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Abstract. The aim of the QosCosGrid project is to bring supercomputer-like 
performance and structure to cross-cluster computations. To support parallel 
complex systems simulations, QosCosGrid provides six reusable templates that 
may be instantiated with simulation-specific code to help with developing 
parallel applications using the ProActive Java library. The templates include 
static and dynamic graphs, cellular automata and mobile agents. In this work, 
we show that little performance is lost when a ProActive cellular automata 
simulation is executed across two distant administrative domains. We describe 
the middleware developed in the QosCosGrid project, which provides advance 
reservation and resource co-allocation functionality as well as support for paral-
lel applications based on OpenMPI (for C/C++ and Fortran) or ProActive for 
Java. In particular, we describe how we modified ProActive Java to enable in-
ter-cluster communication through firewalls. The bulk of the QosCosGrid soft-
ware is available in open source from the QosCosGrid project website: 
www.qoscosgrid.org. 
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1   Introduction 

Complex systems are defined as systems with many interdependent parts which give 
rise to non-linear and emergent properties determining the high-level functioning and 
behavior of such systems [1]. Due to the interdependence of their constituent elements 
and other characteristics of complex systems, it is difficult to predict system behavior 
based on the ‘sum of their parts’ alone. Examples of complex systems include bee 
hives, bees themselves, human economies and societies, nervous systems, molecular 
interactions, cells and living things, ecosystems, as well as modern energy or  
telecommunication infrastructures. Arguably one of the most striking properties of 
complex systems is that conventional experimental and engineering approaches are 
inadequate to capture and predict the behavior of such systems. To complement the 
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conventional experimental and engineering approaches, computer-based simulations 
of complex natural phenomena and complex man-made artifacts are increasingly 
employed across a wide range of sectors. Complex systems simulations often require 
considerable compute power.  

The present paper describes the perspective and initial results of the QosCosGrid 
(Quasi-Opportunistic Supercomputing for Complex Systems) project which addresses 
the computationally intensive simulation of complex systems using parallel methods 
and grid technology. We consider the QosCosGrid approach from the perspective of 
the computational scientist, i.e. the user, as well as from the technology side. 

Complex system simulations often use supercomputers because of the high data 
volume and computing requirements of the individual computations, but also because 
the high communication overhead between the computation tasks on individual ele-
ments. However, supercomputers are expensive to acquire and maintain and, there-
fore, many users do not have access to such technology. Recently, local clusters, such 
as Beowulf clusters and other multi-core and multi-machine systems, have become 
the technology of choice for many complex systems modelers. However, with the 
advent of flexible modeling tools, complex systems simulations have become more 
and more comprehensive and complex. As a result, local clusters are increasingly 
inadequate to satisfy the required computing and communication needs. QosCosGrid 
aims to address this gap by facilitating supercomputer-like performance and structure 
through cross-cluster computations. 

In grid computing, a typical assumption is that the availability of computing  
resources depends on their local usage patterns. This opportunistic mode of grid com-
puting is highly problematic for a complex system simulation. Complex system  
simulations are characterized by a high degree of dependency among the parallel 
computations that comprise the simulation. To address this problem, QosCosGrid has 
developed advance reservation and topology-aware methods. 

2   The User Perspective 

2.1   Problems of Complex System Modeling 

Complex system simulations are now used across a wide range of scientific fields. 
However, the challenges faced by computational scientists and their demands for high 
performance computing differ substantially. Typically, there are many different ap-
proaches to model and simulate a concrete complex system. Each approach comes 
with its own requirements in terms of methods and computing technology. In an at-
tempt to address a wide range of complex systems, we developed a classification of 
the computing requirements for different complex systems simulation scenarios. Key 
to this classification scheme is the required communication topology that reflects the 
element-to-element interaction characteristics of the underlying complex system.  

