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Abstract. Complex symplectic spaces, and their Lagrangian subspaces, are
defined in accord with motivations from Lagrangian classical dynamics and

from linear ordinary differential operators; and then their basic algebraic prop-
erties are established. After these purely algebraic developments, an Appendix
presents a related new result on the theory of self-adjoint operators in Hilbert
spaces, and this provides an important application of the principal theorems.

1. Fundamental definitions for complex symplectic spaces,

and three motivating illustrations

Complex symplectic spaces, as defined below, are non-trivial generalizations of
the real symplectic spaces of Lagrangian classical dynamics [AM], [MA]. Further,
these complex spaces provide important algebraic structures clarifying the theory
of boundary value problems of linear ordinary differential equations, and the theory
of the associated self-adjoint linear operators on Hilbert spaces [AG], [DS], [NA].

These fundamental concepts are introduced in connection with three examples
or motivating discussions in this first introductory section, with further technical
details and applications presented in the Appendix at the end of this paper. The
new algebraic results are given in the second and main section of this paper, which
developes the principal theorems of the algebra of finite dimensional complex sym-
plectic spaces and their Lagrangian subspaces. A preliminary treatment of these
subjects, with full attention to the theory of self-adjoint operators, can be found in
the earlier monograph of these authors [EM].

Definition 1. A complex symplectic space S is a complex linear space, with a
prescribed symplectic form [:], namely a sesquilinear form

(i) u, v → [u : v], S × S → C, so [c1u + c2v : w] = c1[u : w] + c2[v : w],
(1.1)

which is skew-Hermitian,

(ii) [u : v] = −[v : u], so [u : c1v + c2w] = c̄1[u : v] + c̄2[u : w]
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4906 W. N. EVERITT AND L. MARKUS

(in terms of the conjugation involution c → c̄ in the complex number space C), and
which is also non-degenerate,

(iii) [u : S] = 0 implies u = 0,

for all vectors u, v, w ∈ S and complex scalars c1, c2 ∈ C.

Because of the analogy of the complex symplectic space S to a Hermitian inner
product space, we often employ the terminology “symplectic product” for [u : v]
and “symplectic orthogonality” for [u : v] = 0. Hence condition (iii) above means
that only the zero vector of S is symplectically orthogonal to every vector of S.

As is customary, we declare that complex symplectic spaces S1 with form [:]1
and S2 with form [:]2 are isomorphic in case there exists a linear bijective map

F : S1 → S2 with [u : v]1 = [Fu : Fv]2,(1.2)

for all vectors u, v ∈ S1.
Linear subspaces of a complex symplectic space S need not be complex symplec-

tic subspaces, since the induced symplectic form can be degenerate on them.

Definition 2. A linear submanifold L in the complex symplectic space S is called
Lagrangian in case [L : L] = 0, that is,

[u : v] = 0 for all vectors u, v ∈ L.(1.3)

Further, a Lagrangian manifold L ⊂ S is complete in case

u ∈ S and [u : L] = 0 imply u ∈ L.(1.4)

We refer to a “linear manifold” to include the case where S has infinite dimension.
For instance, we can construct an infinite dimensional complex symplectic space
S = H−⊕H+, as the direct sum of two Hilbert spaces H− and H+, so each vector
u ∈ S has a unique representation u = u− + u+ with u± ∈ H±, respectively. We
take the sympectic form

[u : v] = [u− + u+ : v− + v+] = −i〈u−, v−〉− + i〈u+, v+〉+
in terms of the Hermitian inner products 〈·, ·〉± in H±, respectively (compare the
corresponding finite dimensional cases in Theorem 3 below).

However, in this paper we deal only with complex symplectic spaces S of finite
(complex) dimension D ≥ 0 (the case D = 0 defines the trivial space consisting of
just a single point, and this case is often omitted in the subsequent discussions),
and then each linear submanifold is a linear subspace of S (that is, closed in the
usual topology of S, as in CD).

In the following Example 1, we note that each complex symplectic space S with
finite dimension D ≥ 1 is isomorphic to the complex number space CD with a suit-
able complex symplectic structure—that is, with a symplectic form on the complex
vector space CD.

Example 1. Skew-Hermitian matrices and complex symplectic spaces in CD.

Let S with the symplectic form [:] be a complex symplectic space of finite di-
mension D ≥ 1. Then there exists a linear bijective map of S onto the com-
plex number space CD, and accordingly the symplectic products in S can be ex-
pressed in terms of the complex coordinates that are induced by this map, say
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u = (u1, u2, . . . , uD), v = (v1, v2, . . . , vD) for (row) vectors defining u, v ∈ S.
Namely, write the sesquilinear form on CD as

[u : v] = (u1, . . . , uD)H(v1, . . . , vD)∗,(1.5)

where H is the corresponding D×D skew-Hermitian matrix, and hence H satisfies
the conditions:

H = −H∗ (here H∗ = H̄t, where * denotes the conjugate transpose),
det H 6= 0, so H is nonsingular.

(1.6)

These conditions (1.6) are merely the axioms (1.1) (i) (ii) (iii) interpreted in
matrix notation. Hence each skew-Hermitian non-singular D×D matrix H defines
a complex symplectic product (1.5) on CD, and moreover each complex symplectic
D-space S is isomorphic to such a complex symplectic CD. That is, the most
general complex symplectic D-space S has an isomorphism onto CD, once a basis
is chosen for S, and then the symplectic products are specified by a skew-Hermitian
nonsingular D ×D matrix H , as in (1.5) or

[u, v] = uHv∗.(1.7)

However, a linear change of basis in S yields new numerical coordinates, say u
has the components

ũ = (ũ1, . . . , ũD) where uj = ũkQk
j

for a complex non-singular matrix Q = (Qk
j ). Then

[u : v] = (ũQ)H(ṽQ)∗ = ũH̃ṽ∗,

in terms of the congruent matrix H̃ = QHQ∗. Since (iH)∗ = −iH∗ = iH is
symmetric Hermitian, there exists some complex non-singular matrix Q such that
Q(iH)Q∗ = diag{Iq,−Ip}, so

H̃ = diag{−iIq iIp}, (i2 = −1).(1.8)

Here Iq is the identity matrix of size q ≥ 0 (omitted when q = 0), and similarly
for Ip of size p ≥ 0. This yields an important diagonal format (1.8) for the skew-
Hermitian non-singular D ×D matrix H , with p + q = D.

As an interesting special example take D = 3, and consider the complex linear
space S = C3 with the prescribed symplectic products [e1 : e1] = i, [e2 : e2] =
i, [e3 : e3] = −i, and all other symplectic products are zero for the customary basis
vectors

e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1).

That is, we use the skew-Hermitian matrix H = diag{i, i,−i} to define the sym-
plectic structure on C3.

In this complex symplectic 3-space S the 1-dimensional subspace

L = span{e2 + e3} = {(0, c, c)}, for all c ∈ C,

can easily be verified to be Lagrangian since [e2 + e3 : e2 + e3] = i − i = 0. It will
be shown later, see Theorem 1 below, that there are no Lagrangian 2-spaces in S;
but L is not a complete Lagrangian subspace, since [e1 : L] = 0 yet e1 6∈ L.

Example 2. Real symplectic spaces of Lagrangian classical dynamics, and canon-
ical bases.
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A real symplectic space SR is a real linear space, together with a prescribed real
symplectic form [:]R, namely a real bilinear form

u, v → [u : v]R, SR × SR → R,

which is skew-symmetric,

[u : v]R = −[v : u]R,

and also non-degenerate or non-singular,

[u : SR] = 0 implies u = 0,

for all vectors u, v ∈ SR.
Following the earlier Definition 2 above, we define a linear manifold L ⊂ SR to

be Lagrangian in case [L : L]R = 0, and, in addition, L is complete just in case

u ∈ SR and [u : L]R = 0 imply u ∈ L.

We remark that in much of the literature on real symplectic spaces, only complete
Lagrangian submanifolds of SR are referred to as “Lagrangian” (the others are
termed “isotropic”), see [AM], [MH], [MS].

Just as in Example 1 we note that a real symplectic space SR of finite (real)
dimension D ≥ 1 is symplectically isomorphic with RD bearing a suitable bilinear
form

[u : v]R = uAvt, with A = −At, det A 6= 0.(1.9)

But a real skew-symmetric non-singular matrix A must be of even size D = 2n, and
is necessarily congruent (via a real non-singular matrix Q) to the canonical matrix

QAQt =
(

0 In

−In 0

)
.(1.10)

A corresponding basis that achieves this canonical matrix (1.10) is called a canonical
basis, say

{e1, e2, . . . , en, en+1, en+2, . . . , e2n} in SR (or in R2n),(1.11)

with the corresponding symplectic products

[ej : ek]R = 0, [en+j : en+k]R = 0, for 1 ≤ j, k ≤ n,(1.12)

and the familiar canonical duality (or canonical conjugation)

[ej : en+k] = δjk (Kronecker δ).(1.13)

Then we recognize that, for dimSR = 2n,

span{e1, . . . , en} and span{en+1, . . . , e2n}
are each complete Lagrangian subspaces in SR, and moreover are related through
the canonical conjugation (1.13).

The existence of such canonical bases in SR shows that there is a unique (up
to symplectic isomorphism) real symplectic space of dimension 2n, and we often
denote this symplectic space as R2n. It is known that a Lagrangian subspace L of
R2n is complete if and only if dim L = n, see [AM], [MA], [MH].

These concepts originated in the Lagrangian classical dynamics of physical sys-
tems with n degrees of freedom, where the generalized coordinates consist of n
generalized positions, corresponding to {e1, . . . , en}, and n generalized momenta,
corresponding to {en+1, . . . , e2n}.
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It is easy to complexify a real symplectic space SR so as to construct a complex
symplectic space S by simply using complex vectors. More precisely, S consists
of all ordered pairs {X, Y } of vectors of SR, with the obvious algebraic operations
suggested by the familiar notation

Z = X + iY, for X, Y ∈ SR.

Namely, use componentwise vector addition in S; also multiplication by complex
scalars µ = α + iβ (for α, β ∈ R) in accord with

µZ = (α + iβ)(X + iY ) = (αX − βY ) + i(βX + αY ),(1.14)

and define the symplectic product in S by
[Z1 : Z2] = [X1 + iY1 : X2 + iY2]

= [X1 : X2]R + [Y1 : Y2]R + i{[Y1 : X2]R + [Y2 : X1]R}.(1.15)

Further, we note that there is an involutary bijection on S, called complex con-
jugation,

Z = X + iY → Z̄ = X − iY,(1.16)

so then
=

Z1 = Z1, µ1Z1 + µ2Z2 = µ̄1Z̄1 + µ̄2Z̄2, [Z1 : Z2] = [Z̄1 : Z̄2],(1.17)

and the properties (1.14), (1.15), (1.16), (1.17) hold for all vectors Z1 = X1 + iY1,
Z2 = X2 + iY2 in S, and complex scalars µ1, µ2 ∈ C. Moreover, the “real vectors”
of S, namely X + iO, defined as the invariant or fixed vectors under the complex
conjugation, constitute a subset S′

R ⊂ S which is itself a real symplectic space with
respect to the algebraic operations induced from S—using real vectors and real
scalars. Clearly S′

R contains all vectors

X = Re Z =
1
2
(Z + Z̄), Y = Im Z =

1
2i

(Z − Z̄),(1.18)

and it is immediate to verify that S′
R and SR are isomorphic real symplectic spaces

under the map

X + iO → X.(1.19)

A basis for S′
R (over the real scalars) serves also as a basis for S (over the

complex scalars). In particular, a canonical basis for S consists of a canonical basis
for S′

R—for which the corresponding skew-Hermitian matrix is given in (1.10).
It follows that

(real) dim S′
R = (complex) dim S

(if either is infinite, so is the other).
In any case the complex symplectic space S, with its distinctive complex con-

jugation, is the unique such space (up to isomorphism in the category of complex
symplectic spaces with complex conjugation) for which S′

R is isomorphic to SR

(as real symplectic spaces). In this sense we are entitled to refer to the unique
complexification S of the real symplectic space SR; see [EM] for further details.

As a final remark on this topic, note that the complex symplectic space C3 of
Example 1 above is not the complexification of any real symplectic space. Further-
more, as will be obvious from Theorem 1 below, there are many non-isomorphic
symplectic structures on each complex vector space CD for D ≥ 1, such that CD

then becomes a complex symplectic space which is not the complexification of any
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real symplectic space. In this sense, the category of complex symplectic spaces is a
non-trivial generalization of that of real symplectic spaces.

In the Appendix at the close of this paper we apply the theory of complex
symplectic spaces to the boundary value problems of general (formally self-adjoint)
linear differential operators of arbitrary orders n ≥ 1, with complex coefficients
defined on arbitrary real intervals (open, closed, half-closed, finite, or infinite).
This is accomplished by the famous result of Glazman-Krein-Naimark, the GKN-
theorem [EM], [EM1], [GZ], which specifies a natural one-to-one correspondence
between the set of all self-adjoint boundary conditions, and the set of all complete
Lagrangian subspaces of the endpoint complex symplectic space for the differential
operator, as explained in Example 3 below. A new and self-contained proof of the
GKN-theorem is presented in the Appendix.

However, in the next Example 3 we merely sketch the motivation for these ideas,
as illustrated by the classical Sturm-Liouville differential operator on a compact
interval—that is, by the most elementary and familiar “regular boundary value
problem”.

Example 3. Illustrations for regular boundary value problems: the GKN-theorem.

Consider the Sturm-Liouville second-order differential operator or expression

M [y](x) ≡ −(p(x)y′(x))′ + q(x)y(x), for all x ∈ I = [0, 1],(1.20)

where p, q : I → R are suitably smooth real coefficients, and p(x) is nowhere zero
on I (say, p ∈ AC(I), absolutely continuous, and q ∈ L1(I), Lebesgue integrable
on the compact interval I, in the usual notation). See [EM], [EZ] for further details
for this Example 3.

