
Complex trait analysis of gene expression uncovers
polygenic and pleiotropic networks that modulate
nervous system function
Elissa J Chesler1,5, Lu Lu1,5, Siming Shou1, Yanhua Qu1, Jing Gu1, Jintao Wang1, Hui Chen Hsu2,
John D Mountz2, Nicole E Baldwin3, Michael A Langston3, David W Threadgill4, Kenneth F Manly1 &
Robert W Williams1

Patterns of gene expression in the central nervous system are highly variable and heritable. This genetic variation among normal
individuals leads to considerable structural, functional and behavioral differences. We devised a general approach to dissect
genetic networks systematically across biological scale, from base pairs to behavior, using a reference population of recombinant
inbred strains. We profiled gene expression using Affymetrix oligonucleotide arrays in the BXD recombinant inbred strains, for
which we have extensive SNP and haplotype data. We integrated a complementary database comprising 25 years of legacy
phenotypic data on these strains. Covariance among gene expression and pharmacological and behavioral traits is often highly
significant, corroborates known functional relations and is often generated by common quantitative trait loci. We found that a
small number of major-effect quantitative trait loci jointly modulated large sets of transcripts and classical neural phenotypes in
patterns specific to each tissue. We developed new analytic and graph theoretical approaches to study shared genetic modulation
of networks of traits using gene sets involved in neural synapse function as an example. We built these tools into an open web
resource called WebQTL that can be used to test a broad array of hypotheses.

Differences in mRNA expression are generated by complex, dynamic
interactions of environmental factors, cell-cell interactions and heri-
table genetic variation. The genetic component of variation is due to
differences that are produced by cis-acting polymorphisms often
located in a gene’s promoter region1 and by trans-acting variants
distributed throughout the genome2,3. Trans-acting modulators of
steady-state mRNA abundance include classical transcription factors,
RNA helicases, ribozymes and other proteins involved in transcrip-
tion, RNA processing and degradation. Trans-acting factors also
include many non-nuclear proteins that influence gene expression
through complex molecular cascades, feedback loops and large-scale
networks. For example, polymorphisms in neuronal calcium channels
have diverse and often indirect repercussions on numerous down-
stream neural transcription targets4. These polymorphisms exert
widespread pleiotropic effects on phenotypes ranging from simple
steady-state transcript abundance to complex behaviors.
Detecting genetic covariance across biological scale is a challenge.

One solution uses a genetic reference population (GRP) of recombi-
nant inbred (RI) strains, from which diverse phenotypes and geno-
types can be collected and reproduced over time by many

investigators5,6. The BXD RI mapping panel was first generated at the
Jackson Laboratory in the mid 1970s, was recently extended to 80
strains7 and is useful for integrative genomics research. These strains
have been used by hundreds of investigators for more than two
decades to study the genetics of a wide variety of phenotypes.
Quantitative trait loci (QTLs) underlying several of these phenotypes
were later cloned, including the saccharin preference locus, Taste8; the
kappa-opioid analgesia locus, Mc1r9, whose homolog is involved in
human clinical pain; and the alcohol withdrawal seizure locus,
Mpdz10. A particularly compelling advantage of this RI set is that
the two parental strains, C57BL/6J and DBA/2J11, are sequenced. This
greatly increases the efficiency of positional candidate gene evaluation.
Finally, the BXD panel has been sufficiently studied so that pleiotropic
relations and genetic networks can be efficiently constructed. We built
both a phenotype database and companion analytic tools for public
use so that phenotypes collected using RI strains can be readily
integrated into a growing multi-scale base of knowledge of the mouse.
In the same way that one can identify loci that control differences in

brain structure or behavior12, it is now possible to map upstream
modulators for thousands of transcripts systematically using
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microarrays. Cis- and trans-acting modula-
tors of transcription can be identified by
treating mRNA levels as conventional quan-
titative traits. In the first study of this type,
Brem and colleagues3 used short oligonucleo-
tide arrays and a genetic cross between two
yeast strains to define cis- and trans-acting
QTLs and to map the global transcriptional
response to starvation. Schadt13 and collea-
gues applied this method to the mouse liver
using a C5BL/6J � DBA2J F2 cross, again
identifying key transcription regulatory
regions and association with a single pheno-
type. Here, we extended this strategy to
cumulative systems biological research by
analyzing the extensively phenotyped BXD
RI strains. We detected and characterized
QTLs that modulate transcription of indivi-
dual genes and large gene networks in what
may be the most complex of mouse tissues,
the brain. In an accompanying paper,
Bystrykh and colleagues14 extend the
approach to an isolated cell population of
hematopoietic stem cells (HSCs).