2.2   Partitioning Complex System Simulations 

The main problem in the parallelization of complex system simulations is their high 
demand for inter-process communication. However, parallel computing applications 
are most efficient when there is no or little demand for inter-node communication. In 
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order to minimize execution time of a distributed complex system simulation, the 
computation needs to be partitioned such that communication between interacting 
components is minimized. In addition, the computational load of each partition, de-
termining the time between communication events, needs to be balanced. 

Instead of creating individual parallel solutions for every single complex system 
simulation, we developed a categorization of the required communication topologies 
(Fig. 1). The categorization scheme consists of six categories referred to as communi-
cation templates: Template T0 is the simplest communication template. T0 has no 
communication between the components, so the partitioning is only constrained by 
load-balancing considerations. Perfectly (or “embarrassingly”) parallel applications, 
such as parameter sweeping, falls into the T0 category. Template T5 represents the 
other end of the spectrum of communication templates. Essentially, T5 covers those 
complex systems for which it is difficult or impossible to determine a meaningful 
communication template or partitioning of the computations. Template T1 describes 
the communication topology of a non-spatial complex system, with fixed and a priori 
known element interaction pattern. Template T2 applies to complex systems whose 
element interaction patterns are changing over time. Hence the communication topol-
ogy needs to be defined by some graph transition function that provides enough in-
formation for the system’s efficient distribution. Template T3 covers classical cellular 
automata simulations. In this case, the definition of a meaningful partitioning is 
straightforward. Template T4 describes an agent-based simulations where mobile 
agents are embedded in a (spatial) coordinate system and have only local interactions. 

Various partitioning algorithms are available for each of these communication 
templates. The categorization is aimed at guiding users to understand the structure of 
a given complex system simulation and to inform the choice of parallelization tech-
niques. Hence, the scheme provides a useful guide for parallelizing of complex sys-
tems simulations.  

 

Fig. 1. Communication templates supported in the QosCosGrid system 
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2.3   Developing and Deploying QosCosGrid Applications 

For end users, the main benefit of QosCosGrid lies in the transparency of grid-
enabling complex system applications. The QosCosGrid middleware, described be-
low, transparently handles all intricate grid aspects when it deploys complex system 
applications across clusters. From the perspective of the application developer, there-
fore, there is no difference between developing code to be deployed on a supercom-
puter or on a grid. Moreover, legacy parallel code can be executed on QosCosGrid 
without any reimplementation. 

To further enhance the ease-of-use of deploying applications on the grid, a  
comprehensive Web interface has been developed. The QosCosGrid portal website1 
facilitates monitoring of the grid infrastructure, including bandwidth and latency, 
monitoring of status, usage and (advance) reservations, grid file transfer to upload 
applications and download results. 

3   The Technical Perspective 

The overall QosCosGrid architecture and the key middleware are presented in Fig. 1. 
Based on various middleware services, QosCosGrid components can be grouped into 
two levels: The Grid level domain (consisting of multiple organizations) and the Ad-
ministrative level (a single organization, typically providing and sharing one or a 
small number of computing clusters). At one of the lowest layers there is the Local 
 

 
Fig. 2. The QosCosGrid multi-tier architecture connecting different middleware services as 
well as parallel application development and deployment tools 
 

                                                           
1 http://node2.qoscosgrid.man.poznan.pl/gridsphere/gridsphere/guest/testbed/r/ 
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Resource Management System supporting job submission, control and advance reser-
vation (AR) mechanisms. Currently, QosCosGrid uses Platform Computing’s Load 
Sharing Facility (LSF). We have also successfully tested the QosCosGrid middleware 
with the Sun Grid Engine and there are possible extensions for PBSPro or Maui. 
Above this layer, there is the OpenDSP service that communicates with LSF using the 
well-adopted standard DRMAA interface that communicates with the local queuing 
system. OpenDSP exposes its functionality remotely with the OGSA-BES HPC Pro-
file compliant WS interface, and, to our knowledge, is the most efficient remote 
multi-user access to underlying queuing systems. On top of the OpenDSP service, 
there is the GRMS (Grid Resource Management Service), a main meta-scheduler 
service, which acts both at the Grid and Administrative level. From the end user per-
spective, the GRMS provides its own job description language (called Job Profile) 
that allows the topology requirements of various jobs, including sequential, parallel, 
massively parallel (with communication topology requirements) as well as workflow 
jobs to be defined and controlled on behalf of end users.  