In the study of the boundary value problem for the differential expression M on
the compact real interval I (notably, a Lagrange-symmetric or formally self-adjoint
differential expression), we investigate the eigenvalues λ ∈ C for

M [y] ≡ −(py′)′ + qy = λy,(1.21)

where y is to be restricted (by boundary conditions at the endpoints of I) to some
specified linear submanifold D(T ) of functions:

D(T ) ⊆ Dmax(M) ⊂ L2(I),(1.22)

whereon M generates the unbounded operator T , that is,

T [y] = M [y] for y ∈ D(T ).(1.23)

Here L2(I) denotes the usual Hilbert space of all complex-valued square-integrable
functions (or appropriate equivalence classes of functions) on I, with the Hermitian
inner (or scalar) product:

〈f, g〉 =
∫ 1

0

f ḡdx, for f, g ∈ L2(I).(1.24)

Further, we define the maximal domain for M (as an operator in L2(I)),

Dmax(M) = {f : I → C | f, f ′ ∈ AC(I) and M [f ] ∈ L2(I)},(1.25)

and also the minimal domain for M ,

Dmin(M) = {f ∈ Dmax(M) | f(0) = f ′(0) = f(1) = f ′(1) = 0},(1.26)
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on which M generates the corresponding maximal and minimal operators, respec-
tively,

Tmax on D(Tmax) ≡ Dmax(M) and Tmin on D(Tmin) ≡ Dmin(M).(1.27)

It is known [DS], [EZ], [NA] that Tmin and Tmax are closed linear operators, with
dense domains in L2(I), and with adjoint operators:

T ∗
min = Tmax and T ∗

max = Tmin.(1.28)

We seek domains D(T ) ⊆ Dmax(M) on which M generates a self-adjoint operator
T , that is,

T ∗ = T on D(T ∗) = D(T ).(1.29)

For such self-adjoint operators T it follows from the basic properties of adjoints
that

Tmin ⊆ T ⊆ Tmax on Dmin(M) ⊆ D(T ) ⊆ Dmax(M).(1.30)

In this situation, the eigenvalues of T , and all its spectral properties, are of signal
importance in both pure and applied mathematics—especially with reference to
functional analysis. As mentioned earlier, the GKN-theorem, which is proved in
the Appendix, demonstrates a natural one-to-one correspondence between the set of
all self-adjoint operators T , as generated by M on D(T ), and the set of all complete
Lagrangian subspaces L of the endpoint complex symplectic space S for M on I.

We now define the complex vector space (endpoint space for M on I)

S := Dmax(M)/Dmin(M),(1.31)

the quotient or identification space, so each element f is a coset f = {f +Dmin(M)}
of some function f ∈ Dmax(M).

Note. The bold-face notation for f ,L and S will be used here (and in the Appendix)
to emphasize that these are cosets, or collections of cosets, in the identification space
of functions f ∈ Dmax(M), as in (1.31).

Then we define the symplectic product of f, g ∈ S by

[f : g] = [f + Dmin(M) : g + Dmin(M)] := [f : g],(1.32)

where the skew-Hermitian form [f : g] is defined for f, g ∈ Dmax(M) by

[f : g] = 〈M [f ], g〉 − 〈f, M [g]〉 = [−pf ′ḡ + fpḡ′]1x=0.(1.33)

We note that (see the Appendix and the monograph [EM])

Dmin(M) = {f ∈ Dmax(M) | [f : Dmax(M)] = 0},(1.34)

so Tmin is a symmetric (but not necessarily self-adjoint) operator; and, accordingly,
the symplectic form [:] is well-defined on S and also is appropriately non-degenerate
in the sense of Definition 1. Hence the endpoint space S is the desired complex
symplectic space. In this case, it is easily demonstrated that dim S = 4, see (1.26).

Further, we can construct the left and right endpoint spaces for M on I, respec-
tively, by

S− = {f ∈ S | f(1) = f ′(1) = 0}, S+ = {f ∈ S | f(0) = f ′(0) = 0}.(1.35)

These establish a “symplectic orthogonal” direct sum decomposition for S,

S = S− ⊕ S+, with [S− : S+] = 0,(1.36)
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providing useful methods for classifying the Lagrangian subspaces L ⊂ S, say:

strictly separated boundary conditions : dim L = dim L ∩ S− + dim L ∩ S+,

totally coupled boundary conditions : dim L ∩ S− = dim L ∩ S+ = 0.

(1.37)

From (1.26) we see that dim S = 4, so the complex symplectic space S is linearly
isomorphic to C4, and we can introduce corresponding coordinates in S by the
convenient choice

f = (f(0), (pf ′)(0), f(1), (pf ′)(1)),(1.38)

where f = {f+Dmin(M)}, for f ∈ Dmax(M), and we recall that p(0) 6= 0, p(1) 6= 0.
Next introduce the corresponding symplectic product in C4 using the skew-

Hermitian 4× 4 matrix

H =


0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

 ,(1.39)

so the symplectic product in S can be expressed in terms of these coordinates, see
(1.33) and (1.38), by

[f : g] = fHg∗.(1.40)

Thus the boundary value problem for the Sturm-Liouville expression M on
I = [0, 1] is reduced, via the GKN-theorem to the purely algebraic problem of
determining all the complete Lagrangian subspaces L in this complex symplectic
space C4. By Theorem 2 below, L ⊂ S is complete if and only if dim L = 2. For
example, use the customary unit basis vectors in C4,

e1 = (1, 0, 0, 0), e2 = (0, 1, 0, 0), e3 = (0, 0, 1, 0), and e4 = (0, 0, 0, 1),(1.41)

so f = f(0)e1 +(pf ′)(0)e2 + f(1)e3 +(pf ′)(1)e4, and define the Lagrangian 2-space

Ls = span{e2, e4},(1.42)

which is a complete Lagrangian subspace of C4, or of S by virtue of the symplectic
isomorphism of S with C4. Namely, Ls is the subspace specified by the null space
of the linear functionals f(0) and f(1), which we customarily denote by the two
boundary conditions

f(0) = 0, f(1) = 0 (strictly separated, see (1.37)).(1.43)

Next take f1, f2 ∈ Dmax(M) satisfying these boundary conditions, and such that
{f1, f2} constitutes a basis for Ls. Then the domain D(T ) of the corresponding
self-adjoint operator T in L2(I) is given by the GKN-theorem to be

D(T ) = c1f1 + c2f2 + Dmin(M),(1.44)

for arbitrary numbers c1, c2 ∈ C.
Similarly, another complete Lagrangian is defined by

Lc = span{e1 + e3, e2 + e4},(1.45)

given traditionally by the boundary conditions (compare notation of quasi-deriva-
tives, see [EV])

f(0) = f(1), p(0)f ′(0) = p(1)f ′(1) (totally coupled (1.37)).(1.46)
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For a general (formally self-adjoint i.e. Lagrange symmetric, see [DS], [ER]) lin-
ear differential expression M of arbitrary order n ≥ 1, with complex coefficients on
an arbitrary real interval J (finite or infinite), the maximal and minimal operators

Tmax on Dmax(M) and Tmin on Dmin(M),

and the endpoint complex symmplectic space

S = Dmax(M)/Dmin(M)(1.47)

with the symplectic form inherited from Dmax(M), as in (1.32),

[f : g] = [f : g] = 〈M [f ], g〉 − 〈f, M [g]〉,(1.48)

are all constructed just as in Example 3, but with obvious minor modifications; see
our Appendix. Moreover, dim S ≤ 2n (with equality always holding in the regular
case where J is compact) and by Theorem 2 we need only consider the case where
dim S = 2d is even.

Within this general framework the Glazman-Krein-Naimark (GKN) Theorem
obtains:

There exists a natural one-to-one correspondence between the set of all self-
adjoint operators

T on D(T ) ⊆ Dmax(M) ⊂ L2(J ),(1.49)

as generated by M on J , and the set of all complete Lagrangian subspaces L ⊂ S.
In particular, for each complete Lagrangian L ⊂ S with dimL = d, let f1, . . . , fd

in Dmax(M) be such that {f1, . . . , fd} constitutes a basis for L. Then the corre-
sponding domain D(T ) for the self-adjoint operator T is

D(T ) = c1f1 + · · ·+ cdfd + Dmin(M),(1.50)

where c1, . . . , cd are arbitrary complex numbers.

A precise statement of the GKN-theorem, and a new proof, are presented in the
Appendix to this paper.

2. Finite dimensional complex symplectic spaces,

and their Lagrangian subspaces

We consider the algebra of complex symplectic spaces S of finite dimension
D ≥ 0. While many of these results hold also for infinite dimensional complex
symplectic spaces, we defer that development to some later work.

The first theorem in this section analyses various symplectic invariants that char-
acterize S, up to symplectic isomorphism. The next theorem treats the positioning
of a Lagrangian subspace within S, and gives necessary and sufficient conditions
for the existence of complete Lagrangian subspaces. The final three theorems deal
with various “symplectic orthogonal decompositions” of S which arise in the appli-
cations to boundary value problems for linear differential operators (although the
methods are strictly algebraic).

Accordingly, take a complex symplectic space S of finite dimension D ≥ 1 (the
case D = 0 is the trivial space consisting of a single point, and will often be omitted
from the discussions). It is evident that in such a complex symplectic space S, with
symplectic form [:], each vector v ∈ S satisfies Re[v : v] = 0, and hence v (in fact,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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each 1-dimensional subspace µv for µ ∈ C, where [µv : µv] = µµ̄[v : v]) is of exactly
one of the following three types:

(i) positive, Im[v : v] > 0,

(ii) negative, Im[v : v] < 0,

(iii) neutral, Im[v : v] = 0, so [v : v] = 0.

(2.1)

A Lagrangian subspace L ⊂ S consists of neutral vectors, so that [u : v] = 0 for all
u, v ∈ L.

We shall use these ideas to obtain invariants for complex symplectic D-spaces,
that is, we shall consider CD with an arbitrary complex symplectic form [:].

Definition 1. In a complex symplectic space S with form [:], and finite dimension
D ≥ 1, define the following symplectic invariants of S:

p = max{complex dimension of linear subspaces whereon Im[v : v] ≥ 0},
q = max{complex dimension of linear subspaces whereon Im[v : v] ≤ 0},(2.2)

(p, q) is called the signature of S, consisting of the pair of integers: the positivity
index p ≥ 0 and the negativity index q ≥ 0.

In addition, we define the Lagrangian index ∆ of S,

∆ = max{complex dimension of Lagrangian subspaces of S},(2.3)

and also the excess of S,

Ex = p− q, excess of positivity over negativity indices of S.(2.4)

These symplectic invariants of S,

p, q, (p, q), Ex, ∆,

are each defined intrinsically in terms of the symplectic structure on S. But in
the next Theorem 1 we relate these invariants to the standard diagonal format
of the matrix H , which defines the corresponding symplectic form in CD, or in S
relative to some basis. The important situation, where D = 2∆, occurs in the GKN-
Theorem mentioned in the introductory Section 1, and so this case is emphasized in
Theorem 1 below and in applications to the theory of linear differential operators.

Theorem 1. Consider a complex symplectic space S, with symplectic form [:], and
finite dimension D ≥ 1. Choose any basis on S, with corresponding coordinates and
skew-Hermitian nonsingular matrix H determined by [:], and hence H is congruent
to some diagonal matrix of format diag{i, i, . . . , i,−i,−i, . . . ,−i}. Then conclude
that the symplectic invariants (2.2) of S are related to H by:

p = number of (+i) terms on the diagonal,

q = number of (−i) terms on the diagonal,
(2.5)

with 0 ≤ p, q ≤ D, so the diagonal format for H is unique. Also, see (2.3), (2.4),

D = p + q,

Ex = p− q,

∆ = min{p, q} =
1
2
(D − |Ex|) ≤ 1

2
D,

with equality if and only if Ex = 0.

(2.6)
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Furthermore, each of the following pairs of invariants is complete and thus charac-
terizes S, up to complex symplectic isomorphism:

(p, q) or (D, Ex) or (∆, Ex).

In particular, S is the complexification of the unique real symplectic space RD if
and only if any one of the following logically equivalent conditions obtains:

(i) D = 2p (so D is even),
(ii) p = q,
(iii) Ex = 0,
(iv) D = 2∆,
(v) there exist bases in S for which the skew-Hermitian nonsingular

matrix H of the symplectic form becomes

(2.7)

K =
(

0 Ip

−Ip 0

)
(so p = q, and the basis is thereby canonical,

see Section 1 (1.10) and Example 2),

or equally well

K̂ =
(

iIp 0
0 −iIp

)
(so p = q),

or equally well

J = ipdiag (Jp,−Jp) with Jp =


0 0 . . . 0 (−1)p

0 0 . . . · 0
... · · ...
0 (−1)2 0 0

(−1) 0 · · · 0 0

 (so p = q).

Proof. The complex symplectic space S is linearly isomorphic with CD, and we can
choose a basis and corresponding complex coordinates in S so that the symplectic
product of vectors u, v ∈ S is computed by

[u : v] = (u1, . . . , uD)K̂(v1, . . . , vD)∗,

where

K̂ = diag {i, i, . . . , i,−i,−i, . . . ,−i}(2.8)

with π ≥ 0 terms (+i) and ν ≥ 0 terms (−i). Of course, some such diagonal matrix
K̂ is congruent to H , and we seek to prove that

p = π and q = ν.

Consider the linear subspace P+ ⊂ S spanned by the first π vectors of the basis
for S, so dim P+ = π. But Im[v : v] ≥ 0 for all v ∈ P+, so p ≥ π. We shall show
that for each linear subspace P ⊂ S whereon Im[v : v] ≥ 0 we have dim P ≤ π,
which will demonstrate that p = π.

Consider the subspace N− ⊂ S spanned by the last ν vectors of the basis for S,
so dim N− = ν. But note that Im[v : v] < 0 for every non-zero vector v ∈ N−,
and hence that P ∩ N− = {0}. This implies that dim P + ν ≤ D, and hence
dim P ≤ D − ν = π.
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We have proved that p = π, and a similar argument shows that q = ν, for each
such diagonal matrix K̂ congruent to the skew-Hermitian nonsingular matrix H .
In this sense the diagonal format K̂ for matrices expressing the symplectic form of
S is unique (except possibly for the ordering of the diagonal elements), since p and
q are symplectic invariants of S, as in (2.2).