RESULTS
Genetic variation in gene expression
Genetic differences in transcript abundance
across the set of 35 strains are substantial
(Supplementary Table 1 online). Differences
from two- to fourfold are common among
neurologically relevant transcripts. For exam-
ple, guanine nucleotide binding protein 1
(Gnb1, probe set 94853_at) expression has a
fivefold range and a heritability of 75%. The
abundance of many transcripts is highly
heritable and, therefore, amenable to com-
plex-trait analysis even when expression in
the parental strains does not differ signifi-
cantly (a phenomenon known as transgres-
sion). With three replicate arrays per strain,
we estimate that the amount of variance
accounted for by strain (heritability) has a
median of 11% and is as high as 78% across all transcripts. An
advantage of using RI strains is that effective heritability is increased
by additional replication within strains, rendering practical the genetic
dissection of phenotypes with modest heritability15.

Mapping modulators of gene expression
We mapped large numbers of QTLs that modulate transcript abun-
dance at a conventional genome-wise permutation significance thresh-
old of P o 0.05 for each transcript. Whole-genome maps for all traits
(Fig. 1) can be recomputed using a variety of analytic methods in
WebQTL16, including simple and composite interval mapping, pair-
wise QTL scans, trait clustering and principal component regression.
Peak likelihood ratio statistic (LRS) scores across the genome for
each transcript range from B9 to 83 (corresponding to lod scores of
B2.0–18.0). It is possible to localize QTLs for highly penetrant
monogenic (mendelian) phenotypes with lod peaks 46 (LRS ¼

27.6) to intervals as small as 2–4 Mb (Fig. 2). This interval size is
amenable to sequence comparison and candidate gene analysis17.

Resolution will vary across the genome depending on the length of
unrecombined haplotype blocks18.
We applied a permutation test to control the error rate over the

whole genome for each single transcript. To control the error rate over
the entire set of transcripts, we applied the false-discovery rate
(FDR)19 to these empirical P values20. A set of 88 QTLs (Supplemen-

tary Table 2 online) met two stringent criteria for statistical signifi-
cance across the study: low P value at the peak LRS for each transcript
and high trait heritability. The former is a measure of the strength of
association of expression levels to markers; the latter indicates the
signal-to-noise ratios in expression estimates. For moderately and
highly heritable transcripts (those 608 with433% variance accounted
for by strain), the point estimate of the FDR (q value)21 is 25% for a
genome-wise P value of 0.05. This defines 101 significant transcripts,
whereas an FDR of 10% (P o 0.02) defines 88 significant transcripts.
Naturally, the FDR at a given P value declines among those transcripts
with higher heritabilities, but conservative filtering approaches result
in many false negatives.
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Figure 1 Genome-wide interval mapping for several transcripts from WebQTL, including the

cis-regulatory QTL for Kcnj9 (98322_at), Per3 (102242_at) and Grin2b (101312_at) and trans-

regulatory QTLs for Pitpnb (102696_s_at) and Neurod2 (98808_at). The solid blue line indicates LRS

across the genome. A positive additive regression coefficient (red line) indicates that DBA/2J alleles

increase trait values, whereas a negative coefficient indicates that C57BL/6J alleles increase trait

values. Dashed horizontal lines mark the transcript-specific significance thresholds for genome-wide

P o 0.05 (significant, blue) and genome-wide P o 0.63 (suggestive, green) based on results of 2,000

permutations of the original trait data. The yellow bars indicate the relative frequency of peak LRS at a

given location among 2,000 bootstrap resamples.
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The transcriptome map
Several global properties of transcript modulation in brain are
uncovered by plotting the positions of the peak QTLs against the
positions of transcripts themselves (Fig. 3). First is the presence of a
diagonal band of QTLs, located almost precisely at the locations of the
transcripts themselves. These cis-acting QTLs account for 83 of the 88
QTLs defined at an FDR of 10% (Supplementary Table 2 online).
Second are the vertical bands generated by the coregulation of large
numbers of transcripts by single loci. These comodulated transcripts
are robust to normalization method (including robust multichip
average (RMA), PDNN and MAS 5.0) and are also prominent when
transcripts with comparatively low abundance and relatively modest P
values and heritabilities are plotted. Analysis of HSCs in these same
BXD strains14 identified almost completely different sets of these
master trans-acting QTLs, indicative of tissue specificity of regulation

of gene expression. Analysis of the mouse liver13 also identified a
different set of trans-regulatory QTLs.