Below we briefly describe two main programming and execution environments, 
ProActive and OpenMPI, which have been successfully integrated with OpenDSP and 
GRMS to allow end users to perform multi-cluster job submission and control. These 
well-known environments have been modified according to the complex system re-
quirements we collected. They can be distributed as powerful tools for large-scale and 
long-term computation analysis involving many computing clusters located in various 
administrative domains. The QosCosGrid middleware offers also many management 
features for local IT administrators responsible for sharing computing resources 
among many end users and their applications. 
 

OpenMPI. The MPI (Message Passing Interface) is a leading standard in the domain 
of parallel scientific applications. It provides end users with both the programming 
interface consisting of simple communication primitives and the environment for 
spawning and monitoring MPI processes. A large number of implementations of the 
MPI standard is available (both as commercial and open source). In QosCosGrid, it 
was decided that MPI serves as the input for a new OpenMPI2 distribution and we 
added enhancements to this implementation. Of key importance were the advance 
inter-cluster communication techniques that deal with firewalls and Network Address 
Translation. In addition, the mechanism for spawning new processes in OpenMPI 
needed to be integrated with QosCosGrid-developed middleware. The extended ver-
sion of the OpenMPI framework was named QCG-OMPI [2] (where QCG stands for 
QosCosGrid). 
 

ProActive Java. Even though enhanced OpenMPI is the primary execution environ-
ment in QosCosGrid, the existence of legacy Java applications based on the Repast 
Agent Simulation Toolkit [3] led to the decision to provide support for a new Java-
based parallel programming environment called ProActive [4]. The ProActive library, 
by default, uses the standard Java RMI framework as a portable communication layer. 
With a reduced set of simple primitives, ProActive (version 3.9 as used in QosCos-
Grid) provides a comprehensive toolkit that simplifies the programming of applica-
tions distributed on local area networks, clusters, Internet grids and peer-to-peer  
                                                           
2 http://www.open-mpi.org 
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intranets for Java-based applications. However, when we designed QosCosGrid, the 
standard ProActive framework did not provide any support for multi-user environ-
ments, advance reservation and cross-cluster co-allocation. To satisfy the require-
ments of complex system simulation applications and users, we developed extensions 
to the ProActive library (called QCG-ProActive) with the following goals: (1) To 
preserve standard ProActive library properties (i.e., allow legacy ProActive applica-
tions to be seamlessly ported to QosCosGrid). (2) To provide end users with a consis-
tent GRMS Job Profile schema as a single document used to describe application 
parameters required for execution as well as resource requirements (in particular net-
work topology and estimated execution time). (3) To prevent end users from the ne-
cessity to have direct (i.e., over SSH) access to remote clusters and machines. 
 

Cross-site QCG-ProActive Deployment Model. ProActive deployment involves the 
starting of the main application and the subsequent spawning on other machines 
(starting ProActive Runtimes). In the context of service-level agreements and ac-
countability, this is problematic, because it is difficult to guarantee the atomicity of 
such a two-phase deployment process. Application and ProActive Runtimes cannot be 
started at the same time because ProActive Runtimes needs to know some callback 
information that is used to contact the main application. Therefore, we proposed to 
create an external service in QosCosGrid called ProActive Node Coordinator (PNC) 
that helps to exchange initial arguments between the master application and ProActive 
Runtimes. Consequently, a local queuing system (OpenDSP with LSF) does not have 
to start ProActive Runtimes directly. Instead, we need to provide an appropriate 
wrapper script – the QosCosGrid ProActive Wrapper, which connects the PNC ser-
vice and synchronizes initial data required to start ProActive Runtimes properly. Ad-
ditionally, in order to support a cross-cluster ProActive deployment, before any job 
submission request to LSF via OpenDSP, there is an appropriate advance resource 
reservation call. The main difference, from the end user perspective, is that instead of 
a typical PAD file (ProActive Deployment Descriptor) the GRMS Job Profile is used 
as a language to describe ProActive application requirements and then the Job Profile 
is automatically converted to the corresponding PAD. 
 

