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Abstract. This paper presents a review and summary of recent research on
the boundary value problems for linear ordinary and partial differential equa-
tions, with special attention to the investigations of the current authors em-
phasizing the applications of complex symplectic spaces.

In the first part of the previous century, Stone and von Neumann formu-
lated the theory of self-adjoint extensions of symmetric linear operators on a
Hilbert space; in this connection Stone developed the properties of self-adjoint
differential operators generated by boundary value problems for linear ordinary
differential equations. Later, in diverse papers, Glazman, Krein and Naimark
introduced certain algebraic techniques for the treatment of appropriate gen-
eralized boundary conditions. During the past dozen years, in a number of
monographs and memoirs, the current authors of this expository summary
have developed an extensive algebraic structure, complex symplectic spaces,
with applications to both ordinary and partial linear boundary value problems.

As a consequence of the use of complex symplectic spaces, the results offer
new insights into the theory and use of indefinite inner product spaces, par-
ticularly Krein spaces, from an algebraic viewpoint. For instance, detailed in-
formation is obtained concerning the separation and coupling of the boundary
conditions at the endpoints of the intervals for ordinary differential operators
(see the Balanced Intersection Principle), and the introduction of the general-

ized boundary conditions over the region for some elliptic partial differential
operators (see the Harmonic operator).
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1. Introduction to fundamental concepts: organization of

the exposition

A complex symplectic space S is a complex vector space with a prescribed sym-
plectic product

(1.1) [· : ·] : S × S → C,

where C denotes the complex field, with the properties given in the following defi-
nition:

Definition 1.1. A complex symplectic space S is a complex vector space, to-
gether with a prescribed symplectic form [· : ·], namely a sesqui-linear (or conjugate
bilinear) complex-valued function

(1.2) u, v → [u : v] for S × S → C

satisfying the following axioms, for all u, v, w ∈ S and all complex numbers c1, c2 ∈
C,

(1) [c1u + c2v : w] = c1[u : w] + c2[v : w] (linearity property in first argument),
(2) [u : v] = −[v : u] (skew-Hermitian property),
(3) [u : S] = 0 implies u = 0 (non-degeneracy property).

Remark 1.2. Properties 1 and 2 of Definition 1.1 imply

[u : c1v + c2w] = c1[u : v] + c2[u : w].

Complex symplectic spaces are non-trivial generalizations (not merely complex-
ifications) of the classical real symplectic spaces of Lagrangian and Hamiltonian
mechanics; see [1], [20] and [23]. However these complex symplectic spaces have a
much wider scope and admit new kinds of applications. For instance, for each posi-
tive integer n ∈ N := {1, 2, 3, . . .} there exist complex symplectic spaces (more than
one) with dimension n as a vector space over C, whereas real symplectic spaces
cannot be odd dimensional, and there exists a unique (up to symplectic isomor-
phism) real symplectic space for each even dimension m as a vector space over the
real field R.

The study of these complex symplectic spaces is motivated by the boundary
value problems for linear ordinary and partial differential operators with complex
coefficients and is closely related to the corresponding spectral analysis within com-
plex Hilbert spaces; see the results of Everitt and Markus, especially [10] and [11],
and [13].

The particular results which guided our approach to the introduction and devel-
opment of complex symplectic spaces are to be seen in the work of Akhiezer and
Glazman [2, Appendix 1], Coddington and Levinson [5, Chapters 7 to 11], Dunford
and Schwartz [6, Chapters XII and XIII], Everitt and Markus [9], Naimark [27,
Chapter V], and Titchmarsh [32] and [33].



COMPLEX SYMPLECTIC SPACES 463

For the analysis of ordinary differential expressions (i.e. formal differential op-
erators), finite dimensional complex symplectic spaces are adequate, but for elliptic
partial differential expressions, infinite dimensional symplectic spaces are required.
In this exposition we endeavor to present completely and precisely all statements
of definitions, theorems and other results, but usually omit all proofs (except for
occasional sketches), and then refer to the recent extensive literature for further
details and explanations.

Here we record some of the main results that have followed from this study of
complex symplectic spaces:

(i) The generalized Glazman-Krein-Naimark (GKN) Theorem [see Sec-
tion 1, Theorem 1.14 and Remark 1.15], which extends the original theorem, as
initially restricted to self-adjoint ordinary differential operators, to the determina-
tion of all self-adjoint extensions of closed symmetric operators in abstract Hilbert
space; see [10, Section II, Theorem 1] and [14, Theorem 5.2].

(ii) The Balanced Intersection Principle [see Section 4.1], which resolves the
problem of determining the canonical forms for all possible symmetric (formally
self-adjoint) boundary conditions for general Lagrange symmetric ordinary differ-
ential expressions (covering both the regular and singular cases); see [10, Preface
and Chapter V, Section 4].

(iii) The symplectic version of the generalized GKN Theorem [see Sec-
tion 2.2], which explores and classifies all self-adjoint extensions of a symmetric
operator in terms of the complete Lagrangians in the corresponding boundary com-
plex symplectic space, in particular for symmetric operators generated by ordinary
and partial differential expressions; see [10, Section II, Theorem 1] and [13, Section
3].

(iv) The Harmonic operator [see Section 2.2, especially (2.62) and (2.63)],
which is an unusual example of a self-adjoint operator generated by an appro-
priate elliptic partial differential expression on bounded Euclidean regions, here
illustrated by the Laplace regular partial differential expression on a planar disk.
This Harmonic operator is not specified by data evaluated on the boundary circle,
and moreover has a non-empty essential spectrum; see [13, Section 4, Definition
4.2] and [15].

(v) The symplectic weak topology [see Section 3, and also Definition 1.12],
which is intrinsically defined on each complex symplectic space S and defines S as a
locally convex topological vector space (not necessarily metrizable); see [14, Section
3].

In the introductory Section 1 of this survey we first present the most basic con-
cepts and definitions for complex symplectic spaces and their Lagrangian subspaces
with the corresponding linear algebra (known as symplectic algebra). We illuminate
this symplectic algebra by its applications to linear operator theory through a num-
ber of examples including the construction of symplectic spaces via Hilbert spaces.
In particular, the boundary space of a symmetric operator in Hilbert space the-
ory is important for asserting and describing the Glazman-Krein-Naimark (GKN)-
Theorem, as generalized by Zettl [35], and then by Everitt and Markus [10, Section
III, Part 2] and [11, Appendix, Corollary 1].

In Section 2 we describe, in appropriate detail, the boundary value theory for
two important motivating examples of second-order differential expressions - the
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general Sturm-Liouville ordinary differential operator and the Laplace partial differ-
ential operator. In particular, we interpret the associated boundary value problems
through symplectic algebra. In addition, there is an indication of the application of
these techniques to higher order ordinary differential expressions, and these ideas
are carried further in Section 4.2 using the even more general notation of quasi-
differential coefficients.

In Section 3 we develop more thoroughly the general theory of complex sym-
plectic spaces of arbitrary dimension (finite or infinite). In particular, we define
and compare various topologies, including the symplectic weak topology and the
Hilbert topology. Also we investigate the interrelations among the symplectic in-
variants when they are infinite cardinal numbers; see [11], [12], [13] and [14].

In Section 4 we review some important properties of finite dimensional spaces and
apply these methods to regular and singular boundary value problems for general
Lagrange symmetric ordinary differential expressions. In particular we emphasize
that each self-adjoint operator thus determined is necessarily defined through (gen-
eralized) symmetric boundary conditions, and we describe an explicit classification
of such boundary conditions by their degree of coupling (or separation) at the
interval endpoints.

Section 5 offers some conclusions about the topics, results, and problems sum-
marized in this paper and then presents some new directions for research, including
open problems and a few uncertain conjectures.

Notation 1.3. We use the normal fonts for text (roman) and mathematics (italic);
for symplectic spaces we use sans serif font. In case a space has the properties
of being both a Hilbert space and a symplectic space, we use sans serif font to
represent both spaces; for examples see Definition 1.1 and Examples 1.9 and 1.13.

To emphasize the analogy between a complex symplectic space S and a Hermitian
scalar product space [28, Chapter 12, Section 12.1], we often refer to the symplectic
product [u : v] with symplectic orthogonality in case [u : v] = 0. Hence the non-
degeneracy condition of item 3 in Definition 1.1 asserts that only the zero vector of
S is symplectically orthogonal to every vector in S.

In the same spirit, a conjugate bilinear form on a complex vector space S, satisfy-
ing just conditions 1 and 2 of Definition 1.1, is called a “degenerate symplectic prod-
uct”, although this defines S as a complex symplectic space only if non-degeneracy
condition 3 of Definition 1.1 also holds.

Remark 1.4. The usual concepts and constructions for vector spaces apply, with
some exceptions, to complex symplectic spaces S with symplectic product [· : ·]; see
[11, Section 1] and [14, Section 1].

For instance, two complex symplectic spaces S with symplectic product [· : ·]
and S1 with [· : ·]1 are symplectically isomorphic in case there exists a (complex)
linear bijective map F of S onto S1 which preserves symplectic products; that is

(1.3) [u : v] = [Fu : F v]1 for all u, v ∈ S.

If S and S1 are the same complex symplectic space, then F is a symplectic auto-
morphism of S, and we can consider the group of all symplectic automorphisms of
S; see [25].

As another instance, let V ⊂ S be a linear submanifold of S; that is

(1.4) V = span{V}
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(for finite complex linear combinations of elements of V). Then V is a symplectic
subspace of S just in case the inherited (or induced) symplectic product on V is
non-degenerate.

Definition 1.5. Let V1 and V2 be linear submanifolds of the complex symplectic
space S with [· : ·]. Assume that

(1.5) S = span{V1, V2} and V1 ∩ V2 = 0;

that is, S is the direct sum of V1 and V2.
If further V1 and V2 are symplectically orthogonal,

(1.6) [V1 : V2] = 0,

then we write

(1.7) S = V1 ⊕ V2

and note that, in this case, both V1 and V2 are symplectic subspaces of S.

Definition 1.6. For each (non-empty) subset V ⊂ S, the symplectic orthocomple-
ment of V is defined by

(1.8) V# := {u ∈ S : [u : V] = 0},

and we note that V# is a linear submanifold of S.

Note that if S = V1 ⊕ V2 as in (1.7), then

(1.9) V#
1 = V2 and V#

2 = V1.

Definition 1.7. Let S with [· : ·] be a complex symplectic space. Then a linear
manifold L ⊂ S is called Lagrangian in case

(1.10) [L : L] = 0 (also written L ⊂ L#).

Further a Lagrangian manifold L is called complete in case

(1.11) u ∈ S and [u : L] = 0 imply u ∈ L (also written L = L#).

We next present several examples for the construction of complex symplectic
spaces, leading to the important GKN-Theorem, as generalized by Everitt and
Markus; see [9], [10, Section III, Part 2] and [11, Appendix, Corollary 1] for addi-
tional details of these examples.

Example 1.8. Consider the complex vector space Cn, consisting of all complex
(row) n-tuples, so dim(Cn) = n ∈ N, as usual. Let K be a given complex n × n
matrix which satisfies the conditions:

(1.12)
{

K = −K∗ (where K∗ is the conjugate transpose)
det(K) �= 0 (non-singular).

Define the symplectic product of vectors u, v ∈ Cn by

(1.13) [u : v] := uKv∗.

Then, from Definition 1.1, Cn with [· : ·] is a complex symplectic space, which we
here denote by S.
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Since (iK) = (iK)∗ is a Hermitian matrix, it is known, by familiar linear algebra
(see [4, Chapter VIII]) that there exists an appropriate basis for Cn, in terms of
which we can assume, without loss of generality,

(1.14) iK =
[

Iq 0
0 −Ip

]
or K =

[
−iIq 0

0 iIp

]

for some non-negative integers p and q. (Here Ip denotes the identity matrix of size
p ≥ 0, which is omitted if p = 0, and similarly for Iq.)

In terms of these co-ordinates in S, we can define a symplectic orthogonal de-
composition of S into two symplectic subspaces H±,

(1.15) S = H− ⊕ H+.

In more detail, each vector, say

u = (u1, . . . , uq, uq+1, . . . , un) ∈ S,

has a unique decomposition

(1.16) u = u− + u+

where

(1.17) u− = (u1, . . . , uq, 0, . . . , 0) and u+ = (0, . . . , 0, uq+1, . . . , un).

Then define

(1.18) H− := {u ∈ S : u+ = 0} and H+ := {u ∈ S : u− = 0}.
Next calculate

(1.19) [u : v] = [u− + u+ : v− + v+] = [u− : v−] + [u+ : v+] = −iu−v∗− + iu+v∗+.

