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ABSTRACT Uncertainty is the unavoidable part of the life. In almost all circumstances, we regularly find

ourselves in a state of uncertainty. Several reasons can lead to uncertainty, such as randomness, vagueness

and rough knowledge. Fuzzy set (FS) theory deals with these kinds of information. Many generalizations had

been made in the theory of FSs, such as intuitionistic FSs (IFSs), q-rung orthopair FSs (qROFSs), complex

qROFSs (CqROFSs), spherical FSs (SFSs), T-spherical FSs (TSFSs), and complex TSFSs (CTSFSs). Among

these generalizations of FSs, the CTSFSs are the most dominant generalization of the FSs. Although fuzzy

relations (FRs), IF relations (IFRs) and complex FRs (CFRs) were defined in the literature, the concepts

of relations have not yet been introduced in the CTSFSs. This paper unveils the novel concept of CTSF

relations (CTSFRs), which provides the extensive generalizations of FRs. The proposed CTSFRs can

give many generalized types of FRs, such as IFRs, CFRs, Pythagorean FRs, qROFRs, SFRs and TSFRs,

etc. Additionally, some useful properties and results are obtained for CTSFRs. Moreover, a couple of

applications demonstrate the usefulness of the proposed concepts. These CTSFRs can be used to depict the

time-related interdependence of global market. Thus, we apply these CTSFRs to analyze the interdependence

of the international trades among countries and compare the financial factors affecting business markets.

Furthermore, the economic relationships with respect to time lag can be modeled by using the CTSFSs and

the CTSFRs. Finally, a comparative analysis illuminates the supremacy of the proposed way in contrast with

the existing ones.

INDEX TERMS Fuzzy sets (FSs), T-spherical FSs (TSFSs), complex TSFSs (CTSFSs), CTSF relations

(CTSFRs), Cartesian product in CTSFSs, CTSF composite relation, financial and economic relationships.

I. INTRODUCTION

Nearly in all circumstances, we find ourselves in some sort

of uncertain situation. Uncertainty has many causes, ranging

from almost complete absence of awareness or belief to

just falling short of conviction. Probability has been used to

measure and cope the uncertainty of randomness, such as

outcomes of rolling dice or tossing a coin. Uncertainty also

occurs due to vagueness or imprecise information. In 1965,

Zadeh [1] proposed fuzzy sets (FSs) and fuzzy logics which

can deal with the uncertainty of vagueness. Unlike probabil-

ity theory, fuzzy theory processed the data and information

instead of demanding data element to be declared as member
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or non-member of the set, FSs introduced the concept of

partial membership. An FS assigns the membership grades

ranging between 0 and 1, to each object in the set. FSs soon

caught the attention of researchers of the time. Atanassov [2]

came up with a new idea of intuitionistic FSs (IFSs) and

modified the FSs by adding the non-membership grade. The

values of membership, non-membership grades and their sum

belong to the unit interval. The advantage of an IFS over an

FS is that it discusses the level of satisfaction as well as the

dissatisfaction in terms of membership and non-membership

grades. Yager [3] sensed the restrictions in the IFSs so

he devised the concept of Pythagorean FSs (PyFSs) by

modifying the constraints in IFSs. According to the inno-

vative constraints, the sum of the squares of membership

and non-membership grades must be in the unit interval
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FIGURE 1. Evaluation of ranges of IFS, PyFS and qROFS.

which expands the codomain. Furthermore, Yager [4] again

realized the limitations in the assignment of the grades to

objects in PyFSs, consequently he presented the notion of

q-rung orthopair FSs (qROFSs). These sets allow the pro-

fessionals and researchers to assign the membership and

non-membership grades freely by relaxing the restrictions in

the previous set theories. In qROFSs the sum of nth power

of membership and non-membership grades must be in the

unit interval, where n is a positive integer. Figure 1 depicts

the comparison among the ranges of IFS, PyFS and qROFS.

The largest area of the plane is covered under the curve of the

qROFS for n = 8, that area further extends by increasing

the value of n. So qROFS was considered to be the most

reliable generalization of FSs. Garg [5] introduced the lin-

guistic PFSs along with their applications in multiattribute

decision-making process. Yang and Hussain [6] defined the

fuzzy entropy for PFSs with their application to multicrite-

rion decision-making. Moreover, Hussain and Yang [7] also

defined the distance and similarity measures of PFSs with

application to TOPSIS. Zhou et al. [8] discussed a new

divergence measure of PFSS and applied it in the medical

diagnosis. Yang et al. [9] proposed the belief and plausibility

measure on IFSswith construction of belief-plausibility TOP-

SIS. Faizi et al. [10] used the characteristic objects method for

multicriterian group decision-making problems through IFSs

and Zeng et al. [11] proposed a fuzzy methodology, neutro-

sophic fuzzy set, for sustainable supplier selection based on

fuzzy information.

Later on, the inclusion of abstinence grade lead to the con-

cept of picture FS (PFS) which was developed by Cuong [12].

The membership, abstinence and non-membership grades

come from the unit interval such that the sum of all three

grades is contained within the fuzzy interval. Like IFSs, PFSs

are also held back by the same restrictions. Ullah et al. [13]

came up with the notions of spherical FS (SFS) by adjusting

the constraints, so that the sum of the squares of mem-

bership, abstinence and non-membership grades lie in the

unit interval. Moreover, Ullah et al. [13] also defined the

T-spherical FSs (TSFSs) because of the limitations that

PFSs and SFSs had. In TSFSs, the sum of membership,

abstinence and non-membership grades when raised to the

FIGURE 2. Evaluation of ranges of PFS, SFS and TSFS.

power n must be contained in the unit interval, where n

is a natural number. TSFS are the generalizations of all

previous set theories and thus the most powerful tool in

the field. In PFSs, all the three grades must sum up to a

number in unit interval, there is a great boundedness. Say,

if membership, abstinence and non-membership grades are

0.3, 0.4, 0.5 respectively, then PFSs fail to work because

they sum-up to 1.2. But SFSs can tackle such situations,

the sum of squares of three grades of SFSs should lie in

the unit interval. Again, SFSs are limited because they can-

not handle a situation when membership, abstinence and

non-membership grades are 0.8, 08, 0.9 respectively. In these

kinds of situations, the TSFS is the most reliable tool as

the grades can be raised to sufficiently high exponent so

that the sum ends up in the unit interval. Figure 2 clearly

portrays the grander codomain of the TSFSs as com-

pared to that of PFSs and SFSs. Mahmood et al. [14] used

SFSs in medical diagnosis and decision making problems.

Gundogdu and Kahraman [15]–[17] discussed the SFSs and

spherical fuzzy TOPSIS method, extension of WASPAS with

SFSs and spherical fuzzy hierarchy process and its energy

applications. Ashraf et al. [18] applied the concept of SFSs

in multi-attribute decision making problems. Garg et al. [19]

provided the algorithm for TSF multi attribute decision

making based on aggregation operators. Ullah et al. [20]

devised the correlation coefficients for TSFSs and applied

them in clustering and multi attribute decision making and

Wu et al. [21] proposed the divergence measure for TFS with

application in pattern recognition.

Although, TSFSs are absolutely great in coping with

many uncertainty problems, but they could really not

tackle the problems with multi-dimensions. Henceforth,

Ramot et al. [22] changed the membership grade of the FSs

from a real number in unit interval to a complex number in

the unit disc in complex plane, and initiated the concept of

complex FSs (CFSs). Themembership grade being a complex

number is expressed in the polar form as αC ( ) eβC
( )

2π i,

where αC ( ) and βC ( ) are real numbers from the unit

interval, representing two different entities. αC ( ) is called

the amplitude term and βC ( ) is called the phase term.

The phase term has a major role as it refers to the alter-

ing phases or periodicity. The CFSs only talk about the
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supportive, satisfaction, truth or membership grade but do not

inform about the dissatisfaction or non-membership grade.

To overcome this scarcity in CFSs, Alkouri et al. 23] added

the non-membership grade and put forward the concept of

complex intuitionistic FSs (CIFSs). CIFSs restrict the sum of

membership and non-membership grades to the unit disc in

complex plane. Equivalently, the sum of amplitude terms of

both the grades as well as the sum of phase terms of both

the grades must lie in the real unit interval. Because of this

restriction Ullah et al. [24] extended the codomain by altering

the constraint such that the sum of the squares of the real

parts of membership and non-membership grades should be

in the unit interval. They named this new set as complex PyFS

(CPyFS). The CPyFSs were further generalized to complex

qROFSs (CqROFSs) by Liu et al. [25]. Like qROFSs, the lim-

itations are milder in CqROFSs as compared to CIFSs and

CPyFSs. The sum ofmodulus of complex valuedmembership

and non-membership grades is restricted to the unit interval.

Ullah et al. [26] evaluated the investment policy based on

multiattribute decision making through interval valued TSF

aggregation operators. Peng et al. [27] proposed the decision

makingmethodwith a new score function via exponential and

aggregation operators for qROFSs. Du et al. [28] proposed

Minkowski-type distance for qROFSs. Bai et al. [29] and

Liu et al. [30] used the qROF power Maclaurin symmetric

mean operators. Wei et al. [31] considered the qROF Hero-

nian mean operators in multiattribute decision making and

Shu et al. [32] integrated the qROF continuous information.

Keeping in view the importance of fuzzy sets, other gener-

alizations of fuzzy sets had been introduced, such as rough

sets [33], soft sets [34], bipolar-valued fuzzy sets [35] and

bipolar soft sets [36]–[38].

Despite the fact that the CqROFSs are so strong and can

model several problems with uncertainty, they still are unable

to handle many problems because these sets only consider

the membership and non-membership grades. So it opens

up the gates for the inclusion of complex abstinence grade.

Ali et al. [39] proposed the notion of complex TSFSs (CTS-

FSs) which are the generalization of complex SFSs (CSFSs)

and complex PFSs (CPFSs). In CTSFSs the elements of the

set are given the complex valued membership, abstinence

and non-membership grades. The sum of modulus of the

membership, abstinence and non-membership grades when

raised to power n, must lie in the unit interval, where n is a

natural number. For n = 1 the CTSFS turns into a CPFS and

for n = 2 it becomes a CSFS.

The classical set theory discusses the relationships between

different sets by using the notion of relations. Relations

have many applications in mathematics, engineering, social

sciences and several other disciplines. The classical rela-

tions (CRs) were defined by Klir [40] which only tell that

whether the two events or objects have any relationship or not.

Several types of relations are defined, such as inverse rela-

tion, reflexive relation, symmetric relation, transitive relation,

composite relation, equivalence relation etc. The concept

of relations has been also brought in the fuzzy set theory.

Fuzzy relations (FRs) were introduced by Mendel [41].

The advantage of FRs over CRs is that the FRs state the

strength or quality of the relationship in the form of mem-

bership grade. In addition to identify the level of weak and

poor relationship, Burillo et al. [42] devised the IF relation

(IFR). Since these relations with real valued membership

and non-membership grades cannot be used to model mul-

tidimensional problems. Therefore, the complex FRs (CFRs)

were presented byRamot et al. [22]. Further, Ramot et al. [43]

worked on the complex fuzzy logic. Hu et al. [44] studied

the distances of CFSs and continuity of CF operations.

