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We consider all of the transmission eigenvalues for one-dimensional media. We give some conditions under which complex
eigenvalues exist. In the case when the index of refraction is constant, it is shown that all the transmission eigenvalues are real
if and only if the index of refraction is an odd number or reciprocal of an odd number.

1. Introduction


e transmission eigenvalue problem appears in the inverse
scattering theory for acoustic and electromagnetic waves [1].
It is a nonlinear boundary value problem for a coupled set
of equations de�ned on the support of the scattering object.
Since this eigenvalue problem is not self-adjoint, there exists
the possibility of complex eigenvalues which has been proved
for the spherically strati�ed media under some conditions
in [2–4]. But so far only a small part of the transmission
eigenvalues (real eigenvalues or complex eigenvalues) has
been considered; this is of great limitation in the inverse
scattering problem. If we consider all of the transmission
eigenvalues, this problem, even for the one-dimensional
media, is not simple. For one-dimensional problem, Sylvester
[5] has shown how to locate all the transmission eigenvalues
in the complex plane for a constant index of refraction. In
this work we contribute more to the discussion of the one-
dimensional case:

��� + �2� (�) � = 0, � ∈ [0, 1] ,
V
�� + �2V = 0, � ∈ [0, 1] ,

� (0) = V (0) , � (1) = V (1) ,
�� (0) = V

� (0) , �� (1) = V
� (1) .

(1)

We refer to the set of all � ∈ C for which (1) has nontrivial
solutions as the transmission eigenvalues. 
e corresponding

nontrivial solutions (�, V) are called the transmission eigen-
functions. 
roughout this paper, we assume that

� (�) > 0, � ∈ [0, 1] ;
� ∈ �1 (0, 1) ; ��� ∈ �2 (0, 1) ; �� (0) = 0. (2)

Since only real eigenvalues can be determined from the
scattering data and the physical properties of the scattering
object can be obtained from the transmission eigenvalues, it
is of interest to �nd the existence conditions of the complex
transmission eigenvalues and to research the conditions
under which there are no complex eigenvalues at all. For
the existence of the transmission eigenvalues, to the author’s
knowledge, only the su�cient conditions are given.


e plan of our paper is as follows. In Section 2,motivated
by [3] which gives the existence conditions of complex
transmission eigenvalues for three-dimensional media, we
turn our attention to the case when �(	) is a variable and
show that complex eigenvalues can exist. 
en, in Section 3,
using the methods in [3, 5], we give the necessary and
su�cient condition for the existence of complex transmission
eigenvalues when the index of refraction is a constant.

2. The Existence of Complex Transmission
Eigenvalues for Variable �(�)

Our research methods rely on transforming the �rst
Helmholtz equation in (1) into a Sturm-Liouville form that
separates � and �(�).
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Suppose that the fundamental solutions �1 and �2 satisfy
the initial value problems:

���� + �2� (�) �� = 0, 
 = 1, 2,
�1 (0) = ��2 (0) = 0,
��1 (0) = �2 (0) = 1.

(3)


en the solutions � and V which satisfy (1) can be written as

� (�) = �1�1 (�) + �2�2 (�) ,
V (�) = �1 sin �� + �2 cos ��, (4)

for constants �1, �2, �1, and �2.
Lemma 1. �e value � is a transmission eigenvalue if and only
if 
(�) = 0, where


 (�) = −2 + �1 (1) � sin � − ��2 (1) sin ��
+ ��1 (1) cos � + �2 (1) cos �,

(5)

where �1 and �2 are the solutions of (3).
Proof. 
e boundary conditions in (1) imply that

�2 = �2,
�1 = �1�,

�1�1 (1) + �2�2 (1) = �1 sin � + �2 cos �,
�1��1 (1) + �2��2 (1) = �1� cos � − �2� sin �.