Key modulatory loci control hundreds of transcripts
The seven key trans-regulatory QTL bands are located near the
following markers on chromosomes 1, 2, 6, 10, 11, 14 and 19:
Mtap2, D2Mit200, D6Mit150, D10Mit42–D10Mit186, D11Mit99,
S14Gnf051.890 and D19Mit13 (Fig. 4 and Supplementary Table 3

online). A particularly important regulatory locus is located on
chromosome 6 near the marker D6Mit150 (117.785 Mb). This locus
modulates the abundance ofB1,650 transcripts, more than 10% of all
transcripts on the array. Examples of neurologically relevant down-
stream targets of this locus include Slc6a1 (161059_at), Gad1

(103061_at), Reln (96591_at), Adra2b (99802_at), Htr4 (95323_at),
Mapk1 (93254_at), Map3k4 (161007_at), Mapk6 (103416_at), Chrng
(95639_at) and Calm4 (93744_at). The existence of a master mod-
ulatory locus immediately raised several questions. Do these down-
stream targets participate in common cellular functions? Are any of
these transcripts cis-regulated? Do any of these transcripts contain
missense polymorphisms? Do these many transcripts point to a
candidate gene? Transcription factors are the main category of
transcripts regulated by the D6Mit150 locus, based on Gene Ontol-
ogy22 category representation analysis using the Gene Ontology Tree
Machine23. These include Rpo1-4 (161379_at, 162006_r_at and
93620_at), Hoxb6 (103445_at), Msx3 (92912_at), Pax3 (100697_at),
Tcfe2a (98040_at), Tead3 (100971_at), Barx1 (162321_at), Bach1

(93142_at), Cdx4 (98347_at), Dlx4 (98873_at), Gata6 (104698_at)
and Hes6 (97335_at). The presence of a single locus that simulta-
neously affects numerous transcription factors is consistent with
widespread downstream effects of transcription factor activation.
Several key regulators of transcription are located in the intervals

flanking D6Mit150 (Fig. 4). Functional polymorphisms in DNA-
binding proteins in the region may regulate the expression of these
genes. Examples include Fbxl14, Foxj2 and several zinc-finger proteins
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Figure 2 Physical map of chromosome 16 showing cis-regulatory locus

for expression of a pyridoxil-dependent decarboxylase (160163_at). The

location of the polymorphism responsible for variation in mRNA abundance

for this transcript was obtained using WebQTL’s high-density genetic map.

Positional precision is refined by the incorporation of bootstrap analysis

(yellow bar) and SNP density analysis (brown). The red bar indicates that

the most probable region of the trait relevant polymorphism is at the

location of the transcript’s coding sequence.
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own coding sequence. Vertical bands represent trans-regulatory QTLs. The less distinct horizontal banding is caused by unequal representation of genes on

the Affymetrix array and unequal distribution across the mouse genome. The robustness of trans-regulatory bands among traits with low heritability and

across normalizations that dampen LRS illustrates that conservative approaches will often produce false negatives.
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Figure 4 Frequency of transcript abundances with LRS peaks mapping to 5-Mb QTL location bins identify approximately seven key trans-regulatory QTLs.

Chromosomes are indicated by orange and white bars. The trans-regulatory band at D6Mit150 regulates at least 1,560 transcripts. Numerous candidate

genes lie in the flanking intervals from D6Mit10 to D6Mit254. Several sources of evidence can be used to identify candidate genes: (a) the SNP density and

presence of missense SNPs, (b) the cis regulation of transcript abundance and (c) high expression of transcripts in brain and other neural tissues from the

GNF Expression Atlas data track superimposed on the University of California Santa Cruz genome browser.
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(Zfp9, Zfp422 and Zfp239). Of these, Foxj2 has an intron SNP, and Zfp9

has three SNPs in the 3¢ untranslated region (UTR), one SNP in the 5¢

UTR and several intron SNPs between the progenitors. There are 38
missense SNPs in the region flanking this marker, which may disrupt
function ofMbd4, D6Wsu116e, Cacna1c, Bcl2l13, Bid, Usp18 and A2m.
Additionally, there are 64 SNPs in the 3¢ UTR and two in the 5¢ UTR.
QTLs can be caused by polymorphisms that affect gene expression

rather than protein sequence. Polymorphisms controlling variation
of large groups of transcripts may therefore be manifested as cis-
regulatory QTLs that occur at the location of a trans-regulatory band.
Several cis-regulatory QTLs are found at the D6Mit150 region (Fig. 4),
including Camk1 (160882_at), Rho (96567_at), A2m (104486_at),
Phc1 (100992_at), Slc6a1 (161059_at), Itpr1 (93895_s_at) and Apobec1

(98398_s_at).
The Mtap2 locus (on chromosome 1 at 67.928 Mb) modu-

lates several hundred transcripts, including several motor proteins
and neurotransmitter receptors. This marker, which is a highly

polymorphic gene, is a compelling candidate for regulation of these
transcript abundances. Mtap2 is a modestly cis-regulated transcript,
and expression is correlated with the expression of several motor
proteins (Kif1b, Kif5a and Kif5c), clathrin-coated vesicle proteins
(Ap1g1, Syt1 and Tgoln2) and neurotransmitter receptors (Gabra1,
Gabra3, Gria1, Gria3 and Grik2). These are just a subset of the over-
represented Gene Ontology categories amongMtap2 correlates.Mtap2

contains at least seven missense polymorphisms between strains
C57BL/6J and DBA/2J. Examination of multiple types of converging
evidence indicates that these polymorphisms potentially have a causal
role in regulation of other transcripts mapping to the Mtap2 locus.
Similar analyses can be done for the other trans-regulatory QTL bands
and for individual transcripts.