Al-Qudah and Hassan [45] described the entropy and sim-

ilarity measure of complex multi-fuzzy soft sets. Garg and

Rani [46] achieved some results on information measures for

CIFSs. Gulzar et al. [47] came up with a novel application of

CIFSs in group theory. Quek and Selvachandran [48] talked

about the algebraic structure of CIF soft sets associated with

groups and subgroups. Zhou et al. [49] applied the complex

cubic fuzzy aggregation operators in group decision making.

Xiao [50]–[52] studied the complex mass functions and used

them to predict the interference effects as well as discussed

the distance for complex mass functions.

It is known that CTSFSs are the extensive type of all the

generalizations of FSs. However, the concepts of fuzzy rela-

tions have not yet been introduced for the CTSFSs. The defi-

nition of fuzzy relations for the CTSFSs is important because

it can be applied in various fields. Henceforth, this paper

presents the novel concept of CTSF relations (CTSFRs),

which provides the extensive generalizations of FRs. The

benefit of TSFSs is that the researchers and professionals

are free to choose any grade of membership, abstinence and

non-membership, as long as anyone of the grades is not

exactly equal to 1. Likewise, CTSFS is the set with the

greatest codomain and has the ability to cope with almost all

the problems that its predecessors could handle. Moreover,

the types of CTSFRs are also proposed with examples such as

CTSF inverse, reflexive, irreflexive, symmetric, antisymmet-

ric, asymmetric, transitive, composite, equivalence and order

relations. Besides these types, the equivalence class has also

been defined for the CTSFRs. Also, some results have been

found regarding the CTSFRs and its types. Furthermore, these

concepts are applied to real world scenarios. This paper pro-

poses a model for the economic relationships that can be vital

in identifying the key factors affecting the economy growth,

unemployment and quality of life. In addition, an application

is presented that determined the grades of direct and indirect

effects of one country trades on the trades of other countries.

Some predefined concepts are discussed in Section II

such as FSs, CFSs, IFSs, CIFSs, qROFSs, CqROFSs, PFSs,

CPFSs, SFSs, CSFSs, TSFSs, the complex Cartesian prod-

ucts and relations that have already been studied. Section III

contains the main definitions including CTSFSs and CTS-

FRs. Additionally, the types of CTSFRs are defined with

examples. Section IV contains some theorems and their

proofs. In section V, a couple of applications of CTSFRs

are presented. The first application talks about the direct and
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indirect effects of trades i.e. import and exports of one country

on the trade of other countries. In addition, the grades of pos-

itive and negative effects are determined with respect to some

time lag. The second application is also very important that

discusses the quality and grade of economic relationships.

Section VI enlightens the novelty and dominance of this

study and compares this work with the previous works when

applied to the applications discussed. Section VII highlights

some of the advantages of CTSFSs, CTSFRs and their types.

Finally, Section VIII concludes this research work.

II. PRELIMINARIES

This section consists of the necessary definitions of FSs, IFSs,

PyFSs, qROFSs, PFSs, SFSs, TSFSs, CFSs, CIFSs, CPyFSs,

CqROFSs, CPFSs, CSFSs. Moreover, the Cartesian products

of CFSs and CFRs are reviewed with example.

Definition 1 [22]: A set Ã on a universal set defined

as Ã =

{
, Ã

C
( ) | ∈

}
is called a complex fuzzy

set (CFS) with the membership grade Ã
C

( ) that is defined

as Ã
C
: → { | ∈C, | | ≤ 1}.C is the set of complex num-

bers and the complex number is of the form

( ) = αC ( ) eβC
( )

2π i where αC ( ) , βC ( ) ∈ [0, 1]

and αC ( ) is called the amplitude term and βC ( ) is called

the phase term.

Definition 2 [22]: The Cartesian product of two CFSs Ã ={
í,

Ã
C

( í) | í∈

}
and B̃ =

{
, B̃

C

( )
| ∈

}
, í, ∈ N

is denoted and defined as

Ã × B̃ =

{(
í,

)
, Ã×B̃

C

(
í,

)
| í∈Ã, ∈B̃

}

where the mapping Ã×B̃
C

: → { | ∈C, | | ≤ 1} symbol-

izes the membership grade of the Cartesian product Ã × B̃

which is defined as

Ã×B̃
C

(
í,

)
= min

{
Ã
C

( í) , B̃
C

( )}
.

Further, the complex number for Ã × B̃ is of the form

(
í,

)
= αÃ×B̃

(
í,

)
e
βÃ×B̃

(
í,

)
2π i

= min
{
αÃ ( í) , αB̃

( )}
e
min

{
βÃ

(
í

)
,βB̃

( )}
2π i

where αÃ×B̃
(

í,
)
, βÃ×B̃

(
í,

)
∈ [0, 1] .

Definition 3 [22]:Acomplex fuzzy relation (CFR) denoted

by R is any non-empty subset of Ã × B̃, where Ã and B̃ are

CFSs.

Example 1: Suppose that Ã is a CFS on defined as

Ã =

{(
, 0.3e(0.1)2π i

)
,

(
, 0.5e(0.2)2π i

)
,

(
, 0.2e(0.5)2π i

)}
.

Then the Cartesian product Ã × Ã is defined as

Ã × Ã =





(
( , ) , 0.3e(0.1)2π i

)
,
(
( , ) , 0.3e(0.1)2π i

)
,(

( , ) , 0.2e(0.1)2π i
)
,
(
( , ) , 0.3e(0.1)2π i

)
,(

( , ) , 0.5e(0.2)2π i
)
,
(
( , ) , 0.2e(0.2)2π i

)
,(

( , ) , 0.2e(0.1)2π i
)
,
(
( , ) , 0.2e(0.2)2π i

)
,(

( , ) , 0.2e(0.5)2π i
)





.

Since the subset of Ã × Ã is a CFR, R is given as

R =

{ (
( , ) , 0.3e(0.1)2π i

)
,
(
( , ) , 0.3e(0.1)2π i

)
,(

( , ) , 0.5e(0.2)2π i
)
,
(
( , ) , 0.2e(0.2)2π i

)
}

.

Definition 4 [2]: A set Ã on a universal set defined

as Ã =
{

, ( ) , ( ) | ∈
}

is called an intuition-

istic fuzzy set (IFS), where ( ), ( ) are mappings

such that , : → [0, 1] symbolize the membership and

non-membership grades of the IFS Ã, on condition that 0 ≤

( ) + ( ) ≤ 1.

Definition 5 [23]: A set Ã on a universal set defined

as Ã =

{
, Ã

C
( ) , Ã

C
( ) | ∈

}
is called a com-

plex intuitionistic fuzzy set (CIFS) with the membership

and non-membership grades Ã
C

( ) and Ã
C

( ) respec-

tively, defined as Ã
C
: →

{
| ∈C,

∣∣ ∣∣ ≤ 1
}

and
Ã
C
: →

{
| ∈C,

∣∣ ∣∣ ≤ 1
}
. C is the set of complex

numbers and the complex numbers and are of the form

( ) = α ( ) e
β

( )
2π i

and ( ) = α ( ) e
β

( )
2π i

where α ( ) , α ( ) , β ( ) , β ( ) ∈ [0, 1], on condi-

tion that 0 ≤

∣∣∣ Ã
C

( )

∣∣∣ +

∣∣∣ Ã
C

( )

∣∣∣ =
∣∣ ∣∣ +

∣∣ ∣∣ ≤ 1,

or 0 ≤ α ( ) + α ( ) ≤ 1 and 0 ≤ β ( ) + β ( ) ≤

1 and α ( ) , α ( ) are called the amplitude terms and

β ( ) , β ( ) are called the phase terms.

Definition 6 [24]: A set Ã on a universal set

defined as Ã =

{
, Ã

C
( ) , Ã

C
( ) | ∈

}
is called a

complex Pythagorean fuzzy set (CPyFS) with the mem-

bership and non-membership grades Ã
C

( ) and Ã
C

( )

respectively, defined as Ã
C
: →

{
| ∈C,

∣∣ ∣∣ ≤ 1
}

and Ã
C
: →

{
| ∈C,

∣∣ ∣∣ ≤ 1
}
.C is the set of complex

numbers and the complex numbers and are of the form

( ) = α ( ) e
β

( )
2π i

and ( ) = α ( ) e
β

( )
2π i

where α ( ) , α ( ) , β ( ) , β ( ) ∈ [0, 1], on condition

that 0 ≤

∣∣∣ Ã
C

( )

∣∣∣
2

+

∣∣∣ Ã
C

( )

∣∣∣
2

=
∣∣ ∣∣2 +

∣∣ ∣∣2 ≤ 1,

or 0 ≤
(
α ( )

)2
+

(
α ( )

)2
≤ 1 and 0 ≤

(
β ( )

)2
+(

β ( )
)2

≤ 1 and α ( ) , α ( ) are called the amplitude

terms and β ( ) , β ( ) are called the phase terms.

Definition 7 [4]: A set Ã on a universal set defined

as Ã =
{

, ( ) , ( ) | ∈
}
is called q-rung orthopair

fuzzy set (qROFS), where ( ), ( ) are mappings

such that , : → [0, 1] symbolize the membership and

non-membership grades of the IFS Ã, on condition that 0 ≤

( ( ))n+( ( ))n ≤ 1, with n a natural number.

Remark 1: For n = 1 and n = 2, the qROFS becomes an

IFS and PyFS respectively.

Definition 8 [25]: A set Ã on a universal set defined

as Ã =

{
, Ã

C
( ) , Ã

C
( ) | ∈

}
is called a complex

q-rung orthopair fuzzy set (CqROFS) with the member-

ship and non-membership grades Ã
C

( ) and Ã
C

( ) respec-

tively, defined as Ã
C
: →

{
| ∈C,

∣∣ ∣∣ ≤ 1
}

and
Ã
C
: →

{
| ∈C,

∣∣ ∣∣ ≤ 1
}
. C is the set of complex

numbers and the complex numbers and are of the form

( ) = α ( ) e
β

( )
2π i

and ( ) = α ( ) e
β

( )
2π i
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where α ( ) , α ( ) , β ( ) , β ( ) ∈ [0, 1], on condition

that 0 ≤

∣∣∣ Ã
C

( )

∣∣∣
n
+

∣∣∣ Ã
C

( )

∣∣∣
n

=
∣∣ ∣∣n +

∣∣ ∣∣n ≤ 1, or 0 ≤(
α ( )

)n
+

(
α ( )

)n
≤1 and 0≤

(
β ( )

)n
+

(
β ( )

)n
≤1,

that n is a natural number, and α ( ) , α ( ) are called

the amplitude terms and β ( ) , β ( ) are called the phase

terms.

Definition 9 [12]: A set Ã on a universal set defined as

Ã =
{

, ( ) , ( ) , ( ) | ∈
}
is called a picture fuzzy

set (PFS), where ( ), ( ) and ( ) are mappings such that

, , : → [0, 1] symbolize the membership, abstinence

and non-membership grades of the PFS Ã, on condition that

0 ≤ ( ) + ( ) + ( ) ≤ 1.