(6)

So in order for the value � to be a transmission eigenvalue
there must exist a nontrivial pair (�1, �2) satisfying

(�1 (1) − 1� sin � �2 (1) − cos �
��1 (1) − cos � ��2 (1) + � sin �)(�1�2) = (00) . (7)

For this to be true the determinant of the coe�cient matrix
must be zero:


 (�) := det(�1 (1) − 1� sin � �2 (1) − cos �
��1 (1) − cos � ��2 (1) + � sin �) = 0. (8)

Using the Wronskian identity for the fundamental solutions
of the Sturm-Liouville problems

�(�1, �2) (�) := �1 (�) ��2 (�) − ��1 (�) �2 (�)
= −1 in [0, 1] , (9)

we have


 (�) = −2 + �1 (1) � sin � − ��2 (1) sin ��
+ ��1 (1) cos � + �2 (1) cos �.

(10)


e proof is now complete.


e determinant condition 
(�) = 0 gives us an algebraic
relation that must be satis�ed by the transmission eigenval-
ues. 
is reduces the study of the transmission eigenvalue
problem to a root �nding problem. Next, we will give the
expansions of �1, ��1 and �2, ��2. We make the change of
variables

� = ∫�
0
√� (�)
�,

�� (�) = (�(�))1/4�� (�) , 
 = 1, 2.
(11)

Since � satis�es (2), the problem (3) becomes

���� (�) + (�2 − � (�)) �� (�) = 0 for � ∈ [0, �] ;
�1 (0) = 0, ��1 (0) = �(0)−1/4,
�2 (0) = �(0)1/4, ��2 (0) = 0,

(12)

where

� (�) = 14 �
�� (�)�(�)2 − 516 �

�(�)2�(�)3 ,
� = ∫1
0
√� (�)
�.

(13)

With the help of the Liouville transformation (11)
and some basic estimates in [6] for the corresponding
Schrödinger equations in (12), we get the following lemma.

Lemma 2. Assume that � satis�es (2). �en there exists a
positive constant � such that, for all � ∈ [0, 1] and � ∈ C,
the solutions �1(�), �2(�) to (3), and their �-derivatives satisfy����������1 (�) −

1[� (0) � (�)]1/4� sin (�� (�))���������
≤ ������2���� exp (|Im �| � (�)) ,

�����������
�
1 (�) − (�(�)�(0) )

1/4
cos (�� (�))����������

≤ �|�| exp (|Im �| � (�)) ,
�����������2 (�) − (

�(0)�(�))
1/4

cos (�� (�))����������
≤ �|�| exp (|Im �| � (�)) ,

�������2 (�) + �(� (0) � (�))1/4 sin (�� (�))�����
≤ � exp (|Im �| � (�)) ,

(14)

where �(�) = ∫�0 √�(�)
�.
So we have the following asymptotic expansions.
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Lemma 3. Assume that � satis�es (2). �en for all � ∈ [0, 1],
as |�| → ∞ inC, �1(�), �2(�), and their �-derivatives satisfy

�1 (�) = 1[� (0) � (�)]1/4� sin (�� (�))
+ #(exp (|Im �| � (�))�2 ) ,

��1 (�) = (�(�)�(0) )
1/4

cos (�� (�))
+ #(exp (|Im �| � (�))� ) ,

�2 (�) = ( � (0)� (�))
1/4

cos (�� (�))
+ #(exp (|Im �| � (�))� ) ,

��2 (�) = −�(� (0) � (�))1/4 sin (�� (�))
+ # (exp (|Im �| � (�))) ,

(15)

where �(�) = ∫�0 √�(�)
�.
A�er substituting the asymptotic expansions of �1 and �2

into (5), we have


 (�) = −2 + $ sin (��) sin � + � cos (��) cos �
+ #(exp (|Im �| (� + 1))� ) , (16)

as |�| → ∞, where

$ = 1(�(0)�(1))1/4 + (�(0)�(1))1/4,
� = (�(1)�(0))

1/4 + (�(0)�(1))
1/4,

� = ∫1
0
√� (�)
�.

