional, totally real and totally geodesic submanifold of $(G / H,\langle\rangle,, \sigma)$ with respect to J are equivalent to one of those constructed from graded Lie algebras of the second kind as follows: Let \mathfrak{g}^{*} be a noncompact simple Lie algebra over \boldsymbol{R} and τ a Cartan involution of \mathfrak{g}^{*}. Then we have the Cartan decomposition $\mathfrak{g}^{*}=\mathfrak{k}+\mathfrak{p}$ as in Section 2.2. Take a graded triple $\left(\mathfrak{g}^{*}, Z, \tau\right)$ associated with a gradation

$$
\mathfrak{g}^{*}=\mathfrak{g}_{-2}^{*}+\mathfrak{g}_{-1}^{*}+\mathfrak{g}_{0}^{*}+\mathfrak{g}_{1}^{*}+\mathfrak{g}_{2}^{*}, \quad \mathfrak{g}_{1}^{*} \neq\{0\}, \quad \mathfrak{g}_{2}^{*} \neq\{0\}
$$

of the second kind on \mathfrak{g}^{*}. Define an inner automorphism σ of order 3 on the compact dual $\mathfrak{g}=\mathfrak{k}+\sqrt{-1} \mathfrak{p}$ of \mathfrak{g}^{*} by

$$
\sigma=\operatorname{Ad}\left(\exp \frac{2 \pi}{3} \sqrt{-1} Z\right)
$$

and put $\mathfrak{h}=\mathfrak{g}^{\sigma}$, the set of fixed points of σ. Let G be a compact connected simple Lie group with Lie algebra \mathfrak{g}. Let H and K be the analytic subgroups of G with Lie algebras \mathfrak{h} and \mathfrak{k}, respectively. Then the dimension of the center $Z(H)$ of H is nonzero, and $N=K \cdot o$ is a half dimensional, totally real and totally geodesic submanifold of $(G / H,\langle\rangle,, \sigma)$ with respect to J. We call $((G / H,\langle\rangle,, \sigma), N)$ a TRG-pair corresponding to a graded triple $\left(\mathfrak{g}^{*}, Z, \tau\right)$.
5. Involutions and graded Lie algebras. In this section we shall investigate G invariant complex structures and half dimensional, totally real and totally geodesic submanifolds of $(G / H,\langle\rangle,, \sigma)$ with respect to those complex structures by making use of some affine symmetric pairs associated with graded Lie algebras.

Let (\mathfrak{l}, θ) be a symmetric pair of type K_{ε} (see Oshima and Sekiguchi [14] for the definition of symmetric pairs of type K_{ε}). Then (\mathfrak{l}, θ) is either a symmetric pair of type $K_{\varepsilon} \mathrm{I}$ or a symmetric pair of type $K_{\varepsilon} \mathrm{II}$, which were introduced by Kaneyuki [9]. More precisely, Kaneyuki [9] proved that for a symmetric pair (\mathfrak{l}, θ) of type K_{ε} there exists a graded Lie algebra:

$$
\mathfrak{l}=\mathfrak{l}_{-v}+\cdots+\mathfrak{l}_{-1}+\mathfrak{l}_{0}+\mathfrak{l}_{1}+\cdots+\mathfrak{l}_{v}, \quad \mathfrak{l}_{1} \neq\{0\}, \quad \mathfrak{l}_{v} \neq\{0\}
$$

of the v-th kind, $v=1,2$, with the characteristic element Z and a grade-reversing Cartan involution τ such that

$$
\begin{equation*}
\theta=\operatorname{Ad}(\exp \pi \sqrt{-1} Z) \tau \tag{5.1}
\end{equation*}
$$

which commutes with τ. A symmetric pair (\mathfrak{l}, θ) is called a symmetric pair of type $K_{\varepsilon} \mathrm{I}$ if $v=1$. Furthermore, (\mathfrak{l}, θ) is called a symmetric pair of type $K_{\varepsilon} \mathrm{II}$ if $v=2$ and (\mathfrak{l}, θ) is not isomorphic to a symmetric pair of type $K_{\varepsilon} \mathrm{I}$ (see [9] for details).

Let $((G / H,\langle\rangle,, \sigma), N)$ be a TRG-pair corresponding to a graded triple $\left(\mathfrak{g}^{*}, Z, \tau\right)$ of the second kind. Let $\mathfrak{g}^{*}=\mathfrak{k}+\mathfrak{p}$ be the Cartan decomposition corresponding to τ, and $\mathfrak{g}=$ $\mathfrak{k}+\sqrt{-1} \mathfrak{p}$ the compact dual of \mathfrak{g}^{*}. Then by Remark 4.6 we obtain

$$
\sigma=\operatorname{Ad}\left(\exp \frac{2 \pi}{3} \sqrt{-1} Z\right), \quad \mathfrak{h}=\mathfrak{g}^{\sigma}, \quad N=K \cdot o .
$$

Suppose that $\left(\mathfrak{g}^{*}, Z, \tau\right)$ is a graded triple associated with a gradation

$$
\mathfrak{g}^{*}=\mathfrak{g}_{-2}^{*}+\mathfrak{g}_{-1}^{*}+\mathfrak{g}_{0}^{*}+\mathfrak{g}_{1}^{*}+\mathfrak{g}_{2}^{*}, \quad \mathfrak{g}_{1}^{*} \neq\{0\}, \quad \mathfrak{g}_{2}^{*} \neq\{0\}
$$

of the second kind on a simple Lie algebra \mathfrak{g}^{*}. Since τ is a grade-reversing Cartan involution, we have

$$
\begin{equation*}
\mathfrak{g}_{p}^{*}+\mathfrak{g}_{-p}^{*}=\mathfrak{k} \cap\left(\mathfrak{g}_{p}^{*}+\mathfrak{g}_{-p}^{*}\right) \oplus \mathfrak{p} \cap\left(\mathfrak{g}_{p}^{*}+\mathfrak{g}_{-p}^{*}\right), \quad p=0,1,2 . \tag{5.2}
\end{equation*}
$$

Let θ be an involution on \mathfrak{g}^{*} given by (5.1). It is easy to see that the set $\mathfrak{k}_{\varepsilon}$ of fixed points of θ is given by

$$
\begin{equation*}
\mathfrak{k}_{\varepsilon}=\left(\mathfrak{k} \cap\left(\mathfrak{g}_{-2}^{*}+\mathfrak{g}_{0}^{*}+\mathfrak{g}_{2}^{*}\right)\right) \oplus\left(\mathfrak{p} \cap\left(\mathfrak{g}_{-1}^{*}+\mathfrak{g}_{1}^{*}\right)\right), \tag{5.3}
\end{equation*}
$$

and so \mathfrak{g}^{*} is decomposed into $\mathfrak{g}^{*}=\mathfrak{k}_{\varepsilon}+\mathfrak{p}_{\varepsilon}$. Here

$$
\begin{equation*}
\mathfrak{p}_{\varepsilon}=\left(\mathfrak{k} \cap\left(\mathfrak{g}_{-1}^{*}+\mathfrak{g}_{1}^{*}\right)\right) \oplus\left(\mathfrak{p} \cap\left(\mathfrak{g}_{-2}^{*}+\mathfrak{g}_{0}^{*}+\mathfrak{g}_{2}^{*}\right)\right) . \tag{5.4}
\end{equation*}
$$

Let $\theta^{a}:=\theta \tau$ be the associated involution of θ (cf. Hilgert and Ólafsson [7], and [15]). Then we have

$$
\begin{equation*}
\theta^{a}=\operatorname{Ad}(\exp \pi \sqrt{-1} Z) \tag{5.5}
\end{equation*}
$$

and an orthogonal decomposition $\mathfrak{g}^{*}=\mathfrak{k}_{\varepsilon}{ }^{a} \oplus \mathfrak{p}_{\varepsilon}{ }^{a}$ of \mathfrak{g}^{*}, where

$$
\mathfrak{k}_{\varepsilon}{ }^{a}:=\left(\mathfrak{g}^{*}\right)^{\theta^{a}}=\mathfrak{g}_{-2}^{*}+\mathfrak{g}_{0}^{*}+\mathfrak{g}_{2}^{*}, \quad \mathfrak{p}_{\varepsilon}{ }^{a}:=\mathfrak{g}_{-1}^{*}+\mathfrak{g}_{1}^{*}
$$

Set

$$
\begin{equation*}
\mathfrak{k}^{\mathrm{ad}}:=\left(\mathfrak{k} \cap \mathfrak{k}_{\varepsilon}{ }^{a}\right) \oplus \sqrt{-1}\left(\mathfrak{p} \cap \mathfrak{k}_{\varepsilon}{ }^{a}\right) . \tag{5.6}
\end{equation*}
$$

Since

$$
\begin{equation*}
\operatorname{Ad}(\exp t \sqrt{-1} Z)\left(X_{p}\right)=e^{t \sqrt{-1} p} X_{p}, \quad X_{p} \in \mathfrak{g}_{p}^{*}, \quad t \in \boldsymbol{R} \tag{5.7}
\end{equation*}
$$

it follows that

$$
\begin{equation*}
\mathfrak{g}^{\theta^{a}}=\mathfrak{k}^{\mathrm{ad}} \tag{5.8}
\end{equation*}
$$

so $\left(\mathfrak{g}, \mathfrak{k}^{\text {ad }}\right)$ is a symmetric pair of compact type.
Let \mathfrak{t}^{*} be a Cartan subalgebra of \mathfrak{g}^{*} containing the maximal abelian subspace \mathfrak{a} of \mathfrak{p}. Denote the complexifications of \mathfrak{g}^{*} and \mathfrak{t}^{*} by \mathfrak{g}_{c} and \mathfrak{t}_{c}, respectively. Let $\Delta\left(\mathfrak{g}_{c}, \mathfrak{t}_{c}\right), \Delta$, $\Pi\left(\mathfrak{g}_{c}, \mathfrak{t}_{c}\right)=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}, \Pi=\left\{\lambda_{1}, \ldots, \lambda_{l}\right\}$ and $H_{i}, 1 \leq i \leq n$, be as in Section 2. Suppose that $\Delta\left(\mathfrak{g}_{c}, \mathfrak{t}_{c}\right)$ and Δ have compatible orderings.

Lemma 5.1. Let $\mathfrak{z}\left(\mathfrak{g}_{0}^{*}\right)$ be the center of \mathfrak{g}_{0}^{*}.
(1) If $\mathfrak{z}\left(\mathfrak{k}_{\varepsilon}{ }^{a}\right)=\{0\}$, then $\operatorname{dim} \mathfrak{z}\left(\mathfrak{g}_{0}^{*}\right)=\operatorname{dim} \mathfrak{z}(\mathfrak{h})=1$.
(2) If $\operatorname{dim} \mathfrak{z}\left(\mathfrak{k}_{\varepsilon}{ }^{a}\right)=1$, then $\operatorname{dim} \mathfrak{z}\left(\mathfrak{g}_{0}^{*}\right)=\operatorname{dim} \mathfrak{z}(\mathfrak{h})=2$, and $\mathfrak{z}\left(\mathfrak{k}_{\varepsilon}{ }^{a}\right) \subset \mathfrak{k} \cap \mathfrak{k}_{\varepsilon}$ or $\mathfrak{z}\left(\mathfrak{k}_{\varepsilon}{ }^{a}\right) \subset$ $\mathfrak{p} \cap \mathfrak{p}_{\varepsilon}$.