Definition 10 [39]: A set Ã on a universal set defined

as Ã =

{
, Ã

C
( ) , Ã

C
( ) , Ã

C
( ) | ∈

}
is called a com-

plex picture fuzzy set (CPFS) with the membership, absti-

nence and non-membership grades Ã
C

( ), Ã
C

( ) and Ã
C

( )

respectively, defined as Ã
C
: →

{
| ∈C,

∣∣ ∣∣ ≤ 1
}
,

Ã
C
: →

{
| ∈C,

∣∣ ∣∣ ≤ 1
}
and Ã

C
: →

{
| ∈C,∣∣ ∣∣ ≤ 1

}
. C is the set of complex numbers and the com-

plex numbers , and are of the form ( ) =

α ( ) e
β

( )
2π i

, ( ) = α ( ) e
β

( )
2π i

and ( ) =

α ( ) e
β

( )
2π i

where

α ( ) , α ( ) , α ( ) , β ( ) , β ( ) , β ( ) ∈ [0, 1],

on condition that 0 ≤

∣∣∣ Ã
C

( )

∣∣∣ +

∣∣∣ Ã
C

( )

∣∣∣ +

∣∣∣ Ã
C

( )

∣∣∣ =∣∣ ∣∣+
∣∣ ∣∣+

∣∣ ∣∣ ≤ 1, or 0 ≤ α ( )+ α ( )+α ( ) ≤ 1

and 0 ≤ β ( )+β ( )+β ( ) ≤ 1. α ( ) , α ( ) , α ( )

are called the amplitude terms and β ( ) , β ( ) , β ( ) are

called the phase terms.

Definition 11 [13]: A set Ã on a universal set defined as

Ã =
{

, ( ) , ( ) , ( ) | ∈
}
is called a spherical fuzzy

set (SFS), where ( ), ( ) and ( ) are mappings such that

, , : → [0, 1], symbolize the membership, abstinence

and non-membership grades of the PFS Ã, on condition that

0 ≤ ( ( ))2+( ( ))2+( ( ))2 ≤ 1.

Definition 12 [39]: A set Ã on a universal set defined

as Ã =

{
, Ã

C
( ) , Ã

C
( ) , Ã

C
( ) | ∈

}
is called a com-

plex spherical fuzzy set (CSFS) with the membership, absti-

nence and non-membership grades Ã
C

( ), Ã
C

( ) and Ã
C

( )

respectively, defined as Ã
C
: →

{
| ∈C,

∣∣ ∣∣ ≤ 1
}
,

Ã
C
: →

{
| ∈C,

∣∣ ∣∣ ≤ 1
}
and Ã

C
: →

{
| ∈C,∣∣ ∣∣ ≤ 1

}
. C is the set of complex numbers and the complex

numbers , and are of the form

( ) = α ( ) e
β

( )
2π i

, ( ) = α ( ) e
β

( )
2π i

and ( ) = α ( ) e
β

( )
2π i

where α ( ) , α ( ) , α ( ) , β ( ) , β ( ) , β ( ) ∈

[0, 1], on condition that

0 ≤

∣∣∣ Ã
C

( )

∣∣∣
2
+

∣∣∣ Ã
C

( )

∣∣∣
2
+

∣∣∣ Ã
C

( )

∣∣∣
2

=
∣∣ ∣∣2 +

∣∣ ∣∣2 +
∣∣ ∣∣2 ≤ 1, or 0 ≤

(
α ( )

)2

+
(
α ( )

)2
+

(
α ( )

)2
≤ 1 and 0 ≤

(
β ( )

)2

+
(
β ( )

)2
+

(
β ( )

)2
≤ 1.

α ( ) , α ( ) , α ( ) are called the amplitude terms and

β ( ) , β ( ) , β ( ) are called the phase terms.

Definition 13 [13]: A set Ã on a universal set defined

as Ã =
{

, ( ) , ( ) , ( ) | ∈
}
is called a T-spherical

fuzzy set (TSFS), where ( ), ( ) and ( ) are mappings

such that , , : → [0, 1] symbolize the membership,

abstinence and non-membership grades of the PFS Ã, on con-

dition that

0 ≤ ( ( ))n+( ( ))n+( ( ))n ≤ 1, n∈N.

III. COMPLEX T-SPHERICAL FUZZY RELATIONS AND

THEIR TYPES

The objective of this section is to introduce novel con-

cepts of CTSFSs, Cartesian products in CqROFSs, CTSFSs,

CqROFRs, CPFRs, CSFRs and CTSFRs. Also, the types of

CTSFRs are delineated. These notions are supported with the

clear examples.

Definition 14: The Cartesian product of two CqROFSs

Ã =

{
í,

Ã
C

( í) , Ã
C

( í) | í∈

}
and

B̃ =

{
, B̃

C

( )
, B̃

C

( )
| ∈

}
, í, ∈N is denoted and

defined as

Ã × B̃ =

{(
í,

)
, Ã×B̃

C

(
í,

)
, Ã×B̃

C

(
í,

)
| í∈Ã, ∈B̃

}

where the mappings Ã×B̃
C

: →
{

| ∈C,
∣∣ ∣∣ ≤ 1

}

and Ã×B̃
C

: →
{

| ∈C,
∣∣ ∣∣ ≤ 1

}
symbolize the

membership and non-membership grades of the Cartesian

product Ã × B̃ which are defined as

Ã×B̃
C

(
í,

)
= min

{
Ã
C

( í) , B̃
C

( )}

and Ã×B̃
C

(
í,

)
= max

{
Ã
C

( í) , B̃
C

( )}

Further, the complex numbers and for Ã× B̃ are of the

form

(
í,

)
= αÃ×B̃

(
í,

)
e
βÃ×B̃

(
í,

)
2π i

= min
{
αÃ ( í) , αB̃

( )}
e
min

{
βÃ

(
í

)
,βB̃

( )}
2π i

and

(
í,

)
= αÃ×B̃

(
í,

)
e
βÃ×B̃

(
í,

)
2π i

= max
{
αÃ ( í) , αB̃

( )}
e
max

{
βÃ

(
í

)
,βB̃

( )}
2π i

on condition that

0 ≤

(
αÃ×B̃

(
í,

))n
+

(
αÃ×B̃

(
í,

))n
≤ 1

and 0 ≤

(
βÃ×B̃

(
í,

))n
+

(
βÃ×B̃

(
í,

))n
≤ 1
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where n is a natural number and

αÃ×B̃
(

í,
)
, α

Ã×B̃ (
í,

)
, βÃ×B̃

(
í,

)
,

βÃ×B̃
(

í,
)

∈ [0, 1] .

Definition 15: A complex q-rung orthopair fuzzy rela-

tion (CqROFR) denoted by R is any non-empty subset of

Ã × B̃, where Ã and B̃ are CqROFSs.

Remark 2: For n = 1 and n = 2, the CqROFRs convert to

CIFRs and CPyFRs, respectively. In the same way, Cartesian

products are defined.

Example 2: Suppose that Ã is a CqROFS for n = 3 on

defined as

Ã =





(
, 0.9e(0.1)2π i, 0.5e(0.7)2π i

)
,(

, 0.8e(0.2)2π i, 0.4e(0.5)2π i
)
,(

, 0.6e(0.5)2π i, 0.3e(0.9)2π i
)



 .

Then the Cartesian product Ã × Ã is defined as

Ã × Ã =





(
( , ) , 0.9e(0.1)2π i, 0.5e(0.7)2π i

)
,(

( , ) , 0.8e(0.1)2π i, 0.5e(0.7)2π i
)
,(

( , ) , 0.6e(0.1)2π i, 0.5e(0.9)2π i
)
,(

( , ) , 0.8e(0.1)2π i, 0.5e(0.7)2π i
)
,(

( , ) , 0.8e(0.2)2π i, 0.4e(0.5)2π i
)
,(

( , ) , 0.6e(0.2)2π i, 0.4e(0.9)2π i
)
,(

( , ) , 0.6e(0.1)2π i, 0.5e(0.9)2π i
)
,(

( , ) , 0.6e(0.2)2π i, 0.4e(0.9)2π i
)
,(

( , ) , 0.6e(0.5)2π i, 0.3e(0.9)2π i
)





Since the subset of Ã × Ã is a CIFR, R is given as

R =





(
( , ) , 0.8e(0.1)2π i, 0.5e(0.7)2π i

)
,(

( , ) , 0.6e(0.2)2π i, 0.4e(0.9)2π i
)
,(

( , ) , 0.6e(0.5)2π i, 0.3e(0.9)2π i
)





Definition 16: A set Ã on a universal set defined as

Ã =

{
, Ã

C
( ) , Ã

C
( ) , Ã

C
( ) | ∈

}
is called a complex

T-spherical fuzzy set (CTSFS) with the membership, absti-

nence and non-membership grades Ã
C

( ), Ã
C

( ) and Ã
C

( )

respectively, defined as

Ã
C

: →
{

| ∈C,
∣∣ ∣∣ ≤ 1

}
,

Ã
C

: →
{

| ∈C,
∣∣ ∣∣ ≤ 1

}

and Ã
C
: →

{
| ∈C,

∣∣ ∣∣ ≤ 1
}
.C is the set of complex

numbers and the complex numbers , and are of the

form

( ) = α ( ) e
β

( )
2π i

, ( ) = α ( ) e
β

( )
2π i

and ( ) = α ( ) e
β

( )
2π i

,

where α ( ) , α ( ) , α ( ) , β ( ) , β ( ) , β ( ) ∈

[0, 1], on condition that

0 ≤

∣∣∣ Ã
C

( )

∣∣∣
n
+

∣∣∣ Ã
C

( )

∣∣∣
n
+

∣∣∣ Ã
C

( )

∣∣∣
n

=
∣∣ ∣∣n +

∣∣ ∣∣n +
∣∣ ∣∣n ≤ 1, n∈N,

or 0 ≤
(
α ( )

)n
+

(
α ( )

)n
+

(
α ( )

)n
≤ 1 and 0

≤
(
β ( )

)n
+

(
β ( )

)n
+

(
β ( )

)n
≤ 1 for n∈N.

α ( ) , α ( ) , α ( ) are called the amplitude terms and

β ( ) , β ( ) , β ( ) are called the phase terms.

Definition 17: The Cartesian product of two CTSFSs

Ã =

{
í,

Ã
C

( í) , Ã
C

( í) , Ã
C

( í) | í∈

}
and B̃ ={

, B̃
C

( )
, B̃

C

( )
, B̃

C

( )
| ∈

}
, í, ∈N is denoted and

defined as

Ã × B̃ =

{ (
í,

)
, Ã×B̃

C

(
í,

)
, Ã×B̃

C

(
í,

)
,

Ã×B̃
C

(
í,

)
| í∈Ã, ∈B̃

}

where the mappings Ã×B̃
C

: →
{

| ∈C,
∣∣ ∣∣ ≤ 1

}
,

Ã×B̃
C

: →
{

| ∈C,
∣∣ ∣∣ ≤ 1

}
and Ã×B̃

C
:

→
{

| ∈C,
∣∣ ∣∣ ≤ 1

}
symbolize the membership,

abstinence and non-membership grades of the Cartesian

product Ã × B̃ which are defined as

Ã×B̃
C

(
í,

)
= min

{
Ã
C

( í) , B̃
C

( )}
,

Ã×B̃
C

(
í,

)
= min

{
Ã
C

( í) , B̃
C

( )}

and Ã×B̃
C

(
í,

)
= max

{
Ã
C

( í) , B̃
C

( )}
.