(17)

According to the fundamental inequality �2+�2 ≥ 2�� for�, � > 0, we know $ ≥ 2 and � ≥ 2. If �(0) = 1 or �(1) = 1,
then $ = � and the term −2+$ sin(��) sin �+� cos(��) cos �
in (16) becomes −2 + � cos(�(� − 1)) which is a periodic
function if � is rational and almost periodic if � is irrational
(see [7]). 
e fact that � ≥ 2 means that, for large enough�, 
(�) has in�nitely many real zeros if we assume � ̸= 1.
Otherwise, if � = 1, we have that


 (�) − #(exp (|Im �| (� + 1))� )
= −2 + $ sin2� + � cos2�
= −2 + $ + �2 + � − $2 cos (2�) .

(18)

So if only one of the values �(0) and �(1) is 1, then $ = � > 2,
and the values � ∈ R are not transmission eigenvalues in the
case when |�| → ∞.

Our aim here is to �nd conditions under which 
(�) has
an in�nite number of complex zeros when �(0) ̸= 1, �(1) ̸= 1.

e search for zeros of 
(�) leads us to look for the zeros of
the polynomial

' (�) := −2 + $ sin (��) sin � + � cos (��) cos �. (19)

We assume that � is a rational number, and � = */� > 1,*, � ∈ Z
+. Replacing � with ��, we get

' (��) = −2 + $ sin (*�) sin (��) + � cos (*�) cos (��) .
(20)

It is obviously true that |-��| = 1 if � ∈ R; that is, |-��| ̸= 1
implies that � ∉ R. Based on this fact, a substitution of 7 = -��
into (20) is used. According to Euler’s formula, we have

sin (*�) = -��� − -−���2
 = 7� − 7−�2
 ,
cos (*�) = -��� + -−���2 = 7� + 7−�2 .

(21)

So (20) becomes

−2 − $4 (7� − 7−�) (7� − 7−�) + �4 (7� + 7−�) (7� + 7−�) .
(22)

We assume that �(0) ̸= 1 and �(1) ̸= 1; that is, $ ̸=�. Multiply-
ing (22) by (4/($ − �))7�+� leads us to look for zeros of the
polynomial

� (7)
:= −87�+� − $ (72� − 1) (72� − 1) + � (72� + 1) (72� + 1)

$ − �
= −72(�+�) + $ + �$ − �72� − 8$ − �7�+� + $ + �$ − �72� − 1.

(23)

In order to show the conditions under which '(�) has
complex zeros, we only need to research in what situations�(7) cannot have all roots lying on the unit circle |7| = 1. 
e
above polynomial �(7) is a self-inversive polynomial because

72(�+�)�(17) = � (7) . (24)

Note that the zeros of a self-inversive polynomial either lie on|7| = 1 or are symmetric with respect to the unit circle. We
further have the following lemma (see [3]).

Lemma 4 (Cohn). Let �(7) be a self-inversive polynomial.
�en all the zeros of �(7) lie on the unit circle if and only if
all the zeros of ��(7) lie in |7| ≤ 1.


en we have the following result.
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�eorem 5. Assume that � satis�es (2), �(0) ̸= 1, �(1) ̸= 1, and� = ∫10 √�(�)
� is a rational number greater than 1. �en

if either (28) or (33) is valid, the eigenvalue problem (1)
has an in�nite number of complex eigenvalues and all these
eigenvalues lie in a strip parallel to the real axis.

Proof. Based on Cohn’s theorem, our �rst aim is to look for
conditions of � under which there are some zeros of ��(7)
lying outside |7| = 1. For �(7) that was de�ned in (23), we
have

7�� (7) = −2 (* + �) 72(�+�) + 2*$ + �$ − �72� − 8 (* + �)$ − � 7�+�
+ 2�$ + �$ − �72�.