Proof. First of all, we note that (5.7) implies that

$$
\begin{equation*}
\mathfrak{h}=\mathfrak{k} \cap \mathfrak{g}_{0}^{*} \oplus \sqrt{-1}\left(\mathfrak{p} \cap \mathfrak{g}_{0}^{*}\right), \tag{5.9}
\end{equation*}
$$

$Z \in \mathfrak{z}\left(\mathfrak{g}_{0}^{*}\right)$ and $\sqrt{-1} Z \in \mathfrak{z}(\mathfrak{h})$. In particular, we have $\operatorname{dim} \mathfrak{z}\left(\mathfrak{g}_{0}^{*}\right)=\operatorname{dim} \mathfrak{z}(\mathfrak{h})$.
From Theorem 3.2, Theorem 3.3 and Theorem 4.3 of [8], we see that

$$
\operatorname{dim} \mathfrak{z}\left(\mathfrak{g}_{0}^{*}\right)-\operatorname{dim} \mathfrak{z}\left(\mathfrak{k}_{\varepsilon}{ }^{a}\right)=1,
$$

and $\operatorname{dim} \mathfrak{z}\left(\mathfrak{k}_{\varepsilon}{ }^{a}\right)=0$ or 1 . Since $\mathfrak{k}_{\varepsilon}{ }^{a}=\mathfrak{g}_{-2}^{*}+\mathfrak{g}_{0}^{*}+\mathfrak{g}_{2}^{*}$ and τ is a grade-reversing Cartan involution, it follows that $\mathfrak{k}_{\varepsilon}{ }^{a}$ is τ-stable, which implies that $\mathfrak{z}\left(\mathfrak{k}_{\varepsilon}{ }^{a}\right)$ is also τ-stable. Hence, we obtain

$$
\mathfrak{k}_{\varepsilon}{ }^{a}=\mathfrak{k} \cap \mathfrak{k}_{\varepsilon}{ }^{a}+\mathfrak{p} \cap \mathfrak{k}_{\varepsilon}{ }^{a}=\mathfrak{k} \cap \mathfrak{k}_{\varepsilon}+\mathfrak{p} \cap \mathfrak{p}_{\varepsilon}, \quad \mathfrak{z}\left(\mathfrak{k}_{\varepsilon}{ }^{a}\right)=\mathfrak{k} \cap \mathfrak{z}\left(\mathfrak{k}_{\varepsilon}{ }^{a}\right)+\mathfrak{p} \cap \mathfrak{z}\left(\mathfrak{k}_{\varepsilon}{ }^{a}\right) .
$$

Therefore, if $\operatorname{dim} \mathfrak{z}\left(\mathfrak{k}_{\varepsilon}{ }^{a}\right)=1$, then it follows that $\mathfrak{z}\left(\mathfrak{k}_{\varepsilon}{ }^{a}\right) \subset \mathfrak{k} \cap \mathfrak{k}_{\varepsilon}$ or $\mathfrak{z}\left(\mathfrak{k}_{\varepsilon}{ }^{a}\right) \subset \mathfrak{p} \cap \mathfrak{p}_{\varepsilon}$.
Lemma 5.2. Let φ be an involution on \mathfrak{g} such that $\left.\varphi\right|_{\mathfrak{h}}=\operatorname{Id}_{\mathfrak{h}}$ and $\varphi \neq \mathrm{Id}$.
(1) If $\mathfrak{z}\left(\mathfrak{k}_{\varepsilon}{ }^{a}\right)=\{0\}$, then $\varphi=\operatorname{Ad}(\exp \pi \sqrt{-1} Z)$.
(2) If $\operatorname{dim} \mathfrak{z}\left(\mathfrak{k}_{\varepsilon}{ }^{a}\right)=1$ and $\mathfrak{z}\left(\mathfrak{k}_{\varepsilon}{ }^{a}\right) \subset \mathfrak{k} \cap \mathfrak{k}$, then there exists $\sqrt{-1} Z_{0} \in \mathfrak{k} \cap \mathfrak{k}_{\varepsilon}$ such that $\mathfrak{z}\left(\mathfrak{k}_{\varepsilon}{ }^{a}\right)=\boldsymbol{R} \sqrt{-1} Z_{0}$ and that the mapping $\operatorname{ad} \sqrt{-1} Z_{0}: \mathfrak{p}_{\varepsilon}{ }^{a} \rightarrow \mathfrak{p}_{\varepsilon}{ }^{a}$ satisfies $\left(\mathrm{ad} \sqrt{-1} Z_{0}\right)^{2}=$ - Id. In this case, the involution φ coincides with either

$$
\operatorname{Ad}(\exp \pi \sqrt{-1} Z) \quad \text { or } \quad \operatorname{Ad}\left(\exp \frac{\pi}{2} \sqrt{-1}\left(Z \pm Z_{0}\right)\right)
$$

(3) If $\operatorname{dim} \mathfrak{z}\left(\mathfrak{k}_{\varepsilon}{ }^{a}\right)=1$ and $\mathfrak{z}\left(\mathfrak{k}_{\varepsilon}{ }^{a}\right) \subset \mathfrak{p} \cap \mathfrak{p}_{\varepsilon}$, then there exists $X^{0} \in \mathfrak{p} \cap \mathfrak{p}_{\varepsilon}$ such that $\mathfrak{z}\left(\mathfrak{k}_{\varepsilon}{ }^{a}\right)=\boldsymbol{R} X^{0}$ and that the eigenvalues of $\operatorname{ad} X^{0}: \mathfrak{p}_{\varepsilon}{ }^{a} \rightarrow \mathfrak{p}_{\varepsilon}{ }^{a}$ are ± 1. In this case, the involution φ coincides with either

$$
\operatorname{Ad}(\exp \pi \sqrt{-1} Z) \text { or } \operatorname{Ad}\left(\exp \frac{\pi}{2} \sqrt{-1}\left(Z \pm X^{0}\right)\right)
$$

Proof. Note that it follows from (2.5) that $\varphi_{0}:=\operatorname{Ad}(\exp \pi \sqrt{-1} Z)$ is an involution on \mathfrak{g} satisfying $\left.\varphi_{0}\right|_{\mathfrak{h}}=\mathrm{Id}$ and $\varphi_{0} \neq \mathrm{Id}$.
(1) By Lemma 5.1, we have $\operatorname{dim} \mathfrak{z}\left(\mathfrak{g}_{0}^{*}\right)=\operatorname{dim} \mathfrak{z}(\mathfrak{h})=1$. Then (1) of the lemma follows from Corollary 3.4.
(2) By Lemma 5.1, we have $\operatorname{dim} \mathfrak{z}(\mathfrak{h})=2$. Let $\mathfrak{p}^{\text {ad }}$ denote the orthogonal complement of $\mathfrak{k}^{\text {ad }}$ in \mathfrak{g}. Then it follows from (5.6) that

$$
\mathfrak{p}^{\mathrm{ad}}=\left(\mathfrak{k} \cap \mathfrak{p}_{\varepsilon}{ }^{a}\right) \oplus \sqrt{-1}\left(\mathfrak{p} \cap \mathfrak{p}_{\varepsilon}{ }^{a}\right)=\left(\mathfrak{k} \cap\left(\mathfrak{g}_{-1}^{*}+\mathfrak{g}_{1}^{*}\right)\right) \oplus \sqrt{-1}\left(\mathfrak{p} \cap\left(\mathfrak{g}_{-1}^{*}+\mathfrak{g}_{1}^{*}\right)\right) .
$$

In this case, $\mathfrak{k}^{\text {ad }}$ has 1-dimensional center $\mathfrak{z}\left(\mathfrak{k}^{\text {ad }}\right)$, and hence $\left(\mathfrak{g}, \mathfrak{k}^{\text {ad }}\right)$ is a Hermitian symmetric pair of compact type. Moreover, there exists $\sqrt{-1} Z_{0} \in \mathfrak{k} \cap \mathfrak{k}^{\text {ad }}$ such that $\mathfrak{z}\left(\mathfrak{k}^{\text {ad }}\right)=\boldsymbol{R} \sqrt{-1} Z_{0}$ and ad $\sqrt{-1} Z_{0}: \mathfrak{p}^{\text {ad }} \rightarrow \mathfrak{p}^{\text {ad }}$ satisfies $\left(\operatorname{ad} \sqrt{-1} Z_{0}\right)^{2}=-$ Id on $\mathfrak{p}^{\text {ad }}$. Since

$$
\begin{equation*}
[\mathfrak{k}, \mathfrak{k}] \subset \mathfrak{k}, \quad[\mathfrak{k}, \mathfrak{p}] \subset \mathfrak{p}, \quad[\mathfrak{p}, \mathfrak{p}] \subset \mathfrak{k}, \tag{5.10}
\end{equation*}
$$

it follows from (5.6) that

$$
\begin{aligned}
& \operatorname{ad} \sqrt{-1} Z_{0}\left(\mathfrak{k} \cap\left(\mathfrak{g}_{1}^{*}+\mathfrak{g}_{-1}^{*}\right)\right) \subset \mathfrak{k} \cap\left(\mathfrak{g}_{1}^{*}+\mathfrak{g}_{-1}^{*}\right), \\
& \operatorname{ad} \sqrt{-1} Z_{0}\left(\mathfrak{p} \cap\left(\mathfrak{g}_{1}^{*}+\mathfrak{g}_{-1}^{*}\right)\right) \subset \mathfrak{p} \cap\left(\mathfrak{g}_{1}^{*}+\mathfrak{g}_{-1}^{*}\right) .
\end{aligned}
$$

Therefore, $\operatorname{ad} \sqrt{-1} Z_{0}\left(\mathfrak{p}_{\varepsilon}{ }^{a}\right) \subset \mathfrak{p}_{\varepsilon}{ }^{a}$ and $\left(\operatorname{ad} \sqrt{-1} Z_{0}\right)^{2}=-I d$ on $\mathfrak{p}_{\varepsilon}{ }^{a}$, since $\left(\operatorname{ad} \sqrt{-1} Z_{0}\right)^{2}=$ - Id on $\mathfrak{p}^{\text {ad }}$. Then $\operatorname{Ad}\left(\exp \pi \sqrt{-1} Z_{0}\right)=-\mathrm{Id}$ on $\mathfrak{p}^{\text {ad }}$, and the set of fixed points of $\operatorname{Ad}\left(\exp \pi \sqrt{-1} Z_{0}\right)$ in \mathfrak{g} coincides with $\mathfrak{k}^{\text {ad }}$. Hence it follows from (5.5) and (5.8) that

$$
\begin{equation*}
\operatorname{Ad}(\exp \pi \sqrt{-1} Z)=\operatorname{Ad}\left(\exp \pi \sqrt{-1} Z_{0}\right) \tag{5.11}
\end{equation*}
$$