Tissue specificity of expression regulation
Bystrykh and colleagues14 used essentially identical methods to study
the genetic modulation of transcriptional activity in flow-sorted
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Figure 5 Genetic correlation of Drd2 expression with several behavioral phenotypes in WebQTL’s BXD Published Phenotypes database. In this analysis, trait

means from each of the BXD strains for which both microarray data and behavioral data exist are correlated. The correlated traits are ethanol conditioned

place preference (record number 10542), saccharin preference (10542), ethanol-induced open-field activity (10076), ethanol preference (10477) and

locomotor activity (10485). Inset, Chromosome 9 interval maps for Drd2 expression, ethanol-induced open-field activity and ethanol-induced conditioned

place preference. The allelic effect is in the opposite direction for open-field activity, a trait that is negatively correlated with Drd2 expression. This analysis

was done using MAS 5.0–normalized expression data.
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Figure 6 Cluster map showing the polygenic and pleiotropic regulation of the synaptic vesicle cycling mechanisms. Transcripts related to synaptic

vesicle cycling are clustered based on their genetic correlations, and regulatory loci are mapped along the y axis of the main plot. Cool hues represent

LRS for elevated transcription in mice with C57BL/6J genotypes at a given locus, and warm hues represent LRS for elevated transcription in mice with

the DBA/2J allele. The single QTL scan on the right side of the plot is for Syn2 expression (red asterisk on the dendrogram). Several regulatory loci

seem to control the expression of multiple synaptic vesicle components in parallel. These loci include some of the key trans-regulatory QTL bands

(e.g., Mtap2 on chromosome 1).
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HSCs of BXD strains. Although most global regulators of trans-
cription are tissue-specific, a considerable number of regulatory
loci modulate the same transcript in both the brain and HSCs.
Of the top 76 cis-regulatory QTLs that we detected in the brain,
35 were also significant in the RMA-normalized HSC data set
(Supplementary Table 4 online), suggestive of a common regulatory
process rather than a neural-specific one. This suggests that expres-
sion profiling of lymphocytes could provide insight into genetic
variation in gene expression in the central nervous system that is
relevant to human neurological disease. Seven others were merely
suggestive in the HSC data, and the remainder had either non-
significant local maxima in the region (19 probe sets) or no cis-acting
QTLs (22 probe sets). These latter 22 transcripts have cis-acting
modulation that is tissue-specific. Trans-regulatory QTLs were
also tissue-specific. Four trans-regulatory QTLs detected in the
central nervous system were replicated in the HSC analysis, but unique
trans-regulatory QTLs were identified in both tissues for at least four
other transcripts.

Epistatic control of variation in gene expression
Genetic variation in expression is often produced by combinations of
QTLs that have independent effects or that interact to produce
epistatic effects3. Expression of Grin2b, encoding an NMDA receptor
subunit, is modulated by loci on chromosomes 6 and 8 (ref. 24). These
loci account for B50% of the variance in expression. A reanalysis of
Grin2b using a model that includes a two-locus epistatic interaction
also fits the data well. This model highlights a locus on distal
chromosome 2 near D2Mit148 that has no additive effect but interacts
strongly with the cis-regulatory QTL on distal chromosome 6. These
two loci with their interaction explain 89% of the total genetic
variance, and the interaction is significant at P o 0.01. The main
caveat of systematically searching for epistatic interactions for all
transcripts is the risk of overfitting the model when using a small
number of strains. The 32 genotypes in this particular case are well-
distributed among the four digenic states, but to improve long-term
utility of the BXD set for this purpose, we generated additional lines
that increase the possible sample size to B80 strains7.

Association of variation in expression with behavior
The utility of RI lines extends beyond their use as a mapping panel.
Unlike conventional F2 and backcross progeny, RI mapping panels can
be reproduced indefinitely, making it practical to extend studies across
treatments, ages and environments25,26. The BXD RI lines have already
been used to analyze several hundred neurological and behavioral
phenotypes, which we have assembled in WebQTL. Strong statistical
associations are often detected between transcripts and neuroanato-
mical27,28 or behavioral traits. For example, expression of the D2
dopamine receptor (Drd2, 97776_at) is correlated with midbrain iron
levels in female mice29 (r ¼ 0.70, P o 0.003), ethanol-induced
conditioned place preference30 (r ¼ 0.52, P o 0.009) and other
phenotypes (Fig. 5)31–34. One of several loci that modulate Drd2

mRNA levels is located close to Drd2 itself. This chromosome 9 locus
near D9Mit302 is important in ethanol-induced open-field activity32.
Although the Drd2 transcript itself is not polymorphic35, several SNPs
have been identified in its promoter. Remapping conditioned place
preference using WebQTL’s Published Phenotypes database and high-
precision genetic map identifies several suggestive QTLs. A regulatory
peak on chromosome 9 indicates that the polymorphism regulating
Drd2 may also influence this behavioral trait (Fig. 5) or that multiple
linked polymorphisms in this region simultaneously affect the phe-
notypes in parallel.