It is now clear that the signature (p, q) determines S with [:], up to symplectic
isomorphism. Hence the pair (D, Ex), where D = p + q and Ex = p − q, also
characterizes this complex symplectic space.

We next examine the symplectic invariant ∆ (see (2.3)), and relate it to the
signature (p, q) of the complex symplectic space S. For definiteness take the case
p ≥ q, so the excess Ex ≥ 0. Choose a basis for S (merely a rearrangement of the
previous basis) so that the matrix of the symplectic form for S becomesiIq 0 0

0 −iIq 0
0 0 iIEx

 .(2.9)

That is, S is then the direct sum of three subspaces of dimensions q, q, and Ex
(omit iIEx if Ex = 0). Let this chosen basis be indicated by q + q + Ex vectors

{e1, e2, . . . , eq, f1, f2, . . . , f q, g1, . . . , gEx},
where {e1, . . . , eq, f1, . . . , f q} span a symplectic subspace of S—which we denote
by C2q—having dimension 2q and excess zero.

Within this symplectic subspace C2q define the Lagrangian subspace L1,

L1 = span{e1 + f1, e2 + f2, . . . , eq + f q}.
Since dim L1 = q we conclude that ∆ ≥ q.

Now note that there are p = q + Ex independent vectors in S, which span P+

whereon Im[v : v] > 0 (except for v = 0). Thus each Lagrangian subspace L ⊂ S
can meet P+ only at the origin. Hence dim L + p ≤ D, so dim L ≤ D − p = q.
Therefore ∆ = q.

When q ≥ p a similar argument applies to prove ∆ = p. Therefore, in all cases

∆ = min{p, q}.
The remaining relation

∆ = (D − |Ex|)/2 ≤ D/2

follows directly from an inspection of the diagonal matrix K̂ of the format (2.8) or
(2.9).

Now consider the pair of invariants (∆, Ex) for S. But ∆ = min{p, q} and
Ex = p−q together determine the signature (p, q). For if Ex ≥ 0, then p = Ex+∆,
q = ∆; but if Ex < 0, then p = ∆, q = |Ex|+∆. Hence the pair (∆, Ex) determines
the complex symplectic space S, up to symplectic isomorphism.

Finally consider the case where S is symplectically isomorphic to C2p, assumed
to be the complexification of R2p. In this situation D = 2p, so p = q, Ex = 0, and
hence D = 2∆. This follows because there is a real canonical basis for R2p, relative
to which the real symplectic form is defined by the real skew-symmetric matrix K
of (2.7 (v)),

K =
(

0 Ip

−Ip 0

)
.(2.10)
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But this real canonical basis for R2p serves equally well as a canonical basis (over C)
for the complex symplectic space C2p. Further, the corresponding skew-Hermitian
nonsingular matrix of the symplectic form remains K. Moreover, in the complex
linear space C2p the matrix K is congruent to the skew-Hermitian matrix K̂ of
(2.7(v)) with p = q. Only the equivalence of the condition (2.7(v)), involving the
matrix

J = ipdiag {Jp,−Jp},
may cause any concern. However note that when p is even, J is a real skew-
symmetric non-singular matrix, and so J is congruent (over R) to the matrix K.
Also when p is odd, then (iJ) is a real symmetric matrix with signature (p, p), so
J is skew-Hermitian with p = q and Ex = 0. Hence in either case J is congruent
(over C) to the matrix K of (2.7(v)). Thus we have established that the identities
(2.7) hold for C2p, assuming it is the complexification of the real symplectic space
R2p.

Conversely, consider a complex symplectic space S of dimension D = p+ q = 2p,
see (2.7(i)). Then the remaining identities of (2.7) hold; namely, p = q, Ex =
0, D = 2∆, as well as the existence of bases of S so as to yield K (2.7(v)), and
hence K̂ or J . In all cases it is easy to show that any one of the equalities of (2.7)
implies all the remaining ones.

So, in this case, fix a canonical basis for S, relative to which the skew-symmetric
matrix is K of (2.10), and specify these basis vectors as real. Then real linear
combinations of these real basis vectors yield the set S′

R ⊂ S of real vectors, and
these determine the corresponding complex conjugation in S. Moreover S′

R is a
real symplectic space isomorphic to R2p. But S is the complexification of S′

R, and
so of R2p, as required.

Definition 2. Let S be a complex symplectic space with symplectic form [:]. Then
linear subspaces (or submanifolds) S− and S+ are symplectic ortho-complements in
S, written as

S = S− ⊕ S+,(2.11)

in case

(i) S = span{S−, S+},
(ii) [S− : S+] = 0.

In this case S− ∩ S+ = 0, so S is the direct sum of S− and S+, that is, each
vector u ∈ S has a unique decomposition u = u−+u+ with u− ∈ S− and u+ ∈ S+.
Moreover, [u− : u+] = 0 for all u− ∈ S− and u+ ∈ S+. From this it follows that

S− = {u ∈ S | [u : S+] = 0} and S+ = {u ∈ S | [u : S−] = 0}.
Furthermore, for such a symplectic orthogonal direct sum decomposition S =

S− ⊕ S+ (satisfying conditions (i) and (ii)—and we often also write [S− : S+] = 0
explicitly for additional emphasis) each of S− and S+ is itself a complex symplectic
space, since the symplectic form induced from [:] is non-degenerate on S− and on
S+.

The next two corollaries of Theorem 1 relate the symplectic invariants of the two
symplectic ortho-complements, as in Definition 2, to the invariants of S.
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Corollary 1. Consider a complex symplectic space S with symplectic form [:], and
finite dimension D ≥ 1. Then there exists a direct sum representation

S = S2∆ ⊕ S|Ex| with [S2∆ : S|Ex|] = 0.(2.12)

The complex symplectic subspace S2∆ has dimension 2∆ and excess zero, and the
complex symplectic subspace S|Ex| has dimension |Ex| and excess p − q (in terms
of the invariants of S). Hence S2∆ is symplectically isomorphic to the classical
complexification of R2∆, and S|Ex| contains no non-zero neutral vectors.

If for S the invariant Ex = 0, then S = S2∆; but if ∆ = 0, then S = S|Ex|.
The subspaces S2∆ and S|Ex| are not unique in S, but are determined only up

to symplectic isomorphism.

Proof. This result follows immediately from the diagonal format (2.9) of the skew-
Hermitian matrix

diag{iI∆,−iI∆,±iI|Ex|}(2.13)

(use +iI|Ex| when Ex > 0, and −iI|Ex| when Ex < 0, and omit this term when
Ex = 0).

The conclusion of Corollary 1 asserts that each complex symplectic space CD

is the direct sum of a complexified R2∆ and a trivial C|Ex| which has no nonzero
neutral vectors. We can then choose a relevant basis for CD = C2∆ ⊕ C|Ex|, as
indicated by the notation

{e1, e2, . . . , e∆, e∆+1, . . . , e2∆, ε1, . . . , ε|Ex|}.(2.14)

Here the first 2∆ vectors {e1, . . . , e∆, e∆+1, . . . , e2∆} are a canonical basis for C2∆,
and the last |Ex| vectors {ε1, . . . , ε|Ex|} are a diagonalizing basis for C|Ex|.

Now let us consider a D-dimensional complex symplectic space S with [:], and
take an arbitrary orthogonal direct sum decomposition into symplectic subspaces
S− and S+ as in Definition 2,

S = S− ⊕ S+ with [S− : S+] = 0.(2.15)

In this situation, there are several relations among the basic invariants, defined in
Definition 1 above, namely:

D, p, q, Ex and ∆ for S,(2.16)

and the corresponding invariants

D±, p±, q±, Ex± and ∆±, for S±, respectively.(2.17)

In the next corollary we list some of these relations, which are immediately apparent
from an inspection of the diagonalized format of the corresponding skew-Hermitian
matrices.

Corollary 2. Let the complex symplectic space S, with symplectic form [:] and
finite dimension D ≥ 1, have a direct sum decomposition as in Definition 2,

S = S− ⊕ S+ with [S− : S+] = 0.

Then the symplectic invariants for S (2.16) and for the symplectic subspaces S±
(2.17) satisfy the following conditions:

D = D− + D+, p = p− + p+, q = q− + q+

Ex = Ex− + Ex+
(2.18)
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and

∆ ≥ ∆− + ∆+,

with equality holding if and only if (Ex−)(Ex+) ≥ 0.
Furthermore, Ex = 0 if and only if (Ex−) = −(Ex+), and in this case

∆ = ∆− + ∆+ + |Ex±|,(2.19)

(note that when Ex = 0, |Ex−| = |Ex+|, which we often denote by |Ex±|). If
Ex = 0, then dim S− = dim S+ if and only if ∆− = ∆+.

Proof. Take bases for S− and for S+, so that the skew-Hermitian matrices of the
corresponding symplectic forms are K̂− and K̂+, respectively, of the diagonal format
(2.8). Then the union of these bases constitutes a basis for S with the skew-
Hermitian D ×D matrix

K̂ = diag{K̂−, K̂+}.

Then direct inspection of K̂, and elementary arithmetic, yield the required con-
clusions. For instance, assume Ex = 0 for S, and we prove the final assertion of
the corollary.

Assume dim S− = dim S+, and show that ∆− = ∆+. Without loss of generality
we can consider the case

p+ ≥ q+ = ∆+ and q− ≥ p− = ∆−.

Then, since dim S+ = dim S− and Ex+ = −Ex−,

p+ + q+ = p− + q− and p+ − q+ = q− − p−.

Hence

p− = q+, so ∆− = ∆+.

Conversely, assume ∆− = ∆+. Again take p+ ≥ q+ = ∆+ and q− ≥ p− = ∆−.
But, since Ex+ = −Ex− and p+ − q+ = q− − p−, so p+ = q−. Therefore

p+ + q+ = q− + p− so dim S+ = dim S−.

Examples of the various cases mentioned in Corollaries 1 and 2 are easily con-
structed in terms of the corresponding matrices K̂±, as introduced in Theorem 1
(2.8),(2.9).

The next Lemma 1 displays the close inter-relations between the symplectic
products on S, a given finite dimensional complex symplectic space, and the Her-
mitian inner products on certain ortho-complementary subspaces N− and P+. The
subsequent Lemma 2, and its corollary, use these constructs to demonstrate that
the unique symplectic invariant for Lagrangian subspaces L ⊂ S is the dimension
of L. These results make elementary the proof of the important Theorem 2 on the
existence of complete Lagrangians.

Lemma 1. Consider a complex symplectic space S, with symplectic form [:], and
finite dimension D ≥ 1.
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Select a basis for S so that the corresponding skew-Hermitian D × D matrix
of the symplectic form becomes diag{−iIq, iIp}, with the corresponding direct sum
decomposition

S = N− ⊕ P+ with [N− : P+] = 0.(2.20)

Here N− is spanned by the first q vectors of the chosen basis, and P+ by the last p
vectors.

For each vector u = (u1, . . . , uq, uq+1, . . . , uD) ∈ S let u− = (u1, . . . , uq) and
u+ = (uq+1, . . . , uD) be the projections of u on N− and P+, respectively, (depending
on the chosen basis in S). Denote this decomposition u = (u−, u+), or equally well,
u = u− + u+ as vectors in S.

Further, introduce the Hermitian inner products,

〈u−, v−〉− = u1v̄1 + · · ·+ uq v̄q and 〈u+, v+〉+ = uq+1v̄q+1 + · · ·+ uDv̄D,(2.21)

in N− and P+, respectively, as determined by the vectors

u = (u−, u+) = u− + u+ and v = (v−, v+) = v− + v+ in S.(2.22)

While the subspaces N− and P+ are not unique in S, once N− is fixed then so is
P+ and also the unitary or Hermitian metrics on both.

Then, for vectors u, v ∈ S,

[u : v] = −i{〈u−, v−〉− − 〈u+, v+〉+}.(2.23)

In particular, note that

[u : v] = 0 if and only if 〈u−, v−〉− = 〈u+, v+〉+(2.24)

and also

[v : v] = 0 if and only if ‖v−‖− = ‖v+‖+,(2.25)

in terms of the norms ‖ · ‖− and ‖ · ‖+ on the Hermitian metric spaces N− and P+,
respectively.

Proof. The formula (2.23) is obvious, since

[u : v] = (u−, u+)
(−iIq 0

0 iIp

)
(v−, v+)∗,

so

[u : v] = −i{〈u−, v−〉− − 〈u+, v+〉+},
as required.

Lemma 2. Consider a complex symplectic space S with symplectic form [:], and
finite dimension D ≥ 1. Let L̂ be a Lagrangian subspace of dimension δ ≤ ∆, where
∆ = 1

2 (D − |Ex|), for invariants D = p + q, Ex = p− q as in (2.6).
Then there exists a direct sum decomposition

S = S2∆ ⊕ S|Ex| with [S2∆ : S|Ex|] = 0,(2.26)

with terms having dimension 2∆ and |Ex| and excess of zero and p−q, respectively,
as in Corollary 1 (2.12), together with a canonical basis {ê1, . . . , ê∆, ê∆+1, . . . , ê2∆}
for the symplectic space S2∆, such that

L̂ = span{ê1, ê2, . . . , êδ}.(2.27)

Thus L̂ lies within the Lagrangian ∆-space span{ê1, . . . , ê∆} ⊂ S2∆.
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If we supplement the canonical basis for S2∆ by a diagonalizing basis for S|Ex| (as
in (2.14)), the symplectic products in S are computed via the D×D skew-Hermitian
matrix (compare (2.10), (2.13) for conventions when Ex ≥ 0 or Ex < 0)

H =

 0 I∆ 0
−I∆ 0 0

0 0 ±iI|Ex|

 .(2.28)

Proof. Without loss of generality, we need treat only the case p ≥ q = ∆, so
Ex = p− q ≥ 0. We choose a basis in S so the skew-Hermitian D×D matrix of the
symplectic form is diag{−iIq, iIp}, just as in Lemma 1. Then the corresponding
direct sum decomposition for S is

S = N− ⊕ P+ with [N− : P+] = 0,(2.29)

and each vector u ∈ S has the decomposition

u = (u−, u+) or u = u− + u+, with u− ∈ N−, u+ ∈ P+.