Further, the complex numbers , and for Ã× B̃ are of

the form
(

í,
)

= αÃ×B̃
(

í,
)
e
βÃ×B̃

(
í,

)
2π i

= min
{
αÃ ( í) , αB̃

( )}
e
min

{
βÃ

(
í

)
,βB̃

( )}
2π i

,
(

í,
)

= αÃ×B̃
(

í,
)
e
βÃ×B̃

(
í,

)
2π i

= min
{
αÃ ( í) , αB̃

( )}
e
min

{
βÃ

(
í

)
,βB̃

( )}
2π i

,

and
(

í,
)

= αÃ×B̃
(

í,
)
e
βÃ×B̃

(
í,

)
2π i

= max
{
αÃ ( í) , αB̃

( )}
e
max

{
βÃ

(
í

)
,βB̃

( )}
2π i

on condition that

0 ≤

(
αÃ×B̃

(
í,

))n
+

(
αÃ×B̃

(
í,

))n
+

(
αÃ×B̃

(
í,

))n

≤ 1 and 0 ≤

(
βÃ×B̃

(
í,

))n
+

(
βÃ×B̃

(
í,

))n

+

(
βÃ×B̃

(
í,

))n
≤ 1 for n∈N,

where

αÃ×B̃
(

í,
)
, αÃ×B̃

(
í,

)
, α

Ã×B̃ (
í,

)
, βÃ×B̃

(
í,

)
,

βÃ×B̃
(

í,
)
, βÃ×B̃

(
í,

)
∈ [0, 1].

Definition 18: A complex T-spherical fuzzy rela-

tion (CTSFR) denoted byR is any non-empty subset of Ã×B̃,

where Ã and B̃ are CTSFSs.
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Remark 3: Like TSFS which is the generalization of PFS

and SFS, the CTSFS is the generalization of CPFS and CSFS

for n = 1 and n = 2, respectively. In the same way, Cartesian

products and the relations are defined, i.e. CTSFR converts

to CPFR for n = 1 and it converts to CSPR for n = 2.

Example 3: Suppose that Ã is a CPFS on defined as

Ã =

{ (
, 0.3e(0.1)2π i, 0.2e(0.7)2π i, 0.4e(0.2)2π i

)
,(

, 0.2e(0.4)2π i, 0.4e(0.3)2π i, 0.1e(0.3)2π i
)

}
.

Then the Cartesian product Ã × Ã is defined as

Ã × Ã =





(
( , ) , 0.3e(0.1)2π i, 0.2e(0.7)2π i, 0.4e(0.2)2π i

)
,(

( , ) , 0.2e(0.1)2π i, 0.2e(0.3)2π i, 0.4e(0.3)2π i
)
,(

( , ) , 0.2e(0.1)2π i, 0.2e(0.3)2π i, 0.4e(0.3)2π i
)
,(

( , ) , 0.2e(0.4)2π i, 0.4e(0.3)2π i, 0.1e(0.3)2π i
)





.

Since, the subset of Ã × Ã is a CPFR, R is given as

R =

{ (
( , ) , 0.3e(0.1)2π i, 0.2e(0.7)2π i, 0.4e(0.2)2π i

)
,(

( , ) , 0.2e(0.1)2π i, 0.2e(0.3)2π i, 0.4e(0.3)2π i
)

}
.

Example 4: Suppose that Ã is a CSFS on defined as

Ã =

{ (
, 0.5e(0.4)2π i, 0.6e(0.7)2π i, 0.4e(0.3)2π i

)
,(

, 0.2e(0.6)2π i, 0.4e(0.6)2π i, 0.8e(0.3)2π i
)

}
.

Then the Cartesian product Ã × Ã is defined as

Ã × Ã =





(
( , ) , 0.5e(0.4)2π i, 0.6e(0.7)2π i, 0.4e(0.3)2π i

)
,(

( , ) , 0.2e(0.4)2π i, 0.4e(0.6)2π i, 0.8e(0.3)2π i
)
,(

( , ) , 0.2e(0.4)2π i, 0.4e(0.6)2π i, 0.8e(0.3)2π i
)
,(

( , ) , 0.2e(0.6)2π i, 0.4e(0.6)2π i, 0.8e(0.3)2π i
)





Since the subset of Ã × Ã is a CSFR, R is given as

R =

{ (
( , ) , 0.2e(0.4)2π i, 0.4e(0.6)2π i, 0.8e(0.3)2π i

)
,(

( , ) , 0.2e(0.4)2π i, 0.4e(0.6)2π i, 0.8e(0.3)2π i
)

}
.

Example 5: Suppose that Ã is a CTSFS for n = 4 on

defined as

Ã =

{ (
, 0.5e(0.6)2π i, 0.6e(0.7)2π i, 0.8e(0.5)2π i

)
,(

, 0.5e(0.6)2π i, 0.7e(0.5)2π i, 0.8e(0.9)2π i
)

}
.

Then the Cartesian product Ã × Ã is defined as

Ã × Ã

=





(
( , ) , 0.5e(0.6)2π i, 0.6e(0.7)2π i, 0.8e(0.5)2π i

)
,(

( , ) , 0.5e(0.6)2π i, 0.6e(0.5)2π i, 0.8e(0.9)2π i
)
,(

( , ) , 0.5e(0.6)2π i, 0.6e(0.5)2π i, 0.8e(0.9)2π i
)
,(

( , ) , 0.5e(0.6)2π i, 0.7e(0.5)2π i, 0.8e(0.9)2π i
)





Since the subset of Ã × Ã is a CSFR, R is given as

R =

{ (
( , ) , 0.5e(0.6)2π i, 0.6e(0.7)2π i, 0.8e(0.5)2π i

)
,(

( , ) , 0.5e(0.6)2π i, 0.7e(0.5)2π i, 0.8e(0.9)2π i
)

}
.

Definition 19. Let Ã be a CTSFS on and

R =

{(
í,

)
, Ã×Ã

C

(
í,

)
, Ã×Ã

C

(
í,

)
, Ã×Ã

C

(
í,

)
|(

í,
)
∈R

}
be a CTSFR on Ã. Then the inverse CTSFR of

R is denoted and defined as

R
−1 =

{(
, í

)
, Ã×Ã

C

(
, í

)
, Ã×Ã

C

(
, í

)
, Ã×Ã

C

(
, í

)

|
(

í,
)
∈R

}

Example 6: Let

R =





(
( , ) , 0.3e(0.2)2π i, 0.2e(0.7)2π i, 0.8e(0.9)2π i

)
,(

( , ) , 0.3e(0.5)2π i, 0.7e(0.5)2π i, 0.8e(0.9)2π i
)
,(

( , ) , 0.5e(0.2)2π i, 0.2e(0.5)2π i, 0.8e(0.7)2π i
)





be a CTSFR on a CTSFS Ã, for n = 7.

Ã =





(
, 0.5e(0.2)2π i, 0.2e(0.7)2π i, 0.8e(0.4)2π i

)
,(

, 0.3e(0.6)2π i, 0.7e(0.8)2π i, 0.5e(0.9)2π i
)
,(

, 0.8e(0.5)2π i, 0.9e(0.5)2π i, 0.8e(0.7)2π i
)



 , then

R
−1 =





(
( , ) , 0.5e(0.2)2π i, 0.2e(0.5)2π i, 0.8e(0.7)2π i

)
,(

( , ) , 0.3e(0.2)2π i, 0.2e(0.7)2π i, 0.8e(0.9)2π i
)
,(

( , ) , 0.3e(0.5)2π i, 0.7e(0.5)2π i, 0.8e(0.9)2π i
)





is a CTSF inverse relation of R on Ã.

Definition 20: Let Ã be a CTSFS on . Then a CTSF

reflexive relationR is defined as
(
( , ), R

C
( , ) , R

C
( , ),

R

C
( , )

)
∈R, ∀

(
, Ã

C
( ) , Ã

C
( ) , Ã

C
( )

)
∈Ã.

Example 7: Suppose that Ã is a CTSFS for n = 7 on

defined as

Ã =





(
, 0.5e(0.2)2π i, 0.2e(0.7)2π i, 0.8e(0.4)2π i

)
,(

, 0.3e(0.6)2π i, 0.7e(0.8)2π i, 0.5e(0.9)2π i
)
,(

, 0.8e(0.5)2π i, 0.9e(0.5)2π i, 0.8e(0.7)2π i
)



 .

Then the Cartesian product Ã × Ã is defined as

Ã × Ã =





(
( , ) , 0.5e(0.2)2π i, 0.2e(0.7)2π i, 0.8e(0.4)2π i

)
,(

( , ) , 0.3e(0.2)2π i, 0.2e(0.7)2π i, 0.8e(0.9)2π i
)
,(

( , ) , 0.5e(0.2)2π i, 0.2e(0.5)2π i, 0.8e(0.7)2π i
)
,(

( , ) , 0.3e(0.2)2π i, 0.2e(0.7)2π i, 0.8e(0.9)2π i
)
,(

( , ) , 0.3e(0.6)2π i, 0.7e(0.8)2π i, 0.5e(0.9)2π i
)
,(

( , ) , 0.3e(0.5)2π i, 0.7e(0.5)2π i, 0.8e(0.9)2π i
)
,(

( , ) , 0.5e(0.2)2π i, 0.2e(0.5)2π i, 0.8e(0.7)2π i
)
,(

( , ) , 0.3e(0.5)2π i, 0.7e(0.5)2π i, 0.8e(0.9)2π i
)
,(

( , ) , 0.8e(0.5)2π i, 0.9e(0.5)2π i, 0.8e(0.7)2π i
)





The subset R of Ã × Ã is a CTSF reflexive relation, given

below

R =





(
( , ) , 0.5e(0.2)2π i, 0.2e(0.7)2π i, 0.8e(0.4)2π i

)
,(

( , ) , 0.3e(0.6)2π i, 0.7e(0.8)2π i, 0.5e(0.9)2π i
)
,(

( , ) , 0.8e(0.5)2π i, 0.9e(0.5)2π i, 0.8e(0.7)2π i
)





Definition 21: Let Ã be a CTSFS on . Then a CTSF

irreflexive relation R is defined as(
( , ) , R

C
( , ) , R

C
( , ) , R

C
( , )

)
/∈ R,

∀

(
, Ã

C
( ) , Ã

C
( ) , Ã

C
( )

)
∈Ã

Example 8:

R =

{ (
( , ) , 0.5e(0.2)2π i, 0.2e(0.5)2π i, 0.8e(0.7)2π i

)
,(

( , ) , 0.3e(0.5)2π i, 0.7e(0.5)2π i, 0.8e(0.9)2π i
)