Associative networks of transcriptional control
Associative networks can be rapidly assembled from the covariance
matrix of molecular, cellular and behavioral traits and their shared
upstream regulatory loci. Gene-to-gene correlations have a low rate of
false positive associations across the overall data set. For correlations of
0.58 and above, an FDR36 of 1% is obtained with 35 strains, even with
77 million implicit tests. Correlations of strain means for transcripts
with moderate to high expression levels primarily reflect shared
genetic rather than environmental or technical effects on gene
expression, because multiple individuals were used to create a
within-strain phenotype mean. Genetically correlated traits, whether
transcripts, neuroanatomical traits or behaviors, by definition share
common QTLs.
We mapped the joint modulation of synaptic vesicle–related tran-

scripts using associative network tools in WebQTL. These transcripts
include synaptotagmins, synapsins, synaptogyrins, synaptic vesicle
proteins, vesicle-associated membrane proteins, rapsins, trans-Golgi
network proteins, Rab proteins, Cam kinases and multiple pdz domain
proteins (Fig. 6). Most of the trans-regulatory QTL bands observed on
the transcriptome map modulate transcription of genes in this func-
tional category, including theMtap2 locus on chromosome 1. Some of
the correlated transcripts are also cis-regulated at these loci, making
them candidate genetic modifiers of synapse-related transcription.
These transcripts include Mtap2 on chromosome 1, Svs6 and Svp2

on chromosome 2, Hip2 on chromosome 5, Syn2 on chromosome 6,
Slc19a1 on chromosome 10 and Ctsb on chromosome 14. Mtap2

mRNA targets the synapse37 and contains numerous missense poly-
morphisms, making it a prime candidate for the genetic modulation of
synaptic mRNA. The control of synaptic transcripts by the trans-acting
bands indicates that variation in this pathway is a key genetic difference
in brain function among BXD RI strains. These broad differences in
transcript abundance across strains could have numerous pleiotropic
effects on characteristics from synaptic efficacy to behavior.

Cliques of transcripts and behavioral phenotypes
Networks of biological traits are widely thought to be scale-free38,
meaning that a relatively small number of transcripts and gene
regulatory vertices are highly connected hubs whereas others interact
selectively with only a few transcripts. New algorithms39 were applied
to extract groups of highly interconnected transcripts (cliques) from
genetic correlation matrices containing millions of expression level
correlations. We identified Lin7c as one of the most highly connected
transcripts in the brain. One clique consisted of 17 highly correlated
transcript abundances for several mRNA spliceosome-related proteins.
This clique overlaps in composition with more than 1,700 other
cliques. Using a near-clique algorithm called paraclique, we combined
many of these cliques into one large group of 193 transcripts by
extracting highly (but not perfectly) interconnected sets of transcripts.
Among the members of the largest paraclique is Cask, which encodes a
synaptic protein that physically interacts with Lin7c. Multiple QTL
mapping analysis showed that many of this paracliques’ members
are regulated by loci near D6Mit150 and D12Mit146, following
a general pattern in which each paraclique is regulated by combina-
tions of trans-acting bands and other loci. Two clique members
are located within this QTL: B-cell receptor associated protein
(Bcap29, 160876_at) and myelin transcription factor 1-like (Myt1l,
96496_g_at). These clique members are high-priority candidate genes
for modulation of the massive Lin7c clique. Expression of the Lin7c

clique members correlates with both midbrain iron levels28 and several
locomotor behavior measures. Notably, one of the clique members,
Strn3, is a striatin family member that is also associated with
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locomotor impairment40. Further, Cask, Lin7c41 and locomotor activ-
ity are associated with the expression of serotonin receptor Htr2c.
These two proteins form a complex with Mint1 that has a key role in
synapse function41. The detection of the relationships of many new
genes to a behavior allows substantial expansion of the molecular
pathway underlying this phenotype.