Also introduce the Hermitian inner products 〈·, ·〉− on N− and 〈·, ·〉+ on P+, as in
(2.21).

Now take any basis {e1, . . . , eδ} for the Lagrangian δ-space L̂ ⊂ S (with 1 ≤ δ ≤
∆), and consider the corresponding decompositions

ej = ej
− + ej

+, for j = 1, . . . , δ.(2.30)

Then L̂− = span{e1−, . . . , eδ−} ⊂ N− and L̂+ = span{e1
+, . . . , eδ

+} ⊂ P+ each have
dimension δ, because otherwise there would exist a nonzero vector w = (w−, w+) ∈
L̂ with either w− = 0 or w+ = 0. But this is impossible since w ∈ L̂ is a neutral
vector, that is, [w : w] = 0, so ‖w−‖− = ‖w+‖+ as in (2.25).

Thus both {e1
−, . . . , eδ

−} and {e1
+, . . . , eδ

+} span δ-subspaces in N− and P+, re-
spectively. Hence, without modifying the notation, we assume that {e1

−, . . . , eδ
−}

are orthonormal in N−, that is, 〈ej
−, ek

−〉− = δjk, and so by (2.24) we also have
〈ej

+, ek
+〉+ = δjk for 1 ≤ j, k ≤ δ.

Now suppose δ < ∆. In this case choose a vector eδ+1 = (eδ+1
− , eδ+1

+ ) ∈ S, with
‖eδ+1

− ‖− = ‖eδ+1
+ ‖+ = 1, and further 〈eδ+1

± , ej
±〉± = 0 for all j = 1, . . . , δ. Thus eδ+1

is a non-zero neutral vector, that is, [eδ+1 : eδ+1] = 0, which is linearly independent
of L̂. But [L̂ : eδ+1] = 0, by (2.24), so we can obtain a Lagrangian space defined
by span{L̂, eδ+1} with a basis {e1, e2, . . . , eδ, eδ+1}. We continue this process of
augmentation of the basis of L̂ until we construct a Lagrangian ∆-space

L = span{e1, e2, . . . , eδ, eδ+1, . . . , e∆}(2.31)

with ej = ej
− + ej

+ satisfying

〈ej
−, ek

−〉− = δjk, 〈ej
+, ek

+〉+ = δjk, for 1 ≤ j, k ≤ ∆.(2.32)

Next consider the subspaces C1 ⊂ S and C2 ⊂ S as defined by

C1 = span{e1
−, e2

−, . . . , e∆
−, e1

+, e2
+, . . . , e∆

+},(2.33)

and within the Hermitian metric space P+ define

C2 = orthocomplement of span{e1
+, . . . , e∆

+} in P+.(2.34)
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Since span{e1
−, e2

−, . . . , e∆
−} = N− and [span{e1

+, . . . , e∆
+} : C2] = 0, we see that

S = C1 ⊕ C2 with [C1 : C2] = 0.

Thus C1 and C2 are symplectic subspaces of S, with dimensions specified by 2∆
and p− q, respectively, and we denote these spaces by

C1 = S2∆ and C2 = S|Ex|.

Since S2∆ contains the Lagrangian ∆-space L, and dim S2∆ = 2∆, it follows that
S2∆ must be isomorphic to the complex symplectic space C2∆ which has excess
zero; and hence S|Ex| must have excess p− q, and, as asserted in the theorem,

S = S2∆ ⊕ S|Ex| with [S2∆ : S|Ex|] = 0.

Finally, we shall define a new basis in C1 = S2∆ by

{ê1, . . . ê∆, ê∆+1, . . . , ê2∆}
with

êj =
1√
2
(ej
− + ej

+) =
1√
2
ej(2.35)

and

ê∆+j =
1√
2i

(ej
− − ej

+), for j = 1, . . . , ∆.

Because

ej
− =

1√
2
(êj + iê∆+j), ej

+ =
1√
2
(êj − iê∆+j),(2.36)

we see that the 2∆ vectors {ê1, . . . , ê∆, ê∆+1, . . . , ê2∆} are linearly independent and
span S2∆.

Moreover

L̂ = span{e1, e2, . . . , eδ} = span{ê1, ê2, . . . êδ},
and it is easy to use (2.23), (2.32), (2.35) to compute

[êj : êk] = 0, [ê∆+j : ê∆+k] = 0(2.37)

and

[êj : ê∆+k] = δjk, for 1 ≤ j, k ≤ ∆.

Hence {ê1, . . . , ê∆, ê∆+1, . . . , ê2∆} is a canonical basis for S2∆, as required.

Corollary 1. Consider a complex sympletic space S with symplectic form [:], and
with finite dimension D ≥ 1. Let L1 and L2 be two Lagrangian δ-subspaces of S
for 1 ≤ δ ≤ ∆. Then there exists a symplectic automorphism of S which carries L1

onto L2.

Proof. There exists a decomposition S = S2∆ ⊕ S|Ex|, with a corresponding basis
(2.14), (2.27), as in Lemma 2, so there is a canonical basis {ê1, . . . , ê∆, ê∆+1, . . . , ê2∆}
for S2∆ with L1 given by span{ê1, . . . , êδ}. A similar result holds for L2; and the
symplectic automorphism of S, defined by the two specified bases, will carry L1

onto L2.
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Theorem 2. Let S be a complex symplectic space, with symplectic form [:] and
finite dimension D ≥ 1. Then there exists a complete Lagrangian subspace of S if
and only if S has excess Ex = 0.

In case Ex = 0 then dim S = D = 2∆ is even, and furthermore a Lagrangian
subspace L is then complete if and only if dim L = ∆.

Proof. Assume Ex = 0 so that S is the complexification of R2∆. Then there
exists a canonical basis (see (2.7)) {e1, . . . , e∆, e∆+1, . . . , e2∆} for S such that the
corresponding skew-Hermitian matrix of the symplectic products is(

0 I∆

−I∆ 0

)
.

In this case

L = span{e1, . . . , e∆}
is a complete Lagrangian subspace of S. For suppose u = c1e

1 + · · · + c∆e∆+
c∆+1e

∆+1 + · · ·+c2∆e2∆ satisfies [u : L] = 0. Then because of the canonical duality
[ej : e∆+k] = δjk for 1 ≤ j, k ≤ ∆, we conclude that c∆+1 = c∆+2 = · · · = c2∆ = 0
and so u ∈ L.

Also in case Ex = 0 we know, from Lemma 2 above, that for each Lagrangian
L̂ of dimension δ ≤ ∆ there exists a canonical basis {ê1, . . . , ê∆, ê∆+1, . . . , ê2∆}
such that L̂ = span{ê1, . . . , êδ}. If δ = ∆ then, as in the previous argument, L̂ is
complete. If δ < ∆, then L̂ is not complete, since [êδ+1 : L̂] = 0 yet êδ+1 6∈ L̂.
(Clearly dim L̂ cannot exceed ∆, according to (2.6).) Hence L̂ is complete if and
only if dim L̂ = ∆.

Finally, consider the case where S has Ex 6= 0, say Ex = p − q > 0. Then
∆ = min{p, q} = q. Again by Lemma 2, for each Lagrangian subspace L̂ ⊂ S there
exists a basis of S (see (2.14)), {ê1, . . . , ê2∆, ε1, . . . , εEx} such that the corresponding
skew-Hermitian matrix is  0 I∆ 0

−I∆ 0 0
0 0 iIEx

 .

Moreover, L̂ ⊂ span{ê1, . . . , ê∆}. But then the vector ε1 satisfies [ε1 : L̂] = 0,
and yet ε1 6∈ L̂. Therefore L̂ is not a complete Lagrangian subspace of S, and the
theorem is proved.

The final three theorems of this section all deal with complex symplectic spaces
S having finite dimension D ≥ 1 and excess Ex = 0. These results are directly
applicable to the study of self-adjoint boundary value problems, although the pre-
sentation here will be entirely algebraic.

The next Theorem 3 relates the investigations of von Neumann [AG], [DS], [NA]
on isometries of unitary spaces with our treatment of complete Lagrangian sub-
spaces of a complex symplectic space. The notation and special formulations follow
the developments in Lemma 1 of Theorem 2.

Theorem 3. Let S be a complex symplectic space, with symplectic form [:], having
finite dimension D ≥ 1 and excess Ex = 0.

Fix a symplectic orthogonal decomposition

S = N− ⊕ P+, with [N− : P+] = 0,(2.38)
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such that

〈u−, v−〉− = i[u− : v−] on N−, and 〈u+, v+〉+ = −i[u+ : v+] on P+(2.39)

are Hermitian inner products on the subspaces N− and P+, respectively. Because
Ex = 0 D = 2∆, then dim N− = dim P+ = ∆ and such decompositions of S exist,
see Lemma 1 of Theorem 2 above.

Then the following formula holds for all u, v ∈ S:

[u : v] = −i〈u−, v−〉− + i〈u+, v+〉+.(2.40)

Here u = u− + u+ (also denoted by the ordered pair u = (u−, u+)) is the unique
decomposition of u ∈ S with u− ∈ N−, u+ ∈ P+, and similarly for v ∈ S.

In this situation there exists a natural bijection between the set {U} of all uni-
tary isometries of N− onto P+ as Hermitian metric spaces, and the set {L} of all
complete Lagrangian subspaces of S. Namely, for each unitary surjection

U : N− → P+,(2.41)

the corresponding complete Lagrangian subspace of S is

L = graph U,(2.42)

that is, u = u− + u+ ∈ L if and only if u+ = Uu−, which can also be written

u = (u−, u+) = (u−, Uu−) ∈ graph U.

Proof. The formula (2.40) follows easily, since for u, v ∈ S

[u : v] = [u− + u+ : v− + v+] = [u− : v−] + [u+ : v+] = −i〈u−, v−〉− + i〈u+, v+〉+,

and consequently we have the useful results (see (2.24), (2.25))

[u : v] = 0 if and only if 〈u−, v−〉− = 〈u+, v+〉+.(2.43)

Let U : N− → P+ be a unitary map of N− onto P+, as Hermitian metric spaces
of dimension ∆. Now define the set L ⊂ S by

L = {u = u− + u+ ∈ S | u+ = Uu−} = graph U.(2.44)

Clearly L is a linear subspace of S, since U is linear. Then for vectors u, v ∈ L we
compute

[u : v] = i{〈u+, v+〉+ − 〈u−, v−〉−} = 0,

since 〈u+, v+〉+ = 〈Uu−, Uv−〉+ = 〈u−, v−〉−. Hence L is a Lagrangian subspace
of the complex symplectic space S, and we next verify that L is complete.

Let {e1−, . . . , e∆−} be an orthonormal basis of the Hermitian metric space N−,
so then {e1

+, . . . , e∆
+} is an orthonormal basis for P+, where we define ej

+ = Uej
−

for j = 1, . . . , ∆. Suppose f = f− + f+ ∈ S satisfies [f : L] = 0. Then each
ej = ej

− + ej
+ ∈ L, so

[f : ej
− + ej

+] = [f− : ej
−] + [f+ : ej

+]

= −i〈f−, ej
−〉− + i〈f+, ej

+〉+ = 0.

Thus

〈f−, ej
−〉− = 〈f+, ej

+〉+ for j = 1, . . . , ∆.

But

〈f−, ej
−〉− = 〈Uf−, ej

+〉+ ,
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so we conclude that f+ = Uf−. Hence f ∈ L, and so L is a complete Lagrangian
space.

On the other hand let L now be a given complete Lagrangian subspace of S, so
dim L = ∆. We seek to construct an appropriate unitary isometry U of N− onto
P+, as Hermitian metric spaces.

Take a basis {e1, . . . , e∆} for L and write ej = ej
−+ej

+ for j = 1, . . . , ∆, as usual.
Then {e1

−, . . . , e∆
−} must be independent and so a basis for N−. Because suppose

these vectors were dependent in N− and some non-trivial linear combination were
zero, say w− = c1e

1−+ · · ·+ c∆e∆− = 0 for complex constants c1, . . . , c∆ not all zero.
Then with these same constants define w = c1e

1+· · ·+c∆e∆ ∈ L; so [w : w] = 0 and
‖w−‖− = ‖w+‖+ = 0 (see (2.43)). This calculation w = w− + w+ = 0 contradicts
the independence of the basis {e1, . . . , e∆} of L, so we conclude that {e1

−, . . . , e∆
−}

is a basis for N−, and similarly {e1
+, . . . , e∆

+} is a basis for P+.
In fact, upon re-selecting a suitable linear combination of the vectors e1, . . . , e∆

we obtain a new basis for L (without changing notation) so that we can assume
{e1, . . . , e∆} has the property that {e1−, . . . , e∆−} is an orthonormal basis for the
Hermitian metric space N−. However, 〈ej

−, ek
−〉− = 〈ej

+, ek
+〉+ = δjk for 1 ≤ j, k ≤

∆ (see (2.43)), and hence {e1
+, . . . , e∆

+} is an orthonormal basis for the Hermitian
metric space P+.

Now define the required unitary surjection U : N− → P+ by

U : ej
− → Uej

− = ej
+ for 1, . . . , ∆.

We claim that L = graph U . Indeed, let u = u− + u+ ∈ L, that is, [u : L] = 0, so
then 〈u−, ej

−〉− = 〈u+, ej
+〉+. But since U is unitary 〈u−, ej

−〉− = 〈Uu−, Uej
−〉+ =

〈Uu−, ej
+〉+. This proves that Uu− = u+, so u ∈ graph U , and thus L ⊂ graph U .

But L and graph U are each ∆-dimensional subspaces of S, and therefore L =
graph U .

Finally, the surjective map {U} → {L} defined by L = graph U is injective,
because two different unitary maps of N− into P+ must have different graphs.

The next Theorem 4, called the Balanced intersection principle, is one of the
major results of our investigation; and it imposes restrictions on the kinds of
boundary conditions that can be relevant in the applications to self-adjoint bound-
ary value problems [EI], [EM]. However, since this result is purely algebraic, we
present it here without references to the function spaces D(Tmax), D(Tmin), and
S = D(Tmax)/D(Tmin) as introduced in Example 3 of Section 1, see (1.27), (1.31)
above, or more elaborately in the Appendix.