}

is a CTSF irreflexive relation on a CTSFS Ã, for n = 7 with

Ã =





(
, 0.5e(0.2)2π i, 0.2e(0.7)2π i, 0.8e(0.4)2π i

)
,(

, 0.3e(0.6)2π i, 0.7e(0.8)2π i, 0.5e(0.9)2π i
)
,(

, 0.8e(0.5)2π i, 0.9e(0.5)2π i, 0.8e(0.7)2π i
)
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Definition 22: Let Ã be a CTSFS on . Then a CTSF

symmetric relation R is a set such that

If
(
( , ) , R

C
( , ) , R

C
( , ) , R

C
( , )

)
∈ R

H⇒

(
( , ) , R

C
( , ) , R

C
( , ) , R

C
( , )

)
∈ R

Example 9:

R =





(
( , ) , 0.5e(0.2)2π i, 0.2e(0.7)2π i, 0.8e(0.4)2π i

)
,(

( , ) , 0.3e(0.2)2π i, 0.2e(0.7)2π i, 0.8e(0.9)2π i
)
,(

( , ) , 0.3e(0.2)2π i, 0.2e(0.7)2π i, 0.8e(0.9)2π i
)
,(

( , ) , 0.8e(0.5)2π i, 0.9e(0.5)2π i, 0.8e(0.7)2π i
)





is a CTSF symmetric relation on a CTSFS Ã, for n = 7

with

Ã =





(
, 0.5e(0.2)2π i, 0.2e(0.7)2π i, 0.8e(0.4)2π i

)
,(

, 0.3e(0.6)2π i, 0.7e(0.8)2π i, 0.5e(0.9)2π i
)
,(

, 0.8e(0.5)2π i, 0.9e(0.5)2π i, 0.8e(0.7)2π i
)





Definition 23: Let Ã be a CTSFS on . Then a CTSF

asymmetric relation R is a set such that

If
(
( , ) , R

C
( , ) , R

C
( , ) , R

C
( , )

)
∈ R

H⇒

(
( , ) , R

C
( , ) , R

C
( , ) , R

C
( , )

)
/∈ R.

Example 10:

R =

{ (
( , ) , 0.3e(0.2)2π i, 0.2e(0.7)2π i, 0.8e(0.9)2π i

)
,(

( , ) , 0.3e(0.5)2π i, 0.7e(0.5)2π i, 0.8e(0.9)2π i
)

}

is a CTSF asymmetric relation on a CTSFS Ã, for n = 7

with

Ã =





(
, 0.5e(0.2)2π i, 0.2e(0.7)2π i, 0.8e(0.4)2π i

)
,(

, 0.3e(0.6)2π i, 0.7e(0.8)2π i, 0.5e(0.9)2π i
)
,(

, 0.8e(0.5)2π i, 0.9e(0.5)2π i, 0.8e(0.7)2π i
)





Definition 24. Let Ã be a CTSFS on . Then a CTSF

anti-symmetric relation R is a set such that

If
(
( , ) , R

C
( , ) , R

C
( , ) , R

C
( , )

)
∈ R

and
(
( , ) , R

C
( , ) , R

C
( , ) , R

C
( , )

)
∈ R

H⇒

(
( , ) , R

C
( , ) , R

C
( , ) , R

C
( , )

)

=

(
( , ) , R

C
( , ) , R

C
( , ) , R

C
( , )

)

Example 11:

R =





(
( , ) , 0.5e(0.2)2π i, 0.2e(0.5)2π i, 0.8e(0.7)2π i

)
,(

( , ) , 0.3e(0.6)2π i, 0.7e(0.8)2π i, 0.5e(0.9)2π i
)
,(

( , ) , 0.3e(0.5)2π i, 0.7e(0.5)2π i, 0.8e(0.9)2π i
)





is a CTSF anti-symmetric relation on a CTSFS Ã, for n = 7

with

Ã =





(
, 0.5e(0.2)2π i, 0.2e(0.7)2π i, 0.8e(0.4)2π i

)
,(

, 0.3e(0.6)2π i, 0.7e(0.8)2π i, 0.5e(0.9)2π i
)
,(

, 0.8e(0.5)2π i, 0.9e(0.5)2π i, 0.8e(0.7)2π i
)





Definition 25: Let Ã be a CTSFS on , then a CTSF

transitive relation R is a set such that

If
(
( , ) , R

C
( , ) , R

C
( , ) , R

C
( , )

)
,

(
( , ) , R

C
( , ) , R

C
( , ) , R

C
( , )

)
∈ R

H⇒

(
( , ) , R

C
( , ) , R

C
( , ) , R

C
( , )

)
∈ R

Example 12:

R =





(
( , ) , 0.5e(0.2)2π i, 0.2e(0.7)2π i, 0.8e(0.4)2π i

)
,(

( , ) , 0.3e(0.2)2π i, 0.2e(0.7)2π i, 0.8e(0.9)2π i
)
,(

( , ) , 0.3e(0.2)2π i, 0.2e(0.7)2π i, 0.8e(0.9)2π i
)





is a CTSF transitive relation on a CTSFS Ã, for n = 7. with

Ã =





(
, 0.5e(0.2)2π i, 0.2e(0.7)2π i, 0.8e(0.4)2π i

)
,(

, 0.3e(0.6)2π i, 0.7e(0.8)2π i, 0.5e(0.9)2π i
)
,(

, 0.8e(0.5)2π i, 0.9e(0.5)2π i, 0.8e(0.7)2π i
)





Definition 26:A CTSF equivalence relationR is a relation

that holds the properties of the following relations:

i. A CTSF reflexive relation;

ii. A CTSF symmetric relation;

iii. A CTSF transitive relation.

Example 13:

R =





(
( , ) , 0.5e(0.2)2π i, 0.2e(0.7)2π i, 0.8e(0.4)2π i

)
,(

( , ) , 0.3e(0.2)2π i, 0.2e(0.7)2π i, 0.8e(0.9)2π i
)
,(

( , ) , 0.3e(0.6)2π i, 0.7e(0.8)2π i, 0.5e(0.9)2π i
)
,(

( , ) , 0.3e(0.2)2π i, 0.2e(0.7)2π i, 0.8e(0.9)2π i
)
,(

( , ) , 0.8e(0.5)2π i, 0.9e(0.5)2π i, 0.8e(0.7)2π i
)





is a CTSF equivalence relation on a CTSFS Ã, for n = 7

with

Ã =





(
, 0.5e(0.2)2π i, 0.2e(0.7)2π i, 0.8e(0.4)2π i

)
,(

, 0.3e(0.6)2π i, 0.7e(0.8)2π i, 0.5e(0.9)2π i
)
,(

, 0.8e(0.5)2π i, 0.9e(0.5)2π i, 0.8e(0.7)2π i
)





Definition 27: A CTSF order relation R is a relation that

holds the properties of the following relations:

i. A CTSF reflexive relation;

ii. A CTSF anti-symmetric relation;

iii. A CTSF transitive relation.

Example 14:

R =





(
( , ) , 0.5e(0.2)2π i, 0.2e(0.7)2π i, 0.8e(0.4)2π i

)
,(

( , ) , 0.3e(0.6)2π i, 0.7e(0.8)2π i, 0.5e(0.9)2π i
)
,(

( , ) , 0.3e(0.5)2π i, 0.7e(0.5)2π i, 0.8e(0.9)2π i
)
,(

( , ) , 0.8e(0.5)2π i, 0.9e(0.5)2π i, 0.8e(0.7)2π i
)





is a CTSF order relation on a CTSFS Ã, for n = 7 with

Ã =





(
, 0.5e(0.2)2π i, 0.2e(0.7)2π i, 0.8e(0.4)2π i

)
,(

, 0.3e(0.6)2π i, 0.7e(0.8)2π i, 0.5e(0.9)2π i
)
,(

, 0.8e(0.5)2π i, 0.9e(0.5)2π i, 0.8e(0.7)2π i
)





Definition 28. Let Ã be a CTSFS on , and R be any

CTSFR on Ã. Then the relation R ◦ R is said to be a CTSF
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composite relation if ∀ , , ∈
(
( , ) , R

C
( , ) , R

C
( , ) , R

C
( , )

)
,

(
( , ) , R

C
( , ) , R

C
( , ) , R

C
( , )

)
∈R

H⇒

(
( , ) , R

C
( , ) , R

C
( , ) , R

C
( , )

)
∈R ◦ R

Example 15: Consider a CTSFR R,

R =





(
( , ) , 0.3e(0.2)2π i, 0.2e(0.7)2π i, 0.8e(0.9)2π i

)
,(

( , ) , 0.3e(0.2)2π i, 0.2e(0.7)2π i, 0.8e(0.9)2π i
)
,(

( , ) , 0.3e(0.5)2π i, 0.7e(0.5)2π i, 0.8e(0.9)2π i
)
,(

( , ) , 0.3e(0.5)2π i, 0.7e(0.5)2π i, 0.8e(0.9)2π i
)
,





then,

R ◦ R

=





(
( , ) , 0.5e(0.2)2π i, 0.2e(0.7)2π i, 0.8e(0.4)2π i

)
,(

( , ) , 0.5e(0.2)2π i, 0.2e(0.5)2π i, 0.8e(0.7)2π i
)
,(

( , ) , 0.3e(0.6)2π i, 0.7e(0.8)2π i, 0.5e(0.9)2π i
)
,(

( , ) , 0.5e(0.2)2π i, 0.2e(0.5)2π i, 0.8e(0.7)2π i
)

(
( , ) , 0.8e(0.5)2π i, 0.9e(0.5)2π i, 0.8e(0.7)2π i

)
,





.

Definition 29: Let Ã be a CTSFS on , and R be any

CTSFR. Then the equivalence class of modulo R is

given as

︷︸︸︷
R =





(
, Ã

C
( ) , Ã

C
( ) , Ã

C
( )

)
:(

( , ) , R

C
( , ) , R

C
( , ) , R

C
( , )

)
∈ R





for
(

, Ã
C

( ) , Ã
C

( ) , Ã
C

( )

)
.

Example 16: Consider a CTSF equivalence relation R,

R =





(
( , ) , 0.5e(0.2)2π i, 0.2e(0.7)2π i, 0.8e(0.4)2π i

)
,(

( , ) , 0.3e(0.2)2π i, 0.2e(0.7)2π i, 0.8e(0.9)2π i
)
,(

( , ) , 0.3e(0.6)2π i, 0.7e(0.8)2π i, 0.5e(0.9)2π i
)
,(

( , ) , 0.3e(0.2)2π i, 0.2e(0.7)2π i, 0.8e(0.9)2π i
)
,(

( , ) , 0.8e(0.5)2π i, 0.9e(0.5)2π i, 0.8e(0.7)2π i
)





.