DISCUSSION
Naturally occurring genetic polymorphisms alter gene expression in
the central nervous system in a massively correlated fashion. A very
small subset of polymorphisms contributes to variation in a large set
of transcripts. For example, a locus near D6Mit150 modulates the
expression of at least 1,650 transcripts (Fig. 4) and is a good target for
interval reduction and candidate gene analysis. The impact of these
polymorphisms is often tightly coupled with variation in receptor
density, neuron number, neuronal excitability and, ultimately, beha-
vior (Fig. 5). The accumulation of additional phenotypes will eluci-
date the functional importance of this massive genetic covariation.
Previous genome-wide studies of regulation of gene expression

identified loci that coregulate many transcripts3,12, but these loci were
assumed to act independently. We showed that sets of loci coopera-
tively influence large sets of phenotypes, including many transcripts
that underlie synaptic function (Fig. 6). Because of the multi- and
polygenic nature of brain transcription control, detection of mende-
lian loci will be infrequent. Furthermore, the high degree of covariance
among transcriptional phenotypes is a substantial challenge to most
attempts to control the family-wise error rate. Despite these chal-
lenges, we detected statistically significant QTLs for transcript abun-
dance that segregate among BXD RI lines (Fig. 1 and Supplementary

Table 2 online). An examination of genome-wide QTL frequency
identifies the locations of key genetic regulatory loci (Figs. 3 and 4).
The cluster map (Fig. 6) emphasizes extensive coregulation of
transcripts. Sets of modulatory loci seem to be tissue-specific14 and
probably vary with experimental and environmental perturbation.
We have begun functional annotation of these genetically coregu-

lated systems by integrating transcriptome-QTL and genetic correla-
tion of gene expression in a panel of RI strains. A deceptively simple
concept is at the heart of this work: the use of a stable GRP to study a
diverse range of phenotypes and phenomena. GRPs provide an
efficient analytical approach to synthesize growing collections of
biological data across many levels of organization and can be extended
to virtually any tissue or cell type, from single cells to the complex
mammalian brain. We extended this resource to a total of 80 BXD
lines; therefore, power and precision will improve substantially7.
Transcriptome QTL analysis of numerous other tissues is progressing

rapidly and will allow the research community to detect the shared and
unique components of tissue-specific transcription-regulatory machi-
nery (Supplementary Table 4 online). The identification of tissue-
specific loci uncovers mechanisms that underlie development and
maintenance of tissue differentiation. It is also now practical to identify
loci responsible for wide-ranging changes in gene expression triggered
by exposure to pharmacological agents, pathogens, environmental
stressors and natural processes of development and aging. Refinement
of new technologies for high-throughput phenotypic assays including
proteomics42 and sequencing will enable evaluation of the micro- to
macro-scale genetic effects across tissues and environments.
A multitude of hypotheses can be developed or tested using the

transcriptome and systems-level phenotype data incorporated into
WebQTL24. Query-specific multiple testing adjustment can be used to
estimate significance thresholds. Large inductive queries aimed at
producing new hypotheses for costly experimental follow-up require

stringent thresholds. In contrast, more focused or confirmatory
queries, such as those aimed at identifying behavioral correlates of
Drd2 expression, require less stringent error control because of the
large body of existing knowledge driving the research question.
Although we focused on a small set of reliable QTL results (Supple-
mentary Table 2 online), all trait data are available on WebQTL, for
users who have existing information about specific regulatory rela-
tions. The 88 conservatively chosen QTLs are fewer than the expected
number of false positives based on a null distribution of 12,422
hypotheses. But the number of implicit hypotheses is actually much
smaller than the number of probe sets on the array, for two reasons.
First, high covariance among transcript phenotypes leads to massive
dependence of the statistical tests. Second, we considered only subsets
of traits with higher heritability. The incorporation of existing knowl-
edge when defining a hypothesis set is a powerful approach for
reduction of false positives. Ultimately, users of this resource must
consider the appropriate error thresholds based on the relative
practical consequences of false positive or false negative results.
A synergistic combination of positional precision and comprehen-

sive bioinformatics resources can be exploited to identify causative
polymorphisms for gene expression covariation43. This synergy is
particularly strong for the BXD RI lines because the progenitor strains
have been almost completely sequenced, simultaneously allowing
interval reduction using fine-grained haplotype structure44 and eva-
luation of functional consequences of precise polymorphisms on
genes. Gene selection and identification requires multiple sources of
evidence that converge on a subset of positional QTL candidates
(Fig. 4). Criteria used to evaluate candidates include identification of
missense polymorphisms, sequence conservation, level of gene expres-
sion in the relevant tissue and stage, and evidence that a candidate
gene is itself under cis regulation. The evidence is even stronger when
plausible biological models already predict causal relations between
candidates and target transcripts. In the case of DNA-binding tran-
scription factors, evidence of candidacy may come from a common
promoter motif found among target genes. Literature mining and
gene ontology21 analysis of trans-regulated genes can also be used to
identify candidates. Ultimately, a small set of genes within the region
can be selected for functional and molecular studies.
Individual differences in brain and behavior are produced by

genetic and environmental effects that often act through the modula-
tion of mRNA transcription. The shared mediators of gene expression
simultaneously alter hundreds of transcript levels and physiological,
morphological and behavioral phenotypes. The unique properties of
GRPs allow this multiscalar biological data to be harnessed for rapid
refinement and identification of key polymorphic genes. The causal
relations provided by transcription QTL mapping greatly facilitate
specification of genetic regulatory networks. By integrating data from
base pair to behavior in a single reference population, testable
networks of the effects of genetic and environmental variation across
all levels of biological scale can be developed. It is now possible to
define multifactorial genetic and environmental influences on tran-
scriptional modules and systems-level phenotypes as they change
during development, aging and disease.