Theorem 4 (Balanced intersection principle). Let S be a complex symplectic space
with symplectic form [:], having a finite dimension D ≥ 1, and a prescribed direct
sum decomposition (as in (2.11)),

S = S− ⊕ S+ with [S− : S+] = 0.

Assume that the symplectic invariants of S satisfy

D = 2∆, Ex = 0,

and denote the corresponding invariants of S± by ∆± and Ex±, respectively (see
(2.16) and (2.17)).
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Then, for each complete Lagrangian space L in S, the balanced intersection prin-
ciple holds:

0 ≤ ∆− − dim L ∩ S− = ∆+ − dim L ∩ S+ ≤ min{∆−, ∆+}.(2.45)

Proof. Without loss of generality we shall assume that ∆+ ≥ ∆− ≥ 0, so

min{∆−, ∆+} = ∆−.

Also it is clear that Ex+ = −Ex−, since Ex = 0 for S.
First we present some preliminary observations and calculations, leading to the

inequalities (2.50) below, in order to simplify the main arguments of the proof of
this theorem. We also emphasize that a complete Lagrangian L in S must have
dim L = ∆, and, conversely, each Lagrangian ∆-space is a complete Lagrangian.

Since L∩S− is a Lagrangian subspace of the symplectic space S−, it follows that
0 ≤ dim L ∩ S− ≤ ∆−, and a similar result holds for L ∩ S+ in the symplectic
space S+, namely, 0 ≤ dim L ∩ S+ ≤ ∆+. Further we note that there are ∆ =
∆− + ∆+ + |Ex+| independent vectors in L (see (2.19)), and we shall next proceed
to select bases in S− and in S+, adapted to the Lagrangian subspaces L ∩ S− and
L ∩ S+, respectively.

To accomplish this construction, take a basis for S−, as in (2.14),

{e1
−, e2

−, . . . , e
∆−
− e

∆−+1
− , . . . , e

2∆−
− , ε1−, ε2−, . . . , ε

|Ex−|
− },(2.46)

where the first 2∆− vectors constitute a canonical basis for a classical (2∆−)-
subspace of S−, and the last |Ex−| vectors span a subspace of S− that contains no
non-zero neutral vectors (see Corollary 1 of Theorem 1, and Lemma 2 of Theorem
2 above). In fact, we require that the initial sequence, consisting of |dim L ∩ S−|
vectors from {e1

−, . . . , e
∆−
− }, is a basis for L∩S−. A similar basis is also constructed

for S+, similarly adapted to L ∩ S+.
In terms of these bases for S− and S+ we can expand each of the ∆ vectors f1,

f2, . . . , f∆ of a basis for L, namely

fs = αs
1e

1
− + αs

2e
2
− + · · ·+ αs

∆−e
∆−
− + αs

∆−+1e
∆−+1
− + · · ·+ αs

2∆−e
2∆−
−

+ γs
1ε

1
− + · · ·+ γs

|Ex−|ε
|Ex−|
−

+ similar terms from S+, for s = 1, 2, . . . , ∆.

(2.47)

We denote by f s (mod S+) the projection of the vector fs ∈ S into S− (merely
delete all the terms from S+ in the expansion (2.47)), for s = 1, 2, . . . , ∆. Now
observe that all f s(mod S+) span a subspace of S− which is just the projection
of L into S−, and we denote this by L (mod S+). Clearly L (mod S+) is a linear
subspace with dimension ≤ dim S− = 2∆− + |Ex−|.

By elementary linear algebra, L must contain (at least) ∆ − (2∆− + |Ex−|) =
∆+ −∆− independent vectors that lie within S+. Since this type of argument will
be used several times in this proof, we present the calculations in full detail this
first time. That is, consider the matrix of complex numbersα1

1 α1
2 . . . α1

2∆− γ1
1 . . . γ1

|Ex−|
...

α∆
1 α∆

2 . . . α∆
2∆− γ∆

1 . . . γ∆
|Ex−|

 ,(2.48)
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with ∆ rows, but with rank ≤ dim L (mod S+). Thus the rank of this matrix is
≤ dim S−, and

dim S− ≤ 2∆− + |Ex−| ≤ ∆− + ∆+ + |Ex−| = ∆.(2.49)

Hence elementary (nonsingular) row transformations in (2.48) lead to a matrix with
(at least) the first ∆ − (2∆− + |Ex−|) = ∆+ −∆− rows consisting of zeros. The
same elementary row transformations applied to the full matrix of all coefficients
of {f s}, as in (2.47), then yield (at least) ∆+−∆− independent vectors in L which
lie within S+, since they have zero projections in S−.

Thus we have established that

dim L ∩ S+ ≥ ∆+ −∆− ≥ 0,

and hence the preliminary inequalities (both terms within [0, min{∆−, ∆+}])
0 ≤ ∆− − dim L ∩ S−, ∆+ − dim L ∩ S+ ≤ min {∆−, ∆+}(2.50)

hold.
As a final preliminary, before starting the main inductive argument of the proof,

we resolve the extreme case ∆− = 0. Here dim L ∩ S− = ∆− = 0. Also, by (2.50),

∆+ − dim L ∩ S+ ≤ ∆− = 0, so dim L ∩ S+ = ∆+.

Therefore, in the case ∆− = 0, we have shown that

0 = ∆− − dim L ∩ S− = ∆+ − dim L ∩ S+ = ∆−,

and so the conclusion of Theorem 4 holds. Of course, the same result holds if
∆+ = 0, since ∆+ ≥ ∆− ≥ 0 by our standing hypothesis.

We now return to the main line of argument of the proof of Theorem 4, but we
re-state the desired conclusion in the format, for a Lagrangian ∆-space L ⊂ S,

dim L ∩ S− = ∆− − ` if and only if dim L ∩ S+ = ∆+ − `(2.51)

for each integer ` = 0, 1, 2, . . . , ∆− = min {∆−, ∆+}. Since we have already
demonstrated this conclusion for the case ∆− = 0, we henceforth shall assume
that ∆+ ≥ ∆− ≥ 1. In our analysis we shall first prove the required conclusion
(2.51) for ` = 0, then for ` = 1, etc., up to ` = ∆− − 1. The final step ` = ∆− will
be analysed at the end of the proof.

Main argument for the proof of Theorem 4. In the first step consider the case ` = 0
(which is relevant since ` = 0 ≤ ∆−− 1 when ∆− ≥ 1). Let dim L∩ S− = ∆− and
show that dim L ∩ S+ = ∆+, and vice versa.

As before in (2.46), take a basis for S−

{e1
−, . . . , e

∆−
− e

∆−+1
− , . . . , e

2∆−
− , ε1−, . . . , ε

|Ex−|
− },

and similarly a basis for S+. Also require that the Lagrangian ∆-space L meets S−
in

L ∩ S− = span {e1
−, . . . , e

∆−
− }.

Now select a basis for L in the format

L = span {e1
−, . . . , e

∆−
− , hs}, with s = 1, 2, . . . , ∆+ + |Ex−|.(2.52)

Because [ej
− : e

∆−+k
− ] = δjk for 1 ≤ j, k ≤ ∆−, we can demand that hs (mod S+)

do not involve {e1
−, . . . , e

∆−
− } or {e∆−+1

− , . . . , e
2∆−
− }, and hence depend only on

ε1−, . . . , ε
|Ex−|
− . In such a case {hs} constitute a set of ∆+ + |Ex−| independent
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vectors in L, yet these project to hs (mod S+), whose span in S− has a dimension
≤ |Ex−|. Therefore by elementary methods of linear algebra, as described earlier,
there are (at least) (∆+ + |Ex−|) − |Ex−| = ∆+ independent vectors in L ∩ S+.
Hence dim L ∩ S+ ≥ ∆+, and thus necessarily dim L ∩ S+ = ∆+.

However, there is an entirely similar proof of the converse:

If dim L ∩ S+ = ∆+, then dim L ∩ S− = ∆−.(2.53)

(This is not prejudiced by our assumption that ∆+ ≥ ∆− ≥ 1, and we omit the
details.) Therefore we can now assert that

dim L ∩ S− = ∆− if and only if dim L ∩ S+ = ∆+,(2.54)

and the conclusion (2.51) of Theorem 4 holds for ` = 0, regardless of the value of
∆− ≥ 1.

In the next step consider the case ` = 1 (and here we can demand that ∆− ≥ 2,
since we are here assuming that ` ≤ ∆−−1). Following the methods of the preceding
step (but now with ∆− ≥ 2), we shall show that

dim L ∩ S− = ∆− − 1 implies that dim L ∩ S+ = ∆+ − 1(2.55)

(and vice versa).
Assume dim L ∩ S− = ∆− − 1 and take a basis for L, so that

L = span{e1
−, . . . , e

∆−−1
− , hs},(2.56)

for s = 1, 2, . . . , ∆+ + 1 + |Ex−|, so

dim L = ∆ = (∆− − 1) + (∆+ + 1 + |Ex−|).

Again we can require that each hs depends only on ε1−, . . . , ε
|Ex−|
− , and possibly

e
∆−
− and its canonical dual or conjugate e

2∆−
− . Hence hs projects to hs (mod S+),

whose span in S− has dimension ≤ |Ex−| + 2. Then, as in the previous step, we
conclude that

dim L ∩ S+ ≥ (∆+ + 1 + |Ex−|)− (|Ex−|+ 2) = ∆+ − 1.(2.57)

Hence dim L ∩ S+ is either (∆+ − 1) or ∆+. But if dim L ∩ S+ = ∆+, then the
previous step asserts that dim L∩S− = ∆−, which contradicts the hypothesis that
dim L ∩ S− = ∆− − 1 in this step. Therefore we see that

dim L ∩ S− = ∆− − 1 implies that dim L ∩ S+ = ∆+ − 1.(2.58)

The converse is demonstrated similarly, and so the theorem is proved for the case
` = 1, for all ∆− ≥ 2.

For the general case ∆− ≥ 3 we shall prove that (2.51) holds for all ` =
0, 1, 2, . . . , ∆− − 1 by means of an induction argument on `. Certainly we have
already verified (2.51) for ` = 0 and ` = 1.

Now we assume the induction hypothesis:

dim L ∩ S− = ∆− − ` if and only if dim L ∩ S+ = ∆+ − `

for ` = 0, 1, . . . , k (any positive integer k ≤ ∆− − 2),
(2.59)

and we shall prove that the above assertion is true for ` = k + 1.
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For this purpose assume that dim L ∩ S− = ∆− − (k + 1), and we shall prove
that dim L ∩ S+ = ∆+ − (k + 1), and also the converse. We take the bases in S−
and S+, as in (2.46), adapted to the Lagrangian ∆-space L, so

L ∩ S− = span {e1
−, e2

−, . . . , e
∆−−(k+1)
− }(2.60)

and

L = span {e1
−, e2

−, . . . , e
∆−−(k+1)
− , hs}

for s = 1, 2, . . . , ∆+ + (k + 1) + |Ex−|,
(2.61)

so

dim L = [∆− − (k + 1)] + [∆+ + (k + 1) + |Ex−|] = ∆.

The vectors hs have expansions, in the basis of S = S− ⊕ S+, which do not
involve e1−, e2−, . . . , e

∆−−(k+1)
− or their dual vectors e

∆−+1
− , . . . , e

2∆−(k+1)
− in S−.

Thus each hs (mod S+) depends on only 2(k + 1) + |Ex−| basis vectors in S−,
namely on e

∆−−k
− , . . . , e

∆−
− and their duals e

2∆−−k
− , . . . , e2∆− , as well as the vectors

ε1−, . . . , ε
|Ex−|
− . Therefore

dim span {hs} (mod S+) ≤ 2(k + 1) + |Ex−|.
Just as in earlier cases we note that upon a re-selection of the vectors hs in the

basis for L, we get

dim L ∩ S+ ≥ [∆+ + (k + 1) + |Ex−|]− [2(k + 1) + |Ex−|],
so

dim L ∩ S+ ≥ ∆+ − (k + 1).(2.62)

But the alternatives of dim L ∩ S+ ≥ ∆+ − k are ruled out because, by the
induction hypothesis, they lead to the conclusion dim L ∩ S− ≥ ∆− − k, which is
a contradiction. Therefore we conclude that

dim L ∩ S+ = ∆+ − (k + 1),(2.63)

as required. The converse argument is similar upon interchanging the roles of S−
and S+.

Through this induction proof we have demonstrated the validity of (2.51) for all
∆− ≥ 1 and all ` = 0, 1, . . . , ∆− − 1.

Finally, consider the last step ` = ∆− (with ∆− ≥ 1), which we display in some
detail since the proof of this case is slightly different from the previous cases. Here
we assume that dim L ∩ S− = ∆− − ` = ∆− − ∆− = 0, and seek to prove that
dim L ∩ S+ = ∆+ −∆− ≥ 0.

Again take a basis {fs} for the Lagrangian ∆-space L, with s = 1, 2, . . . , ∆ =
∆+ + ∆− + |Ex−|. Here f s projects to fs (mod S+), which lies within the sym-
plectic space S− of dimension 2∆− + |Ex−|. Hence dim L ∩ S+ ≥ ∆ − (2∆− +
|Ex−|) = ∆+ − ∆−. But, as proved above, if dim L ∩ S+ = ∆+ −∆− + 1, then
dim L ∩ S− = ∆− − (∆− − 1) = 1, which contradicts the assumption in this case
that dim L ∩ S− = 0. Continuing to retrace the other alternatives of

dim L ∩ S+ = ∆+ − (∆− − 2), ∆+ − (∆− − 3), . . . , ∆+ − 1, ∆+,

we eliminate all these possibilities because they contradict the results already ob-
tained in the cases ` = ∆− − 2, ∆− − 3, . . . , 2, 1, 0. Therefore we conclude that
dim L ∩ S+ = ∆+ −∆−, as required.
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The converse assertion is particularly simple in this case ` = ∆−. Assume
dim L ∩ S+ = ∆+ − ∆−. Certainly dim L ∩ S− ≥ ∆− − ∆− ≥ 0. But the
alternatives, consisting of

dim L ∩ S− = 1, 2, . . . , ∆−,

give rise to the conclusions of the prior steps

` = ∆− − 1, ∆− − 2, . . . , 2, 1, 0,

and each of these possibilities contradicts the assumption that dim L∩S+ = ∆+−
∆−. Thus we conclude that dim L ∩ S− = 0, as required.