(25)

With the help of Vieta theorem, the product of all zeros of
(25) equals

− �* + � $ + �$ − �. (26)

If the absolute value of this product is greater than 1, there is
at least one zero lying outside the unite circle |7| = 1. Hence
we give the �rst condition������� �* + � $ + �$ − �

������� > 1. (27)

In other words, �������$ + �$ − �
������� > 1 + �. (28)

By Rouché’s theorem, we can derive another condition for
(25) to have zeros outside the unite circle |7| = 1. Set

? (7) := 72(�+�)2 17�� (17)
= − (* + �) + *$ + �$ − �72�
− 4 (* + �)$ − � 7�+� + �$ + �$ − �72�.

(29)


en we need to prove that ?(7) has zeros in |7| < 1. On the
unite circle |7| = 1,�������? (7) − *$ + �$ − �72�

�������
= ��������− (* + �) − 4 (* + �)$ − � 7�+� + �$ + �$ − �72�

��������
≤ * + � + 4 (* + �)|$ − �| + � $ + �|$ − �| ,�������*$ + �$ − �72�

������� = * $ + �|$ − �| .

(30)


erefore �������? (7) − *$ + �$ − �72�
������� <

�������*$ + �$ − �72�
������� , (31)

if

* + � + 4 (* + �)|$ − �| + � $ + �|$ − �| < * $ + �|$ − �| . (32)

Rouché’s theorem implies that ?(7) has 2� zeros inside the
unit disc. So��(7)has 2� zeros outside the unit disc from (29).
Condition (32) can be stated as

|$ − �| + 4$ + � < � − 11 + � . (33)

So far, we obtain two conditions (28) and (33) which guaran-
tee the existence of complex zeros of '(�).


e following proof for the existence of complex zeros for
(�) is the same as that stated in [3]. To facilitate reading, we
state it once again. If �(7) has zeros not on the unite circle|7| = 1 ('(�) has complex zeros in this case), then �(7) has
zeros outside the unit circle, and the zeros inside the unite
circle |7| = 1have a positive distance from the origin. Suppose

those zeros are 7� = 	�-�	� , A = 1, . . . , ℎ, ℎ ≤ * + �, where* and � are two integers which are used to denote �. Based
on the substitution 7 = -��, we know that each 7� = 	�-�	�
corresponds to the complex zeros �� = C� + 2DE − 
 log 	�,D = 1, 2, . . ., for '(��). 
en the corresponding zeros of '(�)
are �C� +2�DE− 
� log 	�, where D = 1, 2, . . ., and � is a positive
integer. So all these complex transmission eigenvalues stay
inside the strip

|Im �| ≤ �max
�����log 	������ , (34)

since 0 < 	� < 1. Let �� be a small circle surrounding7�, lie inside the unit circle, and isolate 7� from the other

zeros of �(7). Under the transformation 7 = -��, the circle�� corresponds to a periodic array of closed Jordan curves
surrounding each of the corresponding zeros of'(�), and, on
these curves, |'(�)| > 
� for some constant 
� > 0. From (16),
we have that


 (�) = ' (�) + #(exp (|Im �| (� + 1))� ) , (35)

for � being large enough. Using (34), we get that
|
 (�) − ' (�)| < |' (�)| , (36)

is valid for � being large and lying on some closed Jordan
curves. It follows from Rouché’s theorem that 
(�) has a
complex zero inside each Jordan curve when � is large.

Next, inspired by the results and methods in [4], we will
show that, when �(0) ̸= 1, �(1) ̸= 1, if transmission eigenval-
ues exist they must lie in a strip parallel to the real axis; that
is, we remove some assumptions on �(�)whichwere required
in the above theorem. 
e major tool we use is the following
result from [8] for an entire function.

Lemma 6 (Paley-Wiener). LetF(7) be an entire function such
that

����F (7)���� ≤ �-
|�|, (37)
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for positive constants G and � and all values of 7, and
∫∞
−∞

����F(7)����2
� < ∞. (38)

�en there exists a function H in �2[−G, G] such that
F (7) = ∫


−

H (�) -��

�. (39)

�eorem 7. Assume that � satis�es (2) and �(0) ̸= 1, �(1) ̸= 1.
�en if complex eigenvalues exist, all of them lie in a strip
parallel to the real axis.