Then,

︷︸︸︷
R =

{ (
, 0.5e(0.2)2π i, 0.2e(0.7)2π i, 0.8e(0.4)2π i

)
,(

, 0.3e(0.6)2π i, 0.7e(0.8)2π i, 0.5e(0.9)2π i
)

}
,

︷︸︸︷
R =

{ (
, 0.5e(0.2)2π i, 0.2e(0.7)2π i, 0.8e(0.4)2π i

)
,(

, 0.3e(0.6)2π i, 0.7e(0.8)2π i, 0.5e(0.9)2π i
)

}
,

and

︷︸︸︷
R =

{(
, 0.8e(0.5)2π i, 0.9e(0.5)2π i, 0.8e(0.7)2π i

)}
.

IV. MAIN RESULTS

This section presents some results of CTSF symmetric rela-

tions, CTSF transitive, CTSF equivalence relation and CTSF

composite relation.

Theorem 1: Let Ã be a CTSFS on , andR be a CTSFR on

Ã. Then R is a CTSF symmetric relation on Ã iff R = R
−1

Proof. First suppose thatR is a CTSF symmetric relation

on Ã,

H⇒

(
( , ) , R

C
( , ) , R

C
( , ) , R

C
( , )

)
∈R

⇐⇒

(
( , ) , R

C
( , ) , R

C
( , ) , R

C
( , )

)
∈R

Also,
(
( , ) , R

C
( , ) , R

C
( , ) , R

C
( , )

)
∈R−1 H⇒

R = R
−1 Now, let R = R

−1, then for
(
( , ) , R

C
( , ) , R

C
( , ) , R

C
( , )

)
∈R,

(
( , ) , R

C
( , ) , R

C
( , ) , R

C
( , )

)
∈R

⇐⇒

(
( , ) , R

C
( , ) , R

C
( , ) , R

C
( , )

)
∈R−1

⇐⇒

(
( , ) , R

C
( , ) , R

C
( , ) , R

C
( , )

)
∈R H⇒ R

is a CTSF symmetric relation on Ã.

Theorem 2: Let Ã be a CTSFS on and R be a CTSFR

on Ã. Then R is a CTSF transitive relation on Ã iff R ◦

R ⊆ R.

Proof: First, suppose that
(

( , ) , R

C
( , ) , R

C
( , ) ,

R

C
( , )

)
∈R ◦ R and R is a CTSF transitive relation then

∃ an element ∈ ∋
(
( , ) , R

C
( , ) , R

C
( , ) , R

C
( , )

)
∈R

and
(
( , ) , R

C
( , ) , R

C
( , ) , R

C
( , )

)
∈R

H⇒

(
( , ) , R

C
( , ) , R

C
( , ) , R

C
( , )

)
∈R

H⇒ R ◦ R ⊆ R

Conversely suppose that R ◦ R ⊆ R then by definition of

CTSF composite relation,
(
( , ) , R

C
( , ) , R

C
( , ) , R

C
( , )

)
∈R

and
(
( , ) , R

C
( , ) , R

C
( , ) , R

C
( , )

)
∈R

H⇒

(
( , ) , R

C
( , ) , R

C
( , ) , R

C
( , )

)
∈R ◦ R

But

R◦R⊆RH⇒

(
( , ) , R

C
( , ) , R

C
( , ) , R

C
( , )

)
∈R.

Thus R is a CTSF transitive relation.

Theorem 3: Let Ã be a CTSFS on and R be a CTSF

equivalence relation on Ã. Then R ◦ R = R.

Proof: Since R is a CTSF equivalence relation on Ã,

for
(
( , ) , R

C
( , ) , R

C
( , ) , R

C
( , )

)
∈R, we have

that
(
( , ) , R

C
( , ) , R

C
( , ) , R

C
( , )

)
∈R by using

symmetry.

Also,
(
( , ) , R

C
( , ) , R

C
( , ) , R

C
( , )

)
∈R by

using transitivity. But, according to the definition of CTSF

composite relation,
(
( , ) , R

C
( , ) , R

C
( , ) , R

C
( , )

)
∈R ◦ R

H⇒ R ⊆ R ◦ R (1)
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Conversely, suppose that
(

( , ) , R

C
( , ) , R

C
( , ) ,

R

C
( , )

)
∈R ◦ R. Then ∃ ∈ ∋

(
( , ) , R

C
( , ) ,

R

C
( , ) , R

C
( , )

)
∈R and

(
( , ) , R

C
( , ) , R

C
( , ) ,

R

C
( , )

)
∈RH⇒

(
( , ) , R

C
( , ) , R

C
( , ) , R

C
( , )

)
.

Because R is CTSF equivalence relation and thus CTSF

transitive relation, i.e.

R ◦ R ⊆ R (2)

Equations (1) and (2) imply that R ◦ R = R.

Theorem 4: Let Ã be a CTSFS on and R be a CTSF

equivalence relation on Ã. Then

(
( , ) , R

C
( , ) , R

C
( , ) , R

C
( , )

)
∈R , iff

︷︸︸︷
R =

︷︸︸︷
R .

Proof: Since R is a CTSF equivalence relation. Let

︷︸︸︷
R =

︷︸︸︷
R , then for any

∈ ,
(

, R

C
( ) , R

C
( ) , R

C
( )

)
∈

︷︸︸︷
R H⇒(

( , ) , R

C
( , ) , R

C
( , ) , R

C
( , )

)
∈R. By symmetry,

we have(
( , ) , R

C
( , ) , R

C
( , ) , R

C
( , )

)
∈R (3)

and

(
, R

C
( ) , R

C
( ) , R

C
( )

)
∈

︷︸︸︷
R

H⇒

(
( , ) , R

C
( , ) , R

C
( , ) , R

C
( , )

)
∈R (4)

Equation (3) and (4) imply through transitivity that(
( , ) , R

C
( , ) , R

C
( , ) , R

C
( , )

)
∈R.

Conversely, suppose that
(
( , ) , R

C
( , ) , R

C
( , ) , R

C
( , )

)
∈R (5)

and

(
, R

C
( ) , R

C
( ) , R

C
( )

)
∈

︷︸︸︷
R

H⇒

(
( , ) , R

C
( , ) , R

C
( , ) , R

C
( , )

)
∈R (6)

Equations (5) and (6) imply through transitivity that
(
( , ) , R

C
( , ) , R

C
( , ) , R

C
( , )

)
∈R

H⇒

(
, R

C
( ) , R

C
( ) , R

C
( )

)
∈

︷︸︸︷
R

H⇒
︷︸︸︷
R ⊆

︷︸︸︷
R (7)

In the same way, suppose that
(
( , ) , R

C
( , ) , R

C
( , ) , R

C
( , )

)
∈R (8)

and

(
, R

C
( ) , R

C
( ) , R

C
( )

)
∈

︷︸︸︷
R

H⇒

(
( , ) , R

C
( , ) , R

C
( , ) , R

C
( , )

)
∈R (9)

Equations (8) and (9) imply through transitivity that(
( , ) , R

C
( , ) , R

C
( , ) , R

C
( , )

)
∈R

H⇒

(
, R

C
( ) , R

C
( ) , R

C
( )

)
∈

︷︸︸︷
R .

Then, we have

︷︸︸︷
R ⊆

︷︸︸︷
R (10)

Equations (7) and (10) imply that
︷︸︸︷
R =

︷︸︸︷
R .

V. APPLICATIONS

This section presents a couple of applications of CTSFSs,

CTSFRs and the types of CTSFRs. In subsection A, the inter-

dependence of the international trades among countries is

discussed. Subsection B proposes a useful application that

talks over the economic relationships. It also compares the

financial factors affecting the business markets and presents

the effects of fundamental elements of economic structure on

each other.

A. INTERNATIONAL TRADE INTERDEPENDENCE

The term international trade refers to the give-and-take of

goods and exchange of services among the countries. This

global exchange of goods exposes the countries to the prod-

ucts that are unavailable in the local markets, or it provides the

same products at lower prices. So, the international trade lets

countries to grow their markets and helps them to access those

goods and services that are unobtainable in the country. This

makes the market more competitive. Eventually, due to com-

petitive pricing, the products are offered on cheaper prices

to the consumers. The global market has significant effects

on the domestic markets. Hence, the international trades are

interdependent. For example, consider an American mobile

company based in China. If the labor cost rises in China due

to some political changes or some other reasons, the mobile

company has to pay more to its workers and employees.

Ultimately the prices of smartphones in the local markets of

USA will rise as well.

There are several tools in the fuzzy set theory for modeling

such topics. The objective is to discuss the influences of one

parameter over the other through three grades. These grades

would represent the positive effects, no effects or neutral

effects and the negative effects. Keeping these targets in the

mind, the options of applicable tools become clearer. Numer-

ous tools from FRs to CqROFRs are disregarded because of
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their limitations. Moreover, we would also like to compare

these parameters with respect to some time periods. There-

fore, the choices of tools with three grades, such as PFRs,

SFRs and TSFRs, are also neglected, because they discuss

one dimensional relations. However, CPFRs, CSFRs and

CTSFRs are characterized by three grades and are capable of

modeling problems with periodic nature. Among these three

tools, the CTSFRs are the strongest and the most efficient.

Henceforth, this trading structure has been modeled using the

CTSFSs and CTSFRs. This application presents the interde-

pendence of the international trades among countries; i.e. the

positive effects, negative effects and no effects of the trades of

one country over the others. The membership grades indicate

the positive effects, the non-membership grades indicate the

negative effects and the abstinence grades indicate no effects

at all. To clearly understand the idea, the following example is

presented in which the aforementioned concepts are applied

to the supposed situations.

Consider the sets A = {China, Germany, USA} and B =

{China, Japan,Russia} of the countries that directly trade

with each other. By direct trade we mean that the countries in

a set such as China, Germany and USA directly trade goods

and services with each other, while the countries in different

sets have no direct trades. But they are still somehow related

to each other through indirect trades. For convenience, let us

assign variables to each of the country; China (C), USA (U),

Germany (G), Russia (R) and Japan (J). Now, constructing the

associated CTSFSs Ã and B̃ by assigning the membership,

abstinence and non-membership grades to the countries in

sets A and B as

Ã =





(
C, 0.8e(0.25)2π i, 0.2e(0.5)2π i, 0.8e(0.5)2π i

)
,(

G, 0.6e(0.5)2π i, 0.7e(0.75)2π i, 0.4e(0.75)2π i
)
,(

U , 0.9e(0.25)2π i, 0.1e(0.75)2π i, 0.6e(0.25)2π i
)





and

B̃ =





(
C, 0.8e(0.25)2π i, 0.2e(0.5)2π i, 0.8e(0.5)2π i

)
,(

J , 0.5e(0.5)2π i, 0.8e(0.5)2π i, 0.2e(0.25)2π i
)
,(

R, 0.9e(0.75)2π i, 0.4e(0.25)2π i, 0.5e(0.5)2π i
)