Therefore we have proved the theorem:

dim L ∩ S− = ∆− − ` if and only if dim L ∩ S+ = ∆+ − `,(2.64)

for each integer ` = 0, 1, . . . , min{∆−, ∆+}.
Definition 3. Consider the complex symplectic space S with finite dimension D ≥
1, and a prescribed direct sum decomposition

S = S− ⊕ S+ with [S− : S+] = 0,

and assume D = 2∆ and the excess Ex = 0 (so Ex− = −Ex+), as in the notation
of Theorem 4.

For each complete Lagrangian subspace L ⊂ S (so dim L = ∆) define the
coupling grade of L,

grade L = ∆− − dim L ∩ S− = ∆+ − dim L ∩ S+.(2.65)

Also define the necessary coupling of L,

Nec-coupling L = ∆− dim L ∩ S− − dim L ∩ S+ = 2 grade L + |Ex±|;(2.66)

note that |Ex−| = |Ex+| = |Ex±| since Ex = 0; and ∆ = ∆+ + ∆− + |Ex±|.
It is clear that in the terminology of Definition 3,

0 ≤ grade L ≤ min{∆−, ∆+} and |Ex±| ≤ Nec-coupling L ≤ ∆.(2.67)

In order to emphasize these extreme cases, and in anticipation of the terminology
later adopted for boundary conditions at the left and right endpoint spaces (S−
and S+, respectively), we present the next definition.

Definition 4. Consider the complex symplectic space

S = S− ⊕ S+ with [S− : S+] = 0,

with finite dimension D = 2∆ and excess Ex = 0 (so Ex− = −Ex+), as in Theorem
4.

A non-zero vector v ∈ S is separated at the left in case v ∈ S−; v ∈ S is separated
at the right in case v ∈ S+; and v is coupled otherwise. If S− = 0 (or S+ = 0), then
no such v is coupled.

For any Lagrangian ∆-space L ⊂ S a basis for this complete Lagrangian L
is minimally coupled in case it contains exactly (Nec-coupling L) vectors, each of
which is coupled.

A Lagrangian ∆-space L ⊂ S is:

strictly separated in case Nec-coupling L = 0,
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or

totally coupled in case Nec-coupling L = ∆.

The next two corollaries of Theorem 4 clarify the significance of these concepts
of separation and coupling, especially with regard to the usage of grade L and
Nec-coupling L.

Corollary 1. Consider the complex symplectic space

S = S− ⊕ S+ with [S− : S+] = 0,

with finite dimension D = 2∆ and excess Ex = 0 (so Ex− = −Ex+), as in
Theorem 4. Let L be a complete Lagrangian subspace in S, so dim L = ∆.

Then L is strictly separated if and only if any one of the following three (logically
equivalent) conditions holds:

(i) ∆ = dim L ∩ S− + dim L ∩ S+,
(ii) grade L = 0 and Ex± = 0,
(iii) there exists a basis for L such that each basis vector is separated either at the

left (in S−) or at the right (in S+).
On the other hand, L is totally coupled if and only if any one of the following

three (logically equivalent) conditions holds:
(iv) L ∩ S− = L ∩ S+ = 0,
(v) grade L = min{∆−, ∆+} and ∆− = ∆+ (or alternatively, grade L =

1
2 (∆− + ∆+)),

(vi) for every basis of L each of the basis vectors is coupled.

Proof. First assume that L is strictly separated, so

Nec-coupling L = ∆− dim L ∩ S− − dim L ∩ S+ = 0,

which is necessary and sufficient for condition (i). Hence we need only show that
conditions (i), (ii), and (iii) are logically equivalent.

But ∆ = ∆− + ∆+ + |Ex±| and 0 ≤ dim L ∩ S± ≤ ∆±, so clearly (i) holds if
and only if dim L∩S± = ∆± and Ex± = 0. Hence (i) is logically equivalent to (ii).

It is trivial that (i) implies (iii). Conversely, assume (iii), so that there exists a
separated basis for L, say {v1

−, . . . , vr
−, v1

+, . . . , vs
+} with r + s = ∆, and the first r

vectors lie in S−, and the last s vectors lie in S+. Suppose r < dim L ∩ S−. Then

∆ = r + s < dim L ∩ S− + dim L ∩ S+ ≤ ∆− + ∆+ ≤ ∆,

which is impossible. Hence we conclude that

r = dim L ∩ S− and similarly s = dim L ∩ S+,

so ∆ = r + s = dim L ∩ S− + dim L ∩ S+, and condition (i) obtains.
Next assume that L is totally coupled, so

Nec-coupling L = 2 grade L + |Ex±| = ∆.

But this holds if and only if

(∆− − dim L ∩ S−) + (∆+ − dim L ∩ S+) + |Ex±| = ∆− + ∆+ + |Ex±|,
which is necessary and sufficient for the conditions (iv). Hence we need only show
that conditions (iv), (v), and (vi) are logically equivalent.

Next we show that (iv) implies (v). Note that if L ∩ S− = L ∩ S+ = 0, then
grade L = ∆− = ∆+. Conversely, if grade L = ∆− = ∆+, then we compute that
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Nec-coupling L = 2∆± + |Ex±| = ∆− + ∆+ + |Ex±| = ∆, and hence (v) implies
(iv).

For the alternative version of (v), we note that

grade L = ∆− = ∆+ implies that grade L =
1
2
(∆− + ∆+).

On the other hand, if grade L = 1
2 (∆− + ∆+), then 2 grade L = ∆− + ∆+, and

we compute that Nec-coupling L = ∆− + ∆+ + |Ex±| = ∆. From this we conclude
that grade L = ∆− = ∆+.

Finally, it is trivial that (iv) implies (vi). Conversely, assume (vi), that every
basis of L consists of coupled vectors. Then L ∩ S− = L ∩ S+ = 0, for otherwise
there would exist a separated vector in L which could be included in some basis of
L. Hence (vi) implies (iv).

The next corollary introduces the concept of a minimally coupled basis for the
complete Lagrangian ∆-space L ⊂ S = S− ⊕ S+, that is, a basis for L which
contains exactly (Nec-coupling L) coupled vectors. Also it is demonstrated that
every basis for L can be obtained by a perturbation of a minimally coupled basis.

Corollary 2. Consider the complex symplectic space

S = S− ⊕ S+, [S− : S+] = 0,

with finite dimension D = 2∆ and excess Ex = 0 (so Ex− = −Ex+), as in
Theorem 4. Let L be a complete Lagrangian ∆-space in S.

Then there exists a minimally coupled basis for L, that is, a basis for L containing
exactly

Nec-coupling L = ∆ − dim L ∩ S− − dim L ∩ S+ = 2 grade L + |Ex±| vectors,
each of which is coupled as in Definition 4.

Each minimally coupled basis for L can be shown to contain:
exactly (∆− dim L ∩ S− − dim L ∩ S+) = 2 grade L + |Ex±|

vectors, each of which is coupled;

exactly (dimL ∩ S−) = ∆− − grade L vectors, each of which
is separated at the left;

exactly (dimL ∩ S+) = ∆+ − grade L vectors, each of which
is separated at the right.

(2.68)

Moreover, each basis of L must definitely contain
at least (Nec-coupling L) vectors, each coupled,

at most (dim L ∩ S−) vectors, each separated at the left,

at most (dim L ∩ S+) vectors, each separated at the right.
(2.69)

Furthermore, for each triple of integers α, β, and γ with 0 ≤ α ≤ dim L ∩ S−,
0 ≤ β ≤ dim L ∩ S+, γ = ∆− α− β, there exists a basis for L containing exactly

γ vectors, each coupled,

α vectors, each separated at the left,

β vectors, each separated at the right.

(2.70)

Therefore (2.69) and (2.70) describe all possible bases for L, with regard to sep-
aration and coupling.
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Proof. In order to construct a minimally coupled basis for L, choose a basis for
L ∩ S− and a basis for L ∩ S+, and then augment this set of vectors by a further
set of ∆ − dim L ∩ S− − dimL ∩ S+ independent vectors to construct a basis for
L. Trivially each of these vectors in the augmentation lies neither in S− nor in S+,
and so must be a coupled vector. In this way, we have constructed a minimally
coupled basis for L.

Indeed, consider any minimally coupled basis for L, hence containing exactly

Nec-coupling L = ∆− dim L ∩ S− − dim L ∩ S+

coupled vectors. Such a basis of L must then contain exactly (dim L ∩ S− +
dim L∩S+) vectors which are each separated. Thus we conclude that the specified
basis must contain exactly (dim L ∩ S−) vectors in S−, and exactly (dim L ∩ S+)
vectors in S+, in accord with (2.68) in the corollary.

Now consider an arbitrary basis of L. Since the number of basis vectors lying in
S− is at most (dim L ∩ S−), and the number lying in S+ is at most (dim L ∩ S+),
then there must be at least ∆− dim L∩ S−− dim L∩ S+ = Nec-coupling L of the
basis vectors that are each coupled, as in (2.69).

Finally take any three integers α, β, γ such that 0 ≤ α ≤ dim L ∩ S−, 0 ≤ β ≤
dim L∩S+, γ = ∆−α−β. We seek to construct a basis for L, containing exactly

α vectors separated at the left,
β vectors separated at the right,

and consequently

γ vectors that are each coupled.

We begin with a minimally coupled basis for L, say

{v1
−, . . . , va

−, v1
+, . . . , vb

+, v1, . . . , vc},
where

a = dim L ∩ S−, b = dim L ∩ S+, c = ∆− a− b,

and specifically, v1
−, . . . , va

− are each in S−, v1
+, . . . , vb

+ are each in S+, and v1, . . . , vc

are each coupled.
Clearly α ≤ a, β ≤ b, and γ ≥ c, with all equalities holding just in case the

chosen basis is a minimally coupled basis for L. However, suppose α < a. In this
case we construct a new basis for L upon replacing v1− by the perturbed vector
v1
−+ εv1 for a suitably small ε > 0 (if c = 0 replace v1

− by v1
−+ εv1

+, and if b = c = 0
then α = a = ∆, so S+ = 0). Then this new basis contains (a− 1) vectors in S−, b
vectors in S+, and (c + 1) coupled vectors.

In this way, the left and right separated vectors can be replaced, one at a time,
by routine perturbation techniques of linear algebra, until we obtain the desired
basis for L, containing exactly α vectors in S−, β vectors S+, and hence γ vectors,
each coupled, as in (2.70).

The existence of Lagrangian ∆-spaces with specified grades in the complex sym-
plectic 2∆-space S = S− ⊕ S+ is demonstrated in the next theorem. These con-
structions will be carried out in full generality, subject only to the condition that
S has excess Ex = 0, which is a necessary and sufficient condition for the existence
of any complete Lagrangian subspaces of S (that is, Lagrangian ∆-spaces).
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Theorem 5. Consider a complex symplectic space S with finite dimension D = 2∆
and excess Ex = 0, and with a prescribed direct sum decomposition

S = S− ⊕ S+, [S− : S+] = 0.

Hence Ex− = −Ex+ and ∆ = ∆− + ∆+ + |Ex±| are symplectic invariants, as
before.

Then for each integer ` = 0, 1, 2, . . . , min{∆−, ∆+}, there exists a complete La-
grangian subspace L` with

grade L` = `.(2.71)

Thus the range of the function L → grade L consists of the integers ` = 0, 1, 2, . . . ,
min{∆−, ∆+}; and the range of the function L → Nec-coupling L consists of the
corresponding integers 2`+ |Ex±|, as L runs over the set of all complete Lagrangian
spaces in S.

Proof. Choose a basis for S so that the corresponding complex skew-Hermitian
matrix is the diagonal 2∆× 2∆ matrix K̂ (illustrated below in (2.72) for the case
Ex− = −2):

i

i

. . .

i

i

.. .

i

i

.
.

.

i

i

.
.

.

i

i

i

−
−

−
i−

−

−

2∆.

−2∆−

2∆+

S− S+

K =ˆ(2.72)

In explicit detail, we label the corresponding basis vectors for S− by

e1
+, . . . , e

∆−
+ , e1

−, . . . , e
∆−
− , g1

−, . . . , g
|Ex−|
− ,

where ej
+ has +1 in the j-place, and otherwise 0; ej

− has +1 in the (∆− + j)-place,
and otherwise 0 (for 1 ≤ j ≤ ∆−); and gr− has +1 in the (2∆− + r)-place, and
otherwise 0 (for 1 ≤ r ≤ |Ex−|). Further, the corresponding basis vectors for S+

are

g1
+, . . . , g

|Ex+|
+ , f1

+, . . . , f
∆+
+ , f1

−, . . . , f
∆+
− .
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Here gr
+ has +1 in the (2∆−+|Ex−|+r)-place, and otherwise 0 (for 1 ≤ r ≤ |Ex+|);

and fk
+ has +1 in the (2∆− +2|Ex±|+ k)-place, and otherwise 0; fk

− has +1 in the
(2∆− + 2|Ex±|+ ∆+ + k)-place, and otherwise 0 (for 1 ≤ k ≤ ∆+).

These 2∆−+2∆++2|Ex±| = 2∆ vectors constitute a basis for S, with symplectic
products computed by means of the matrix K̂ of (2.72). In the case where ∆− = 0,
or ∆+ = 0, or Ex± = 0, we omit the corresponding vectors from this basis for
S = S− ⊕ S+.

Then, in accord with the diagonal matrix K̂, the symplectic products of these
basis vectors can be tabulated:

[ej
+ : ej

+] = i, [ej
− : ej

−] = −i for 1 ≤ j ≤ ∆−,

[fk
+ : fk

+] = i, [fk
− : fk

−] = −i for 1 ≤ k ≤ ∆+,

and

[gr
− : gr

−] = −i, [gr
+ : gr

+] = i, for 1 ≤ r ≤ |Ex±|.
(If Ex− > 0, then these last two symplectic products are +i and −i respectively.)