Accordingly, we can define scalar products 〈·, ·〉± in H±, respectively:

(1.20) 〈u−, v−〉− := i[u− : v−] and 〈u+, v+〉+ := −i[u+ : v+].

In this way H± are each a Hilbert space.
While the particular Hilbert spaces H± are not uniquely specified by (1.15), the

non-negative integers

p := dim(H+)(1.21)

q := dim(H−)(1.22)

are uniquely determined by S (see discussion following Example 1.9) and are known
as the positivity and negativity indexes of S. That is, p and q are symplectic in-
variants of S; in fact the pair (p,q) constitute a complete set of invariants which
characterize S up to symplectic isomorphism. Other convenient symplectic invari-
ants of S are

dim(S) = p + q, Excess or Ex(S) := p − q(1.23)

∆(S) := min{p,q}, the Lagrangian index of S.(1.24)

From another direction , start with any n-dimensional complex symplectic space
S1 with symplectic product [· : ·]1. Then there exists a linear isomorphism of the
vector space S1 onto Cn, and this map induces a symplectic product [· : ·] on
Cn - necessarily specified by some non-singular skew-Hermitian matrix, say K1,
satisfying conditions (1.12). Therefore S1 with [· : ·]1 is symplectic isomorphic to
Cn with [· : ·], as described above.
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The analysis of Example 1.8 can be reversed to construct a complex symplectic
space as the direct sum of two Hilbert spaces.

Example 1.9. Let H− and H+ be complex Hilbert spaces (finite or infinite dimen-
sional), with corresponding scalar products and norms 〈·, ·〉± and ‖·‖± , respectively,
and consider the direct sum Hilbert space

(1.25) S := H− ⊕ H+,

so that each vector u ∈ S has a unique representation as an ordered couple

(1.26) u = (u−, u+), with u− ∈ H− and u+ ∈ H+,

and the vectors (u−, 0) and (0, u+) are orthogonal in S.
Then S is a Hilbert space with norm given by

(1.27) ‖u‖2
S = ‖u−‖2

− + ‖u+‖2
+ ,

and furthermore S is a complex symplectic space with symplectic product of u =
(u−, u+) and v = (v−, v+) :

(1.28) [u : v] = −i 〈u−, v−〉− + i 〈u+, v+〉+ .

Thus for u±, v± ∈ H±, both respectively, compare (1.19) and (1.20):

(1.29) [(u−, u+) : (v−, v+)] = −i 〈u−, v−〉− + i 〈u+, v+〉+ .

In this sense each of H− and H+ is a Hilbert subspace of S and also a symplectic
subspace of S. Moreover (1.25) yields an orthogonal direct sum of H− and H+,
with regard to both the Hilbert scalar product and the symplectic product. We
summarize this situation by asserting that S has a Hilbert structure, as designated
by the Hilbert pair {H−, H+} - non-unique since other Hilbert pairs can define the
same complex symplectic space S.

Remark 1.10. According to Example 1.8, each finite dimensional complex sym-
plectic space has a Hilbert structure, noting (1.15). However, there exist infinite
dimensional complex symplectic spaces which do not possess any Hilbert structure;
see [3, Chapter I, Example 11.3] and [14, page 39].

In case the complex symplectic space S does have a Hilbert structure, say as in
(1.15) or (1.25),

(1.30) S = H− ⊕ H+,

the positivity and negativity indexes, defined respectively by

(1.31) p := dim(H+) and q := dim(H−),

are known to be independent of the choice of the Hilbert pair {H−, H+} decomposing
S.

However, for every complex symplectic space S, without reference to any Hilbert
structure, we can also give an intrinsic definition of these two symplectic invariants
p and q. First note that for each vector u ∈ S, the symplectic product [u : u] is
purely imaginary and so can be classified by its imaginary part:

(1.32)

⎧⎨
⎩

Im([u : u]) > 0 u is a positive vector
Im([u : u]) < 0 u is a negative vector
Im([u : u]) = 0 u is a neutral vector.
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Then a linear manifold V ⊂ S is called a positivity space in case (compare (1.29)):
(1.33){

Im([v : v]) > 0 for all non-zero v ∈ V, and
‖v‖2

V = −i[v : v] specifies a norm for which V is a (complete) Hilbert space.

Similarly, a linear manifold W ⊂ S is called a negativity space in case:
(1.34){

Im([w : w]) < 0 for all non-zero w ∈ W, and
‖w‖2

W = i[w : w] specifies a norm for which W is a (complete) Hilbert space.

Definition 1.11. Let S be a complex symplectic space, with symplectic product
[· : ·]. Then the positivity index p and the negativity index q of S are the cardinal
numbers:

p := sup{dim(P) : P is a (closed) positivity space in S}(1.35)

q := sup{dim(N) : N is a (closed) negativity space in S}.(1.36)

Here the terminology “closed space” refers to the symplectic weak topology on
S (as defined next - and which coincides with a closed Hilbert subspace in the case
when S has a Hilbert structure; see Section 3).

Regardless of the existence of a Hilbert structure or not, every complex symplec-
tic space S admits a distinguished intrinsic topology (not necessarily metrizable),
and this defines S as a locally convex topological vector space [14, Section 3, The-
orem 3.1], namely the symplectic weak topology as specified next; see [6] and [22].

Definition 1.12. Let S with [· : ·] be a complex symplectic space. Consider for
each vector w ∈ S the complex linear functional

(1.37) Fw : u → [u : w] to give S → C.

Then the symplectic weak topology on S is the (unique) weakest topology for which
every such linear functional {Fw : w ∈ S} is continuous.

Of course, the symplectic weak topology coincides with the Hilbert norm topol-
ogy on S when S is finite dimensional (a finite dimensional vector space admits a
unique topology as a topological vector space; see [28, Chapter 1, Section 1.19]).
However, if S = H− ⊕ H+ is infinite dimensional, with a Hilbert structure, then
the symplectic weak topology is different from the Hilbert topology (i.e. strictly
weaker); see discussions in Section 3.

The next example explains the relation between the Stone - von Neumann theory
of symmetric operators on an abstract complex Hilbert space H and the theory of
complex symplectic spaces and their symplectic algebra. In particular, for each
specified symmetric operator T0, with dense domain D(T0) ⊂ H, we define the
boundary complex symplectic space S for T0.

Example 1.13. Let H be a complex Hilbert space (of arbitrary dimension), with
scalar product and norm denoted by 〈f, g〉 and ‖f‖ = |〈f, f〉|1/2 for all vectors
f, g ∈ H. Also let T0 be a closed symmetric operator with dense domain D(T0) ⊂ H
(if a symmetric operator with a dense domain on H is not closed, replace it by its
closure and proceed without loss of generality). Next let T1 on domain D(T1) ⊂ H
be the adjoint of T0 in H, as indicated by

(1.38) T1 = T ∗
0 ,
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and then T0 is the restriction of T1 to D(T0) ⊂ D(T1). Furthermore, in this situation
(see [6], [10, Section II] and [11, Appendix]) it follows that

(1.39) T0 = T ∗
1 .

Moreover, every self-adjoint operator T on D(T ), which is an extension of T0 on
D(T0), and thence a restriction of T1 on D(T1), satisfies the bounds, respectively:

(1.40) T0 ⊆ T = T ∗ ⊆ T1 on D(T0) ⊆ D(T ) = D(T ∗) ⊆ D(T1).

Accordingly we call T0 and T1 the minimal and maximal operators for T0.
The linear manifold D(T1) is not a closed subspace of the Hilbert space H, but

it is nevertheless a Hilbert space relative to the T1-graph norm with the following
scalar product:

(1.41) 〈f, g〉D := 〈f, g〉 + 〈T1f, T1g〉 for all f, g ∈ D(T1),

with the norm defined by

(1.42) ‖f‖2
D := 〈f, f〉D .

Further D(T1) bears a degenerate symplectic product

(1.43) [f, g]D := 〈T1f, g〉 − 〈f, T1g〉 for all f, g ∈ D(T1),

where we note that, since T0 is symmetric on D(T0) ⊆ D(T1),

(1.44) [f, g]D = 0 for all f, g ∈ D(T0).

The main fact in this theory is the Stone-von Neumann direct sum decomposition
within the Hilbert space D(T1):

(1.45) D(T1) = D(T0) ⊕ N− ⊕ N+.

Here we define the deficiency spaces N± of T0 by

(1.46) N± := {f ∈ D(T1) : T1f = ±if},
which are closed subspaces of D(T1) (and also of H); from these deficiency spaces
we further define the deficiency indices d± of T0, as cardinal numbers, respectively
by

(1.47) d± := dim(N±).

It is known that there are self-adjoint extensions T of T0, equivalently self-adjoint
restrictions of T1, if and only if

(1.48) d− = d+;

in this case, see (1.40). The symmetric operator T0 is self-adjoint if and only if

(1.49) d− = d+ = 0 and then T ∗
0 = T1 = T0.

From our viewpoint the most important aspect of the direct sum decomposition
(1.45) of D(T1) is that the summands are mutually orthogonal linear manifolds
within the Hilbert space D(T1), both with respect to the Hilbert scalar product
〈·, ·〉D and to the symplectic product [· : ·]D. It follows that

(1.50) D(T0) = {f ∈ D(T1) : [f : D(T1)]D = 0}.
This conclusion (1.50) makes it possible to define the complex symplectic space S
as the quotient or identification space

(1.51) S := D(T1)�D(T0),
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whose elements are cosets f = {f + D(T0)}, g = {g + D(T0)}, etc. That is, the
natural projection Ψ carries D(T1) onto S, according to the definition:

(1.52) Ψ : D(T1) → D(T1)�D(T0) as defined by f → Ψf := f = {f + D(T0)}.

Using representative functions f, g ∈ D(T1) define the non-degenerate symplectic
product on S by

(1.53) [f : g] := [f + D(T0), g + D(T0)]D = [f, g]D

(independent of the choice of functions f ∈ f and g ∈ g).

There is an important connection between the deficiency indices d± of the min-
imal operator T0 and the positivity index p (see (1.35)) and the negativity index q
(see (1.36)) of S as defined by (1.51) (note S has a Hilbert structure specified by
the Hilbert pair {N−, N+}):

(1.54) p = d+ and q = d−.

We name the complex symplectic space S with [· : ·] to be the boundary space of
T0. With this terminology we can now state the abstract version of the Glazman-
Krein-Naimark (GKN) Theorem (see [27, Chapter V, Section 17 and 18]), as gen-
eralised by Everitt and Markus; see [10, Section III, Part 2] and [11, Appendix].

Theorem 1.14. Let T0 be a closed symmetric operator with dense domain D(T0)
in a complex Hilbert space H, as above.

Consider the H-adjoints

T1 = T ∗
0 on D(T1) ⊂ H(1.55)

T0 = T ∗
1 on D(T0) ⊆ D(T1).(1.56)

Further consider the boundary complex symplectic space of T0

(1.57) S = D(T1)�D(T0)

with symplectic product [· : ·] as defined in (1.51) and (1.53).
Then there exists a natural one-to-one correspondence between the set {T} of all

self-adjoint extensions of T0 and the set {L} of all complete Lagrangians L ⊂ S.
Namely, for each self-adjoint operator T on D(T ) (necessarily a restriction of T1

on D(T1)), define the corresponding complete Lagrangian L ⊂ S by

(1.58) L := {f ∈ S : f ∈ D(T )} (also written L = ΨD(T ) as in (1.52))

and then

(1.59) D(T ) = {f ∈ D(T1) : f = {f + D(T0)} ∈ L}.

Remark 1.15. Note that L is the image of D(T ) under the natural projection Ψ
of D(T1) onto S, and, as in (1.52), D(T ) is the inverse image of L for this natural
projection.

Consequently the set {T} is empty if and only if the set {L} is empty, and it
is known that this circumstance holds if and only if the positivity and negativity
indices (see (1.31), (1.35), (1.36) and (1.47)) are unequal, i.e.

(1.60) q �= p i.e. d− �= d+.
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Equivalently, the set {T} is not empty if and only if the set {L} is not empty,
and this circumstance holds if and only if the deficiency indices d± of T0 (see (1.47),
are equal), i.e.

(1.61) d− = d+ i.e. q = p.