METHODS
BXD RI mice. We measured steady-state transcript abundance in a panel of

BXD RI strains, both parental strains and the C57BL/6J � DBA/2J F1 hybrid (a
total of 35 isogenic lines). To generate the BXD RI set, we crossed progenitor

strains C57BL/6J and DBA/2J strains and mated them to their siblings for more

than 36 generations. This resulted in a panel of inbred strains with fixed

genotypes at each locus, with parental C57BL/6J and DBA/2J alleles segregating
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among the strains. There are now 35 commercially available BXD RI lines and

45 new lines at the University of Tennessee Health Science Center7.

Genotypes database. Together with our colleagues, we genotyped more than

1,500 marker loci in this RI set, resulting in a very dense error-checked map

consisting of 779 nonredundant loci45. The mean precision of RI mapping
resources is currently B4 Mb for mendelian traits.

Phenotypes database. We assembled a comprehensive and complementary
database that integrates published phenotypes for BXD and other RI strains.

This database contains data types as diverse as dentate granule cells numbers,

alcohol preference, maze learning and open-field activity levels. These classical

phenotypes can thus be readily compared with variation in abundance of all
transcripts using WebQTL. This interactive web system for complex trait

analysis allows users to adjust analysis parameters and to analyze the array

data presented here with respect to their own phenotypic assays.

Array annotation. Probe positions in WebQTL are determined by systematic

BLAT analysis of the concatenation of all 16 perfect-match 25-nt probe
sequences (corrected for probe overlap) against the current version of the

public mouse assembly at (our results are based on the October 2003 freeze).

The position and identity of many thousands of the transcripts that are targeted

by the Affymetrix U74Av2 probe sets were manually error-checked and curated
over a 3-year period resulting in a greatly improved annotation for this

particular array platform.

Screening for SNPs in probes. Only a small fraction of the cis-regulatory QTLs

might be attributable to known SNPs in the probe sequence. In an analysis of

all 1.2 million known SNPs segregating between C57BL/6J and DBA/2J, we

found 651 SNPs in 1,223 of the Affymetrix U74Av2 perfect-match probe
sequences using the Celera SNP database (1 July 2003). Roughly 1 in 10 of these

is sufficient to affect probe hybridization differences between the strains enough

to create an artefactual QTL (Supplementary Table 4 online).

Tissue processing and gene expression. Most expression data are strain

averages based on three microarrays (U74Av2). Each individual array experi-
ment involved a pool of brain tissue (forebrain plus the midbrain, but without

the olfactory bulb, retina or neurohypophysis) that was taken from three adult

mice, usually of the same age. We used 100 arrays: 74 female pools and 26 male

pools. Mice ranged in age from 56 to 441 days and typically included one pool at
8 weeks, one pool atB20 weeks and one pool atB1 year. Only a small fraction

of sex differences and age differences were identified in analyses of balanced or

fully saturated (representation of all combinations of sex� strain� age) subsets

of these data. Each data table in WebQTL has a link to detailed metadata on the
experiment, analysis method and samples comprising the data set.

Array normalization. We transformed data using several common array

normalization methods, including RMA, MAS 5.0, dChip (PM, PMMM)

and PDNN. Expression data for each normalization method are available at

WebQTL. Our mapping results here used the relatively conservative RMA46

method. All normalizations were done using default analysis parameters. For

MAS 5.0–normalized data, additional processing occurred. We generated probe

set data using MAS 5.0, obtained the log2 of each probe set and standardized

using Z scores. We doubled the Z scores and added 8 to produce a set of
Z scores with a mean of 8, a variance of 4 and a standard deviation of 2. The

advantage of this modified Z score is that a twofold difference in expression

level corresponds approximately to a 1-unit difference. Expression levels below
5 are usually close to background noise levels. All DAT, TXT, RPT, CEL and

CHP files for the 100 arrays in this report are available in WebQTL.