All the other symplectic products between basis vectors are zero.
Now fix ` = 0, and we shall define a basis for the required Lagrangian ∆-space

L0 which has grade L0 = 0. Namely, take the ∆ independent vectors in S,

e1
+ + e1

−, e2
+ + e2

−, . . . , e
∆−
+ + e

∆−
− , ∆−vectors in S−,

f1
+ + f1

−, f2
+ + f2

−, . . . , f
∆+
+ + f

∆+
− , ∆+ vectors in S+,

and

g1
+ + g1

−, g2
+ + g2

−, . . . , g
|Ex±|
+ + g

|Ex±|
− , |Ex±| vectors coupled.

It is clear that dim L0 ∩ S− = ∆−, dim L0 ∩ ∆+ = ∆+, so grade L0 = ∆± −
dim L0 ∩ S± = 0, as required.

Next take ` = 1 and we proceed to modify the prior basis given for L0 to obtain
a basis for the required Lagrangian ∆-space L1 with grade L1 = 1. Namely, delete
the two vectors e1

+ + e1
− and f1

+ + f1
−, and replace these by the two vectors e1

+ + f1
−

and e1
− + f1

+. Then we obtain a new set of ∆ vectors consituting a basis for L1:

e2
+ + e2

−, e3
+ + e3

−, . . . , e
∆−
+ + e

∆−
− , (∆− − 1) vectors in S−,

f2
+ + f2

−, f3
+ + f3

−, . . . , f
∆+
+ + f

∆+
− , (∆+ − 1) vectors in S+,

(2.73)

and

g1
+ + g1

−, . . . , g
|Ex±|
+ + g

|Ex±|
− , e1

+ + f1
−, e1

− + f1
+,

a set of (|Ex±| + 2) vectors each of which lies neither in S− nor in S+, and hence
each of which is coupled.

It is clear that dim L1 ∩ S− = ∆− − 1, dim L1 ∩ S+ = ∆+ − 1, so that
grade L1 = ∆± − dim L1 ∩ S± = 1, as required.

In the next step, take ` = 2 and then modify the prior basis for L1 to obtain
a new set of ∆ vectors that will constitute a basis for the Lagrangian ∆-space L2

with grade L2 = 2. Namely, delete the two vectors e2
+ + e2

− and f2
+ + f2

−, and
replace these by the two vectors e2

+ + f2− and e2− + f2
+. It is easy to verify that

dim L2 ∩ S± = ∆± − 2, and thus grade L2 = 2.
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Continue this process for ` = 3, 4, . . . , min{∆−, ∆+}. For simplicity of exposition
assume that ∆+ ≥ ∆−, and then the basis for L∆− is given by the ∆ vectors

f
∆−+1
+ + f

∆−+1
− , . . . , f

∆+
+ + f

∆+
− , (∆+ −∆−) vectors in S+

(omit these vectors if ∆+ = ∆−, and replace by corresponding vectors from S− if
∆+ < ∆−), and then (|Ex±|+ 2∆−) vectors are each coupled, namely,

g1
+ + g1

−, . . . , g
|Ex±|
+ + g

|Ex±|
− , e1

+ + f1
−, e1

− + f1
+, . . . , e

∆−
+ + f

∆−
− , e

∆−
− + f

∆−
+ .

Then dim L∆− ∩ S− = 0, dim L∆− ∩ S+ = ∆+ −∆−, so grade L∆− = ∆−.

Corollary 1. For each prescribed integer ` = 0, 1, 2, . . . , min{∆−, ∆+}, there exists
a complete Lagrangian subspace L`, with grade L` = `, in the complex symplectic
2∆-space S = S− ⊕ S+ having Ex = 0, as in Theorem 5.

Moreover, there then exists a minimally coupled basis for L` containing exactly

Nec-coupling L` = 2` + |Ex±| vectors, each coupled,(2.74)

and also

dim L` ∩ S− = ∆− − ` vectors, each separated at the left,

and

dim L` ∩ S+ = ∆+ − ` vectors, each separated at the right.

Appendix: Applications to the theory of self-adjoint operators

Let H be a complex Hilbert space (finite or infinite dimensional of any car-
dinality), with Hermitian inner product 〈·, ·〉, and corresponding complete norm
‖ · ‖ as usual. Let T1 be a (linear) operator in H , with a (linear manifold)
domain D(T1) ⊆ H . Then define the skew-Hermitian sesquilinear form [:] on
D(T1)×D(T1) → C, by

f, g → [f : g] ≡ 〈T1f, g〉 − 〈f, T1g〉, for f, g ∈ D(T1).(A.1)

Next define the operator T0 on D(T0) ⊆ D(T1) by

(i) D(T0) ≡ {f ∈ D(T1) | [f : D(T1)] ≡ 0},
(ii) T0f = T1f for f ∈ D(T0).

(A.2)

Thus

T0 ⊆ T1, D(T0) ⊆ D(T1),(A.3)

so T0 is the restriction of T1 to the domain D(T0).
Now assume the following properties of these two operators T0 and T1 in H :

(i) D(T0) is dense in H, so also D(T1) is dense in H,

(ii) adjoints T ∗
0 = T1 and T ∗

1 = T0,
(A.4)

so both T0 and T1 are closed operators. In fact, T0 is a closed operator with dense
domain D(T0) ⊆ H , and is symmetric, that is,

[f : g] = 0 for f, g ∈ D(T0).

Note that the second condition in (A.4) (ii) is redundant, because T ∗∗
0 = T0 from

general theory [DS].
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Remarks on basic properties of adjoints. Let T be any linear operator with a
dense domain D(T ) ⊆ H . Then the adjoint operator T ∗ is defined as follows:
f ∈ D(T ∗) ⊆ H if and only if there exists some f∗ ∈ H such that

〈f∗, g〉 = 〈f, T g〉, for all g ∈ D(T ).

Then f∗, depending on f , is unique since D(T ) is dense in H . We define T ∗f = f∗

for f ∈ D(T ∗), and T ∗ is thus a linear operator with domain D(T ∗) ⊆ H ; in fact,
T ∗ is a closed operator in H , see [DS]. Accordingly, we write

〈T ∗f, g〉 = 〈f, T g〉, for all f ∈ D(T ∗), g ∈ D(T ).(A.5)

Clearly, if V is another linear operator on D(V ) ⊆ H , and if T ⊆ V on D(T ) ⊆
D(V ) (so T is a restriction of V to the domain D(T )), then V ∗ ⊆ T ∗ on D(V ∗) ⊆
D(T ∗), so V ∗ is a restriction of T ∗ to the domain D(V ∗).

We further define the operator T on the dense domain D(T ) ⊆ H to be self-
adjoint in case

T = T ∗ on D(T ) = D(T ∗).(A.6)

We are interested in operators T on D(T ) ⊆ H which are self-adjoint extensions
of the given operator T0 on D(T0), that is, (A.6) obtains and

T0 ⊆ T on D(T0) ⊆ D(T )

(so T0 is the restriction of T to the domain D(T0)). Then T = T ∗ is a closed
operator on the dense domain D(T ) = D(T ∗) ⊆ H , and by (A.5) T is symmetric

[f : g] = 〈Tf, g〉 − 〈f, T g〉 = 0, for f, g ∈ D(T ).(A.7)

In the case when the given operators T0 and T1 satisfy the conditions (A.4)
(i) and (ii), we note that each self-adjoint operator T on D(T ) ⊆ H which is an
extension of T0 (that is, T0 is a the restriction of T to the domain D(T0) ⊆ D(T ))
satisfies

T = T ∗ ⊆ T ∗
0 = T1, so D(T ) = D(T ∗) ⊆ D(T1),

and hence both T0 and T are restrictions of T1. We summarize this accordingly:

T0 ⊆ T ⊆ T1 on D(T0) ⊆ D(T ) ⊆ D(T1)(A.8)

for each self-adjoint extension T of T0, see [DS], [NA].

Definition 1. Consider the quotient (or identification) complex vector space

S = D(T1)/D(T0), (dim S = ∞ allowed),(A.9)

arising from the operators T0 ⊆ T1 on D(T0) ⊆ D(T1) ⊆ H , satisfying (A.2), (A.3),
(A.4) above. Each vector of S is a coset of some function f ∈ D(T1), and we write

f = {f + D(T0)} ∈ S.(A.10)

Define the skew-Hermitian sesquilinear form on S,

f ,g → [f : g], S× S → C,(A.11)

by

[f : g] = [f + D(T0) : g + D(T0)] := [f : g],

for any functions f, g ∈ D(T1) representing f ,g, respectively.
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Because of (A.2), this skew-Hermitian form on S is well-defined (does not depend
on the choice of the coset representatives), and we use the same notation as for
the corresponding form of (A.1) on D(T1), with no ambiguity. However, we use
the bold-face notation f ,S and (later) L to emphasize that these are cosets, or
collections of cosets.

Lemma 1. The complex vector space

S = D(T1)/D(T0),

with the skew-Hermitian form [:], as in Definition 1, is a complex symplectic space
(see Section 1, (1.1)).

Proof. The form f ,g → [f : g] ∈ C is clearly skew-Hermitian and sesquilinear on
S (properties inherited from the corresponding form (A.1) on D(T1)). Also it is
non-degenerate because

[f : S] = 0 implies [f : D(T1)] = 0,

so then f ∈ D(T0) and f = 0 in S.

The following theorem implies the GKN-theorem (see Section 1, Example 3)
concerning the boundary value problem for Lagrange symmetric (i.e. formally
self-adjoint) linear ordinary differential (or quasi-differential [EM], [EV], [EZ]) ex-
pressions on arbitrary real intervals. We shall precisely phrase the GKN-theorem,
and provide its proof, later as a corollary to our Theorem 1 below.

We recall from Section 1, Definition 2 that a linear submanifold L ⊂ S is La-
grangian in case [L : L] = 0, and furthermore L is complete in case:

f ∈ S and [f : L] = 0 imply f ∈ L.

Since, at this stage there is no specified topology imposed on S, we shall often
use the terminology of linear subspaces rather than linear submanifolds in S. We
offer some additional comments on topologies in S immediately after the proof of
Theorem 1.

Theorem 1. Consider linear operators T0 ⊆ T1 on domains D(T0) ⊆ D(T1) in the
complex Hilbert space H, satisfying conditions (A.2), (A.3), (A.4) above. Then

S = D(T1)/D(T0),(A.12)

with the symplectic form [:] of Definition 1, is a complex symplectic space.
Under these circumstances there exists a natural bi-unique correspondence be-

tween the set {T } of all self-adjoint extensions T of T0, and the set {L} of all
complete Lagrangian subspaces L of S. Namely, for each such self-adjoint operator
T on D(T ) of T0 on D(T0), the corresponding complete Lagrangian subspace L ⊂ S
is

L = D(T )/D(T0).(A.13)

In particular, there exists such a self-adjoint extension T of T0 if and only if
there exists a complete Lagrangian subspace L of S. The case where T0 = T1 arises
if and only if T0 = T ∗

0 is the unique such self-adjoint extension of T0, and this
occurs if and only if S = 0.
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Proof. Take any self-adjoint operator T on D(T ), so

T0 ⊆ T = T ∗ ⊆ T1 on D(T0) ⊆ D(T ) = D(T ∗) ⊆ D(T1),(A.14)

so T0 and T are restrictions of T1 to D(T0) and D(T ), respectively, as in (A.8).
Then define the following subset of S:

L = D(T )/D(T0),(A.15)

that is, L consists of all the cosets f = {f + D(T0)} with f ∈ D(T ).
We must verify that L is a complete Lagrangian subspace of the complex sym-

plectic space S = D(T1)/D(T0) of (A.12). Clearly L is a linear subspace of S, since
L is the image of the linear manifold D(T ) ⊆ D(T1) under the natural projection
map

Ψ : D(T1) → S, f → f = {f + D(T0)}.(A.16)

We next calculate, for f = {f +D(T0)} and g = {g +D(T0)} where f, g ∈ D(T ),

[f : g] = [f : g] = 〈T1f, g〉 − 〈f, T1g〉
= 〈Tf, g〉 − 〈f, T g〉 = 0,

(A.17)

since T is symmetric on its domain D(T ). Hence L is a Lagrangian subspace of S.
In order to show that L is a complete Lagrangian, take any h ∈ D(T1) for which

[h : L] = 0, or [h : g] = 0 for all g ∈ D(T ).

Then

〈T1h, g〉 = 〈h, T1g〉 = 〈h, T g〉, for all g ∈ D(T ).

But this means that h ∈ D(T ∗) = D(T ), and so h ∈ L. Therefore L is a complete
Lagrangian subspace of S.

On the other hand, we now let L be any chosen complete Lagrangian subspace
of S, and we seek to define a corresponding self-adjoint extension T of T0 whose
domain D(T ) projects onto L, that is, we require that ΨD(T ) = L. Accordingly,
define the set D(T ) ⊆ D(T1) by the set mapping Ψ−1, the inverse set mapping of
Ψ in (A.16),

D(T ) ≡ Ψ−1L = {h ∈ D(T1) | h ∈ L}.(A.18)

Then D(T ) is clearly a linear submanifold of H , and

D(T0) ⊆ D(T ) ⊆ D(T1),

and we define the operator T as the restriction of T1 to the domain D(T ). We must
verify that T on D(T ) is self-adjoint, and furthermore that L = D(T )/D(T0).

Recall that f ∈ D(T ∗) in case there exists some f∗ ∈ H for which 〈f∗, g〉 =
〈f, T g〉, for all g ∈ D(T ). Also note that 〈f, T g〉 = 〈f, T1g〉 for g ∈ D(T ).

Since L is a Lagrangian subspace of S,

[f : g] = 〈Tf, g〉 − 〈f, T g〉 = 0, for all g ∈ D(T ),

whenever f ∈ D(T ). Thus we see that D(T ) ⊆ D(T ∗), and so T is a symmetric
operator.