2. Motivating examples

2.1. Sturm-Liouville boundary value problems. As indicated in Section 1 we
describe here the construction of Sturm-Liouville ordinary differential operators,
which leads to the definition of important finite dimensional complex symplectic
spaces with Hilbert structure. This account is based on the general theory of
Lagrange symmetric quasi-differential expressions (see [27, Chapter V], [17], [9] and
[24]) and covers both the regular and singular cases of Sturm-Liouville differential
expressions. We follow a modern path (see [9]) for the analysis of the boundary
value theory for ordinary differential expressions and then introduce the symplectic
algebraic interpretation in the latter part of this section.

Suppose we are given the open interval (a, b), bounded or unbounded, of the real
line R and the three coefficients p, q, w satisfying the properties

(2.1)

⎧⎨
⎩

(i) p, q, w : (a, b) → R

(ii) p−1, q, w ∈ L1
loc(a, b)

(iii) w(x) > 0 for almost all x ∈ (a, b).

These coefficients determine the Sturm-Liouville differential equation

(2.2) −(p(x)y′(x))′ + q(x)y(x) = λw(x)y(x) for almost all x ∈ (a, b),

where λ ∈ C is a complex-valued spectral parameter and w is the weight function.
Given the interval (a, b) and the set of Sturm-Liouville coefficients {p, q, w}, one

can define the associated quasi-differential expression M [·] on the domain

(2.3) D(M) := {f : (a, b) → C : f, pf ′ ∈ ACloc(a, b)}

and

(2.4) M [f ](x) ≡ −(p(x)f ′(x))′ + q(x)f(x) for all x ∈ (a, b) and f ∈ D(M).

The above minimal conditions on the set of coefficients {p, q, w} imply that the
Sturm-Liouville differential equation has a solution to any initial value problem at
a point c ∈ (a, b) (see the existence theorem in [27, Chapter V, Section 15]); i.e.
given two complex numbers ξ, η ∈ C and any value of the parameter λ ∈ C, there
exists a unique solution of the differential equation (2.2), say y(·, λ) : (a, b) → C,
with the properties:

(2.5)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(i) y(·, λ) and (py′)(·, λ) ∈ ACloc(a, b)
(ii) y(c, λ) = ξ and (py′)(c, λ) = η
(iii) y(x, ·) and (py′)(x, ·) are holomorphic on C

for all x ∈ (a, b)
(iv) if ξ, η ∈ R, then y(·, λ) = y(·, λ) and

(py′)(·, λ) = (py′)(·, λ) for all λ ∈ C.
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Green’s formula for the differential expression M is, for any compact interval
[α, β] ⊂ (a, b),
(2.6)∫ β

α

{
g(x)M [f ](x) − f(x)M [g](x)

}
dx = [f, g](β) − [f, g](α) for all f, g ∈ D(M),

where the symplectic form [·, ·](x) : D(M) × D(M) → C is defined by

(2.7) [f, g](x) := f(x)(pg′)(x) − (pf ′)(x)g(x), for each x ∈ (a, b).

The analysis of boundary value problems for the differential expression (2.4)
takes place in the weighted Hilbert function space L2((a, b); w) with norm and
scalar product given by

(2.8) ‖f‖2
w =

∫ b

a

w(x) |f(x)|2 dx and (f, g)w =
∫ b

a

w(x)f(x)g(x) dx.

The maximal operator T1 generated by the expression M in this space is defined
by

(2.9) D(T1) := {f ∈ D(M) : f, w−1M [f ] ∈ L2((a, b); w)}
and

(2.10) T1f := w−1M [f ] for all f ∈ D(T1).

From Green’s formula (2.6) it follows that the two limits

(2.11) lim
x→b

[f, g](x) and lim
x→a

[f, g](x)

both exist and are finite in C, for all f, g ∈ D(T1).
The minimal operator T0 generated by the expression M in this space is defined

by the dense domain D(T0) ⊂ L2((a, b); w):

(2.12) D(T0) := {f ∈ D(T1) : lim
x→b

[f, g](x) − lim
x→a

[f, g](x) = 0 for all g ∈ D(T1)}

and

(2.13) T0f := w−1M [f ] for all f ∈ D(T0).

From established results in [27, Chapter V], [9], [10, Appendix A] and [11, Ap-
pendix] it is known that the following properties of T0 and T1 hold, where ∗ denotes
an adjoint operator in L2((a, b); w):

(2.14)

⎧⎪⎪⎨
⎪⎪⎩

(i) D(T0) ⊆ D(T1) and T0 ⊆ T1

(ii) T0 is a closed, symmetric operator in L2((a, b); w)
(iii) T1 is a closed operator in L2((a, b); w)
(iv) T ∗

0 = T1 and T ∗
1 = T0.

The deficiency indices {d−, d+} of the operator T0 (see Example 1.13) are equal
since the coefficients p, q, w are all real-valued on (a, b). Since the differential ex-
pression M is of the second-order, it follows that, defining the common index d,

(2.15) d := d− = d+ = 0, 1 or 2.

The integer value of this common deficiency index depends upon the properties of
the three coefficients p, q, w at the endpoints a and b of the interval (a, b), i.e. the
classification of these endpoints as regular, limit-circle or limit-point in the space
L2((a, b); w); see [5, Chapter 9], [7] and [32, Chapter II].
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We interpret the boundary value problem for a symmetric linear differential
expression, or formal differential operator M (for instance, the Sturm-Liouville
expression M on its domain D(M) in the Hilbert space L2((a, b); w) as in (2.3),
(2.4) and (2.8)), to be the problem of determining all self-adjoint linear operators
T generated by M on the relevant Hilbert space; i.e. T on the domain D(T ) is an
extension of the minimal operator T0 on D(T0) and a restriction of the maximal
operator T1 on D(T1). Then further we seek to examine whether each such self-
adjoint operator T on D(T ) can be defined by imposing boundary conditions on
the functions of D(T1) - and how this action can be accomplished. In this sense,
the classical eigenfunction expansions (or more general integral representations for
functions of the specified Hilbert space) are now incorporated into the spectral
theory of self-adjoint linear operators.

To discuss all the self-adjoint extensions {T} of the symmetric operator T0,
and thereby introduce the connections between the Sturm-Liouville boundary value
problems of the differential equation (2.2) and complex symplectic spaces, we define
the symplectic form [·, ·] : D(T1) × D(T1) → C by (see (2.11))

(2.16) [f, g] := lim
x→b

[f, g](x) − lim
x→a

[f, g](x) for all f, g ∈ D(T1).

We note that, from (2.12),

(2.17) [f, g] = 0 for all f ∈ D(T1) and all g ∈ D(T0).

Define the complex symplectic space S for the symmetric operator T0 (see (1.51)
and (1.57)) as the quotient space of cosets

(2.18) S := D(T1)�D(T0).

Note that from the formulae (1.45), (1.47) and (2.15) we obtain the result

(2.19) dim(S) = 2d.

Writing now the elements of this space S, using the notation f = {f + D(T0)}
and g = {g + D(T0)}, the symplectic product [· : ·] on S is given by (see (1.53)):

(2.20) [f : g] := [f, g]

where the right-hand side is defined from (2.16), using the representative functions
f ∈ f, g ∈ g.

When the common deficiency index d = 0 it follows that there is a unique self-
adjoint operator T = T0 = T ∗

0 = T1, that the complex symplectic space S has
dimension zero, and that no boundary conditions need to be imposed upon the
domain D(T1) to give the self-adjoint operator T.

That said, we now suppose that d = 1 or d = 2 holds. In this case the complex
symplectic space S has even integer finite dimension; thus the results of [10, Section
III, Theorem 2 and Corollary 2] and [14, Section 2, Theorem 2.3] apply, and further
for this space S we have (see (1.61))

(2.21) p = q.

The following results then hold:
(2.22)
(i) if d = 1 there exist complete Lagrangian subspaces L, all with dim(L) = 1
(ii) if d = 2 there exist complete Lagrangian subspaces L, all with dim(L) = 2.
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For the remainder of this section we continue this discussion for the Sturm-
Liouville boundary value problems but use a notation which is also valid for the
corresponding boundary value theory of Lagrange symmetric ordinary differential
expressions of higher order n ≥ 2, with dim(S) = 2d ≤ 2n. This subject is treated
in greater detail and generality in Section 4.2.

We now call on the GKN-Theorem; see Theorem 1.14, [27, Chapter V] or the
more general account in [9]. This theorem states that for every Sturm-Liouville
self-adjoint extension T of T0 (restriction of T1) there exists a set {wr ∈ D(T1) :
1 ≤ r ≤ d} having the properties:

(i) the set {wr ∈ D(T1) : 1 ≤ r ≤ d} is linearly independent in D(T1) modulo
D(T0)

(ii) using the definition (2.16)

(2.23) [wr, ws] = 0 for 1 ≤ r, s ≤ d,

such that for the self-adjoint operator T

D(T ) = {f ∈ D(T1) : [f, wr] = 0 for 1 ≤ r ≤ d}(2.24)

Tf = T1f = w−1M [f ] for all f ∈ D(T ).(2.25)

The set {wr ∈ D(T1) : 1 ≤ r ≤ d} is called a GKN symmetric set of boundary
condition functions; see [9].

Notation 2.1. Note that we use the symbol w for:
(i) the weight coefficient in the differential equation (2.2) and in the weighted

Hilbert function space L2((a, b); w) (2.8) as standard notation for Sturm-
Liouville theory

(ii) the boundary condition functions in the set {wr ∈ D(T1) : 1 ≤ r ≤ d}
to follow the standard notations in Naimark [27, Chapter V, Section 18.1,
Theorem 4].

The context in which this symbol w is used should indicate which one of these
two cases is involved.

There is a converse to the above result: if there exists a set {wr ∈ D(T1) : 1 ≤
r ≤ d} satisfying the stated linear independence and the property given by item (ii)
above, then the operator T defined by (2.24) and (2.25) is a self-adjoint extension
of T0 (restriction of T1) having the indicated GKN symmetric set of boundary
condition functions.

We can now identify the complete Lagrangian L ⊂ S (see (2.22)) with the linear
manifold D(T ) ⊂ D(T1), using Notation 1.3 and Theorem 1.14, by the identification

(2.26) wr = {wr + D(T0)} for 1 ≤ r ≤ d

to give {wr ∈ S : 1 ≤ r ≤ d} as a linearly independent basis for L satisfying (see
(2.20))

(2.27) [wr : ws] = 0 for 1 ≤ r, s ≤ d.

Again, as with the GKN formulation, there is a converse to this last result: if a
complete Lagrangian L ⊂ S, necessarily with dim(L) = d, can be found, then any
basis {wr ∈ L : 1 ≤ r ≤ d} of L satisfies (2.27) and the identification (2.26) gives a
GKN symmetric set of boundary condition functions with which to define D(T ) as
in (2.24), as is consistent with the general result given in Remark 1.15.
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This account is an abstract formulation of boundary value problems for the
Sturm-Liouville differential equation, given by (2.1) and (2.2), to connect the GKN
theory [9], as also dependent upon the Stone-von Neumann theory of linear opera-
tors in abstract Hilbert space [31], with the properties of complex symplectic spaces
and their complete Lagrangian subspaces. In Section 4 we give more explicit de-
tails of the structure of symmetric Sturm-Liouville boundary conditions and related
results for higher-order quasi-differential expressions.

2.2. Laplace boundary value problems. In this section we illustrate an ap-
plication of symplectic algebra to boundary value theory for an elliptic partial
differential operator; see [13] and [34] for a full exposition of the general theory of
second-order (and higher-order) elliptic partial differential expressions in bounded
regions of r-dimensional real Euclidean space Er, for r ≥ 2.

Consider the classical Laplace partial differential expression

(2.28) ∆ =
∂2

∂x2
1

+
∂2

∂x2
2

in terms of the rectangular cartesian co-ordinates (x1, x2) within a bounded region
Ω ⊂ E2. That is, Ω is an open connected set in the Euclidean plane with a compact
boundary ∂Ω consisting of smooth closed curves. For simplicity we take Ω to be
the open unit disk

(2.29) Ω = {x = (x1, x2) ∈ E2 : 0 ≤ x2
1 + x2

2 < 1},
so ∂Ω is the unit circle.