From (5.11), the automorphisms

$$
\begin{equation*}
\nu_{ \pm}:=\operatorname{Ad}\left(\exp \frac{\pi}{2} \sqrt{-1}\left(Z \pm Z_{0}\right)\right) \tag{5.12}
\end{equation*}
$$

of \mathfrak{g} are involutive and $\left.v_{ \pm}\right|_{\mathfrak{h}}=\operatorname{Id}_{\mathfrak{h}}$. Moreover, since $\sqrt{-1} Z_{0}$ is in $\mathfrak{z}\left(\mathfrak{k}^{\text {ad }}\right)$ and Z is the characteristic element, it follows that $\operatorname{Ad}(\exp \{(\pi \sqrt{-1} / 2) Z\}) \neq \mathrm{Id}$ and $\operatorname{Ad}\left(\exp \left\{(\pi \sqrt{-1} / 2) Z_{0}\right\}\right)=\mathrm{Id}$ on $\mathfrak{k}^{\text {ad }}$, and hence $\nu_{ \pm} \neq \mathrm{Id}$. By Corollary 3.4, we can see that $\operatorname{Ad}(\exp \pi \sqrt{-1} Z)$ and $\nu_{ \pm}$are the only involutions satisfying the assumption.
(3) The same argument as above implies that there exists $\sqrt{-1} X^{0} \in \sqrt{-1} \mathfrak{p} \cap \mathfrak{k}^{\text {ad }}$ such that $\mathfrak{z}\left(\mathfrak{k}^{\text {ad }}\right)=\boldsymbol{R} \sqrt{-1} X^{0}$ and the mapping ad $\sqrt{-1} X^{0}: \mathfrak{p}^{\text {ad }} \rightarrow \mathfrak{p}^{\text {ad }}$ satisfies $\left(\operatorname{ad} \sqrt{-1} X^{0}\right)^{2}=$ -Id. Therefore, it follows that $\mathfrak{z}\left(\mathfrak{k}_{\varepsilon}{ }^{a}\right)=\boldsymbol{R} X^{0}$ and $\left(\operatorname{ad} X^{0}\right)^{2}=\operatorname{Id}$ on $\mathfrak{p}_{\varepsilon}{ }^{a}$, and thus the eigenvalues of $\operatorname{ad} X^{0}: \mathfrak{p}_{\varepsilon}{ }^{a} \rightarrow \mathfrak{p}_{\varepsilon}{ }^{a}$ are ± 1. In this case, we have $\left.\operatorname{Ad}\left(\exp \pi \sqrt{-1} X^{0}\right)\right|_{p^{\text {ad }}}=-\operatorname{Id}_{\mathfrak{p}^{\text {ad }}}$ and

$$
\operatorname{Ad}(\exp \pi \sqrt{-1} Z)=\operatorname{Ad}\left(\exp \pi \sqrt{-1} X^{0}\right)
$$

Therefore the automorphisms

$$
\begin{equation*}
\varphi_{ \pm}:=\operatorname{Ad}\left(\exp \frac{\pi}{2} \sqrt{-1}\left(Z \pm X^{0}\right)\right) \tag{5.13}
\end{equation*}
$$

satisfy $\left.\varphi_{ \pm}\right|_{\mathfrak{h}}=\operatorname{Id}_{\mathfrak{h}}$ and $\varphi_{ \pm} \neq \mathrm{Id}$. It follows from Corollary 3.4 that φ is one of

$$
\operatorname{Ad}(\exp \pi \sqrt{-1} Z) \quad \text { and } \quad \varphi_{ \pm}
$$

and so (3) is obtained.
Let φ_{0} be the involution of \mathfrak{g} given by

$$
\begin{equation*}
\varphi_{0}:=\operatorname{Ad}(\exp \pi \sqrt{-1} Z) \tag{5.14}
\end{equation*}
$$

and let $\nu_{ \pm}$and $\varphi_{ \pm}$be as in (5.12) and (5.13), respectively.
Lemma 5.3. We have

$$
\varphi_{0}(\mathfrak{k})=\mathfrak{k}, \quad \varphi_{ \pm}(\mathfrak{k})=\mathfrak{k}, \quad \nu_{ \pm}(\mathfrak{k}) \neq \mathfrak{k} .
$$

Proof. Since $Z, X^{0} \in \mathfrak{p}$, it follows that $\tau(Z)=-Z$ and $\tau\left(X^{0}\right)=-X^{0}$. Then

$$
\tau \varphi_{0} \tau^{-1}=\operatorname{Ad}(\exp \pi \sqrt{-1} \tau(Z))=\operatorname{Ad}(\exp -\pi \sqrt{-1} Z)=\varphi_{0}^{-1}=\varphi_{0}
$$

which implies that $\tau \varphi_{0}=\varphi_{0} \tau$. Hence we have $\varphi_{0}(\mathfrak{k})=\mathfrak{k}$, and similarly $\varphi_{ \pm}(\mathfrak{k})=\mathfrak{k}$. On the other hand, since $\sqrt{-1} Z_{0} \in \mathfrak{k}$, it follows that

$$
\tau v_{+} \tau^{-1}=\operatorname{Ad}\left(\exp \frac{\pi}{2} \sqrt{-1}\left(-Z+Z_{0}\right)\right)=v_{-}^{-1}=v_{-},
$$

and hence $\tau \nu_{ \pm} \neq \nu_{ \pm} \tau$, which implies that $\nu_{ \pm}(\mathfrak{k}) \neq \mathfrak{k}$.
As stated in Section 3, we assume that $(G / H,\langle\rangle,, \sigma)$ is a compact Riemannian 3symmetric space of inner type such that G is simple, H is a centralizer of a toral subgroup of G and \langle,$\rangle is induced from a biinvariant metric on G$. Let $((G / H,\langle\rangle,, \sigma), I, N)$ denote a triplet of a Riemannian 3-symmetric space $(G / H,\langle\rangle,, \sigma)$, a G-invariant complex structure I of $(G / H,\langle\rangle,, \sigma)$ and a half dimensional, totally real and totally geodesic submanifold N with respect to I. We call $((G / H,\langle\rangle,, \sigma), I, N)$ a $T R G$-triple. Moreover, we call two TRG-triples $((G / H,\langle\rangle,, \sigma), I, N)$ and $((\bar{G} / \bar{H},\langle\rangle,, \bar{\sigma}), \bar{I}, \bar{N})$ are equivalent if there exists an isometry $f:(G / H,\langle\rangle,) \rightarrow(\bar{G} / \bar{H},\langle\rangle$,$) such that f_{*} \circ I=\bar{I} \circ f_{*}$ and $f(N)=\bar{N}$.

REMARK 5.4. Let $(G / H,\langle\rangle,, \sigma)$ be a Riemannian 3 -symmetric space such that $\operatorname{dim} Z(H)=2$. Then we may assume that $\sigma=\operatorname{Ad}\left(\exp \left\{(2 \pi \sqrt{-1} / 3)\left(H_{j}+H_{k}\right)\right\}\right)$ for some
$\alpha_{j}, \alpha_{k} \in \Pi\left(\mathfrak{g}_{c}, \mathfrak{t}_{c}\right)$ with $m_{j}=m_{k}=1$. From Corollary 3.4, each G-invariant complex structure I corresponds to one of the following involutions:

$$
\operatorname{Ad}\left(\exp \pi \sqrt{-1}\left(H_{j}+H_{k}\right)\right), \quad \operatorname{Ad}\left(\exp \pi \sqrt{-1} H_{j}\right), \quad \operatorname{Ad}\left(\exp \pi \sqrt{-1} H_{k}\right)
$$

Let I_{j} (resp. I_{k}) be the G-invariant complex structure corresponding to $\operatorname{Ad}\left(\exp \pi \sqrt{-1} H_{j}\right)$ (resp. $\left.\operatorname{Ad}\left(\exp \pi \sqrt{-1} H_{k}\right)\right)$. Let $\left((G / H,\langle\rangle,, \sigma), I_{j}, N\right)$ be a TRG-triple. Suppose that the TRG-pair $((G / H,\langle\rangle,, \sigma), N)$ corresponds to a graded triple ($\left.\mathfrak{g}^{*}, Z=H_{j}+H_{k}, \tau\right)$ associated with a gradation of the second kind. Then it follows from Lemma 5.2 that I_{j} corresponds to one of $\varphi_{ \pm}$and $\nu_{ \pm}$. Moreover, since $\left.v_{ \pm}\right|_{\mathfrak{h}}=\operatorname{Id}_{\mathfrak{h}}, \nu_{ \pm}(\mathfrak{m})=\mathfrak{m}, N=K \cdot o$ and N is totally real with respect to J, it follows from Lemma 5.3 that

$$
v_{ \pm} \circ J\left(T_{o} N\right)=v_{ \pm} \circ J(\mathfrak{k} \cap \mathfrak{m})=v_{ \pm}(\sqrt{-1} \mathfrak{p} \cap \mathfrak{m}) \neq \sqrt{-1} \mathfrak{p} \cap \mathfrak{m}=\left(T_{o} N\right)^{\perp}
$$

and hence I_{j} does not correspond to $\nu_{ \pm}$.
Let \tilde{G} be the simply connected Lie group with Lie algebra \mathfrak{g}^{*} and $\mathfrak{g}^{*}=\mathfrak{k}+\mathfrak{p}$ a Cartan decomposition of \mathfrak{g}^{*} corresponding to a Cartan involution τ, as before. Let (\mathfrak{g}^{*}, μ) be a symmetric pair such that $\mu \tau=\tau \mu$ and $\mathfrak{g}^{*}=\mathfrak{g}^{* \mu}+\mathfrak{q}$ the μ-invariant decomposition of \mathfrak{g}^{*}. A symmetric pair $\left(\mathfrak{g}^{*}, \mu\right)$ is called a noncompactly causal if there exists a \tilde{G}^{μ}-invariant, regular, closed and convex cone C in \mathfrak{q} such that $C^{o} \cap \mathfrak{p} \neq \emptyset$ (see [7]). Here, C^{o} denotes the interior of C.

The following proposition explains a relation between TRG-triples and symmetric pairs of type K_{ε}.

Proposition 5.5. Each TRG-triple is equivalent to $((G / H,\langle\rangle,, \sigma), I, N)$ such that $((G / H,\langle\rangle,, \sigma), N)$ is a TRG-pair corresponding to a graded triple $\left(\mathfrak{g}^{*}, Z, \tau\right)$ associated with a gradation

$$
\mathfrak{g}^{*}=\mathfrak{g}_{-2}^{*}+\mathfrak{g}_{-1}^{*}+\mathfrak{g}_{0}^{*}+\mathfrak{g}_{1}^{*}+\mathfrak{g}_{2}^{*}
$$

of the second kind, which is defined by a partition $\left\{\Pi_{0}, \Pi_{1}\right\}$ of Π. Moreover, the following holds.
(1) If $\left(\mathfrak{g}^{*}, \theta\right)$ is of type $K_{\varepsilon} \mathrm{II}$, then I corresponds to the involution $\varphi_{0}=\operatorname{Ad}(\exp \pi \sqrt{-1} Z)$.
(2) If $\left(\mathfrak{g}^{*}, \theta\right)$ is of type $K_{\varepsilon} \mathrm{I}$, then I corresponds to one of the following involutions:

$$
\varphi_{0}=\operatorname{Ad}(\exp \pi \sqrt{-1} Z), \quad \varphi_{ \pm}=\operatorname{Ad}\left(\exp \frac{\pi}{2} \sqrt{-1}\left(Z \pm X^{0}\right)\right)
$$

where X^{0} denotes the cone-generating element (in the sense of [7]) in $\mathfrak{p} \cap \mathfrak{p}_{\varepsilon}$.
Proof. First of all, we determine the possibilities of $\left(\mathfrak{g}^{*}, Z, \tau\right)$. From Proposition 4.5 and Remark 4.6, for any $((G / H,\langle\rangle,, \sigma), I, N)$ we may assume that the TRG-pair $((G / H,\langle\rangle,, \sigma), N)$ corresponds to a graded triple $\left(\mathfrak{g}^{*}, Z, \tau\right)$ associated with a simple graded Lie algebra $\mathfrak{g}^{*}=\sum_{p=-2}^{2} \mathfrak{g}^{*}{ }_{p}$. In particular,

$$
\begin{equation*}
\sigma=\operatorname{Ad}\left(\exp \frac{2 \pi}{3} \sqrt{-1} Z\right), \quad N=K \cdot o . \tag{5.15}
\end{equation*}
$$