Now, to study the relationships among the countries of set Ã,

the Cartesian product is found as

R1

= Ã × Ã

=





(
(C,C) , 0.8e(0.25)2π i, 0.2e(0.5)2π i, 0.8e(0.5)2π i

)
,(

(C,G) , 0.6e(0.25)2π i, 0.2e(0.5)2π i, 0.8e(0.75)2π i
)
,(

(C,U) , 0.8e(0.25)2π i, 0.1e(0.5)2π i, 0.8e(0.5)2π i
)
,(

(G,C) , 0.6e(0.25)2π i, 0.2e(0.5)2π i, 0.8e(0.75)2π i
)
,(

(G,G) , 0.6e(0.5)2π i, 0.7e(0.75)2π i, 0.4e(0.75)2π i
)
,(

(G,U) , 0.6e(0.25)2π i, 0.1e(0.75)2π i, 0.6e(0.75)2π i
)
,(

(U ,C) , 0.8e(0.25)2π i, 0.1e(0.5)2π i, 0.8e(0.5)2π i
)
,(

(U ,G) , 0.6e(0.25)2π i, 0.1e(0.75)2π i, 0.6e(0.75)2π i
)
,(

(U ,U) , 0.9e(0.25)2π i, 0.1e(0.75)2π i, 0.6e(0.25)2π i
)





(11)

and the relationships among the countries of set B̃ are

explored by the following Cartesian product,

R2

= B̃ × B̃

=





(
(C,C) , 0.8e(0.25)2π i, 0.2e(0.5)2π i, 0.8e(0.5)2π i

)
,(

(C, J) , 0.5e(0.25)2π i, 0.2e(0.5)2π i, 0.8e(0.5)2π i
)
,(

(C,R) , 0.8e(0.25)2π i, 0.2e(0.25)2π i, 0.8e(0.5)2π i
)
,(

(J ,C) , 0.5e(0.25)2π i, 0.2e(0.5)2π i, 0.8e(0.5)2π i
)
,(

(J , J) , 0.5e(0.5)2π i, 0.8e(0.5)2π i, 0.2e(0.25)2π i
)
,(

(J ,R) , 0.5e(0.5)2π i, 0.4e(0.25)2π i, 0.5e(0.5)2π i
)
,(

(R,C) , 0.8e(0.25)2π i, 0.2e(0.25)2π i, 0.8e(0.5)2π i
)
,(

(R, J) , 0.5e(0.5)2π i, 0.4e(0.25)2π i, 0.5e(0.5)2π i
)
,(

(R,R) , 0.9e(0.75)2π i, 0.4e(0.25)2π i, 0.5e(0.5)2π i
)




(12)

In R1 and R2, each element describes the quality and

quantity of effects of one country over the other. For instance,(
(G,U) , 0.6e(0.25)2π i, 0.1e(0.75)2π i, 0.6e(0.75)2π i

)
from R1

tells that the grade of positive influence of the trades of Ger-

many on the trades of USA is 0.6 with respect to half a year,

because the exponent shows the time delay, so (0.25) 2 = 0.5

years. Moreover, the grade of negative influence is also 0.6,

but with respect to one and a half year and the grade of no

influence is 0.1 with respect to one and a half year. Sim-

ilarly,
(
(C,R) , 0.8e(0.25)2π i, 0.2e(0.25)2π i, 0.8e(0.5)2π i

)
from

R2 tells that the grade of positive influence of trades of China

over trades of Russia is 0.8 with respect to half a year, grade

of negative influence is 0.8 with respect to a year and grade

of no influence is 0.2 with respect to half a year.

Since, in the above relations, the effects of trades among

the countries having direct trades are determined. What if

there is no direct trade between two countries, then how

could one find out the indirect trade effects in such cases. For

instance, it is observed that USA andRussia are from different

sets, so they do not have any direct trades, but both of them

have trades with China. Henceforth, they can exchange goods

and services in some way through China. For determining the

relationships between USA and Russia, we findR3 = Ã×B̃.

As, in the current example USA and Russia do not trade

directly, but they are somehow related to each other indirectly

through China. That means the trades of USA influence the

trades of China, which in turn influence the trades of Russia.

Hence, there are effects in an indirect manner. Let us find out

the CTSFR R3. It is

R3

= Ã × B̃

=





(
(C,C) , 0.8e(0.25)2π i, 0.2e(0.5)2π i, 0.8e(0.5)2π i

)
,(

(C, J) , 0.5e(0.25)2π i, 0.2e(0.5)2π i, 0.8e(0.5)2π i
)
,(

(C,R) , 0.8e(0.25)2π i, 0.2e(0.25)2π i, 0.8e(0.5)2π i
)
,(

(G,C) , 0.6e(0.25)2π i, 0.2e(0.5)2π i, 0.8e(0.75)2π i
)
,(

(G, J) , 0.5e(0.5)2π i, 0.7e(0.5)2π i, 0.4e(0.75)2π i
)
,(

(G,R) , 0.6e(0.5)2π i, 0.4e(0.25)2π i, 0.5e(0.75)2π i
)
,(

(U ,C) , 0.8e(0.25)2π i, 0.1e(0.5)2π i, 0.8e(0.5)2π i
)
,(

(U , J) , 0.5e(0.25)2π i, 0.1e(0.5)2π i, 0.6e(0.25)2π i
)
,(

(U ,R) , 0.9e(0.25)2π i, 0.1e(0.25)2π i, 0.6e(0.5)2π i
)




(13)

VOLUME 9, 2021 66125



A. Nasir et al.: Complex T-Spherical Fuzzy Relations With Their Applications

FIGURE 3. Flowchart of the process followed in the example.

So now, R3 provides an opportunity to study the indirect

effects of trades of one country over the trades of others. The

event
(
(U ,R) , 0.9e(0.25)2π i, 0.1e(0.25)2π i, 0.6e(0.5)2π i

)
in (3)

explains that the positive influence of trade of USA on trade

of Russia is of grade 0.9 with respect to half a year, grade

of negative influence is 0.6 with respect to a year and the

grade of no effects is 0.1 with respect to half a year. To find

out the effects of Russia on USA a CTSF inverse relation

is used.

Figure 3 illustrates the algorithm and the process followed

in the application. The flow chart explains the stepwise

progression in order to find the relationships between the

countries. First of all, pull together the countries that are

needed be inspected. Then make the sub collections of the

original set on the basis of direct relationships i.e. the sub

collections contain the countries that have direct relations

among them. To learn the interdependence and the level of

effectiveness of the trades of one country over the others.

After that, the Cartesian products are found to get all the

possible relations among the listed countries. Next, by apply-

ing the types of CTSFRs, the desired indirect relationships

are established. Finally, the information is interpreted by

reading off the relations. The ordered pair in a Cartesian

product tells the effects of the trades of first country on

the trades of the second country. The amplitude term refers

to the level of effectiveness and the phase term refers to

the time lag.

B. ECONOMIC RELATIONSHIPS

The prosperity of a nation highly depends on its economy.

Economics is one of the social sciences that deals with the

study of interaction of people with the value or wealth. It dis-

cusses the way in which goods and services are produced, dis-

tributed and consumed. Economic development is the main

factor that pushes up the economic growth in the economy.

The economic growth is very important because it creates

higher salary jobs and plays the fundamental role in the

improvement of the quality of life. For instance, the economic

developers assist the jobs providing companies to expand

their businesses by connecting them to other companies and

partners. Eventually it opens up the gates for other industries

to jump in. As a result, the economy is diversified which

means that many industries are running. The diverse economy

helps the businesses to grow and generates higher tax rev-

enues. Ultimately there are more and more job opportunities,

and the quality of life improves. In addition, the knowledge

of economics also helps to settle a wonderful, successful

FIGURE 4. Effects of economic growth on various factors.

FIGURE 5. Relationship of price with supply and demand.

and an efficient business. Some basic financial and economic

relationships are discussed below.

1) PRICE, SUPPLY AND DEMAND

The prices, supply and demand of goods and services

are directly related to each other. Almost always the

sales of products and services drop down whenever

a business increases the prices of its products or ser-

vices because buyers prefer cheaper products. As the

prices go higher, the less people will be able to afford

the products. So the demand for the product drops.

On the other hand, when something is being sold at

higher prices, an increased supply will generate greater

revenue. Figure 5 illustrates the relation of price with

demand and supply of the goods and services. It is an

economic principle that prices fall whenever the supply

of a good or service surpasses the demand for that good

or service. The prices tend to rise whenever the demand

exceeds the supply.

2) INTEREST RATES, INVESTMENT AND MONEY

SUPPLY

The investment helps to grow the businesses as well

as the economy of a country. The financings or invest-

ments highly depend on the interest rates. Since,

an investor always looks for a higher return, so he

prefers the industry with a higher interest rates. Thus,
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the higher interest rates invite and attract the investors

to put in their money in the business. Consequently,

the business grows bigger. The prices of certain product

are usually determined by the quantity of that product in

themarket.When the quantity ofmoney in an economic

structure increases, the value of money decreases and

vice versa. Therefore, the interest rates are lower in

the economic structures with greater money supply

and vice versa. This fact leads to an important rela-

tion among the supply of money, interest rates and

the investment. The interest rates are inversely propor-

tional to the amount of money available. Henceforth,

the printing of currency notes has bad impacts on the

economy.

3) ECONOMIC GROWTH AND UNEMPLOYMENT

Since the amount of money determines the interest

rates and the interest rates determine the investments

made. Although investments play a major role in deter-

mining the economy, gross domestic product (GDP)

is also of great concern. GDP is the amount spent on

the consumption, investment, exports and government

services. For instance, if the spending on the services

and products is not enough then it makes sense to stop

the production of new products. On the other hand,

if the expenditure is more, then there is a need of more

production. More production will need more workers

which will create job opportunities. So there is a key

link between GDP and the unemployment. The eco-

nomic growth is the measure of the change of GDP

from one year to the other. For better understanding,

a visual summary of economic relationships is given

in Figure 4.

CTSFRs are used to study these financial and economic

relationships. Modeling this problem using the notion of

CTSFSs and CTSFRs will not only help to determine the

influence of one factor on the other, but also the grades of

supportive effects, destructive effects and even the grade of

no effects with respect to the time lag can be investigated.

The beauty of CTSFRs is that they empower to find out the

indirect effects between some events.

Let P, S and D symbolize the prices, supply and demand

respectively. Investment, interest rates, money supply and

unemployment are denoted by I, IR, M and U, respectively.

So, the set of all factors is given in (14)

F̂ =





(
P, 0.9e(0.5)2π i, 0.2e(0.5)2π i, 0.2e(0.75)2π i

)
,(

S, 0.7e(0.5)2π i, 0.2e(0.5)2π i, 0.3e(0.5)2π i
)
,(

D, 0.4e(0.75)2π i, 0.1e(0.5)2π i, 0.8e(0.25)2π i
)
,(

I , 0.9e(0.25)2π i, 0.2e(0.5)2π i, 0.3e(0.5)2π i
)
,(

IR, 0.8e(0.25)2π i, 0.3e(0.75)2π i, 0.4e(0.75)2π i
)
,(

M , 0.2e(0.5)2π i, 0.3e(0.5)2π i, 0.8e(0.25)2π i
)
,(

GDP, 0.8e(0.25)2π i, 0.2e(0.5)2π i, 0.1e(0.5)2π i
)
,(

U , 0.2e(0.75)2π i, 0.4e(0.5)2π i, 0.9e(0.5)2π i
)





(14)

But, these factors need to be grouped on the basis of

direct relationships. Thus, the following three sets Ã1, Ã2

and Ã3 are constructed whose members are directly related

to one another, i.e., they have direct impacts on their

fellow members.