Then ∆ defines a linear operator A on its classical domain D(A) in the Hilbert
space L2(Ω); that is, with a conventional negative sign,

D(A) := C∞
0 (Ω)(2.30)

Af := −∆f for all f ∈ D(A).(2.31)

Here the complex Hilbert function space

(2.32) L2(Ω) =
{

f : Ω → C :
∫

Ω

|f(x)|2 dx < ∞
}

has the usual scalar product and norm, respectively, given by

(2.33) 〈f, g〉 =
∫

Ω

f(x)g(x) dx and ‖f‖2 = 〈f, f〉 ,

where dx = dx1dx2 indicates Lebesgue measure in E2.
We recall that

(2.34)
{

C∞(Ω) = {f : Ω → C : all classical derivatives of f
are continuous in Ω}

and

(2.35) C∞
0 (Ω) = {f ∈ C∞(Ω) : f has compact support in Ω};

thus D(A) (see (2.30)) is a dense linear manifold of L2(Ω). Moreover, the classical
Green formula, for all complex-valued suitably smooth functions f, g on the closed
disk Ω, asserts

(2.36) 〈−∆f, g〉 − 〈f,−∆g〉 =
∫

∂Ω

{
∂f

∂n
g − f

∂g

∂n

}
dσ,
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with inwards unit normal n on ∂Ω and arc length dσ on ∂Ω. Hence, for f, g ∈ D(A)
as in (2.30), it is straightforward to calculate (using the continuous extensions so
f = g = 0 on ∂Ω),

(2.37) 〈Af, g〉 − 〈f, Ag〉 = 0,

so A on D(A) is a symmetric operator in L2(Ω).
However, A on D(A) is not self-adjoint (not even closed), so we have to obtain

its closure and then determine the corresponding minimal and maximal operators
(compare with Section 2.1), respectively, on the domains in L2(Ω),

(2.38) T0 on D(T0) and T1 on D(T1),

in order to apply the general constructions in Example 1.13 in Section 1. For this
purpose we require the Sobolev spaces, which we regard as submanifolds of L2(Ω),
say

(2.39) W 2(Ω) ⊂ W 1(Ω) ⊂ L2(Ω),

as defined next; see [13, Appendix A].

2.2.1. Notation for Sobolev spaces. Consider the linear submanifolds of L2(Ω) given
by

(2.40)
{

W 2(Ω) = {f ∈ L2(Ω) : Dsf ∈ L2(Ω), 0 ≤ |s| ≤ 2, for all weak
derivatives Ds of total order |s| ≤ 2}.

Here, for non-negative integers s1, s2 and |s| = s1 + s2,

Dsf =
∂|s|f

∂xs1
1 ∂xs2

2

,

are weak or distributional derivatives of f ∈ L2(Ω). Then W 2(Ω) is a (Sobolev)
Hilbert space with the scalar product and norm given by, for all f, g ∈ W 2(Ω),

(2.41) 〈f, g〉2 =
∑

0≤|s|≤2

〈Dsf, Dsg〉 and ‖f‖2 = |〈f, f〉2|
1/2 .

By the Trace Theorem [13, Appendix A], upon using appropriate limits, f ∈ W 2(Ω)
assigns the values of both f and the normal derivative ∂f�∂n on ∂Ω:

(2.42) f |∂Ω and
∂f

∂n

∣∣∣∣
∂Ω

,

both in the space L2(∂Ω). In particular, we denote the closed Hilbert subspace of
W 2(Ω)

(2.43)
o

W 2(Ω) =
{

f ∈ W 2(Ω) : f = 0 and
∂f

∂n
= 0 on ∂Ω

}
.

In a similar way we define the (Sobolev) Hilbert spaces W 1(Ω) and
o

W 1(Ω); thus,
in particular,

(2.44) W 2(Ω) ∩
o

W 1(Ω) = {f ∈ W 2(Ω) : f = 0 on ∂Ω}.
We now return to Section 2.2 and to the study of the Laplace differential ex-

pression ∆ of (2.28). Using the definitions above, we are prepared to follow the
abstract framework of Example 1.13 and define the corresponding minimal and
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maximal operators T0 and T1, respectively, for the operator A on D(A); see (2.38).
Thereafter we define the boundary complex symplectic space

(2.45) S := D(T1)�D(T0)

in order to use both the GKN-Theorem and the structure of the complete La-
grangian subspaces L ⊂ S to determine all the self-adjoint extensions of the operator
A = −∆ of (2.31) through these methods.

First we remark that f, g ∈ W 2(Ω) satisfy Green’s formula (2.36), upon using
weak derivatives for the Laplacian and the appropriate trace values for the data on

the boundary ∂Ω. Hence Green’s formula, a fortiori, applies to f, g ∈
o

W 2(Ω), and
we define the extension of A to T0 by

(2.46) D(T0) :=
o

W 2(Ω) and T0f := −∆f for all f ∈ D(T0).

Then T0 is the (closure) minimal closed symmetric extension of A on D(A) in the
Hilbert space L2(Ω); see [13, Theorem 3.2].

The corresponding maximal operator T1, as generated by A on D(A), is defined
to be the L2(Ω)-adjoint of T0:

(2.47) T1 := T ∗
0 on D(T1) ⊃ D(T0).

It has been established (see [13, Theorem 3.3 and Example 4.1] and [30, Volume 5,
Section 188]) that D(T1) is the direct sum of two submanifolds of L2(Ω), namely

(2.48) W 2(Ω) ∩
o

W 1(Ω) := {f ∈ W 2(Ω) : f = 0 on ∂Ω}

and

(2.49)
∆

L2(Ω) := {f ∈ L2(Ω) : f ∈ C∞
0 (Ω) and ∆f ≡ 0 in Ω}.

That is, we define the submanifold of L2(Ω)

(2.50)
∆

W 2(Ω) := W 2(Ω) ∩
o

W 1(Ω) �
∆

l 2(Ω)

(see [13, Lemma 3.2]) to obtain also

∆

W 2(Ω) = span{W 2(Ω),
∆

L2(Ω)}.

Here W 2(Ω) ∩
o

W 1(Ω) is a submanifold of L2(Ω) which contains
o

W 2(Ω) (see (2.43)

and (2.44)), and
∆

L2(Ω) consists of all complex-valued harmonic functions that be-
long to L2(Ω).

While
∆

L2(Ω) ⊂ L2(Ω) we observe that
∆

L2(Ω) � W 2(Ω); see the example in

Section 2.3. Accordingly we seek to extend A = −∆ on D(A) to
∆

W 2(Ω) by using
weak derivatives on W 2(Ω) and the structure of the direct sum (2.50). Namely,

each function f ∈
∆

W 2(Ω) has a unique representation

f = fD + f∆, with fD ∈ W 2(Ω) ∩
o

W 1(Ω) and f∆ ∈
∆

L2(Ω).

In this situation we define

(2.51) −∆f := −∆fD (noting that ∆f∆ = 0).
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Therefore we now obtain the required maximal operator T1 on D(T1), as generated
by A on D(A), namely

(2.52) D(T1) :=
∆

W 2(Ω) and T1f := −∆fD for all f ∈ D(T1).

These results lead to the correct definition of the boundary complex symplectic
space S for the operator A = −∆ on D(A) ⊂ L2(Ω); that is

(2.53) S := D(T1)�D(T0),

with the symplectic product

(2.54) [f : g] :=
[
f +

o

W 2(Ω) : g +
o

W 2(Ω)
]

:=
∫

Ω

{(−∆f)g − f(−∆g)} dx,

where f, g ∈
∆

W 2(Ω) represent the cosets, respectively,

(2.55) f =
{

f +
o

W 2(Ω)
}

and g =
{

g +
o

W 2(Ω)
}

,

as in Example 1.13 of Section 1.
We are now in a position to describe all the self-adjoint operators T on domains

D(T ), as extensions of A = −∆ on D(A), by means of the GKN-EM Theorem
1.14. First note that ∆ is a real operator so the deficiency indices of the minimal
operator T0 (equivalently the negativity and positivity indices of S) are equal:

(2.56) d− = d+ = d (say), equivalently q = p,

and moreover d is the cardinality of N, that is

(2.57) d = ℵ0;

further this result has the interesting consequence

(2.58) dim(S) = 2d = ℵ0.

Hence, there exists a non-countable set {T} of such self-adjoint operators

(2.59) T0 ⊂ T = T ∗ ⊂ T1 with domains
o

W 2(Ω) ⊂ D(T ) = D(T ∗) ⊂
∆

W 2(Ω).

As an example, consider the classical Dirichlet self-adjoint operator TDir on the
domain (see [13, Definition 4.1 and Theorem 4.1])

(2.60) TDirf = −∆f on D (TDir) = W 2(Ω) ∩
o

W 1(Ω)

corresponding to the Dirichlet complete Lagrangian (see Theorem 1.14)

(2.61) LDir = Ψ
(

W 2(Ω) ∩
o

W 1(Ω)
)

⊂ S,

in terms of the natural projection map Ψ (see (1.52) and Remark 1.15 and note

that
o

W 2(Ω) ⊂ W 2(Ω) ∩
o

W 1(Ω) which implies
o

W 2(Ω) is contained in D (TDir)).
As is well-known, the Dirichlet operator TDir has a discrete spectrum of real

eigenvalues (with each eigenspace of finite dimension), with no accumulation points
in R. However, a more unusual self-adjoint extension of A = −∆ on D(A) = C∞

0 (Ω)
is the harmonic operator THar (see [15])

(2.62) D (THar) :=
o

W 2(Ω) �
∆

L2(Ω) and THarf := −∆f for all f ∈ D (THar) ,
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with the corresponding complete Lagrangian

(2.63) LHar := Ψ
(

∆

L2(Ω)
)

⊂ S.

This self-adjoint operator THar has a spectrum which includes a countable set of
discrete eigenvalues, each of finite multiplicity, but with a non-empty essential spec-
trum consisting of a single eigenvalue at the origin of infinite multiplicity; see [15].

2.3. Comparison of boundary value problems. Finally we compare and con-
trast the boundary value theory for ordinary differential operators (as exemplified
by the Sturm-Liouville operators in Section 2.1) and for elliptic partial differen-
tial operators (as exemplified by the Laplace operator in Section 2.2), especially as
illuminated through the methods of symplectic algebra.

Of course, the boundary complex symplectic space S is finite dimensional in the
Sturm-Liouville case and infinite dimensional for the Laplace operator. Otherwise
the GKN-Theorem applies equally well to correlate the self-adjoint extensions to
the complete Lagrangians of S. For the finite dimensional case a Lagrangian sub-
space L ⊂ S is complete if and only if 2 dim(L) = dim(S), whereas for the infinite
dimensional case this (cardinal) arithmetic condition is necessary but not sufficient
for L to be complete; compare (2.58).

The boundary conditions which define a self-adjoint extension for a Sturm-
Liouville operator can always be formulated in terms of linear homogeneous con-
ditions on the boundary value of functions and their first derivatives (or limits of
such conditions in singular cases). However the operator THar on D(THar), for the
Laplace expression, is not subject to characterization by conditions for functions de-
scribed by data on the boundary circle ∂Ω of the disk Ω ⊂ E2. However, it should
be pointed out that, even for partial differential expressions, the GKN-Theorem
does permit a characterization of the corresponding complete Lagrangian subspace
L ⊂ S by means of a system of linear functionals on S, each of which is specified by
a vector of a basis of L; see [14, Proposition 5.1] and compare (2.24).

The operator THar on D(THar) ⊂ L2(Ω) seems rather mysterious, especially if we
consider the Laplace operator on the bounded region Ω ⊂ E2 as the analogue of a
regular boundary value problem for the Sturm-Liouville operator.

For instance, the domain

D(THar) =
o

W 2(Ω) �
∆

L2(Ω)

does not lie within the domain W 2(Ω), which might be expected to play the role of
the maximal domain. An explicit example of an element F ∈ D(THar) demonstrates
this property (see [15, Example 4.2]), as given next. Namely, consider the analytic
function

(2.64) F (z) :=
∞∑

n=0

z2n

for all |z| < 1,

which is holomorphic for this open unit disk of C or E2 (using the complex coor-
dinate z = r exp(iθ), as usual). It is straightforward to show that F ∈ L2(Ω), and

hence, since F is harmonic, F ∈
∆

L2(Ω). Clearly on the unit circle z = exp(iθ), the
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infinite series (2.64) converges nowhere. Indeed, computations for F ′ given by

F ′(z) =
∞∑

n=0

2nz2n−1 for all |z| < 1

show that
F ′ /∈ L2(Ω) so that F /∈ W 1(Ω),

and, significantly, the Trace Theorem (see [15, Remark 4.4]) does not apply and
hence assigns no boundary values for F on the unit circle, the boundary ∂Ω of Ω.

In a desperate attempt to assign some reasonable boundary data to the function
F on the boundary ∂Ω, we could examine radial limits, for θ ∈ [0, 2π), say

lim
r↗1

F (r exp(iθ)) = lim
r↗1

∞∑
n=0

r2n

exp(i2nθ).