The treatment of probe set–level data is an active area of development, and

numerous methods of using this data have been proposed. But few methods
have considered the differences between individual probes and have often

treated each probe as an equally valid measure of the same transcript. In many

cases, probes overlap highly in sequence, and those probes often detect highly

correlated expression43. Several probes match (using BLAT) multiple regions of
the genome and may therefore bind to several mRNAs. Furthermore, as noted

above, SNPs are present in a small number of probes, rendering affinity higher

for one allele than another. Annealing temperatures vary between the probes,

and the particular exon binding of the probes varies, such that individual

probes may represent different splice variants. Physical characteristics, exon

binding and genome location of probes along with a direct link to the BLAT
alignment program at the University of California Santa Cruz’s Genome

Browser are available at WebQTL in the probe information tables.

Variance partitioning. We estimated between- and within-strain variance
components using SAS 9.0. We calculated the genetic variance accounted for

by strain (a measure related to the heritability) from the ratio of between-strain

variance to total phenotypic variance (the between-strain intraclass correla-

tion). This measure estimates genetic variance relative to environmental and
technical variability. Environmental variance is minimized by using pooled

samples on each array. We obtained the standard error of the intraclass

correlation using a formula for obtaining the variance of intraclass correlations
in the presence of data imbalance and single observations. We obtained

adjusted heritabilities using a formula to adjust for the overestimation of the

additive effect in inbred strains.

QTL mapping. We carried out linkage mapping for 12,422 transcript expres-

sion traits. We excluded parental and F1 lines from the mapping analysis.

Mapping was done using strain averages of probe set expression levels obtained
using RMA. QTL mapping was done using a custom program, QTL Reaper,

that carries out simple regression implemented in Python and C. Performance-

critical code was implemented in C and compiled as a Python module that is

also used by WebQTL. We estimated genome-wise empirical P values by
permuting trait data for each transcript randomly between 1,000 and

1,000,000 times47. We obtained confidence intervals by bootstrap analysis48,49.

We estimated a point-wise FDR, the q value, for the set of transcripts declared

significant at each transcript specific QTL P value. This approach is used for
estimating the error rate among the large set of hypotheses tested across the

microarray. Two separate permutation analyses applied to the transcriptome

map show that the trans-regulatory QTL bands are not an artefact of the
genotypic structure of the RI strain panel but are due to the correlation and,

therefore, coregulation by one or more closely linked regulatory QTLs. The

trans-acting bands disappear entirely when the panel of markers is left intact

but the transcript expression levels are each individually permuted, indicating
that the correlation and potential coregulation is the explanation for trans

regulation. Permutation of the data by randomly assigning entire chips to the

genotypes results in maintained structure, but not location, of the trans-acting

bands, showing that the position of trans-regulatory QTL bands is not a
statistical consequence of location-specific bias in marker strain distribution

patterns. We carried out pair-wise QTL scanning for epistasis for a small

number of selected transcripts using R/qtl50. The multiple QTL models were

significant at P o 0.01 based on whole-genome permutations of a pair-wise
scan. Sample sizes for each chromosome 2–chromosome 6 configuration in the

Grin2b analysis are B/D ¼ 7, D/B ¼ 8, B/D ¼ 10 and B/B ¼ 7 (where D is

DBA/2J and B is C57BL/6J).

Genetic correlation analysis. We computed Pearson product-moment correla-

tions of strain means for each pair of probe sets on the array. Both Spearman’s

rank correlations and Pearson product-moment correlations can be computed
using WebQTL. FDR estimation for the entire gene-gene correlation matrix was

implemented in PERL.

Clique extraction.We carried out clique analysis on data transformed by RMA

and MAS 5.0. We extracted cliques using algorithms and hardware developed at

University of Tennessee Knoxville. In this analysis, an edge-weighted graph is

constructed from the entire correlation matrix. The vertices of this graph
represent genes labeled with probe set identifications. Each pair of vertices is

connected by an edge whose weight is taken from the correlation matrix. A

high-pass filter is used to eliminate any edge whose weight | r | is less than 0.85.

The remaining edges are then unweighted. Cliques are identified through a
transformation to the complementary dual vertex cover problem and the use of

highly parallel algorithms based on the notion of fixed-parameter tractability.

Animal care. All procedures involving mouse tissue were approved by the

Institutional Animal Care and Use Committee at the University of Tennessee

Health Science Center.
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URLs. WebQTL, which includes all gene expression data, sample preparation

information, the Published Phenotypes database and a suite of interactive tools

for analysis of recombinant inbred mouse phenotypes, is available at http://
www.webqtl.org/. It is the first component of the Gene Network (http://

www.genenetwork.org/). Additional information including detailed experimen-

tal procedures and a wealth of RI phenotypic data is available at http://

www.nervenet.org/ and http://www.mbl.org/. Gene Ontology Tree Machine is
available at http://genereg.ornl.gov/gotm/ and can be invoked directly from

WebQTL. The public mouse genome assembly is available at http://

genome.ucsc.edu/cgi-bin/hgBlat?command¼start/.

Note: Supplementary information is available on the Nature Genetics website.
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