Since σ is of order 3, it follows from [18, Proposition 5.1] that there exists an element w in the Weyl group of $\left(\mathfrak{g}^{*}, \mathfrak{a}\right)$ such that

$$
\operatorname{Ad}\left(\exp \frac{2 \pi}{3} \sqrt{-1} w(Z)\right)=\operatorname{Ad}\left(\exp \frac{2 \pi}{3} \sqrt{-1} h\right)
$$

where $h \in \mathfrak{a}$ has one of the following forms:

$$
h_{i}\left(n_{i}=1,2,3\right), \quad h_{j}+h_{k}\left(n_{j}=n_{k}=1\right),
$$

denoting by $\delta_{\mathfrak{a}}=\sum_{p} n_{p} \lambda_{p}$ the highest root of Δ defined in (2.8). However, if $h=h_{i}$, $n_{i}=1$, then $(\mathfrak{g}, \mathfrak{h})$ is a symmetric pair, and if $h=h_{i}, n_{i}=3$, then $\mathfrak{z}(\mathfrak{h})=\{0\}$ (see [18, Lemma 5.3]), which contradict the assumption on $(G / H,\langle\rangle,, \sigma)$. Therefore, there exists an inner automorphism v of \mathfrak{k} such that

$$
\begin{equation*}
v \sigma v^{-1}=\operatorname{Ad}\left(\exp \frac{2 \pi}{3} \sqrt{-1} h\right), \quad h=h_{i}\left(n_{i}=2\right) \text { or } h_{j}+h_{k}\left(n_{j}=n_{k}=1\right) . \tag{5.16}
\end{equation*}
$$

Since $v \in \operatorname{Int}(\mathfrak{k})$ and $N=K \cdot o$, we have $\nu(N)=N$. Hence $((G / H,\langle\rangle,, \sigma), I, N)$ is equivalent to $\left(\left(G / \tilde{H},\langle\rangle,, \nu \sigma \nu^{-1}\right), \tilde{I}, N\right)$, where $\tilde{H}:=G^{\nu \sigma \nu^{-1}}$ and $\tilde{I}:=\nu I \nu^{-1}$. Also, by (5.16) a TRG-pair $\left(\left(G / \tilde{H},\langle\rangle,, v \sigma \nu^{-1}\right), N\right)$ corresponds to a graded triple ($\left.\mathfrak{g}^{*}, h, \tau\right)$, which is defined by a partition $\left\{\Pi_{0}, \Pi_{1}\right\}$ of Π such that

$$
\begin{equation*}
\Pi_{1}=\left\{\lambda_{i}\right\} \quad \text { or } \quad\left\{\lambda_{j}, \lambda_{k}\right\}, \quad\left(n_{i}=2, n_{j}=n_{k}=1\right) . \tag{5.17}
\end{equation*}
$$

Therefore, we may suppose that $((G / H,\langle\rangle,, \sigma), I, N)$ is a TRG-triple such that the TRGpair $((G / H,\langle\rangle,, \sigma), N)$ corresponds to a graded triple $\left(\mathfrak{g}^{*}, Z, \tau\right)$ associated with $\mathfrak{g}^{*}=$ $\sum_{p=-2}^{2} \mathfrak{g}^{*}{ }_{p}$ such that

$$
\begin{equation*}
Z=h_{i} \text { or } h_{j}+h_{k}, \quad n_{i}=2, \quad n_{j}=n_{k}=1 \tag{5.18}
\end{equation*}
$$

for some i, j, k. If $Z=h_{i}$ for some $i, 1 \leq i \leq l$, with $n_{i}=2$, then for $X \in \mathfrak{z}\left(\mathfrak{k}_{\varepsilon}{ }^{a}\right) \cap\left(\mathfrak{p} \cap \mathfrak{p}_{\varepsilon}\right)$, it is obvious that $X \in \mathfrak{a}$, since $\mathfrak{a} \subset \mathfrak{g}_{0}^{*} \subset \mathfrak{k}_{\varepsilon}{ }^{a}$. Let X_{λ} be a vector in $\mathfrak{g}^{* \lambda}$, which denotes the root space for $\lambda \in \Delta$ of \mathfrak{g}^{*}. Then it follows from the definition (2.7) of $h_{p} \in \mathfrak{a}$ that $X_{\lambda_{p}} \in \mathfrak{g}_{0}^{*}$ for $p \neq i$ and so $\lambda_{p}(X)=0, p \neq i$, which implies that $X=c h_{i}=c Z$ for some $c \in \boldsymbol{R}$. Moreover, since $\left[X, \mathfrak{g}_{ \pm 2}^{*}\right]=\{0\}$, it follows that $c=0$. Thus we obtain

$$
\begin{equation*}
\mathfrak{z}\left(\mathfrak{k}_{\varepsilon}{ }^{a}\right) \cap\left(\mathfrak{p} \cap \mathfrak{p}_{\varepsilon}\right)=\{0\}, \tag{5.19}
\end{equation*}
$$

if $Z=h_{i}$ with $n_{i}=2$.
Now, we prove (2) of the proposition. Suppose that $\left(\mathfrak{g}^{*}, \theta\right)$ is of type $K_{\varepsilon} \mathrm{I}$. Then there exists a graded triple $\left(\mathfrak{g}^{*}, Z^{\prime}, \tau\right)$ associated with a gradation of the first kind on \mathfrak{g}^{*} such that

$$
\theta=\operatorname{Ad}\left(\exp \pi \sqrt{-1} Z^{\prime}\right) \tau
$$

and hence $\left(\mathfrak{g}^{*}, \theta\right)$ is a noncompactly causal symmetric pair (see Theorem 3.1 of [9]. Also, see Proposition 3.2.1 and Theorem 3.2.4 of [7]). Therefore, since Z^{\prime} is a cone-generating element, it follows from [7, Proposition 3.1.11] that

$$
\mathfrak{z}\left(\mathfrak{k}_{\varepsilon}{ }^{a}\right) \cap\left(\mathfrak{p} \cap \mathfrak{p}_{\varepsilon}\right)=\boldsymbol{R} Z^{\prime}(\neq\{0\}),
$$

so by (5.19) there exist $j, k, 1 \leq j, k \leq l$, with $n_{j}=n_{k}=1$ such that $Z=h_{j}+h_{k}$. Conversely, we assume that $Z=h_{j}+h_{k}$ for some j, k with $n_{j}=n_{k}=1$. Put $X^{0}:=h_{j}-h_{k}$. Since $\mathfrak{a} \subset \mathfrak{p} \cap \mathfrak{p}_{\varepsilon}$ and

$$
\begin{gathered}
\mathfrak{g}_{p}^{*}=\sum\left\{\mathfrak{g}^{* \lambda} ; \lambda\left(h_{j}\right)+\lambda\left(h_{k}\right)=p, \quad \lambda \in \Delta\right\}, \quad p= \pm 1, \pm 2, \\
{\left[h_{j}, \mathfrak{g}_{0}^{*}\right]=\left[h_{k}, \mathfrak{g}_{0}^{*}\right]=\{0\},}
\end{gathered}
$$

it follows that

$$
\begin{equation*}
X^{0} \in \mathfrak{z}^{\left(\mathfrak{k}_{\varepsilon}{ }^{a}\right) \cap\left(\mathfrak{p} \cap \mathfrak{p}_{\varepsilon}\right), \quad \operatorname{Spec}\left(\operatorname{ad} X^{0}: \mathfrak{p}_{\varepsilon}{ }^{a} \rightarrow \mathfrak{p}_{\varepsilon}{ }^{a}\right)=\{ \pm 1\} . ~} \tag{5.20}
\end{equation*}
$$

Hence X^{0} is a cone-generating element of $\left(\mathfrak{g}^{*}, \theta\right)$, and Lemma 5.1 implies that $\mathfrak{z}\left(\mathfrak{k}_{\varepsilon}{ }^{a}\right)=$ $\boldsymbol{R} X^{0} \subset \mathfrak{p} \cap \mathfrak{p}_{\varepsilon}$ and

$$
\operatorname{Ad}(\exp \pi \sqrt{-1} Z)=\operatorname{Ad}\left(\exp \pi \sqrt{-1} X^{0}\right)
$$

since $\varphi_{ \pm}$is an involution. Therefore, $\theta=\operatorname{Ad}\left(\exp \pi \sqrt{-1} X^{0}\right) \tau$ and thus $\left(\mathfrak{g}^{*}, \theta\right)$ is of type $K_{\varepsilon} \mathrm{I}$. In this case, it follows from Lemma 5.2 that I corresponds to one of automorphisms φ_{0} and $\varphi_{ \pm}$. Then by Lemma 5.3 and Proposition 3.3, we obtain $I(\mathfrak{k} \cap \mathfrak{m})=-J(\mathfrak{k} \cap \mathfrak{m})$ and thus $N=K \cdot o$ is totally real with respect to each I.

Finally, we prove (1) of the proposition. Suppose that $\left(\mathfrak{g}^{*}, \theta\right)$ is of type K_{ε} II. By the above argument it follows that $Z=h_{i}$ for some i with $n_{i}=2$. In this case, it follows from (5.19), Lemma 5.2 and Remark 5.4 that I corresponds to φ_{0}.

Finally, we prove the following theorem which classifies TRG-triples.
Theorem 5.6. Under the same notation as in Proposition 5.5, each TRG-triple is equivalent to one of $((G / H,\langle\rangle,, \sigma), I, N=K \cdot o)$ listed in the following Table 1 and Table 2.

Proof. Let $((G / H,\langle\rangle,, \sigma), I, N=K \cdot o)$ be a TRG-triple. As before, let $\mathfrak{g}, \mathfrak{h}$ and \mathfrak{k} be the Lie algebras of G, H and K, respectively. Moreover, let K_{0} be the Lie subgroup of K satisfying $N=K \cdot o=K / K_{0}$, and \mathfrak{k}_{0} the Lie algebra of K_{0}. Then it follows from (5.9) that $\mathfrak{k}_{0}=\mathfrak{k} \cap \mathfrak{h}=\mathfrak{k} \cap \mathfrak{g}_{0}^{*}$, which is a maximal compact Lie subalgebra of \mathfrak{g}_{0}^{*}.

First of all, suppose that $\mathfrak{g}=\mathfrak{e}_{6}$. Then the possibilities of \mathfrak{g}^{*} are

$$
\mathfrak{e}_{6(6)}, \quad \mathfrak{e}_{6(2)}, \quad \mathfrak{e}_{6(-14)} \quad \text { and } \quad \mathfrak{e}_{6(-26)} .
$$

If $\mathfrak{g}^{*}=\mathfrak{e}_{6(2)}$, then $\mathfrak{k}=\mathfrak{s u}(6) \oplus \mathfrak{s u}(2)$, and the Satake diagram of \mathfrak{g}^{*} and the Dynkin diagram of Π are given in Figure 1, where

$$
\begin{equation*}
\lambda_{1}=\left.\alpha_{2}\right|_{\mathfrak{a}}, \quad \lambda_{2}=\left.\alpha_{4}\right|_{\mathfrak{a}}, \quad \lambda_{3}=\left.\alpha_{3}\right|_{\mathfrak{a}}=\left.\alpha_{5}\right|_{\mathfrak{a}}, \quad \lambda_{4}=\left.\alpha_{1}\right|_{\mathfrak{a}}=\left.\alpha_{6}\right|_{\mathfrak{a}} . \tag{5.21}
\end{equation*}
$$

It is known that the highest roots δ of $\Delta\left(\mathfrak{g}_{c}, \mathfrak{t}_{c}\right)$ and $\delta_{\mathfrak{a}}$ of Δ are given respectively by

$$
\delta=\alpha_{1}+2 \alpha_{2}+2 \alpha_{3}+3 \alpha_{4}+2 \alpha_{5}+\alpha_{6}, \quad \delta_{\mathfrak{a}}=2 \lambda_{1}+3 \lambda_{2}+4 \lambda_{3}+2 \lambda_{4} .
$$

Figure 1. The Satake diagram of $\mathfrak{e}_{6(2)}$.