But again more difficult analysis (see [15, Example 4.2]) proves that, for each θ ∈
[0, 2π), the required finite radial limit, as r ↗ 1, does not exist.

As another example, the analytic function G (see [15, (4.24)]),

G(z) =
∞∑

n=0

nz2n

for all |z| < 1,

belongs to
∆

L2(Ω), and furthermore, for each ray given by θ ∈ [0, 2π),

lim sup
r↗1

|G(r exp(iθ))| = +∞.

As before,
G′ /∈ L2(Ω) so that G /∈ W 1(Ω).

Another interesting and strange property of THar on D(THar) is that (see Section
2.2) the essential spectrum is non-empty, in contrast to the discrete spectrum for
all regular Sturm-Liouville problems. It is an unsolved problem as to whether the
operator THar, as a self-adjoint extension for the Laplace operator in the unit disk,
is unique in some noteworthy way. For instance, can THar be characterized, among
all self-adjoint operators for the Laplace differential expression or even among some
interesting subclass, by mathematically significant intrinsic properties?

The question of uniqueness for the operator THar also leads to another problem.
If THar is unique, can all other self-adjoint extensions of the Laplace operator in the
unit disk be determined by applying generalized boundary conditions to functions
in the maximal domain D(T1), on the boundary ∂Ω, using the properties of the
Trace Theorem?

3. General theory of complex symplectic spaces

Recall Definition 1.1 of a complex symplectic space S, with symplectic product
[·; ·], say of finite or infinite (non-finite) dimension over the complex field C. With full
generality in Section 1, we have formally specified two kinds of intrinsic structures
for S, namely the (cardinal) numeric invariants of the positivity index p, negativity
index q, and Lagrangian index ∆ = min{p,q}, as in Definition 1.11; and the
topological properties ascribed to the symplectic weak topology, as in Definition
1.12. We should also observe here that S, together with the conjugate bilinear form
−i[· : ·], is a (non-degenerate) indefinite inner-product space, and conversely every
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such indefinite inner-product space defines a corresponding complex symplectic
space; see [3] and [14].

While these concepts are meaningful for each complex symplectic space S, they
are more readily interpreted and explicitly useful in case S has a Hilbert structure,
say as exhibited by a Hilbert pair {H±}; see Example 1.9. In this case we assume
there exists a symplectically orthogonal direct sum decomposition

(3.1) S = H− ⊕ H+;

that is let H− and H+ be complex Hilbert spaces (finite or infinite dimensional),
with corresponding scalar products and norms 〈·, ·〉± and ‖·‖± , respectively, so that
each vector u ∈ S has a unique representation as an ordered couple

(3.2) u = (u−, u+), with u− ∈ H− and u+ ∈ H+,

and the vectors (u−, 0) and (0, u+) are orthogonal in S. Then we have

(3.3) 〈u−, v−〉− = i[(u−, 0) : (v−, 0)] and 〈u+, v+〉+ = −i[(0, u+) : (0, v+)].

Indeed, S can be treated as the direct sum Hilbert space with norm (but not the
topology; see (3.18)) dependent on the Hilbert pair {H±}.

This Hilbert structure is always the case when dim(S) < +∞, and then (see
Example 1.8)

(3.4) q = dim(H−) and p = dim(H+)

(independent of the choice of the Hilbert pair {H±} decomposing S). Moreover,

(3.5) {p,q}
constitutes a complete set of invariants for S up to symplectic isomorphism, and
we have the following results:

(3.6) dim(S) = p + q

(3.7) ∆ = min{p,q} = max{dim(L) : L is a Lagrangian subspace of S}.
In addition there exists a complete Lagrangian L ⊂ S if and only if

(3.8) p = q,

that is if and only if
Ex(S) = p − q = 0;

also a Lagrangian L ⊂ S is complete if and only if

(3.9) 2 dim(L) = dim(S).

However, even if S is an infinite dimensional complex symplectic space with a
Hilbert structure, as in (3.1), (3.2) and (3.3) (i.e. S corresponds to a Krein inner-
product space or to a Pontryagin space when, say, q < +∞), all the conclusions
(3.4) to (3.8) remain valid (see [14, Section 4]), that is provided we interpret the
invariants p and q as cardinal numbers, the dimension of any Hilbert space as
the cardinality of an orthonormal basis, and in (3.7) the term dim(L) refers to
closed Lagrangian subspaces in the Hilbert topology of S. The final assertion (3.9)
is replaced by the statement that if a Lagrangian L ⊂ S is complete, then

(3.10) 2 dim(L) = dim(S),

but the converse does not hold for infinite dimensional complex symplectic spaces.
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We note that for an infinite dimensional complex symplectic space S there may
well be some simplifications of statements such as (3.6) to read:

(3.11) dim(S) = max{p,q},
and for (3.10) to read that if a Lagrangian L ⊂ S is complete, then

(3.12) dim(L) = p = q = dim(S).

Also the proof of some of these statements can be quite difficult, for example the
result (3.7). For an important case of these difficulties, see [14, Section 4, Theorem
4.3], the proof of which result is based on a transfinite version of the Gram-Schmidt
process as given in [14, Section 4, Proposition 4.1]; see also [21].

Other differences between the cases of finite versus infinite dimensional complex
symplectic spaces arise through investigation of the corresponding symplectic weak
topologies. For instance, a complex symplectic space S is finite dimensional if and
only if S is locally compact. We survey some of these topological contrasts below.

Finally, we remark that there exist infinite dimensional complex symplectic
spaces S which admit no Hilbert structure, as in (3.1) - in fact, not even if pre-
Hilbert spaces {H±} are allowed in the decomposition of S; see [3, Example 11.3].
These spaces are poorly understood; for instance, there appears to be no useful
definition of dim(S) (the classical Hamel dimension does not seem relevant here).
Nevertheless, even such an infinite dimensional complex symplectic space is a locally
convex topological space, which is not however locally compact under its symplectic
weak topology.

We next compare and contrast the properties of various topologies used on com-
plex symplectic spaces. Let S be an arbitrary complex symplectic space, with a
symplectic product [· : ·], as in Definition 1.1 of Section 1. Accordingly, the sym-
plectic weak topology on S is specified in Definition 1.12 to be the (unique) weakest
topology such that each linear functional Fw, for w ∈ S, is continuous:

(3.13) Fw : S → C given by u → [u : w].

Explicitly (3.13) demands that, for each open set O ⊂ C, the inverse image, for
each w ∈ S,

(3.14) F−1
w (O) := {u ∈ S : [u : w] ∈ O}

is weak-open in S, and these weak-open sets then constitute a base for the symplectic
weak topology. Moreover, we can take O to be an ε-disk, for each ε > 0, say centered
at a point z0 = [u0 : w], for some choice of u0 ∈ S, and then

(3.15) F−1
w (O) = {u ∈ S : |[u : w] − [u0 : w]| < ε}

is a weak-open neighborhood of u0 in S. In this way we construct a useful neighbor-
hood base for u0 ∈ S by employing finite sets W = {wα ∈ S}, say for all wα ∈ W:

(3.16) Nu0(W, ε) = {u ∈ S : |[u : wα] − [u0 : wα]| < ε}.
Since S is non-degenerate, i.e. for each pair of distinct points of S (say u1 �= u0),

there exists w1 ∈ S for which |[u1 − u0 : w1]| > 1, and so the symplectic weak
topology satisfies the Hausdorff separation axiom; see [22, Chapter 2, page 67].
Since each set Nu0(W, ε) of (3.16) is convex in the vector space S, the symplectic
weak topology establishes S as a locally convex topological vector space; for details
see [14, Section 3].
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A list of general properties of any locally convex vector space is provided in [14,
Section 3, Remark 3.2], and important specific properties of S, with its symplectic
weak topology, are developed in [14, Section 3, pages 23 and 24], for instance:

Remark 3.1. The following properties hold:
(1) S is finite dimensional if and only if S is locally compact.
(2) For each non-empty set U ⊆ S the symplectic ortho-complement U# is

closed.
(3) If S = S1 ⊕ S2, then S1 = S#

2 and S2 = S#
1 are each complex symplectic

subspaces and closed in S. Further, the intrinsic symplectic weak topologies
in S1 and S2 coincide with the inherited or induced topologies from S.

(4) Each complete Lagrangian L ⊂ S is closed in the symplectic weak topology
of S.

In certain special cases other topologies are relevant for the complex symplectic
space S. For instance, if

D := dim(S) < +∞
is finite, then S is linearly isomorphic to the complex vector space CD (as explic-
itly exhibited by the choice of a basis for S). In this way the classical Hermitian
metric on CD defines a metrizable topology (say, the Hermitian topology, indepen-
dent of the choice of basis) establishing S as a locally compact topological vector
space. Since a finite dimensional vector space admits a unique topology for which
it becomes a topological vector space, we conclude that the Hermitian topology
coincides with the symplectic weak topology on S when dim(S) < +∞.

In another situation, assume that S has a Hilbert structure

(3.17) S = H− ⊕ H+ with [H− : H+] = 0,

say with a collection of Hilbert pairs, as typified by {H±}. Then S itself can be
considered as the direct sum Hilbert space (see Example 1.9 in Section 1) with
a Hilbert norm ‖·‖S , depending on the Hilbert pair {H±}. Now consider another
Hilbert pair {Ĥ±} of the Hilbert structure for S, so

(3.18) S = Ĥ− ⊕ Ĥ+ with [Ĥ− : Ĥ+] = 0,

and S now has the corresponding Hilbert norm ‖·‖Ŝ . Then, as proved in [14, Section
4, Lemma 4.1] these two norms on S are equivalent, and so they define the same
topology, called the Hilbert topology on S.

Since the Hilbert topology on S arises from a norm, S is then a locally convex
topological vector space, in terms of its Hilbert topology. Furthermore, the Hilbert
structure on S specifies a unique uniformity, as generated by the set of all open
balls of all Hilbert norms (see [22, Chapter 6, page 178]), and this uniform topology
coincides with the Hilbert topology.

In [14, Section 3] there is a comparison of interesting results for the Hilbert
topology and the symplectic weak topology on S, as follows:

Remark 3.2. The following properties hold:
(1) The symplectic weak topology is weaker (i.e. not stronger, finer, larger)

than the Hilbert topology on S. Moreover it is strictly weaker than the
Hilbert topology if and only if S is infinite dimensional (in fact, in this case
each open ball of a Hilbert norm is not weak-open on S).
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(2) A linear manifold in S is weak closed if and only if it is closed in the Hilbert
topology - and hence a closed Hilbert subspace under each Hilbert norm
on S.

(3) The symplectic weak topology is metrizable if and only if S is finite dimen-
sional; see [14, Section 3, Corollary 3.3].

4. Finite dimensional complex symplectic spaces

4.1. Theory of separation and coupling for Lagrangian spaces. In this
penultimate section of our survey and review paper we describe in more detail
the boundary value theory for Lagrange symmetric ordinary differential operators
on an arbitrary real interval I = (a, b), for −∞ ≤ a < b ≤ +∞, thereby involving
singular as well as regular boundary value problems. We expand our description
of the second-order Sturm-Liouville operator, as presented in Section 2.1, while
emphasizing the novel advantages arising from the algebraic methods of complex
symplectic spaces and their algebra.

Our earlier discussion of the Sturm-Liouville differential expression on an arbi-
trary interval (a, b) ⊂ R described the theory of self-adjoint operators so generated
in the Hilbert function space L2((a, b); w) (for weight w as described in Section
2.1, in particular (2.1) and (2.8)) in terms of the boundary complex symplectic
space S; see (2.18). Indeed we indicated briefly how this boundary value theory
could also apply to a Lagrange symmetric differential expression M of higher or-
der n ≥ 2. Then the GKN-EM Theorem 1.14 asserts that each such self-adjoint
operator T, generated by M in L2((a, b); w), is defined by a complete Lagrangian
L ⊂ S (say dim(S) = 2d ≤ 2n and Ex(S) = 0) or basis {w1, . . . , wd} of vectors in L,
or equally well by a GKN-set of boundary functions (see [27, Chapter V, Section
18.1, Theorem 4]) {w1, . . . , wd} representing these basis vectors and thus specifying
a symmetric set of boundary conditions.

In Section 4.2 we continue our investigations of this boundary value theory, but
now with emphasis on the symplectically orthogonal decomposition

S = S− ⊕ S+,

where S− and S+ are the left and right boundary spaces, respectively, corresponding
to the left and right endpoints of I, as given in Definition 4.7. With these methods
we can make a precise analysis of the separation and coupling of the GKN-sets of
boundary conditions and use these techniques to construct an intrinsic classification
of the various kinds of complete Lagrangians L (and thereby of self-adjoint operators
T in L2((a, b); w)) of higher order differential expressions.