Inter-cluster QCG-ProActive Communication Mechanism. The basic ProActive 
Library transport layer is based on Java RMI. The RMI communication usually 
consumes one TCP/IP port per remote object instance and ports are randomly se-
lected. Moreover, it is almost impossible to configure a firewall to forward the 
RMI traffic, which was an important issue for incorporating ProActive into Qo-
sCosGrid. To deal with this problem, the ProActive application can be configured 
to use the RMISSH communication protocol that simply creates on demand SSH 
tunnel for each outgoing RMI connection. Unfortunately, this solution does not 
work with sites behind Network Address Translation and it requires password-less 
authentication to be configured for each machine (and for every user) in the whole 
grid. Thus, in QosCosGrid project we proposed to use SOCKS server as the basic 
way to tunnel RMI traffic between clusters behind Network Address Translations 
and firewalls.   
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4   Results 

The aim of QosCosGrid is to provide supercomputing-like structure and performance 
to cross-cluster computations for complex systems simulations. In order to assess the 
performance of the infrastructure provided by QosCosGrid, performance tests were 
conducted on a simple test bed. We ran performance tests using a cellular automaton 
simulation application as a benchmark application. A cellular automaton is a lattice of 
finite state machines, in which the state of a cell is determined by the states the 
neighboring cells in the previous time step [5]. Cellular automata are a widely used 
methodology to study spatial phenomena in physics and biology.  

The regular lattice interaction topology of cellular automata makes them a prime 
candidate for parallelization and deployment on a supercomputer. A cellular automa-
ton allows for simple partitioning by mapping each part to a different core or process-
ing element. After each iteration, state information on the border cells between  
adjacent partitions is exchanged. As the size of a cellular automaton simulation in-
creases, the computational cost grows quadratically, while the communication costs 
grow only linearly.  

 

Fig. 3. Performance of a cellular automaton (CA) of increasing size (1000 x 1000, 2000 x 2000, 
5000 x 5000). The line with cross-symbols shows ideal performance (execution time of non-
parallel CA divided by number of cores). The line labeled SC shows single cluster runs, the CC 
4M line shows cross-cluster run performance in the QosCosGrid test bed. Legend: SC = single 
cluster; CC = cross-cluster; 1 M = 1 million cells = 1000 x 1000; 4 M = 4 million cells = 2000 x 
2000; 25 M = 25 million cells = 5000 x 5000. 
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Cellular automata are frequently deployed on supercomputing facilities. In this 
study we used cellular automata as a benchmark system to assess the performance of 
the QosCosGrid technology. The cellular automaton used in our study was imple-
mented in Repast J 3.0 and parallelization was performed using QCG-ProActive. We 
tested the performance in a heterogeneous cross-cluster environment, and conducted 
experiments on two small clusters (8 cores each) located in Paris (France) and Poznan 
(Poland) and connected via the Internet (no dedicated network). We compared the 
execution time of a parallel implementation of a cellular automaton executed on a 
single cluster, with the execution time in a cross-cluster run. 

The results (Fig. 3) describe performance data for three different cellular automa-
ton sizes. These results confirm that parallel execution in a single cluster is highly 
efficient for all sizes. For relatively small cellular automaton problems (i.e., 1000 x 
1000), the cross-cluster performs very poorly, as the execution time using 16 cores is 
similar to the performance of the non-parallel cellular automaton on a single core. As 
the size of the cellular automaton increases, however, the performance of cross-cluster 
execution approaches the performance in a single cluster. For the largest cellular 
automaton in the performance test (5000 x 5000), the performance of the cross-cluster 
execution becomes almost indistinguishable from the single cluster performance.  