By the proof of Proposition 5.5, a symmetric pair $\left(\mathfrak{g}^{*}, \theta\right)$ is of type $K_{\varepsilon} \mathrm{II}$, and a partition $\left\{\Pi_{0}, \Pi_{1}\right\}$ of Π is given by $\Pi_{1}=\left\{\lambda_{1}\right\}$ or $\left\{\lambda_{4}\right\}$. Then it follows from [8, Theorem 3.3] that

$$
\mathfrak{g}_{0}^{*} \cong \begin{cases}\mathfrak{s u}(3,3) \oplus \boldsymbol{R} & \text { if } \Pi_{1}=\left\{\lambda_{1}\right\}, \\ \mathfrak{s o}(5,3) \oplus \boldsymbol{R} \oplus \sqrt{-1} \boldsymbol{R} & \text { if } \Pi_{1}=\left\{\lambda_{4}\right\},\end{cases}
$$

which implies that

$$
\mathfrak{k}_{0} \cong \begin{cases}\mathfrak{s}(\mathfrak{u}(3) \oplus \mathfrak{u}(3)) & \text { if } \Pi_{1}=\left\{\lambda_{1}\right\} \\ \mathfrak{s o}(5) \oplus \mathfrak{s o}(3) \oplus \sqrt{-1} \boldsymbol{R} & \text { if } \Pi_{1}=\left\{\lambda_{4}\right\} .\end{cases}
$$

Moreover, it follows from (5.21) and Lemma 2.6 that $Z=h_{1}=H_{2}$ or $Z=h_{4}=H_{1}+H_{6}$, and [6, Theorem 5.15] implies that \mathfrak{h} has the following form:

$$
\mathfrak{h} \cong \begin{cases}\mathfrak{a}_{5} \oplus \boldsymbol{R} & \text { if } \sigma=\operatorname{Ad}\left(\exp \left\{(2 \pi \sqrt{-1} / 3) H_{2}\right\}\right) \\ \mathfrak{o}_{4} \oplus \boldsymbol{R}^{2} & \text { if } \sigma=\operatorname{Ad}\left(\exp \left\{(2 \pi \sqrt{-1} / 3)\left(H_{1}+H_{6}\right)\right\}\right) .\end{cases}
$$

Consequently, it follows from [5, Table V] and Proposition 5.5 that each TRG-triple is equivalent to one of the following:

$$
\begin{aligned}
& \left(\left(\left\{E_{6} / \boldsymbol{Z}_{3}\right\} /\left\{\left[\left(S U(6) / \boldsymbol{Z}_{3}\right) \times T^{1}\right] / Z_{2}\right\},\langle,\rangle, \operatorname{Ad}\left(\exp \left\{(2 \pi \sqrt{-1} / 3) H_{2}\right\}\right)\right), I_{0}, K \cdot o\right), \\
& \left(\left(\left\{E_{6} / Z_{3}\right\} /\left\{(S O(8) \times S O(2) \times S O(2)) / Z_{2}\right\},\langle,\rangle,\right.\right. \\
& \left.\left.\quad \operatorname{Ad}\left(\exp \left\{(2 \pi \sqrt{-1} / 3)\left(H_{1}+H_{6}\right)\right\}\right)\right), I_{0}, K \cdot o\right),
\end{aligned}
$$

where I_{0} denotes the G-invariant complex structure on G / H corresponding to $\varphi_{0}=$ $\operatorname{Ad}(\exp \pi \sqrt{-1} Z)$, and K is the analytic subgroup of G with Lie algebra $\mathfrak{s u}(6) \oplus \mathfrak{s u}(2)$. In particular, it follows that

If $\mathfrak{g}^{*}=\mathfrak{e}_{6(-14)}$, then $\mathfrak{k}=\mathfrak{s o}(10) \oplus \sqrt{-1} \boldsymbol{R}$, and the Satake diagram of \mathfrak{g}^{*} and the Dynkin diagram of Π are given in Figure 2, where

$$
\lambda_{1}=\left.\alpha_{2}\right|_{\mathfrak{a}}, \quad \lambda_{2}=\left.\alpha_{1}\right|_{\mathfrak{a}}=\left.\alpha_{6}\right|_{\mathfrak{a}}
$$

The highest root $\delta_{\mathfrak{a}}$ of Δ is $\delta_{\mathfrak{a}}=2 \lambda_{1}+2 \lambda_{2}$. Then a symmetric pair $\left(\mathfrak{g}^{*}, \theta\right)$ is of type K_{ε} II, and a partition $\left\{\Pi_{0}, \Pi_{1}\right\}$ of Π is given by $\Pi_{1}=\left\{\lambda_{1}\right\}$ or $\left\{\lambda_{2}\right\}$. As above, it follows from [8, Theorem 3.3] that

$$
\mathfrak{k}_{0} \cong \begin{cases}\mathfrak{s}(\mathfrak{u}(5) \oplus \mathfrak{u}(1)) & \text { if } \Pi_{1}=\left\{\lambda_{1}\right\} \\ \mathfrak{s o}(7) \oplus \sqrt{-1} \boldsymbol{R} & \text { if } \Pi_{1}=\left\{\lambda_{2}\right\} .\end{cases}
$$

Figure 2. The Satake diagram of $\mathfrak{e}_{6(-14)}$.

Moreover, it follows from Lemma 2.6 that $Z=h_{1}=H_{2}$ or $Z=h_{2}=H_{1}+H_{6}$, and as in the above case we have

$$
\mathfrak{h} \cong \begin{cases}\mathfrak{a}_{5} \oplus \boldsymbol{R} & \text { if } \sigma=\operatorname{Ad}\left(\exp \left\{(2 \pi \sqrt{-1} / 3) H_{2}\right\}\right) \\ \mathfrak{d}_{4} \oplus \boldsymbol{R}^{2} & \text { if } \sigma=\operatorname{Ad}\left(\exp \left\{(2 \pi \sqrt{-1} / 3)\left(H_{1}+H_{6}\right)\right\}\right)\end{cases}
$$

Hence, by [5, Table V] and Proposition 5.5, each TRG-triple is equivalent to one of the following:

$$
\begin{aligned}
& \left(\left(\left\{E_{6} / \boldsymbol{Z}_{3}\right\} /\left\{\left[\left(S U(6) / \boldsymbol{Z}_{3}\right) \times T^{1}\right] / \boldsymbol{Z}_{2}\right\},\langle,\rangle, \operatorname{Ad}\left(\exp \left\{(2 \pi \sqrt{-1} / 3) H_{2}\right\}\right)\right), I_{0}, K \cdot o\right), \\
& \left(\left(\left\{E_{6} / \boldsymbol{Z}_{3}\right\} /\left\{(S O(8) \times S O(2) \times S O(2)) / \boldsymbol{Z}_{2}\right\},\langle,\rangle\right.\right. \\
& \left.\left.\quad \operatorname{Ad}\left(\exp \left\{(2 \pi \sqrt{-1} / 3)\left(H_{1}+H_{6}\right)\right\}\right)\right), I_{0}, K \cdot o\right),
\end{aligned}
$$

where K is the analytic subgroup of G with Lie algebra $\mathfrak{s o}(10) \oplus \sqrt{-1} \boldsymbol{R}$. In particular, we obtain
$\left(\mathfrak{g}, \mathfrak{h}, \mathfrak{k}, \mathfrak{k}_{0}\right) \cong\left\{\begin{array}{r}\left(\mathfrak{e}_{6}, \mathfrak{s u}(6) \oplus \sqrt{-1} \boldsymbol{R}, \mathfrak{s o}(10) \oplus \sqrt{-1} \boldsymbol{R}, \mathfrak{s}(\mathfrak{u}(5) \oplus \mathfrak{u}(1))\right) \\ \text { if } \Pi_{1}=\left\{\lambda_{1}\right\}, \\ \left(\mathfrak{e}_{6}, \mathfrak{s o}(8) \oplus \mathfrak{s o}(2) \oplus \mathfrak{s o}(2), \mathfrak{s o}(10) \oplus \sqrt{-1} \boldsymbol{R}, \mathfrak{s o}(7) \oplus \sqrt{-1} \boldsymbol{R}\right) \\ \text { if } \Pi_{1}=\left\{\lambda_{2}\right\} .\end{array}\right.$
If $\mathfrak{g}^{*}=\mathfrak{e}_{6(-26)}$, then $\mathfrak{k}=\mathfrak{f}_{4}$, and the Satake diagram of \mathfrak{g}^{*} and the Dynkin diagram of Π are given in Figure 3, where

$$
\lambda_{1}=\left.\alpha_{1}\right|_{\mathfrak{a}}, \quad \lambda_{2}=\left.\alpha_{6}\right|_{\mathfrak{a}}
$$

FIGURE 3. The Satake diagram of $\mathfrak{e}_{6(-26)}$.

The highest root $\delta_{\mathfrak{a}}$ of Δ is $\delta_{\mathfrak{a}}=\lambda_{1}+\lambda_{2}$. Therefore a symmetric pair (\mathfrak{g}^{*}, θ) is of type $K_{\varepsilon} \mathrm{I}$, and a partition $\left\{\Pi_{0}, \Pi_{1}\right\}$ of Π is given by $\Pi_{1}=\left\{\lambda_{1}, \lambda_{2}\right\}$. Then, it follows from [8, Theorem 3.3] that $\mathfrak{k}_{0} \cong \mathfrak{s o}(8)$. Moreover, it follows from Lemma 2.6 that $Z=H_{1}+H_{6}$ and thus we have

$$
\sigma=\operatorname{Ad}\left(\exp \frac{2 \pi}{3} \sqrt{-1}\left(H_{1}+H_{6}\right)\right), \quad \mathfrak{h} \cong \mathfrak{d}_{4} \oplus \boldsymbol{R}^{2}
$$

Consequently, by [5, Table V] and Proposition 5.5, each TRG-triple is equivalent to

$$
\begin{aligned}
& \left(\left(\left\{E_{6} / \mathbf{Z}_{3}\right\} /\left\{(S O(8) \times S O(2) \times S O(2)) / \mathbf{Z}_{2}\right\},\langle,\rangle,\right.\right. \\
& \left.\left.\quad \operatorname{Ad}\left(\exp \left\{(2 \pi \sqrt{-1} / 3)\left(H_{1}+H_{6}\right)\right\}\right)\right), I, K \cdot o\right),
\end{aligned}
$$

where K is the analytic subgroup of G with Lie algebra \mathfrak{f}_{4}, and I corresponds to one of the following involutions:

$$
\begin{gathered}
\varphi_{0}=\operatorname{Ad}\left(\exp \pi \sqrt{-1}\left(H_{1}+H_{6}\right)\right), \quad \varphi_{+}=\operatorname{Ad}\left(\exp \pi \sqrt{-1} H_{1}\right), \\
\varphi_{-}=\operatorname{Ad}\left(\exp \pi \sqrt{-1} H_{6}\right) .
\end{gathered}
$$