Furthermore, since

T0 ⊆ T ⊆ T1 on D(T0) ⊆ D(T ) ⊆ D(T1)(A.19)
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(and both T0 and T are restrictions of the operator T1), we note that

T ∗
1 ⊆ T ∗ ⊆ T ∗

0 on D(T ∗
1 ) ⊆ D(T ∗) ⊆ D(T ∗

0 )

or

T0 ⊆ T ∗ ⊆ T1 on D(T0) ⊆ D(T ∗) ⊆ D(T1),(A.20)

so T ∗ is also a restriction of T ∗
0 = T1.

Now fix any f ∈ D(T ∗) and compute

〈T ∗f, g〉 = 〈f, T g〉, for all g ∈ D(T ),

so

〈T1f, g〉 = 〈f, T1g〉, for all g ∈ D(T ).

Hence we conclude that

[f : g] = [f : g] = 0, and thus [f : L] = 0.

But since L is complete, f ∈ L, and so f ∈ D(T ). Therefore D(T ∗) ⊆ D(T ), so
D(T ∗) = D(T ), as required. We have verified that T = T ∗ (both restrictions of T1)
on their common domain D(T ) = D(T ∗). Therefore the operator T is a self-adjoint
extension of T0.

But trivially, ΨD(T ) = L, and hence L = D(T )/D(T0), as required.
Hence the map induced by Ψ, as in (A.16), is

Ψ : {T } → {L}, defined by T → L = D(T )/D(T0),(A.21)

which is surjective.
Finally, we show that Ψ in (A.21) is injective. Take two different self-adjoint

operators Tα 6= Tβ (both extensions of T0 on D(T0), and hence restrictions of
T ∗

0 = T1), with corresponding domains D(Tα) and D(Tβ) ⊆ D(T1). Since the
two operators Tα and Tβ are different, this implies that D(Tα) 6= D(Tβ), and so
there exists an element u ∈ D(Tα) but u 6= D(Tβ) (or vice versa). In particular,
u 6∈ D(T0). Then u = {u + D(T0)} satisfies

u ∈ Lα = D(Tα)/D(T0), but u 6∈ Lβ = D(Tβ)/D(T0)

(for this would mean that all {u + D(T0)} ⊆ D(Tβ), contradicting u 6∈ D(Tβ)).
We have demonstrated that Tα 6= Tβ implies that Lα 6= Lβ , and therefore the

map Ψ of (A.21) is an injection onto {L}. Therefore Ψ defines the required bijective
correspondence of {T } with {L}, as asserted in the theorem.

Remarks on topologies for complex symplectic spaces. Let S be an abstract
complex symplectic space, with symplectic form [:], as in Definition 1 in Section 1
above. If S has finite dimension, dim S = D, then S is linearly isomorphic with
the complex number space CD, and we use the standard topology of CD on S. In
this case all the algebraic operations in S are continuous; in particular the map

u, v → [u : v], S × S → C

is continuous (jointly) in both variables u, v ∈ S.
However, if dim S = ∞ then various possibilities arise. For example, consider,

as in Section 1 above,

S = H− ⊕H+ with [H− : H+] = 0,
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where H± are each complex Hilbert spaces with corresponding Hermitian inner
products 〈·, ·〉±. Furthermore assume the corresponding unique decompositions
u = u− + u+ and v = v− + v+, for vectors u, v ∈ S, satisfy

[u : v] = −i〈u−, v−〉− + i〈u+, v+〉+,

in terms of the given symplectic form [:] on S, as in Theorem 3 of Section 1. Then
we can topologize S as a complete metric space by the norm ‖ · ‖,

‖u‖2 = 〈u−, u−〉− + 〈u+, u+〉+,

so that S is the Hilbert space direct sum of H− and H+. In this case, we again find
that the map

u, v → [u : v], S × S → C

is (jointly) continuous.
As an important special case illustrating this construction, consider S =

D(T1)/D(T0), where T1 on D(T1) and T0 on D(T0) are operators on the Hilbert
space H , as in Theorem 1 above. Then introduce the T1-graph norm ‖·‖1 on D(T1),
as in [DS],

‖f‖2
1 = 〈f, f〉+ 〈T1f, T1f〉, for f ∈ D(T1),

so that D(T1) becomes a complex Hilbert space with the Hilbert subspace D(T0).
Then S is also a Hilbert space, considered as the orthocomplement of D(T0) in
D(T1) (see [DS, XII 4.10]), and furthermore u, v → [u : v] is a continuous map of
S× S → C.

In the most general case for dim S infinite, we can define a topology on S by
requiring that

u → [u : v0], S → C (fixed v0 ∈ S)

is continuous, for each choice of v0 ∈ S. That is, for each v0 ∈ S and open set
O ⊂ C, define the open set in S,

{u ∈ S | [u : v0] ⊂ O},
and use these sets as a subbase for the corresponding weak topology on S.

In this case all the maps of S → C

u → [u : v] and u → [v : u] = −[u : v](A.22)

are continuous for each fixed v ∈ S.

Proposition. Let S be a complex symplectic space, with symplectic form [:], and
assume that there is given a topology on S for which all the maps indicated in (A.22)
are continuous.

Then each complete Lagrangian submanifold L ⊂ S is a closed set in S.

Proof. Let L be a complete Lagrangian submanifold in S; we show that the com-
plement of L is open in the given topology of S.

Take a point u0 ∈ S in the complement of L. Then [u0 : L] is not zero, for
otherwise u0 ∈ L. That is, there exists some point v0 ∈ L with [u0 : v0] 6= 0. Then
define the open subset of S

U = {u ∈ S | |[u : v0]| > 1
2
|[u0 : v0]|}
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(note: |z| > 1
2 |[u0 : v0]| defines an open subset of C). Thus U is an open neighbor-

hood of u0, yet U ∩ L = ∅.
We close this Appendix with a brief introduction to the applications of Theorem

1 to the boundary value problems for Lagrange-symmetric (formally self-adjoint)
linear ordinary differential expressions M of arbitrary order n ≥ 1, on arbitrary real
(non-degenerate) intervals J ⊂ R (open, closed, half-closed, compact or infinite—
but containing an interior point). Thus consider the linear expression (or operator)

M [y] = pny(n) + pn−1y
(n−1) + · · ·+ p1y

′ + p0y(A.23)

on the non-degenerate interval J , with endpoints −∞ ≤ a, b ≤ +∞, where the
complex-valued coefficients pj ∈ L1

loc(J ) for j = 0, 1, 2, . . . , n − 1, and further
pn ∈ ACloc(J ) and pn(x) 6= 0 for all x ∈ J . The corresponding domain for M is

D(M) ≡ {y : J → C | y(r) ∈ ACloc(J ) for r = 0, 1, . . . , n− 1}(A.24)

in terms of the ordinary derivatives y(r), so here y(n) and also M [y] ∈ L1
loc(J ).

There is an important special case where M has smooth coefficients pj ∈ Cj(J ),
or even pj ∈ C∞(J ) for j = 0, 1, . . . , n (where Ck(J ), 0 ≤ k ≤ ∞, consists of all
complex-valued functions with k continuous derivatives on some open neighborhood
of J , as usual). In these cases the classical condition of Lagrange provides a
direct method of verifying the Lagrange symmetry of such a differential expression
M . However, even in the general case (A.23), we can define M to be Lagrange-
symmetric (or formally self-adjoint) on J when∫ b

a

{M [f ]ḡ − fM [g]}dx = 0,(A.25)

for all functions f, g ∈ D(M) with compact supports interior to J .
For such a Lagrange-symmetric differential expression M on J , following the

notations of Example 3 in Section 1, we define two operators T0 on D(T0) and
T1 on D(T1) in the complex Hilbert space H = L2(J ). Namely, define T1 as the
“maximal operator”

T1f = M [f ] on D(T1) = {f ∈ D(M) | f and M [f ] ∈ L2(J )},(A.26)

and T0 as the “minimal operator”

T0f = M [f ] on D(T0) = {f ∈ D(T1) | [f : D(T1)] = 0}.(A.27)

Here the skew-Hermitian form [:] on D(T1) is given by

[f : g] = 〈T1f, g〉 − 〈f, T1g〉, for f, g ∈ D(T1).(A.28)

It is known [AG], [EZ], [NA] that T0 ⊆ T1 on D(T0) ⊆ D(T1) ⊂ H satisfy the
fundamental hypothesis (A.4).

As before in this Appendix, we define the endpoint space S, for M on J , as the
quotient or identification vector space

S = D(T1)/D(T0),(A.29)

so there is then a natural projection map

Ψ : D(T1) → S, f → f = {f + D(T0)}, for f ∈ D(T1).(A.30)
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Then it is easy to verify, as in Lemma 1 of Theorem 1, that S in (A.29), with the
symplectic form [:] inherited from D(T1) in (A.28), is a complex symplectic space
where the symplectic product of f = {f + D(T0)} and g = {g + D(T0)} is given by

[f : g] := [f : g].(A.31)

As before, we use the same notation [:] in both D(T1) and S.
Since the operators T1 and T0 arise from the differential expression M of order

n ≥ 1, it follows from the theory of linear ordinary differential equations [DS] that
S has a finite dimension

dim S ≤ 2n.(A.32)

Moreover, the symplectic invariants of S are related to the deficiency indices d± of
M on J (see [DS], [EI]), by

p = d+ (positivity index S),

q = d− (negativity index S),

dim S = p + q = d+ + d− (dimension S),

Ex = p− q = d+ − d− (excess S).

(A.33)

Hence the excess Ex = 0 if and only if d+ = d− (which we then denote by the
non-negative integer d = d±), and in such a case dim S = 2d, see [EI], [EM].
In the “regular problem” where J = [a, b] is compact, it is always the case that
d+ = d− = n; but in the “singular problem” [TU], it may or may not be the case
that d+ = d− or Ex = 0. We recall that a finite dimensional complex symplectic
space has a complete Lagrangian subspace if and only if Ex = 0, according to
Theorem 2 of Section 2 above.

We can now state and prove the GKN-theorem for the symmetric differential
expression M on the interval J , and we present this important result as a corollary
of Theorem 1 above.

Corollary 1 (GKN-Theorem). Consider the Lagrange-symmetric linear differen-
tial expression M of (A.23) of order n ≥ 1 on the non-degenerate real inter-
val J . Let T0 on D(T0) and T1 on D(T1) be the minimal and maximal opera-
tors, respectively, as generated by M in the complex Hilbert space L2(J ), and let
S = D(T1)/D(T0) be the endpoint space, which is a complex symplectic space with
the symplectic form [:], see (A.26) through (A.32) above.

There exists a self-adjoint extension T on T0 (so T is necessarily a restriction of
T1) if and only if there exists a complete Lagrangian subspace L ⊂ S, and this occurs
if and only if the complex symplectic space S has excess Ex = 0, i.e. d+ = d− = d.

When Ex = 0, then dim S = 2d ≤ 2n is even, and a Lagrangian subspace L ⊂ S
is complete if and only if dim L = d.

In this case, when Ex = 0, there exists a natural bi-unique correspondence be-
tween the set {T } of all self-adjoint extensions T of T0 and the set {L} of all
complete Lagrangian subspaces L of the endpoint space S. Namely, for each such
self-adjoint operator T on domain D(T ) ⊂ L2(J ), which is an extension of T0 on
D(T0), the corresponding complete Lagrangian subspace L is defined by

L = D(T )/D(T0),(A.34)
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so

D(T ) = c1f1 + · · ·+ cdfd + D(T0).(A.35)

Here {f1, . . . , fd} is any basis of L, with any corresponding representative functions
f1, . . . , fd ∈ D(T1), and c1, . . . , cd are arbitrary complex numbers.

The special case S = 0, so L = 0 is the unique complete Lagrangian subspace,
occurs if and only if T0 = T1, so T = T0 on D(T ) = D(T0) is the unique self-adjoint
extension of the self-adjoint operator T0.

The GKN-Theorem follows immediately, as Corollary 1 of Theorem 1, from the
developments in Section 2 above, once the preliminary facts concerning T0 ⊆ T1

are established in the classical theory of linear ordinary differential equations [DS].
The case n = 1 is treated specially in [EM1].

Generalizations of these results for quasi-differential expressions and for other
complex Hilbert spaces L2(J ; w) (defined with respect to other regular measures
wdx on the interval J , see [EV], [EZ]) are developed in a monograph [EM] by the
authors of this paper.

References

[AG] Akhiezer, N.I. and Glazman, I.M., Theory of linear operators in Hilbert space: volumes
I and II, Pitman and Scottish Academic Press, London, 1981; translated from the third
Russian edition of 1977. MR 83i:47001

[AM] Abraham, R. and Marsden, J.E., Foundations of mechanics, 2nd ed., Benjamin/Cummings
Publ. Co., Reading, Mass., 1978. MR 81e:58025

[DS] Dunford, N. and Schwartz, J.T., Linear operators: Part II, Wiley, New York, 1963. MR
32:6181

[EI] Everitt, W.N., On the deficiency index problem for ordinary differential operators 1910-
1977, Proceedings of The 1977 Uppsala International Conference: Differential Equations,
62-81, Published by the University of Uppsala, Sweden, 1977, distributed by Almquist and
Wiksell International Stockholm, Sweden, pp. 62–81. MR 57:16788

[EV] , Linear ordinary quasi-differential expressions, Lecture notes for The Fourth In-
ternational Symposium on Differential Equations and Differential Geometry, Beijing, Peo-
ples’ Republic of China, 1-28. (Department of Mathematics, University of Peking, Peoples’
Republic of China; 1986).

[EM] Everitt, W.N. and Markus, L., Boundary Value Problems and Symplectic Algebra for
Ordinary Differential and Quasi-Differential Operators, Math. Surveys and Monographs,
vol. 61, Amer. Math. Soc., Providence, RI, 1999. CMP 99:03

[EM1] , The Glazman-Krein-Naimark theorem for ordinary differential operators, in New
Results on Operator Theory and Its Applications: The I. M. Glazman Memorial Volume,
Operator Theory: Advances and Applications, vol. 98, Birkhäuser, Basel, 1997, pp. 118–
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