In this exposition we first concentrate, in Section 4.1, on the abstract algebra
of finite dimensional symplectic spaces and their Lagrangian subspaces, here based
on the important Balanced Intersection Principle; see [10, Section III.1, Theorem
3]. After this study we turn in Section 4.2 to explicit applications for regular
and singular boundary value problems for second and higher order linear ordinary
differential equations.

Let S be a finite dimensional complex symplectic space with symplectic product
[· : ·], as in Definition 1.1, and assume there exists a symplectically orthogonal direct
sum decomposition (at this stage with no reference to any endpoints of intervals):

(4.1) S = S− ⊕ S+ with [S− : S+] = 0,
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as in Definition 1.5 of Section 1. Then the symplectic invariants of S are defined in
(1.22) to (1.24) of Section 1 and are denoted as follows:

Remark 4.1. The complete set of symplectic invariants of S is {p,q}, where
(1) p is the positivity index, q is the negativity index, and further,
(2) ∆ = min{p,q} is the Lagrangian index, Dimension or dim(S) ≡ D = p+q,

and Excess or Ex(S) = p− q.

We denote the corresponding invariants of the symplectic spaces S− and S+,
respectively, by

(4.2) p±,q±, ∆±, D±, Ex±.

It is straightforward to conclude that

(4.3) p = p+ + p−, q = q+ + q−, ∆ ≥ ∆− + ∆+

and also

(4.4) D = D− + D+ and Ex(S) = Ex(S−) + Ex(S+).

Recall (see Section 3) that there exists a complete Lagrangian L ⊂ S if and only
if

(4.5) Ex(S) = 0 (or p = q, or Ex(S−) = −Ex(S+)),

and in this case (abbreviating Ex(S±) = Ex±, respectively)

(4.6) ∆ = ∆− + ∆+ + |Ex±| (where |Ex±| = |Ex+| = |Ex−| ).
Moreover, a Lagrangian L ⊂ S is complete if and only if

(4.7) 2 dim(L) = dim(S),

so dim(S) is necessarily even in this case.
With these notations established, we next state the Balanced Intersection

Principle (for the proof of this result see [10, Section III.1, Theorem 3]):

Theorem 4.2. Let S be a finite dimensional complex symplectic space, with sym-
plectic product [· : ·], and a symplectically orthogonal direct sum decomposition, as
in (4.1),

(4.8) S = S− ⊕ S+ with [S− : S+] = 0.

Assume Ex(S) = 0, and let L be a complete Lagrangian of S.
Given this situation the Balanced Intersection Principle holds:

(4.9) 0 ≤ ∆− − dim(L ∩ S−) = ∆+ − dim(L ∩ S+) ≤ min{∆−, ∆+}.

As we shall see later, the regular boundary value problem rests on the special
case where

dim(S−) = dim(S+), equivalently ∆− = ∆+,

as asserted in the next corollary:

Corollary 4.3. Let S, with [· : ·], be a complex symplectic space of finite dimension,
having the decomposition

S = S− ⊕ S+ with [S− : S+] = 0,

as in Theorem 4.2. Let L ⊂ S be a complete Lagrangian, and assume further

(4.10) dim(S−) = dim(S+), equivalently ∆− = ∆+.
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Then

(4.11) dim(L ∩ S−) = dim(L ∩ S+).

In anticipation of applications concerning the separation and coupling of bound-
ary conditions, as described in Section 4.2, we next define these basic concepts
within the abstract algebraic framework.

Definition 4.4. Let S, with symplectic product [· : ·], be a finite dimensional
complex symplectic space having a symplectically orthogonal decomposition

S = S− ⊕ S+ with [S− : S+] = 0,

as in (4.1) to (4.7).
Then a non-zero vector v ∈ S is:
(i) separated at the left in case v ∈ S−

(ii) separated at the right in case v ∈ S+

(iii) coupled otherwise, i.e. v /∈ S− ∪ S+ (note: S− ∪ S+ is the set union, not
the product of vector spaces).

Let S, with symplectic product [· : ·], be a finite dimensional complex symplectic
space having a symplectically orthogonal direct sum

(4.12) S = S− ⊕ S+ with [S− : S+] = 0,

as in Definition 4.4. Assume Ex(S) = 0 and let L ⊂ S be a complete Lagrangian
space, so dim(L) = ∆. Then a basis of vectors for L may contain vectors each of
which is coupled, and other vectors, each of which is separated. We expand on
these concepts in the next definition; however, for full details on these topics see
[10, Section III.1].

Definition 4.5. Consider the finite dimensional complex symplectic space S, with
Ex(S) = 0, and assume

(4.13) S = S− ⊕ S+ with [S− : S+] = 0,

as in (4.12); let L ⊂ S be a complete Lagrangian subspace. A basis for L is called
minimally coupled in case no other basis of L has fewer coupled vectors. For
each such minimally coupled basis for L, the number of coupled vectors is called
the necessary coupling of L and is denoted by

(4.14) Nec-coupling(L) := ∆ − dim(L ∩ S−) − dim(L ∩ S+),

which is an integer in the range [0, ∆].
Particularly, define the concepts (compare [10, Section III.1]): L is strictly

separated in case

(4.15) Nec-coupling(L) = 0

(i.e. there exists a basis for L with no coupled vectors), and L is totally coupled
in case

(4.16) Nec-coupling(L) = ∆

(i .e. every basis for L consists entirely of coupled vectors).
In addition, an important parameter for complete Lagrangians L of S is the

coupling grade of L, namely (see 4.9)

(4.17) grade(L) := ∆− − dim(L ∩ S−) = ∆+ − dim(L ∩ S+).
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A direct calculation verifies the identity (see [10, Section III.1, Corollary 3]),

(4.18) Nec-coupling(L) = 2grade(L) + |Ex±| .
Further, in the references mentioned above, we find the major result:
(4.19){

each complete Lagrangian L ⊂ S has a minimally coupled basis, and each
minimally coupled basis contains precisely the following vector numbers:

(4.20)⎧⎨
⎩

(i) dim(L ∩ S−) = ∆− − grade(L) vectors, each separated at the left;
(ii) dim(L ∩ S+) = ∆+ − grade(L) vectors, each separated at the right; and
(iii) Nec-coupling(L) vectors, each coupled.

The existence of a coupled Lagrangian L ⊂ S, with a prescribed grade(L) = l
(say), is guaranteed by the result given in [10, Section III.1, Theorem 4], namely:

(4.21)
{

For each non-negative integer l ≤ min{∆−, ∆+}
there exists a complete Lagrangian Ll ⊂ S such that:

(4.22) grade(Ll) = l

and hence, by (4.18),

(4.23) Nec-coupling(Ll) = 2grade(Ll) + |Ex±| .
We are now in a position to illustrate, in Section 4.2, just how these results given

in (4.1) to (4.23) of abstract symplectic algebra can apply to the classification of
symmetric boundary conditions, specifying boundary value problems for Lagrange
symmetric ordinary differential expressions M on a real interval I; see (2.24) and
(2.25) of Section 2.1. Full details for regular and singular problems of higher order
differential expressions, with tabulations of important results, are presented in the
monograph [10, Section III.2].

4.2. Applications for ordinary symmetric boundary conditions. In this sec-
tion we record the generalization of the application of symplectic algebra, as intro-
duced for the Sturm-Liouville differential expression in Section 2.1, to Lagrange
symmetric ordinary differential expressions of order n ≥ 2, which are specified on
an arbitrary open interval of the real line - for instance, as in the classical differ-
ential expressions of the form (4.28). However, we choose to present this boundary
value theory in even greater generality using quasi-differential expressions, as given
in (4.25) and (4.26); this theory allows for the minimal local-integrability condi-
tions on the complex-valued coefficients of the differential expression. We do not
explicitly review or define the concepts for quasi-derivatives (i.e. certain linear
combinations of classical derivatives, as prescribed for the coefficient entries of a
Shin-Zettl matrix A; see below), but instead proceed on the basis of the thorough
exposition of quasi-differential expressions, as given in the monograph [10, Section
II].

The most general linear ordinary differential expressions so far defined, for order
n ∈ N and n ≥ 2, are the Shin-Zettl quasi-differential expressions; for details, in
order of date of publication, see [29], [27], [35], [7], [8], [17], [9] and [10, Appendix
A]. Quasi-differential expressions of order 1 need to be defined separately (see [9,
Section 3]) but are not considered here.
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Let (a, b) be an arbitrary open interval of the real line R. For n ≥ 2 let A =
[ar,s] ∈ Zn(a, b) be a Shin-Zettl complex-valued matrix of order n and let MA be
the corresponding quasi-differential expression generated by A. Here the elements
{ar,s : r, s = 1, 2, . . . , n} satisfy ar,s : (a, b) → C and are Lebesgue measurable.

Remark 4.6. We assume that the matrix A is Lagrange symmetric (see [8, Section
10] and [17, Section 2]); it is this condition that ensures symmetry in the quasi-
differential expression. This assumption is a generalization of the property of formal
self-adjointness for classical linear ordinary differential expressions; see (4.28).

We denote by
{
f

[r]
A : (a, b) → C : r = 0, 1, 2, . . . , n

}
the quasi-derivatives of f

with respect to A; for the definition see [8, Section 5], [17, Section 2] and [10,
Section II]. These quasi-derivatives have the properties

(4.24) f
[r]
A ∈ ACloc(a, b) for r = 0, 1, 2, . . . , n − 1 and f

[n]
A ∈ L1

loc(a, b).

The domain D(MA) of MA is defined by

(4.25) D(MA) := {f : (a, b) → C : f
[r−1]
A ∈ ACloc(a, b) for r = 1, 2, . . . , n}

with

(4.26) MA[f ] := inf
[n]
A for all f ∈ D(MA),

where i is the complex unit i2 = −1; thus MA[f ] ∈ L1
loc(a, b).

The minimal conditions on the elements of the matrix A, in order to define the
quasi-derivatives, are

(4.27) {ar,s(·) ∈ L1
loc(a, b) : r, s = 1, 2, . . . , n};

if these elements are smooth, say {ar,s(·) ∈ C(n)(a, b) : r, s = 1, 2, . . . , n}, then
the quasi-derivatives reduce to linear combinations of classical derivatives for f on
(a, b). In this case the differential expression takes on the classical form (4.28) (see
[17, Section 2]), in comparison with the quasi-differential form (4.26),

(4.28) MA[f ] =
m∑

r=0

(prf
(r))(r) + i

n−m−1∑
r=0

[
(qrf

(r))(r+1) + (qrf
(r+1))(r)

]
.

Here, given the positive integer n, the real-valued functions {pr} and {qr} for
r = 0, 1, 2, . . .m are suitably smooth, and m = [n/2] is the integer part of n/2.
Thus all classical linear ordinary differential expressions are special cases of the
general class of quasi-differential expressions; see [10, Appendix A].

The advantage of the use of quasi-derivatives, accepting the initial complication
in their definition, is that the minimal conditions on the coefficients (4.27) are
applicable, and the resulting form of Green’s formula for the differential expression
MA is shorter and more useful in applications; see (4.29), (4.30) and (4.31).

The Lagrange symmetric form of the matrix A determines the symmetric form of
Green’s formula for the quasi-differential expression MA; i.e. for all f, g ∈ D(MA)

(4.29)
∫ β

α

{
g(x)MA[f ](x) − f(x)MA[g](x)

}
dx = [f, g]A(β) − [f, g]A(α)

for any compact interval [α, β] ⊂ (a, b). Here the symplectic (skew-symmetric
sesquilinear) form

(4.30) [·, ·]A(x) : D(MA) × D(MA) → C for all x ∈ (a, b)
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has the explicit representation

(4.31) [f, g]A(x) = in
n∑

r=1

(−1)r−1f
[n−r]
A (x)g[r−1]

A (x).

The Sturm-Liouville differential expression M as considered in Section 2.1 (see
(2.3) and (2.4) under the minimal conditions (2.1)) is an example of a quasi-
differential expression for which the Shin-Zettl matrix is

(4.32) A =
[

0 p−1

q 0

]
;

the quasi-derivatives in this case are, where the prime ′ denotes classical differenti-
ation:

f
[0]
A = f , f

[1]
A = pf ′ and f

[2]
A = (pf ′)′ − qf.

The general Green formula (4.29) then reduces to the Sturm-Liouville case as given
in (2.6) and (2.7).