In particular, we have

$$
\left(\mathfrak{g}, \mathfrak{h}, \mathfrak{k}, \mathfrak{k}_{0}\right) \cong\left(\mathfrak{e}_{6}, \mathfrak{s o}(8) \oplus \mathfrak{s o}(2) \oplus \mathfrak{s o}(2), \mathfrak{f}_{4}, \mathfrak{s o}(8)\right)
$$

Finally, we suppose that $\mathfrak{g}^{*}=\mathfrak{e}_{6(6)}$. Then $\mathfrak{k}=\mathfrak{s p}(4)$ and the Dynkin diagram of Π coincides with the Satake diagram of \mathfrak{g}^{*}. Thus $\alpha_{i}=\lambda_{i}, i=1, \ldots, 6$, and

$$
\delta=\delta_{\mathfrak{a}}=\lambda_{1}+2 \lambda_{2}+2 \lambda_{3}+3 \lambda_{4}+2 \lambda_{5}+\lambda_{6} .
$$

By virtue of the proof of Proposition 5.5, if (\mathfrak{g}^{*}, θ) is of type $K_{\varepsilon} \mathrm{II}$, then $\Pi_{1}=\left\{\lambda_{i}\right\}, i=2,3$ or 5. Similarly, if $\left(\mathfrak{g}^{*}, \theta\right)$ is of type $K_{\varepsilon} \mathrm{I}$, then $\Pi_{1}=\left\{\lambda_{1}, \lambda_{6}\right\}$. Noting that $\operatorname{Ad}\left(\exp \left\{(2 \pi \sqrt{-1} / 3) H_{3}\right\}\right)$ and $\operatorname{Ad}\left(\exp \left\{(2 \pi \sqrt{-1} / 3) H_{5}\right\}\right)$ are conjugate under $\operatorname{Aut}\left(\mathfrak{e}_{6}\right)$, we see from a similar argument as above that

$$
\mathfrak{k}_{0} \cong \begin{cases}\mathfrak{s o}(6) & \text { if } \Pi_{1}=\left\{\lambda_{2}\right\}, \\ \mathfrak{s o}(5) \oplus \mathfrak{s o (2)} & \text { if } \Pi_{1}=\left\{\lambda_{3}\right\}, \\ \mathfrak{s o}(4) \oplus \mathfrak{s o (4)} & \text { if } \Pi_{1}=\left\{\lambda_{1}, \lambda_{6}\right\},\end{cases}
$$

and each TRG-triple is equivalent to one of

$$
\begin{aligned}
&\left(\left(\left\{E_{6} / \boldsymbol{Z}_{3}\right\} /\left\{\left[\left(S U(6) / \mathbf{Z}_{3}\right) \times T^{1}\right] / \mathbf{Z}_{2}\right\},\langle,\rangle\right.\right.\left.\left., \operatorname{Ad}\left(\exp \left\{(2 \pi \sqrt{-1} / 3) H_{2}\right\}\right)\right), I_{0}, K \cdot o\right), \\
&\left(\left(\left\{E_{6} / \mathbf{Z}_{3}\right\} /\left\{[S(U(5) \times U(1)) \times S U(2)] / \mathbf{Z}_{2}\right\},\langle,\rangle,\right.\right. \\
&\left.\left.\operatorname{Ad}\left(\exp \left\{(2 \pi \sqrt{-1} / 3) H_{3}\right\}\right)\right), I_{0}, K \cdot o\right), \\
&\left(\left(\left\{E_{6} / \mathbf{Z}_{3}\right\} /\left\{(S O(8) \times S O(2) \times S O(2)) / \mathbf{Z}_{2}\right\},\langle,\rangle,\right.\right. \\
&\left.\left.\operatorname{Ad}\left(\exp \left\{(2 \pi \sqrt{-1} / 3)\left(H_{1}+H_{6}\right)\right\}\right)\right), I, K \cdot o\right),
\end{aligned}
$$

where K is the analytic subgroup of G with Lie algebra $\mathfrak{s p}(4)$, and I corresponds to one of the following involutions:

$$
\begin{gathered}
\varphi_{0}=\operatorname{Ad}\left(\exp \pi \sqrt{-1}\left(H_{1}+H_{6}\right)\right), \quad \varphi_{+}=\operatorname{Ad}\left(\exp \pi \sqrt{-1} H_{1}\right), \\
\varphi_{-}=\operatorname{Ad}\left(\exp \pi \sqrt{-1} H_{6}\right)
\end{gathered}
$$

In particular, we obtain
$\left(\mathfrak{g}, \mathfrak{h}, \mathfrak{k}, \mathfrak{k}_{0}\right) \cong \begin{cases}\left(\mathfrak{e}_{6}, \mathfrak{s u}(6) \oplus \sqrt{-1} \boldsymbol{R}, \mathfrak{s p}(4), \mathfrak{s o}(6)\right) & \text { if } \Pi_{1}=\left\{\lambda_{2}\right\}, \\ \left(\mathfrak{e}_{6}, \mathfrak{s}(\mathfrak{u}(5) \oplus \mathfrak{u}(1)) \oplus \mathfrak{s u}(2), \mathfrak{s p}(4), \mathfrak{s o}(5) \oplus \mathfrak{s o}(2)\right) & \text { if } \Pi_{1}=\left\{\lambda_{3}\right\}, \\ \left(\mathfrak{e}_{6}, \mathfrak{s o}(8) \oplus \mathfrak{s o}(2) \oplus \mathfrak{s o}(2), \mathfrak{s p}(4), \mathfrak{s o}(4) \oplus \mathfrak{s o}(4)\right) & \text { if } \Pi_{1}=\left\{\lambda_{1}, \lambda_{6}\right\} .\end{cases}$
For other cases, we can classify TRG-triples analogously.

REMARK 5.7. For the case where $\left(\mathfrak{g}^{*}, \theta\right)$ is of type $K_{\varepsilon} \mathrm{I}$, we can obtain a graded triple $\left(\mathfrak{g}^{*}, Z, \tau\right)$ associated with a gradation of the first kind defined by a partition of Π such that $\left(\mathfrak{g}^{*}, \theta\right)$ corresponds to $\left(\mathfrak{g}^{*}, Z, \tau\right)$ by the following way: Suppose that $((G / H,\langle\rangle,, \sigma), I, N)$ is a TRG-triple such that $\left(\mathfrak{g}^{*}, \theta\right)$ is of type $K_{\varepsilon} \mathrm{I}$. Then as in the proof of Proposition 5.5 there exists a partition $\left\{\Pi_{0}, \Pi_{1}\right\}$ of Π with $\Pi_{1}=\left\{\lambda_{j}, \lambda_{k}\right\}, n_{j}=n_{k}=1$ such that (\mathfrak{g}^{*}, θ) corresponds to a graded Lie algebra defined by $\left\{\Pi_{0}, \Pi_{1}\right\}$. Put $\lambda_{0}:=-\delta_{\mathfrak{a}}$ and let $t_{p}, 0 \leq$ $p \leq l, p \neq k$, be an element of \mathfrak{a} given by $\lambda_{q}\left(t_{p}\right)=\delta_{p q}, 0 \leq q \leq l, q \neq k$. Then, since $n_{j}=n_{k}=1$, it is easy to see that

$$
\begin{equation*}
t_{0}=-h_{k}, \quad t_{p}=h_{p}-n_{p} h_{k}, \quad p \neq 0 . \tag{5.22}
\end{equation*}
$$

Set $\hat{\Pi}:=\left\{\lambda_{p} ; 0 \leq p \leq l, p \neq k\right\}$, which is a fundamental root system of \mathfrak{g}^{*} with respect to \mathfrak{a}. Moreover, the Dynkin diagram of $\hat{\Pi}$ is the subdiagram of the extended Dynkin diagram of Π consisting of $\hat{\Pi}$. Then by (5.22) we have

$$
\operatorname{Ad}\left(\exp \pi \sqrt{-1} t_{j}\right)=\operatorname{Ad}\left(\exp \pi \sqrt{-1}\left(h_{j}-h_{k}\right)\right)=\operatorname{Ad}\left(\exp \pi \sqrt{-1}\left(h_{j}+h_{k}\right)\right)
$$

and hence a symmetric pair $\left(\mathfrak{g}^{*}, \theta\right)$ corresponds to a gradation of the first kind defined by a partition $\left\{\hat{\Pi}_{0}, \hat{\Pi}_{1}\right\}$ of $\hat{\Pi}$ given by $\hat{\Pi}_{1}=\left\{\lambda_{j}\right\}$.

For example, if $\mathfrak{g}^{*}=\mathfrak{e}_{6(6)}$ and $\Pi_{1}=\left\{\lambda_{1}, \lambda_{6}\right\}$, then the Dynkin diagram of $\hat{\Pi}:=$ $\left\{\lambda_{0}, \lambda_{1}, \ldots, \lambda_{5}\right\}$ is given in Figure 4.

Figure 4. The Dynkin diagram of $\mathfrak{e}_{6(6)}$.

Therefore, the gradation defined by a partition $\left\{\hat{\Pi}_{0}, \hat{\Pi}_{1}=\left\{\lambda_{1}\right\}\right\}$ of $\hat{\Pi}$ is isomorphic to that defined by a partition $\left\{\Pi_{0}, \Pi_{1}=\left\{\lambda_{1}\right\}\right\}$ of Π, and it follows from [9] that $\left(\mathfrak{g}^{*}, \mathfrak{k}_{\varepsilon}\right) \cong$ $\mathfrak{e}_{6(6)}, \mathfrak{s p}(2,2)$) with the numbering I 15.

Remark 5.8. In Tables 1 and 2, we adopt the numbering of fundamental roots in Bourbaki [3]. Moreover, the numbering of symmetric pairs $\left(\mathfrak{g}^{*}, \theta\right)$ is due to Kaneyuki [9].

Table 1. TRG-triples with $\operatorname{dim} Z(H)=1$.