Proof. From the identities cos(�−�) = cos � cos �+ sin � sin �
and cos(� + �) = cos � cos � − sin � sin �, (19) implies that

' (�) = −2 + $ + �2 cos (� (� − 1)) − $ − �2 cos (� (� + 1)) .
(40)

Hence if �(0) ̸= 1, �(1) ̸= 1, then $ ̸= �. In this case, '(�) is
an entire function of � of exponential type � + 1. It follows
from Lemma 2 that �1(1), ��1(1), �2(1), and ��2(1) are entire
functions of � of exponential type �. From (5), we get that
(�)
is an entire functions of � of exponential type at most � + 1.

en (35) implies that I(�) := #((exp(| Im �|(� + 1)))/�) is
also an entire function of � of exponential type at most � + 1.

Furthermore, at � = 0, 
(�) = 0, |'(�)| = | − 2 + �| < ∞;
then I(�) is an �2 function on the real axis. So I(�)meets the
conditions in the Paley-Wiener theorem. 
en there exists a

function H ∈ �2[−(� + 1), (� + 1)] such that

I (�) = ∫�+1
−(�+1)

H (�) -��

�. (41)

Using Schwarz inequality, we have that

|I(�)|2 ≤ JJJJHJJJJ2 ∫�+1−(�+1) �����-��
�����2
�
= JJJJHJJJJ2 (-2| Im �|(�+1) − -−2| Im �|(�+1))2 |Im �| .

(42)

Hence

-−2| Im �|(�+1)|I(�)|2 ≤ JJJJHJJJJ2 (1 − -−4| Im �|(�+1))2 |Im �| , (43)

which implies that -−| Im �|(�+1)|I(�)| goes to zero as | Im �|
tends to in�nity. Furthermore, we have

|' (�)| ≤ 2 + $ + �2 |cos (� (� − 1))|
+ |$ − �|2 |cos (� (� + 1))|

≤ 2 + $ + �2 -−| Im �|(�−1) + -| Im �|(�−1)2
+ |$ − �|2 -−| Im �|(�+1) + -| Im �|(�+1)2 .

(44)

Hence

-−| Im �|(�+1) |' (�)|
≤ 2-−| Im �|(�+1)
+ $ + �4 (-−2| Im �|� + -−2| Im �|)
+ |$ − �|4 (1 + -−2| Im �|(�+1)) ,

(45)

which implies that -−| Im �|(�+1)|'(�)| goes to |$−�|/4 as | Im �|
goes to in�nity.

Suppose that ��, A = 1, 2 . . ., are transmission eigenvalues,
a sequence of the zeros of 
(�) such that | Im ��| → ∞
as A → ∞. 
en from the above discussion, we have-−| Im ��|(�+1)|I(��)| → 0 and -−| Im ��|(�+1)|'(��)| → |$−�|/4
as A → ∞, but 0 = 
(��) = '(��) + I(��); this leads to a
contradiction. Hence if complex eigenvalues exist, all of them
lie in a strip parallel to the real axis.

3. The Existence of Complex Transmission
Eigenvalues for Constant �(�)

We consider the eigenvalue problem (1) again and make the
assumption that the graph of �(�) is symmetric about � =1/2; that is, �(�) = �(1 − �). Using the change of variables

� = � − 12 , K (�) = � (�) ,
L (�) = V (�) , * (�) = � (� − 12) ,

(46)

we can transform (1) into

K�� + �2*(�) K = 0, � ∈ [−12 , 12] ,
L�� + �2L = 0, � ∈ [−12 , 12] ,

K (−12) = L(−12) , K (12) = L(12) ,
K� (−12) = L� (−12) , K� (12) = L� (12) .

(47)

In the symmetric domain, we can separate (47) into two
problems.