These preliminary results show that parallel complex systems simulations with a 
relatively high computation/communication ratio can be meaningfully deployed on 
the QosCosGrid grid infrastructure.  

5   Discussion 

QosCosGrid is an end-to-end solution that is already being used by scientists for 
compute intensive parallel applications in the field of complex systems modelling. 
The advantage of QosCosGrid is that it requires no dedicated network connections or 
specific configurations. It is a multi-user environment that efficiently controls access 
to computing resources in different administrative domains. It is specifically designed 
for non-trivial parallel computations using Open-MPI with C/C++ and Fortran, or 
ProActive for Java-based legacy applications. Additional features of interest to scien-
tists include its user-friendly Web-based user interface and its reusable application 
schemas or template categories based on ProActive. 

QosCosGrid is aiming to provide a high quality of service (for users) equivalent to 
that of a dedicated supercomputing facility. To achieve this, QosCosGrid provides 
services such as co-allocation and advance resource reservation [6], which are very 
difficult to provide in dynamic grid environments. Recent efforts in these areas in-
clude that by Elmroth and Tordsson for the NorduGrid/ARC middleware [7] and the 
work by Kyriazis and colleagues [8] who concentrate on orchestrating grid resources 
in order to support application workflows. More established solutions are provided by 
Condor-G [9], and Nimrod-G [10]. After a careful review of existing open solutions 
and standards, QosCosGrid has based its services on top of exiting third-party soft-
ware. In addition, the QosCosGrid Gateway is a key feature for high-quality of ser-
vice as it provides essential support for both users and administrators. 

Mateos et al. [11] provide a useful survey that compares a number of different ap-
proaches to grid-enabling applications. They discuss a number of other Java tools 
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used in grids, apart from ProActive, such as Satin [12], which is based on Ibis [13], 
and “grid-aspecting” [14], which is based on AspectJ. The difference between these 
Javas and ProActive is in the degree of granularity and the amount of modification 
required to the application source code. Both ProActive and Satin require more exten-
sive modifications to the source than grid-aspecting, but an advantage of these modi-
fications is that applications can make more sophisticated and efficient use of grid 
resources.  

There are other projects which have aims that are similar to those of the QosCos-
Grid project, these include EGEE [15], HPC4U [16] and DEISA [17]. However, these 
projects do not provide all the functionality of QosCosGrid. EGEE does not support 
all of QosCosGrid's quality-of-service components such as advance reservation and 
check-pointing. HPC4U concentrates on parallel executions performed within clusters 
as opposed to QosCosGrid's cross-cluster execution environment. DEISA, the Dis-
tributed European Infrastructure for Supercomputing, is a grid of supercomputers 
suitable for petascale applications whereas QosCosGrid is a more “humble” system 
designed to enable distributed clusters to be combined into a resource with compute 
power similar to a single supercomputer. 

6   Conclusions 

This paper describes how QosCosGrid enables clusters in different administrative 
domains to be welded (virtually) into a single powerful compute resource which we 
call a quasi-opportunistic supercomputer. We outlined the middleware that we have 
developed to achieve this and although QosCosGrid provides extensive support via 
OpenMPI for parallel C/C++ and Fortran applications, here we have mainly focussed 
on the modifications we made to ProActive Java for supporting inter-cluster commu-
nications and dealing with firewalls and Network Address Translations. Our results, 
which are based on an ecological simulation using parallelized cellular automata, 
demonstrate the feasibility of running non-trivial parallel simulations across 
administrative domains located in different European countries. For large simulations 
there is only a minor reduction in performance when running an inter-cluster simula-
tion compared to a single cluster simulation. QosCosGrid is a largely open-source 
project which is due to be completed in mid-2009.  
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