TRG-triple $\left((G / H,\langle\rangle,, \sigma), I, N=K \cdot o=K / K_{0}\right)$. $\mathfrak{g}, \mathfrak{h}, \mathfrak{k}$ and \mathfrak{k}_{0} are Lie algebras of G, H, K and K_{0}, respectively. $\sigma=\operatorname{Ad}(\exp \{(2 \pi \sqrt{-1} / 3) Z\}), \quad I=-\varphi_{0} \circ J .$ $\left(\mathfrak{g}^{*}, \theta\right)$ is of type K_{ε} II corresponding to a GLA defined by a partition $\left\{\Pi_{0}, \Pi_{1}\right\}$ of Π.					
\mathfrak{g}	\mathfrak{h}	Z	$\left(\mathfrak{g}^{*}, \mathfrak{k}, \mathfrak{k}_{0}\right)$	$\left(\Pi, \Pi_{1}\right)$	$\left(\mathfrak{g}^{*}, \theta\right)$
$\begin{aligned} & \mathfrak{s o}(2 n+1) \\ & (n \geq 2) \end{aligned}$	$\begin{aligned} \mathfrak{u}(i) & \oplus \mathfrak{s o}(2 n-2 i+1) \\ (2 & \leq i \leq n) \end{aligned}$	H_{i}	$\begin{aligned} & (\mathfrak{s o}(l, m), \mathfrak{s o}(l) \oplus \mathfrak{s o}(m), \mathfrak{s o}(i) \oplus \mathfrak{s o}(l-i) \oplus \mathfrak{s o}(m-i)) \\ & \quad(i \leq l \leq n, m=2 n+1-l) \end{aligned}$	$\left(\mathfrak{b}_{l},\left\{\lambda_{i}\right\}\right)$	II 12
$\begin{aligned} & \mathfrak{s p}(n) \\ & (n \geq 3) \end{aligned}$	$\begin{gathered} \mathfrak{u}(i) \oplus \mathfrak{s p}(n-i) \\ (1 \leq i \leq n-1) \end{gathered}$	H_{i}	$(\mathfrak{s p}(n, \boldsymbol{R}), \mathfrak{u}(n), \mathfrak{s o}(i) \oplus \mathfrak{u}(n-i))$	$\left(\mathfrak{c}_{n},\left\{\lambda_{i}\right\}\right)$	II 13
	$\begin{gathered} \mathfrak{u}(2 i) \oplus \mathfrak{s p}(n-2 i) \\ (2 \leq 2 i \leq n-1) \end{gathered}$	$\mathrm{H}_{2 i}$	$\begin{aligned} & (\mathfrak{s p}(l, n-l), \mathfrak{s p}(l) \oplus \mathfrak{s p}(n-l), \mathfrak{s p}(i) \oplus \mathfrak{s p}(l-i) \oplus \mathfrak{s p}(n-l-i)) \\ & \quad(2 i \leq 2 l \leq n-1) \end{aligned}$	$\left(\mathfrak{b c}_{l},\left\{\lambda_{i}\right\}\right)$	II 14
			$\begin{aligned} & (\mathfrak{s p}(l, l), \mathfrak{s p}(l) \oplus \mathfrak{s p}(l), \mathfrak{s p}(i) \oplus \mathfrak{s p}(l-i) \oplus \mathfrak{s p}(l-i)) \\ & \quad(n=2 l) \end{aligned}$	$\left(c_{l},\left\{\lambda_{i}\right\}\right)$	II 14
$\begin{gathered} \mathfrak{s o}(2 n) \\ (n \geq 4) \end{gathered}$	$\begin{gathered} \mathfrak{u}(i) \oplus \mathfrak{s o}(2 n-2 i) \\ (2 \leq i \leq n-2) \end{gathered}$	H_{i}	$(\mathfrak{s o}(n, n), \mathfrak{s o}(n) \oplus \mathfrak{s o}(n), \mathfrak{s o}(i) \oplus \mathfrak{s o}(n-i) \oplus \mathfrak{s o}(n-i))$	$\left(\mathfrak{o}_{n},\left\{\lambda_{i}\right\}\right)$	II 12
			$\begin{aligned} & (\mathfrak{s o}(2 n-l, l), \mathfrak{s o}(2 n-l) \oplus \mathfrak{s o}(l), \mathfrak{s o}(i) \oplus \mathfrak{s o}(2 n-l-i) \oplus \mathfrak{s o}(l-i)) \\ & \quad(i \leq l \leq n-1) \end{aligned}$	$\left(\mathfrak{b}_{l},\left\{\lambda_{i}\right\}\right)$	II 12
	$\begin{gathered} \mathfrak{u}(2 i) \oplus \mathfrak{s o}(2 n-4 i) \\ \left(1 \leq i<\left[\frac{n}{2}\right]\right) \end{gathered}$	$\mathrm{H}_{2 i}$	$\begin{aligned} & \left(\mathfrak{s o}^{*}(4 l), \mathfrak{u}(2 l), \mathfrak{s p}(i) \oplus \mathfrak{u}(n-2 i)\right) \\ & \quad(n=2 l) \end{aligned}$	$\left(\mathfrak{c}_{l},\left\{\lambda_{i}\right\}\right)$	II 15
			$\begin{aligned} & \left(\mathfrak{s o}^{*}(4 l+2), \mathfrak{u}(2 l+1), \mathfrak{s p}(i) \oplus \mathfrak{u}(n-2 i)\right) \\ & \quad(n=2 l+1, \quad 1 \leq i \leq l) \end{aligned}$	$\left(\mathfrak{b c}_{l},\left\{\lambda_{i}\right\}\right)$	II 15

TABLE 1-continued. TRG-triples with $\operatorname{dim} Z(H)=1$.

${ }^{\mathfrak{e}} 6$	$\mathfrak{s u}(6) \oplus \sqrt{-1} \boldsymbol{R}$	H_{2}	$\left(\mathfrak{e}_{6(2)}, \mathfrak{s u}(6) \oplus \mathfrak{s u}(2), \mathfrak{s}(\mathfrak{u}(3) \oplus \mathfrak{u}(3))\right)$	$\left(\mathfrak{f}_{4},\left\{\lambda_{1}\right\}\right)$	II 17
			$\left(\mathfrak{e}_{6(-14)}, \mathfrak{s o}(10) \oplus \sqrt{-1} \boldsymbol{R}, \mathfrak{s}(\mathfrak{u}(5) \oplus \mathfrak{u}(1))\right)$	$\left(\mathfrak{b c}_{2},\left\{\lambda_{1}\right\}\right)$	II 19
			$\left(e_{6(6)}, \mathfrak{s p}(4), \mathfrak{s o}(6)\right)$	$\left(e_{6},\left\{\lambda_{2}\right\}\right)$	II 16
${ }^{\mathrm{e}_{6}}$	$\mathfrak{s}(\mathfrak{u}(5) \oplus \mathfrak{u}(1)) \oplus \mathfrak{s u}(2)$	H_{3}	$\left(e_{6(6)}, \mathfrak{s p}(4), \mathfrak{s o}(5) \oplus \mathfrak{s o}(2)\right)$	$\left(e_{6},\left\{\lambda_{3}\right\}\right)$	II 16
${ }^{\text {e }} 7$	$\mathfrak{s o}(12) \oplus \mathfrak{s o}(2)$	H_{1}	$\left(e_{7(7)}, \mathfrak{s u}(8), \mathfrak{s o}(6) \oplus \mathfrak{s o}(6)\right)$	(eq], $\left\{\lambda_{1}\right\}$)	II 21
			$\left(e_{7}(-5), \mathfrak{s o}(12) \oplus \mathfrak{s u}(2), \mathfrak{u}(6)\right)$	$\left(\mathfrak{f}_{4},\left\{\lambda_{1}\right\}\right)$	II 23
			$\left(\mathfrak{e}_{7(-25)}, \mathfrak{e}_{6} \oplus \sqrt{-1} \boldsymbol{R}, \mathfrak{s o}(10) \oplus \mathfrak{s o}(2)\right)$	$\left(c_{3},\left\{\lambda_{1}\right\}\right)$	II 25
\mathfrak{e}_{7}	$\mathfrak{s}(\mathfrak{u}(7) \oplus \mathfrak{u}(1))$	H_{2}	$\left(e_{7(7)}, \mathfrak{s u}(8), \mathfrak{s o}(7)\right)$	(e) ${ }^{\text {, }}$ ($\left.\lambda_{2}\right\}$)	II 22
${ }^{\text {e }} 7$	$\mathfrak{s u}(2) \oplus \mathfrak{s o}(10) \oplus \mathfrak{s o}(2)$	H_{6}	$\left(e_{7(7)}, \mathfrak{s u}(8), \mathfrak{s o}(5) \oplus \mathfrak{s o}(5) \oplus \mathfrak{s o}(2)\right)$	(e) ${ }^{\text {, }}$ ($\left.\lambda_{6}\right\}$)	II 21
			$\left(\mathfrak{e}_{7(-5)}, \mathfrak{s o}(12) \oplus \mathfrak{s u}(2), \mathfrak{s o}(3) \oplus \mathfrak{s o}(7) \oplus \mathfrak{s u}(2)\right)$	$\left(\mathfrak{f}_{4},\left\{\lambda_{4}\right\}\right)$	II 24
			$\left(\mathfrak{e}_{7(-25)}, \mathfrak{e}_{6} \oplus \sqrt{-1} \boldsymbol{R}, \mathfrak{s o}(9) \oplus \mathfrak{s o}(2)\right)$	$\left(c_{3},\left\{\lambda_{2}\right\}\right)$	II 25
${ }^{\text {e }} 8$	$\mathfrak{s o}(14) \oplus \mathfrak{s o}(2)$	H_{1}	$\left(e_{8(8)}, \mathfrak{s o}(16), \mathfrak{s o}(7) \oplus \mathfrak{s o}(7)\right)$	$\left(\mathfrak{e}_{8},\left\{\lambda_{1}\right\}\right)$	II 26
			$\left(\mathfrak{e}_{8(-24)}, \mathfrak{e}_{7} \oplus \mathfrak{s u}(2), \mathfrak{s o}(3) \oplus \mathfrak{s o}(11)\right)$	$\left(\mathfrak{f}_{4},\left\{\lambda_{4}\right\}\right)$	II 29
${ }^{\text {e }} 8$	$\mathfrak{e}_{7} \oplus \sqrt{-1} \boldsymbol{R}$	H_{8}	$\left(e_{8(8)}, \mathfrak{s o}(16), \mathfrak{s u}(8)\right)$	$\left(\mathfrak{e}_{8},\left\{\lambda_{8}\right\}\right)$	II 27
			$\left(\mathfrak{e}_{8(-24)}, \mathfrak{e}_{7} \oplus \mathfrak{s u}(2), \mathfrak{e}_{6} \oplus \sqrt{-1} \boldsymbol{R}\right)$	$\left(\mathfrak{f}_{4},\left\{\lambda_{1}\right\}\right)$	II 28
\mathfrak{f}_{4}	$\mathfrak{s p}(3) \oplus \sqrt{-1} \boldsymbol{R}$	H_{1}	$\left(\mathfrak{f}_{4(4)}, \mathfrak{s p}(3) \oplus \mathfrak{s u}(2), \mathfrak{u}(3)\right)$	$\left(\mathfrak{f}_{4},\left\{\lambda_{1}\right\}\right)$	II 30
\mathfrak{f}_{4}	$\mathfrak{s o}(7) \oplus \sqrt{-1} \boldsymbol{R}$	H_{4}	$\left(\mathfrak{f}_{4(4)}, \mathfrak{s p}(3) \oplus \mathfrak{s u}(2), \mathfrak{s o}(3) \oplus \mathfrak{s o}(4)\right)$	$\left(\mathfrak{f}_{4},\left\{\lambda_{4}\right\}\right)$	II 31
			$\left(\mathfrak{f}_{4(-20)}, \mathfrak{s o}(9), \mathfrak{s o}(7)\right)$	$\left(\mathfrak{b c}_{1},\left\{\lambda_{1}\right\}\right)$	II 32
\mathfrak{g}_{2}	$\mathfrak{u}(2)$	H_{2}	$\left(\mathfrak{g}_{2(2)}, \mathfrak{s u}(2) \oplus \mathfrak{s u}(2), \mathfrak{s o}(2)\right)$	$\left(\mathfrak{g}_{2},\left\{\lambda_{2}\right\}\right)$	II 33

Table 2. TRG-triples with $\operatorname{dim} Z(H)=2$.