Lemma8. In the case when �(�) = �(1−�), � is a transmission
eigenvalue if and only if � satis�es 
1(�) = 0 or 
2(�) = 0,
where


1 (�) := �K1 (12) sin(�2) + K�1 (12) cos(�2) ,

2 (�) := �K2 (12) cos(�2) − K�2 (12) sin(�2) .

(48)

K1 and K2 are de�ned in (49).
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Proof. By the fact that *(−�) = *(�) for � ∈ [−1/2, 1/2],
we know K(−�) satis�es the �rst equation in (47) if K(�) is a
solution to that equation. Hence there exist an even functionK1(�) and an odd function K2(�) such that

K��� + �2*(�) K� = 0, � ∈ [−12 , 12] , 
 = 1, 2,
K1 (0) = 1, K�1 (0) = 0,
K2 (0) = 0, K�2 (0) = 1.

(49)

So the solutions K and L for (47) can be written as

K (�) = O1K1 (�) + O2K2 (�) ,
L (�) = 
1 cos (��) + 
2 sin (��) , (50)

where O1, O2, 
1, and 
2 are constants. Basing on the properties
of even and odd functions, we get that, for all � ∈ [−1/2, 1/2],

K1 (−�) = K1 (�) , K2 (−�) = −K2 (�) ,
K�1 (−�) = −K�1 (�) , K�2 (−�) = K�2 (�) . (51)

From the boundary conditions in (47), we get

O1K1 (−12) + O2K2 (−12) = 
1 cos(�2) − 
2 sin(�2) , (52)

O1K1 (12) + O2K2 (12) = 
1 cos(�2) + 
2 sin(�2) , (53)

O1K�1 (−12) + O2K�2 (−12) = 
1� sin(�2) + 
2� cos(�2) ,
(54)

O1K�1 (12) + O2K�2 (12) = −
1� sin(�2) + 
2� cos(�2) .
(55)

From (51), (52) and (53) yield that

O1K1 (12) = 
1 cos(�2) , (56)

O2K2 (12) = 
2 sin(�2) . (57)

Using (51), (54), and (55), we obtain that

−O1K�1 (12) = 
1� sin(�2) , (58)

O2K�2 (12) = 
2� cos(�2) . (59)

If O1 ̸= 0, then 
1 ̸= 0. Equations (56) and (58) imply that


1 (�) = �K1 (12) sin(�2) + K�1 (12) cos(�2) = 0. (60)

In the case when O2 ̸= 0, then 
2 ̸= 0. From (57) and (59), we
have that


2 (�) = �K2 (12) cos(�2) − K�2 (12) sin(�2) = 0. (61)

If � is a transmission eigenvalue, O1 and O2 cannot be zero
simultaneously. Hence, 
1(�) = 0 or 
2(�) = 0. 
is
completes the proof.

Remark 9. In the case when �(�) = �(1 − �), the set of
transmission eigenvalues is the union of the sets of �-values
such that 
1(�) = 0 and 
2(�) = 0.

From now on, we further assume that*(�) = �(� − 1/2)
is a positive constant not equal to 1 on [0, 1], by using � to
denote that constant value. In this case,

K1 (�) = cos (�√��) , K2 (�) = sin (�√��)�√� . (62)

Substituting K1 and K2 into (48), we have that

1 (�) := � cos(�√�2 ) sin(�2)

− �√� sin(�√�2 ) cos(�2) ,

2 (�) := 1√� sin(�√�2 ) cos(�2) − cos(�√�2 ) sin(�2) .

(63)

Our goal is to determine under what conditions there
exist complex eigenvalues � when � ̸= 1 is a constant. In this
case, $ = √� + 1/√�, � = 2, � = √�, and $ > �. From
(28) and (33), we know that there is an in�nite number of
complex transmission eigenvalues when 0 < √� < 1 and 1 <√� < 3. A question naturally arises: are there some complex
transmission eigenvalues when√� ≥ 3?
e following results
(see [3]) play central roles in what follows. We give them as
lemmas.