Ã1 =





(
P, 0.9e(0.5)2π i, 0.2e(0.5)2π i, 0.2e(0.75)2π i

)
,(

S, 0.7e(0.5)2π i, 0.2e(0.5)2π i, 0.3e(0.5)2π i
)
,(

D, 0.4e(0.75)2π i, 0.1e(0.5)2π i, 0.8e(0.25)2π i
)





,

Ã2 =





(
I , 0.9e(0.25)2π i, 0.2e(0.5)2π i, 0.3e(0.5)2π i

)
,(

IR, 0.8e(0.25)2π i, 0.3e(0.75)2π i, 0.4e(0.75)2π i
)
,(

M , 0.2e(0.5)2π i, 0.3e(0.5)2π i, 0.8e(0.25)2π i
)





,

Ã3 =

{ (
GDP, 0.8e(0.25)2π i, 0.2e(0.5)2π i, 0.1e(0.5)2π i

)
,(

U , 0.2e(0.75)2π i, 0.4e(0.5)2π i, 0.9e(0.5)2π i
)

}

The effects of factors lying in the same set can be found in

the similar fashion as in the previous application, i.e. using

simple Cartesian product of set on itself. To study the rela-

tionships between the elements of set Ã1 and Ã2, a CTSFR

RÃ1×Ã2
is found which is the subset of the Cartesian product

Ã1 × Ã2.

RÃ1×Ã2

=





(
(P, I ) , 0.9e(0.25)2π i, 0.2e(0.5)2π i, 0.3e(0.75)2π i

)
,(

(P, M) , 0.9e(0.5)2π i, 0.2e(0.5)2π i, 0.2e(0.75)2π i
)
,(

(S, I ) , 0.9e(0.5)2π i, 0.2e(0.5)2π i, 0.2e(0.75)2π i
)
,(

(S, IR) , 0.9e(0.5)2π i, 0.2e(0.5)2π i, 0.2e(0.75)2π i
)
,(

(D, I ) , 0.9e(0.5)2π i, 0.2e(0.5)2π i, 0.2e(0.75)2π i
)





(15)

The CTSFR RÃ1×Ã2
contains only the events that need to

be inspected, and so the remaining events of the Carte-

sian product are excluded. In equation (15), the event(
(P, I ) , 0.9e(0.25)2π i, 0.2e(0.5)2π i, 0.3e(0.75)2π i

)
provides the

information about the effects of prices of goods and services

on the investment. The membership grade 0.9 indicates that

the better prices highly support the investment and that too

in short amount of time, since the phase term in the exponent

expresses the time lag to be half a year. The abstinence grade

0.2e(0.5)2π i identifies that with respect to one year, there is

a very little chances of investment being not effected by the

prices. In other words, the prices enormously affect the invest-

ment. Likewise, the non-membership grade 0.3e(0.75)2π i dis-

closes that the better prices scantly discourage the investment.

Its adverse influence on investment is as low as 0.3 with

respect to one and half a year. Hence, its degree of destructing

the investment is very near to the ground and these effects are

sluggish too.

In the same way, another CTSFR RÃ2×Ã3
is found to

study the relationship among the elements of sets Ã2 and Ã3.

RÃ2×Ã3
is a subset of the Cartesian product Ã2 × Ã3, that is
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given in (16).

RÃ2×Ã3

=





(
(I , GDP) , 0.9e(0.5)2π i, 0.2e(0.5)2π i, 0.2e(0.75)2π i

)
,(

(I , U) , 0.9e(0.5)2π i, 0.2e(0.5)2π i, 0.2e(0.75)2π i
)
,(

(IR, GDP) , 0.9e(0.5)2π i, 0.2e(0.5)2π i, 0.2e(0.75)2π i
)
,(

(M , GDP) , 0.9e(0.5)2π i, 0.2e(0.5)2π i, 0.2e(0.75)2π i
)





(16)

Each event in the above relation describes the helpful

effects, discouraging effects as well as the neutral effects

of first variable on the second variable. For example,(
(I , GDP) , 0.9e(0.5)2π i, 0.2e(0.5)2π i, 0.2e(0.75)2π i

)
describes

the effects of investment (I) on the gross domestic product

(GDP). The membership 0.9e(0.5)2π i, abstinence 0.2e(0.5)2π i

and the non-membership grades 0.2e(0.75)2π i show that the

higher investment prominently helps GDP in short period of

time. The overall effects of investment on GDP are higher as

translated by the grade of abstinence. Furthermore, in rare

case of negative effects, GDP declines very slowly due to

investments.

The CTSF composite relation R is found to find the chain

relationship among the elements of set Ã1 and Ã3. Previously,

the effects of prices on the investments and the effects of

investment on GDP have been determined. Using this chain,

the composite relation helps in relating prices to GDP. Some

of the indirect relationships are given the following composite

relation set R.

R

=

(
RÃ1×Ã2

)
◦

(
RÃ2×Ã3

)

=





(
(P, GDP) , 0.9e(0.5)2π i, 0.2e(0.5)2π i, 0.2e(0.75)2π i

)
,(

(P, U) , 0.9e(0.5)2π i, 0.2e(0.5)2π i, 0.2e(0.75)2π i
)
,(

(S, GDP) , 0.9e(0.5)2π i, 0.2e(0.5)2π i, 0.2e(0.75)2π i
)
,(

(D, GDP) , 0.9e(0.5)2π i, 0.2e(0.5)2π i, 0.2e(0.75)2π i
)





(17)

As mentioned, the event(
(P, GDP) , 0.9e(0.5)2π i, 0.2e(0.5)2π i, 0.2e(0.75)2π i

)
provides

the information about the effects of prices on GDP. In this

particular case, it learns that the prices play a vital role in the

growth of economy. Prices benefit the GDP up to 0.9 degree

with respect to a year and detriment GDP as low as 0.2 degree

with respect to one and a half year. The abstinence grade

0.2e(0.5)2π i imparts that chances of prices not effecting the

GDP are 0.2 with respect to a year, which means that the

prices greatly affect the GDP.

VI. COMPARITIVE ANALYSIS

In this section, a comparison among the proposed meth-

ods and existing methods is carried out. The CTSFSs and

CTSFRs stand preeminent above all concepts and methods

that are meant to handle the fuzziness. Obviously, these sets

discuss three different grades i.e. membership grade, absti-

nence grade and non-membership grade. However, FSs, IFSs,

PyFSs, qROFSs, CFSs, CIFSs, CPyFSs and CqROFSs fail

TABLE 1. CPFSs dealing with the application.

TABLE 2. CPFSs dealing with the application.

to express this situation because they are only characterized

by single and dual grades. In the proposed applications,

we talked about the supportive effects, neutral effects and

discouraging effects of one factor on the other which were

depicted by membership, abstinence and non-membership

grades respectively. In order to discuss the overall strength

of the effects, it is essential to consider the abstinence

grade. Moreover, PFSs, SFSs and TSFSs are capable of

stating all three grades, but they flop when it comes to

multidimensional problems. Whereas CPFSs, CSFSs and

CTSFSs are made to model the multidimensional problems.

Henceforth, Tables 1 and 2 compare CTSFSs with CSFSs

and CPFSs respectively when applied to the applications

discussed above.

Since CPFSs andCSFSs are equippedwith complex valued

membership grades, abstinence grades and non-membership

grades, so it’s convenient to test them on the presented appli-

cations. Table 1 clearly shows that CPFSs completely fail to

deal with the problem, as the sum of the grades do not lie

within its constraints. Although CSFSs have a wider range

than CPFSs, they barely passed only on one occasion, table 2.
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Besides that, CSFSs failed to cope with the problem because

the sum of squares of real and imaginary parts do not belong

to unit interval. Henceforth, considering the dominance of

CTSFSs, we used the notion with broader range. CTSFSs

facilitates the professionals to show their discernment without

restrictions.

Moreover, the CTSFSs are the ultimate generalization of

FSs. By substituting n = 1 in a CTSFS, it turns to be

a CPFS, when n = 2, it turns to be a CSFS. A CTSFS

becomes a CqROFS by putting the abstinence degree equal

to zero. Similarly, it generalizes the CIFS, CPyFS and CFS.

For zero phase term, i.e. the zero imaginary part, it makes

the CTSFS to be a TSFS, which also generalizes the SFS,

PFS, qROFS, PyFS, IFS and FS. Thus, CTSFSs cover all the

previous methods and techniques that actually demonstrate

the superiority of the notion of CTSFSs.

VII. ADVANTAGES OF CTSFSs AND CTSFRs

This section intends to highlight some of the advantages of

the notions of CTSFSs, CTSFRs and the types of CTSFRs.

• The concept of CTSFS generalizes all the existing struc-

tures in the fuzzy set theory, i.e. FSs, CFSs, IFSs, CIFSs,

PyFSs, CPyFSs, qROFSs, CqROFSs, PFSs, CPFSs,

SFSs, CSFSs and TSFSs. It means that the structure of

CTSFSs can deal with the data provided in any of the

existing environments.

• The CTSFRs generalize all the relations presented in

the literature, such as FRs, CFRs, IFRs, CIFRs, PyFRs,

CPyFRs, qROFRs, CqROFRs, PFRs, CPFRs, SFRs,

CSFRs and TSFRs.

• The relations defined on the CTSFSs such as CTSF

equivalence relation, CTSF order relation and CTSF

composite relations also generalize the types of relations

in the other structures.

VIII. CONCLUSION

There are several theories, such as fuzzy sets (FSs), intuition-

istic FSs (IFSs), q-rung orthopair FSs (qROFSs), complex

qROFSs (CqROFSs), spherical FSs (SFSs), and T-spherical

FSs (TSFSs) in the literature that cope with the problems

of imprecise information, but there are limitations to those

concepts. This study presented the novel concepts of complex

TSFSs (CTSFSs), Cartesian products in CTSFSs and CTSFS

relations (CTSFRs). The proposed CTSFRs are the supreme

tools that are capable of handling a wide range of vague-

ness problems with periodicity. In contrast with the avail-

able methods, CTSFSs assign complex valued membership,

abstinence, non-membership grades to objects from the unit

disc in the complex plane, with the least restrictions. Fur-

thermore, we introduced the types of CTSFRs and provided

their examples. Moreover, the concepts of CTSFRs and its

types were used to identify the degree of positive, negative

and neutral effects of financial exchanges of a country on that

of the other countries. Likewise, to depict the capabilities of

CTSFRs, the economic relationships are modeled using the

novel techniques. Lastly, a comparative analysis was carried

out to spot off the proposed work. Since fuzzy relations with

composition and transitivity can be used in clustering, we will

improve the proposed method with the CTSFRs composition

and transitivity properties in applications of clustering and

pattern recognition in our future works. Furthermore, we will

also extend the proposed concepts to fuzzy uncertain envi-

ronments by defining the aggregation operators, in order to

use them in the assessment of express service quality with

entropy weight.
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