TRG-triple $\left((G / H,\langle\rangle,, \sigma), I, N=K \cdot o=K / K_{0}\right)$. $\mathfrak{g}, \mathfrak{h}, \mathfrak{k}$ and \mathfrak{k}_{0} are Lie algebras of G, H, K and K_{0}, respectively. $\sigma=\operatorname{Ad}(\exp \{(2 \pi \sqrt{-1} / 3) Z\}), \quad I=-\varphi \circ J$ $\left(\mathfrak{g}^{*}, \theta\right)$ corresponds to a GLA defined by a partition $\left\{\Pi_{0}, \Pi_{1}\right\}$ of Π.						
\mathfrak{g}	\mathfrak{h}	Z	φ	$\left(\mathfrak{g}^{*}, \mathfrak{k}, \mathfrak{k}_{0}\right)$	$\left(\Pi, \Pi_{1}\right)$	$\left(\mathfrak{g}^{*}, \theta\right)$
$\begin{aligned} & \mathfrak{s u}(n) \\ & (n \geq 3) \end{aligned}$	$\begin{aligned} & \mathfrak{s}(\mathfrak{u}(i) \oplus \mathfrak{u}(j-i) \\ &\oplus \mathfrak{u}(n-j)) \\ &\left(1 \leq i \leq\left[\frac{n-1}{2}\right]\right. \\ &i<j \leq n-1) \end{aligned}$	$H_{i}+H_{j}$	φ_{0}	$(\mathfrak{s l}(n, \boldsymbol{R}), \mathfrak{s o}(n), \mathfrak{s o}(i) \oplus \mathfrak{s o}(j-i) \oplus \mathfrak{s o}(n-j))$	$\left(\mathfrak{a}_{n-1},\left\{\lambda_{i}, \lambda_{j}\right\}\right)$	I 7
			$\varphi_{ \pm}$	$(\mathfrak{s l}(n, \boldsymbol{R}), \mathfrak{s o}(n), \mathfrak{s o}(i) \oplus \mathfrak{s o}(j-i) \oplus \mathfrak{s o}(n-j))$	$\left(\mathfrak{a}_{n-1},\left\{\lambda_{i}, \lambda_{j}\right\}\right)$	I 7
		$\begin{aligned} & H_{i}+H_{n-i} \\ & (j=n-i) \end{aligned}$	φ_{0}	$\begin{aligned} & (\mathfrak{s u}(l, n-l), \mathfrak{s}(\mathfrak{u}(l) \oplus \mathfrak{u}(n-l)), \\ & \quad \mathfrak{s u}(i) \oplus \mathfrak{s}(\mathfrak{u}(l-i) \oplus \mathfrak{u}(n-l-i)) \oplus \sqrt{-1} \boldsymbol{R}) \\ & \quad\left(i \leq l \leq\left[\frac{n-1}{2}\right]\right) \end{aligned}$	$\left(\mathfrak{b c}_{l},\left\{\lambda_{i}\right\}\right)$	II 11
				$\begin{aligned} & (\mathfrak{s u}(l, l), \mathfrak{s}(\mathfrak{u}(l) \oplus \mathfrak{u}(l)), \\ & \quad \mathfrak{s u}(i) \oplus \mathfrak{s}(\mathfrak{u}(l-i) \oplus \mathfrak{u}(l-i)) \oplus \sqrt{-1} \boldsymbol{R}) \\ & \quad(n=2 l) \end{aligned}$	$\left(\mathfrak{c}_{l},\left\{\lambda_{i}\right\}\right)$	II 11
	$\begin{aligned} \mathfrak{s}(\mathfrak{u}(2 i) & \oplus \mathfrak{u}(2 j-2 i) \\ & \oplus \mathfrak{u}(n-2 j)) \\ (1 \leq i & <j \leq l, \\ n & =2 l+2) \end{aligned}$	$\mathrm{H}_{2 i}+\mathrm{H}_{2}{ }^{\text {j }}$	φ_{0}	$\left(\mathfrak{s u}{ }^{*}(n), \mathfrak{s p}(l+1), \mathfrak{s p}(i) \oplus \mathfrak{s p}(j-i) \oplus \mathfrak{s p}(n-j)\right)$	$\left(\mathfrak{a}_{l},\left\{\lambda_{i}, \lambda_{j}\right\}\right)$	I 9
			$\varphi \pm$	$\left(\mathfrak{s u} *{ }^{*}(n), \mathfrak{s p}(l+1), \mathfrak{s p}(i) \oplus \mathfrak{s p}(j-i) \oplus \mathfrak{s p}(n-j)\right)$	$\left(\mathfrak{a}_{l},\left\{\lambda_{i}, \lambda_{j}\right\}\right)$	I 9

TABLE 2-continued. TRG-triples with $\operatorname{dim} Z(H)=2$.

$\begin{aligned} & \mathfrak{s o}(2 n) \\ & (n \geq 4) \end{aligned}$	$\mathfrak{u}(n-1) \oplus \mathfrak{s o}(2)$	$H_{n-1}+H_{n}$	φ_{0}	$(\mathfrak{s o}(n, n), \mathfrak{s o}(n) \oplus \mathfrak{s o}(n), \mathfrak{s o}(n-1))$	$\left(\mathfrak{o}_{n},\left\{\lambda_{n-1}, \lambda_{n}\right\}\right)$	I 10
				$\begin{gathered} (\mathfrak{s o}(n+1, n-1), \mathfrak{s o}(n+1) \oplus \mathfrak{s o}(n-1) \\ \mathfrak{s o}(n-1) \oplus \mathfrak{s o}(2)) \end{gathered}$	$\left(\mathfrak{b}_{n-1},\left\{\lambda_{n-1}\right\}\right)$	II 12
				$\begin{aligned} & \left(\mathfrak{s o}^{*}(4 l+2), \mathfrak{u}(2 l+1), \mathfrak{s p}(l) \oplus \mathfrak{u}(1)\right) \\ & \quad(n=2 l+1) \end{aligned}$	$\left(\mathfrak{b c}_{l},\left\{\lambda_{l}\right\}\right)$	II 15
			$\varphi_{ \pm}$	$(\mathfrak{s o}(n, n), \mathfrak{s o}(n) \oplus \mathfrak{s o}(n), \mathfrak{s o}(n-1))$	$\left(\mathfrak{o}_{n},\left\{\lambda_{n-1}, \lambda_{n}\right\}\right)$	I 10
${ }^{\mathfrak{e}} 6$	$\mathfrak{s o}(8) \oplus \mathfrak{s o}(2) \oplus \mathfrak{s o}(2)$	$H_{1}+H_{6}$	φ_{0}	$\left(\mathfrak{e}_{6}(6), \mathfrak{s p}(4), \mathfrak{s o}(4) \oplus \mathfrak{s o}(4)\right)$	$\left(e_{6},\left\{\lambda_{1}, \lambda_{6}\right\}\right)$	I 15
				$\left(\mathfrak{e}_{6}(2), \mathfrak{s u}(6) \oplus \mathfrak{s u}(2), \mathfrak{s o}(5) \oplus \mathfrak{s o}(3) \oplus \sqrt{-1} \boldsymbol{R}\right)$	$\left(\mathfrak{f}_{4},\left\{\lambda_{4}\right\}\right)$	II 18
				$\left({ }^{(}{ }_{6}(-14), \mathfrak{s o}(10) \oplus \sqrt{-1} \boldsymbol{R}, \mathfrak{s o}(7) \oplus \sqrt{-1} \boldsymbol{R}\right)$	$\left(\mathfrak{b c}_{2},\left\{\lambda_{2}\right\}\right)$	II 20
				$\left(\mathfrak{e}_{6(-26)}, \mathfrak{f}_{4}, \mathfrak{s o}(8)\right)$	$\left(\mathfrak{a}_{2},\left\{\lambda_{1}, \lambda_{2}\right\}\right)$	I 16
			$\varphi \pm$	$\left(\mathfrak{e}_{6}(6), \mathfrak{s p}(4), \mathfrak{s o}(4) \oplus \mathfrak{s o}(4)\right)$	$\left(e_{6},\left\{\lambda_{1}, \lambda_{6}\right\}\right)$	I 15
				$\left(\mathfrak{e}_{6(-26)}, \mathfrak{f}_{4}, \mathfrak{s o}(8)\right)$	$\left(\mathfrak{a}_{2},\left\{\lambda_{1}, \lambda_{2}\right\}\right)$	I 16

REFERENCES

[1] S. ARAKI, On root systems and an infinitesimal classification of irreducible symmetric spaces, J. Math. Osaka City Univ. 13 (1962), 1-34.
[2] A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces, I, Amer. J. Math. 80 (1958), 458-538.
[3] N. Bourbaki, Groupes et Algèbres de Lie, Chapitre 4, 5 et 6, Masson, Paris, 1981.
[4] J. Faraut, S. Kaneyuki, A. Korányi, Q. Lu and G. Roos, Analysis and geometry on complex homogeneous domains, Progr. Math. 185, Birkhäuser, Boston, MI, 2000.
[5] A. GRAY, Riemannian manifolds with geodesic symmetries of order 3, J. Differential Geom. 7 (1972), 343369.
[6] S. HELGASon, Differential geometry, Lie groups, and symmetric spaces, Academic Press, New York-London, 1978.
[7] J. Hilgert and G. Ólafsson, Causal symmetric spaces: Geometry and harmonic analysis, Academic Press, San Diego, 1997.
[8] S. Kaneyuki, On the subalgebras \mathfrak{g}_{0} and $\mathfrak{g}_{e v}$ of semisimple graded Lie algebras, J. Math. Soc. Japan 45 (1993), 1-19.
[9] S. KANEYUKI, Signatures of roots and a new characterization of causal symmetric spaces, Progr. Nonlinear Differential Equations Appl. 20, 213-230, Birkhäuser Boston, Boston, MA, 1996.
[10] S. Kaneyuki and H. Asano, Graded Lie algebras and generalized Jordan triple systems, Nagoya Math. J. 112 (1988), 81-115.
[11] S. Kobayashi and K. Nomizu, Foundations of differential geometry Vol. II, Interscience Tracts in Pure and Applied Mathematics No.15, Interscience Publishers John Wiley \& Sons, Inc., New York, 1969.
[12] M. Nishiyama, Classification of invariant complex structures on irreducible compact simply connected coset spaces, Osaka J. Math. 21 (1984), 39-58.
[13] K. Nomizu, Invariant affine connections on homogeneous spaces, Amer. J. Math. 76 (1954), 33-65.
[14] T. OShimA AND J. SEKIGUCHI, Eigenspaces of invariant differential operators on an affine symmetric spaces, Invent. Math. 57 (1980), 1-81.
[15] T. Oshima and J. Sekiguchi, The restricted root system of a semisimple symmetric pair, Adv. Stud. Pure Math. 4 (1984), 433-497.
[16] M. Takeuchi, Stability of certain minimal submanifolds of compact Hermitian symmetric spaces, Tôhoku Math. J. 36 (1984), 293-314.
[17] K. Tojo, Totally real totally geodesic submanifolds of compact 3-symmetric spaces, Tôhoku Math. J. 53 (2001), 131-143.
[18] K. Tojo, Classification of totally real and totally geodesic submanifolds of compact 3-symmetric spaces, J. Math. Soc. Japan 58 (2006), 17-53.
[19] H. C. WANG, Closed manifolds with homogeneous complex structure, Amer. J. Math. 76 (1954), 1-32.
[20] A. Wolf and A. Gray, Homogeneous spaces defined by Lie group automorphisms I, II, J. Differential Geom. 2 (1968), 77-114, 115-159.

Department of Mathematics
Chiba Institute of Technology
Shibazono, Narashino
CHIBA 275-0023
JAPAN
E-mail address: tojo.koji@it-chiba.ac.jp

[^0]: 2000 Mathematics Subject Classification. Primary 53C40; Secondary 17B70, 53C30.
 Key words and phrases. 3 -symmetric space, graded Lie algebra, totally geodesic submanifold, affine symmetric space.