In this general case the analysis of boundary value problems for the differential
expression MA given in (4.26) follows the analysis in Section 2.1. Given the weight
function w, as in (2.1), the analysis takes place in the weighted Hilbert function
space L2((a, b); w) with norm and scalar product given by

‖f‖2
w =

∫ b

a

w(x) |f(x)|2 dx and (f, g)w =
∫ b

a

w(x)f(x)g(x) dx.

As in Section 2.1 the maximal operator T1 generated by the expression MA in
this space is defined by

(4.33) D(T1) := {f ∈ D(MA) : f, w−1MA[f ] ∈ L2((a, b); w)}

and
T1f := w−1MA[f ] for all f ∈ D(T1).

From Green’s formula (4.29) it follows that the two limits

(4.34) [f, g]A(b) := lim
x→b

[f, g]A(x) and [f, g]A(a) := lim
x→a

[f, g]A(x)

both exist and are finite in C, for all f, g ∈ D(T1).
The minimal operator T0 generated by the expression MA in this space is defined

by the dense domain

D(T0) := {f ∈ D(T1) : lim
x→b

[f, g]A(x) − lim
x→a

[f, g]A(x) = 0 for all g ∈ D(T1)}

and

(4.35) T0f := w−1MA[f ] for all f ∈ D(T0).

From established results in [27, Chapter V], [9] and [10, Appendix] it is known
that the following properties of T0 and T1 hold, where ∗ denotes an adjoint operator
in L2((a, b); w):

(4.36)

⎧⎪⎪⎨
⎪⎪⎩

(i) D(T0) ⊆ D(T1) and T0 ⊆ T1

(ii) T0 is a closed, symmetric operator in L2((a, b); w)
(iii) T1 is a closed operator in L2((a, b); w)
(iv) T ∗

0 = T1 and T ∗
1 = T0.
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The deficiency indices {d−, d+} of the operator T0 (see Example 1.13) satisfy the
inequalities

(4.37) 0 ≤ d−, d+ ≤ n,

where n is the order of the quasi-differential expression MA. In general, since the
elements of the Shin-Zettl matrix A may be complex-valued on (a, b), the indices
{d−, d+} may be unequal. As mentioned in Example 1.13 there are self-adjoint
extensions to the closed symmetric operator T0 if and only if these indices are
equal. Thus we make the additional condition on the matrix A that (see (1.48))

(4.38) d− = d+.

There are no known necessary and sufficient conditions on the matrix A to deter-
mine the values of the non-negative integers {d±} and so to decide if condition
(4.38) is satisfied. There is substantial literature devoted to sufficient conditions on
the elements of the matrix A to determine the indices {d±}; see [27, Chapter VI]
and [7].

The (degenerate) symplectic product [·, ·] : D(T1) × D(T1) → C is defined by

(4.39) [f, g] := (T1f, g)w − (f, T1g)w for all f, g ∈ D(T1).

From Green’s formula (4.29), definition (4.33) of the operator T1, and the limit
result (4.34) it follows that

(4.40) [f, g] = [f, g]A(b) − [f, g]A(a) for all f, g ∈ D(T1).

The boundary complex symplectic space generated by the quasi-differential ex-
pression MA is defined as in Section 2.1 (see (2.18) and (2.20)) and also in [11,
Appendix], namely (recall Notation 1.3)

(4.41) S := D(T1)�D(T0)

with the (non-degenerate) symplectic product

(4.42) [f : g] := [f, g] = [f, g]A(b) − [f, g]A(a) for all f, g ∈ S

for cosets f = {f + D(T0)}, g = {g + D(T0)}. Here f, g ∈ D(T1) are corresponding
representative functions for these cosets f and g.

From the deficiency index conditions (4.37) and (4.38), and defining d := d− =
d+, we obtain

(4.43) 0 ≤ dim(S) = d− + d+ = 2d ≤ 2n and Ex(S) = 0.

Next we define the left and right boundary spaces S− and S+, respectively, for
this boundary complex symplectic space S, corresponding to the endpoints a < b
of the interval (a, b).

Definition 4.7. Consider the boundary complex symplectic space S, and the sym-
plectic product [· : ·], for the quasi-differential expression MA on the interval (a, b),
as in (4.41) and (4.42), say

S := D(T1)�D(T0),

and consider the natural projection map (see (1.52))

(4.44) Ψ : D(T1) → S given by f → f = {f + D(T0)}.
Also consider the subspaces of D(T1):

(4.45)
D−(T1) := {f ∈ D(T1) : some neighborhood of b does not intersect supp(f)}
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(4.46)
D+(T1) := {f ∈ D(T1) : some neighborhood of a does not intersect supp(f)}.
Then define the left and right boundary spaces, respectively,

(4.47) S− := ΨD(T−) and S+ := ΨD(T+).

Remark 4.8. The existence of non-null elements in the subspaces D±(T1) depends
on the use of the “Naimark patching lemma”; see [27, Chapter V, Section 17.3,
Lemma 2].

It is clear that S± are linear subspaces of S, and a non-trivial argument based
on the Naimark patching lemma (see [10, Section III.2, Theorem 5]) proves that
S = span{S−, S+}, in fact the following theorem:

Theorem 4.9. Consider the boundary complex symplectic space S, with symplectic
product [· : ·], generated by MA on (a, b), as given in Definition 4.7. Then the left and
right boundary spaces S− and S+, respectively, provide a symplectically orthogonal
decomposition

(4.48) S = S− ⊕ S+ with [S− : S+] = 0.

Thus both S− and S+ are symplectic subspaces of S.

We now seek to refine the general theory of self-adjoint operators, say T on
D(T ), generated by the quasi-differential expression MA in the Hilbert function
space L2((a, b); w); see (4.36). Such operators T exist (see the deficiency condition
(4.38)) and satisfy

(4.49) D(T0) ⊆ D(T ) ⊆ D(T1) and T0 ⊆ T = T ∗ ⊆ T1.

In particular we seek to incorporate information about the left and right boundary
spaces S− and S+, and so to investigate the concepts of separation and coupling of
boundary conditions at the endpoints a and b of the interval (a, b).

According to the GKN-EM Theorem 1.14 of Section 1, we can define and describe
any such operator T and domain D(T ) as follows:

(4.50) D(T ) = {f ∈ D(T1) : [f : L] = 0}

(4.51) Tf = T1f for all f ∈ D(T ),

where L ⊂ S is any complete Lagrangian subspace of S. Recalling (see (4.43))
that dim(S) = 2d with d ∈ N and that (see (3.9)) 2 dim(L) = dim(S), one sees that
dim(L) = d. Thus if we select any basis of L, say {w1, w2, . . . , wd}, noting that, from
the definition of a Laplacian subspace, Definition 1.7, the symmetry conditions

(4.52) [wr : ws] = 0 for all r, s = 1, 2, · · · , d

are satisfied, then we can write

(4.53) D(T ) = {f ∈ D(T1) : [f : wr] = 0 for r = 1, 2, . . . , d}.
In Section 2.1, say (2.23) to (2.27) and the related discussion, we define a bound-

ary condition by a function w ∈ D(T1). Namely we define the corresponding func-
tional Fw by (compare (3.13) of Section 3)

(4.54) Fw : D(T1) → C as given by f → [f, w].
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Then the generalised boundary condition is the null space of the functional Fw in
D(T1); compare (4.54) and introduce the abbreviation, i.e.

(4.55) [f, w] = 0 for f ∈ D(T1),

or, equally well, see (4.40),

(4.56) [f, w]A(b) − [f, w]A(a) = 0.

Definition 4.10. Consider a boundary condition function w ∈ D(T1) satisfying
w /∈ D(T0).

Then we say that (compare Definition 4.4):
(i) w is left separated in case w = Ψw ∈ S−

(ii) w is right separated in case w = Ψw ∈ S+

(iii) w is coupled (at endpoints of (a, b)) in case w /∈ S− ∪ S+.

Lemma 4.11. The following three assertions are logically equivalent:
(i) w ∈ D(T1) is left separated (so w ∈ S− is left separated).

(ii) w ∈ D−(T1) (mod D(T0)); i.e. there exists ŵ ∈ D−(T1) such that w − ŵ ∈
D(T0).

(iii) [D(T1), w]A(b) = 0 so that [D(T1), w] = −[D(T1), w]A(a).

Remark 4.12. Following Lemma 4.11 we have
(i) Similar results to (i), (ii) and (iii) hold for w ∈ D+(T1) (mod D(T0)) if w

is right separated (or w ∈ S+).
(ii) Further w ∈ D(T1) is coupled (or w /∈ S− ∪ S+) if and only if u ∈ w (and

u /∈ D(T0)) implies that supp(u) intersects every neighborhood of a, also
of b; equivalently if and only if

[D(T1), w]A(a) �= 0 and [D(T1), w]A(b) �= 0.

From these concepts and remarks we can reformulate our previous discussions
on complete Lagrangians and their minimally coupled bases (see Definition 4.5 and
also (4.17), (4.18) and 4.19)) in terms of boundary conditions.

Extending the methods of the Sturm-Liouville theory in (2.23), (2.24) and (2.25)
of Section 2.1, we note that a GKN symmetric set of boundary conditions for the
general case (see [14, Section 5, Propositions 5.1 and 5.2]) consists of a set of
functions in D(T1),

(4.57) {w1, w2, . . . , wd},
such that their image under the natural projection map Ψ (see (1.52)),

(4.58) wr = Ψwr = {wr + D(T0)} for r = 1, 2, . . . , d,

constitutes a basis {w1, w2, . . . , wd} for a Lagrangian subspace L in S; L is necessarily
complete since dim(S) = 2 dim(L) = 2d. Note that since L is a Lagrangian subspace

[wr : ws] = 0 for r, s = 1, 2, . . . , d,

which implies that

(4.59) [wr, ws] = 0 for r, s = 1, 2, . . . , d;

this is the original GKN condition for the boundary condition set (4.57) as given
in [27, Chapter V, Section 18.1, Theorem 4] and [9, Section 2].
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The domain D(T ) of the self-adjoint operator T generated by the set (4.57) (see
also (4.49)) is

(4.60) D(T ) = {f ∈ D(T1) : [f, wr] = 0 for r = 1, 2, . . . , d},

or, equally well, using the notation (4.56)

(4.61) [f, wr]A(b) − [f, wr]A(a) = 0 for r = 1, 2, . . . , d.

Theorem 4.13. Let the boundary complex symplectic space, of the quasi-differential
expression MA on the interval (a, b), be

(4.62) S = D(T1)�D(T0) = S− ⊕ S+,

with symplectic product [· : ·], as defined in Theorem 4.9.
Consider a GKN symmetric set of boundary condition functions

(4.63) {w1, w2, . . . , wd} in D(T1)

(with the corresponding vectors {w1, w2, . . . , wd} in S, providing a basis for a com-
plete Lagrangian L ⊂ S).

Now denote by

(4.64)

⎧⎨
⎩

α = number of left separated functions amongst {w1, w2, . . . , wd}
β = number of right separated functions amongst {w1, w2, . . . , wd}
γ = number of coupled functions amongst {w1, w2, . . . , wd}.

Then conclude that (recall (4.14) for the definition of Nec-coupling(L))

(4.65)

⎧⎨
⎩

α ≤ dim(L ∩ S−)
β ≤ dim(L ∩ S+)
γ ≥ Nec-coupling(L).

Further, if the GKN set {w1, w2, . . . , wd} (or the basis {w1, w2, . . . , wd}) is mini-
mally coupled, that is

(4.66) γ = Nec-coupling(L),

then

α = dim(L ∩ S−)(4.67)

β = dim(L ∩ S+).(4.68)

Moreover, for each complete Lagrangian L ⊂ S, there exists a minimally cou-
pled GKN symmetric set of boundary condition functions that defines a minimally
coupled basis for L.

Furthermore, for each triple of integers α, β and γ with

0 ≤ α ≤ dim(L ∩ S−) 0 ≤ β ≤ dim(L ∩ S+) γ = ∆ − α − β

there exists a basis for L containing exactly

γ vectors, each coupled
α vectors, each separated at the left

β vectors, each separated at the right.

Proof. For a complete discussion of these results and for a proof of this theorem,
see [11, Section 2, Corollary 2]. �
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Example 4.14. Take MA on (a, b), as above, of order n = 4, and let the Shin-
Zettl matrix A have real-valued coefficients on (a, b); thus dim(S) = 2d ≤ 8 and
Ex(S) = 0.

We consider the regular boundary value problem for MA on a compact interval
[a, b] with −∞ < a < b < +∞. That is, we assume the minimal conditions (4.27) on
the coefficients {ars : r, s = 1, 2, 3, 4} are strengthened to require that ars ∈ L1(a, b)
for r, s = 1, 2, 3, 4.

In this case it is known (see [10, Section IV]) that d = 4 so dim(S) = 8, and
also ∆− = ∆+ = 2 with |Ex±| = 0. Hence each complete Lagrangian L ⊂ S has
dim(L) = 4 and grade(L) = 0, 1 or 2.

For a simple case, suppose that grade(L) = 1. Then

Nec-coupling(L) = 2grade(L) = 2;

therefore each minimally coupled basis of boundary condition functions contains
exactly

2 coupled boundary conditions
1 left separated boundary condition
1 right separated boundary condition.

All the three possible cases of grade(L) = 0, 1 or 2 are considered in [10, Example
1, Section V, page 76] and are reported here as follows:

Interval: [a, b], Order: n = 4, Parameters: d = ∆ = 4

(i) grade(L) = 0
Nec-coupling(L) = 0 dim(L ∩ S±) = 2
2 left separated boundary conditions and 2 right separated boundary

conditions
(ii) grade(L) = 1

Nec-coupling(L) = 2 dim(L ∩ S±) = 1
1 left separated boundary condition and 1 right separated boundary

condition
2 coupled boundary conditions

(iii) grade(L) = 2
Nec-coupling(L) = 4 dim(L ∩ S±) = 0
4 coupled boundary conditions.

Example 4.15. Take MA on [a, b) of order n = 4; let the Shin-Zettl matrix A
have real-valued coefficients on [a, b). We consider the boundary value problem for
MA on an interval [a, b) with −∞ < a < b ≤ +∞. That is, we assume the minimal
conditions (4.27) on the coefficients {ars : r, s = 1, 2, 3, 4} are strengthened to
require that ars ∈ L1

loc[a, b) for r, s = 1, 2, 3, 4. Further assume that the weight
w ∈ L1

loc[a, b). Then the boundary value problem is in general singular on [a, b), but
could be regular if b ∈ R.

In this case it is known, when Ex(S) = 0 (see [10, Section V, Example 3]), that
d = 2, 3 or 4, so dim(S) = 4, 6 or 8 and also, respectively, ∆− = ∆+ = 0, 1 or 2,
all with |Ex±| = 0. Hence each complete Lagrangian L ⊂ S has dim(L) = 2, 3 or 4;
independently then grade(L) = 0, 1 or 2.
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All the possible cases of d = 2, 3 or 4 and grade(L) = 0, 1 or 2 are considered
in [10, Section V, page 107, Example 3, order n = 4] and are reported here (for
minimally coupled bases) as follows:

(i) d = 2, ∆− = 2, ∆+ = 0 and grade(L) = 0
2 left separated boundary conditions and 0 right separated boundary

conditions
0 coupled boundary conditions

(ii) d = 3, ∆− = 2, ∆+ = 1 and grade(L) = 0
2 left separated boundary conditions and 1 right separated boundary

condition
0 coupled boundary conditions

(iii) d = 3, ∆− = 2, ∆+ = 1 and grade(L) = 1
1 left separated boundary condition and 0 right separated boundary

condition
2 coupled boundary conditions

(iv) d = 4, ∆− = 2, ∆+ = 2 and grade(L) = 0
2 left separated boundary conditions and 2 right separated boundary

conditions
0 coupled boundary conditions

(v) d = 4, ∆− = 2, ∆+ = 2 and grade(L) = 1
1 left separated boundary condition and 1 right separated boundary

condition
2 coupled boundary conditions

(vi) d = 4, ∆− = 2, ∆+ = 2 and grade(L) = 2
0 left separated boundary conditions and 0 right separated boundary

conditions
4 coupled boundary conditions.

Example 4.16. Take MA on [0.∞) of order n = 2, let the real-valued Shin-Zettl
matrix A have the Sturm-Liouville form (see (4.32))

A =
[

0 p−1

q 0

]
,

and follow the general results in 2.1.
In this case we further assume that all three of p, q, w ∈ C[0,∞) and that p(x) > 0

and w(x) > 0 for all x ∈ [0,∞) to give 0 as a regular endpoint of the Sturm-Liouville
differential equation (2.2), relative to this singular boundary value problem.

These conditions on MA and the weight w imply that (see (2.22) of Section 2.1)

d− = d+ = d = 1 or 2

dim(S) = 2d ≤ 2n = 4 and Ex(S) = 0.

Then following the results given in [10, Section IV, page 76, and Section V, page
107]:

(i) d = 1 ∆− = 1 ∆+ = 0 dim(L) = 1
grade(L) = 0
1 left separated boundary condition and 0 right separated boundary

condition
(ii) d = 2 ∆− = 1 ∆+ = 1 dim(L) = 2

(a) grade(L) = 0
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1 left separated boundary condition and 1 right separated boundary
condition

0 coupled boundary conditions
(b) grade(L) = 1
0 left separated boundary condition and 0 right separated boundary

condition
2 coupled boundary conditions.

5. Conclusions: comparisons, problems, conjectures

The modern theory of boundary value problems for Lagrange symmetric (for-
mally self-adjoint) linear differential expressions (formal operators) was initiated
early in the previous century by the seminal discoveries of Weyl and Titchmarsh
(see [32] and [33]), then incorporated into the general spectral theory of symmetric
linear operators on appropriate Hilbert spaces by Stone and von Neumann (see
[31]), and later amended by certain algebraic methods in diverse papers of Glaz-
man, Krein and Naimark (see [2] and [27]). This development generated a vast and
still growing literature of pure and applied mathematics (see the various treatises
[2], [5], [6], [20], [27] and [30], especially their references and bibliographies).

The theory of complex symplectic spaces, as advanced by the current authors
over the past dozen years (see [7] to [18]), presents new viewpoints and insights
into the unification and systemization of this theory of boundary value problems
for ordinary differential, quasi-differential and partial differential operators; see
Sections 2 and 4. Through a novel approach utilizing the symplectic algebra and
the symplectic weak topology of the boundary complex symplectic space S of a
given closed symmetric linear operator T0 with dense domain D(T0) in a Hilbert
space H, new results are found for ordinary and quasi-differential problems (regular
and singular) - compare the Balanced Intersection Principle and the separation-
coupling grades in Section 4.2 and in [10] and [11] - and also for elliptic partial
differential problems - compare the Dirichlet and Harmonic Lagrangians and their
corresponding self-adjoint operators in Section 2.2 and [13], [14], [15].

This universal and axiomatic overview of boundary value problems offers some
simple definite answers to frequently vaguely formulated questions. For instance:
What is a boundary condition? It is a vector w ∈ S (or function w ∈ D(T1) with
Ψw = w), interpreted as a linear functional on S (see Definition 1.12), and further
a symmetric set of boundary conditions determining a self-adjoint operator T on
D(T ) ⊂ H is a complete Lagrangian L ⊂ S (or a basis for L), with Ψ(D(T )) = L as
in the GKN–EM Theorem 1.14. However, full appreciation of the global algebraic
and topological structure of S leads to much deeper and unexplored aspects of
boundary value theory - and we illustrate some of these new directions for research
by several examples, unsolved questions and conjectures.

Example 5.1. As in Section 2.1, first examine the simplest Sturm-Liouville prob-
lem

(5.1) M [y] := −y′′ on [0, 1] ⊂ R,

with boundary conditions, separated and coupled respectively:

(5.2) Separated: y(0) = y(1) = 0 Coupled: y(0) = y(1) and y′(0) = y′(1),
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generating corresponding complete Lagrangians Lsep, Lcoup ⊂ S, and the two self-
adjoint operators in the Hilbert space L2(0, 1),

(5.3) Tsep on D(Tsep) Tcoup on D(Tcoup).

Problem 5.2. Is there a continuous deformation of Tsep into Tcoup, with all inter-
mediate stages corresponding to boundary conditions (of the same form as of (5.2))
defining self-adjoint operators?

The answer appears to be affirmative from the fact (see [10, page 63]) that the
set of all d-dimensional Lagrangian subspaces of S ≈ C2d (for integers d ≥ 1) has a
natural topology as a compact connected manifold, say

(5.4) LagC(d, 2d) ≈ U(d),

i.e. homeomorphic to the group of all d× d unitary matrices. However the explicit
display of the deformation is not readily available.

To present this problem in a more general format, consider the space LagC(d, 2d)
as arising from a complex symplectic S, as in Definition 4.5:

(5.5) S = S− ⊕ S+ with [S− : S+] = 0,

with dim(S) = 2d and Ex(S) = 0. Here each Lagrangian subspace L ⊂ S has a
grade (see Definition 4.5) satisfying

(5.6) 0 ≤ grade(L) ≤ min{∆−, ∆+}.

Conjecture 5.3. For each integer l satisfying 0 ≤ l ≤ min{∆−, ∆+} the subset of
LagC(d, 2d) defined by

(5.7) grade(L) = l

is connected.

Example 5.4. Consider again the Sturm-Liouville problem of Example 5.1. It
is intuitively clear that the separated boundary conditions in (5.2) determine the
subset D(Tsep) ⊂ D(T1) by local behavior near the endpoint 0 and also near the
endpoint 1, whereas this statement is false for the coupled boundary conditions
in (5.2) which are of a global nature (i.e. not locally determined) demanding
simultaneous restrictions at both endpoints together. The concept of local - versus
- global boundary conditions for both ordinary quasi-differential and elliptic partial
differential operators is made precise in [13, Section 5.1, particularly Definition 5.1
and Theorem 5.1].

Conjecture 5.5. Consider a boundary value problem for a Lagrange symmetric
ordinary quasi-differential expression of order n ≥ 2 on an interval (a, b) ⊆ R, as
in Section 4.2. Then a complete Lagrangian L ⊂ S (or a corresponding self-adjoint
operator T on D(T ) ⊂ L2((a, b); w)) is locally determined if and only if L is strictly
separated, i.e.

(5.8) Nec-coupling(L) = 0,

as in (4.15); otherwise L is globally determined.

Example 5.6. In [13, Sections 3 and 4] the boundary value theory for certain
elliptic partial differential expressions A(x, D), defined in bounded regions Ω with
smooth boundary ∂Ω in Euclidean space Er (r ≥ 2), is developed through sym-
plectic algebra; compare Section 2.2. In particular the Dirichlet, Neumann, and
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Harmonic Lagrangians, and corresponding self-adjoint operators, are defined for
such bounded regions Ω ⊂ Er. The Dirichlet and Neumann boundary conditions
specify locally determined self-adjoint operators (compare [13, Section 5.1, Theorem
5.1]). Furthermore, if a self-adjoint operator T on D(T ) is defined via restrictions
on elements of the maximal domain D(T1) by a system of boundary differential
operators (see [13, Section 3, Definitions 3.1 and 3.2] involving functions and their
normal derivatives evaluated on the boundary ∂Ω), then T is locally determined.
On the other hand, it is known [13, Section 5, Theorem 5.1] that the Harmonic
operator THar is globally determined, at least for the important special case of
the classical Laplace operator ∆ on a bounded region whose boundary ∂Ω is not
connected.

Problem 5.7. Is THar globally determined when ∂Ω is connected?

The boundary ∂Ω of the bounded regions Ω ⊂ Er, in our situation, consists
of the (connected) components ∂Ω0 (the exterior hypersurface) and ∂Ω1, . . . , ∂Ωk

(the interior hypersurfaces, if any). In the case when ∂Ω is not connected, say
for the planar annular region [13, Section 4, Example 4.4] where ∂Ω0 and ∂Ω1

are concentric circles in E2, it is possible to specify differential boundary operators
analogous to coupled boundary conditions, so defining a (essentially) self-adjoint
operator. However, very little is known about such coupled boundary conditions
for elliptic boundary value problems, but even allowing for the possibility of such
coupled differential boundary operators, the Harmonic operator remains elusively
unspecified by any kind of boundary evaluations.

Recent research (see [16]) has uncovered a continuum of distinct analogues of the
operator THar, that is self-adjoint extensions of the minimal operator generated by
the Laplace differential expression ∆ on the unit disk Ω ⊂ E2 (see Example 5.6),
each of which has a domain not entirely contained within the Sobolev space W 2(Ω).
Hence these domains must contain some functions having no boundary values, in
the sense of the trace map; see (2.42) and [13, Appendix A].

It remains an open problem to produce a coherent, and plausibly explicit, de-
scription of the set of all self-adjoint operators generated by the Laplace differential
expression ∆ on the unit disk Ω ⊂ E2, although a good start may be the GKN-EM
Theorem 1.14.
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