Lemma 10 (Laguerre). Let F(7) be a real entire-valued func-
tion of order less than 2 with all its zeros being real. �en the
critical points of F(7) (i.e., the zeros of F�(7)) are also real and
interlace those of F(7).
Lemma 11. Let F(7) be a real-valued entire function of order
less than 2.�en if all its zeros are real, it cannot havemore than
one critical point inside an interval where it does not change
sign.

Lemma 12. Let F(7) be a real-valued entire function of order
less than 2. Suppose that F(7) has in�nitely many real zeros
and only a �nite number of complex ones. �en F(7) has a
single critical point on each interval (��, ��+1) formed by two
consecutive real zeros of F(7) when the interval is su
ciently
far away from the origin.

In order to �nd the transmission eigenvalues, we study
the roots of 
1 = 0 and 
2 = 0. First of all, we give some
illustrative examples.
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Example 13. First, when√� = 2, we have that

1 (�) = −� sin(�2) (2 + cos (�)) ,

2 (�) = sin(�2) (1 − cos (�)) ;

(64)

hence 
(�) has a simple zero at � = 0, an in�nite set of real
zeros of multiplicity 3 at �-values 2AE for A ∈ N, and an
in�nite set of simple complex zeros at �-values that are given
by

(2A − 1) E + 
 log (2 ± √3) , A ∈ N. (65)

Second, when√� = 3, we get

1 (�) = −2� sin � (1 + cos �) ,

2 (�) = 2 sin � (−1 + cos �) ; (66)

hence 
(�) has a simple zero at � = 0 and an in�nite set of real
zeros of multiplicity 3 at �-values AE for A ∈ N. 
ird, when√� = 2/3, then


1 (�) = �3 sin(�6)(2cos2 (�3) + cos(�3) + 2) ,

2 (�) = −sin3 (�6)(3 + 2 cos(�3)) .

(67)

So 
(�) has a simple zero at � = 0, an in�nite set of real zeros
of multiplicity 4 at �-values 6AE for A ∈ N, an in�nite set of
simple complex zeros at �-values

3 (2A + 1) E + 
3 log(3 ± √52 ) , A ∈ N, (68)

and an in�nite set of complex zeros at �-values such that

2cos2 (�3) + cos(�3) + 2 = 0. (69)

As we can see from the above examples, this problem
may only have real transmission eigenvalues under some
conditions. 
e following theorem presents a su�cient and
necessary condition for the nonexistence of complex trans-
mission eigenvalues in the case when � is constant.
�eorem 14. Let � be a constant not equal to 1. �en all of the
transmission eigenvalues are real when √� is an odd number
or a reciprocal of an odd number. Otherwise, (1) has in�nitely
many real and complex transmission eigenvalues.

Proof. We see that if 0 < � < 1, then T := 1/� > 1. SetU = √��, and we have


1 (�) = U(√T cos(U2) sin(√TU2 )
− sin(U2) cos(√TU2 )) ,


2 (�) = √T sin(U2) cos(√TU2 )
− cos(U2) sin(√TU2 ) .

(70)

So it su�ces to consider the case � > 1 only. 
e zeros of
11(�) := 
1(�)/� and 
2(�) are the critical points of the
functions

F1 (�) := cos (�√�/2)
cos (�/2) , F2 (�) := sin (�√�/2)

sin (�/2) , (71)

separately. Obviously, F1(�) is a real-valued entire function
of order less than 2 with all its zeros being real when √� is
an odd number, and if√� is an integer, F2(�) is a real-valued
entire function of order less than 2with all its zeros being real.
It follows from Laguerre’s theorem that all roots of 
11(�) = 0
are real when√� is an odd number, and the roots of 
2(�) = 0
are real when √� is an integer. Hence, from Lemma 8, (47)
only has real transmission eigenvalues when √� is an odd
number.

For the second part of this theorem, we only need to show
that 
11(�) has an in�nite number of complex roots when√�
is not an odd number. We note that


�11 (�) = 1 − �2 cos
�√�2 cos

�2 , (72)

which has zeros at

{E, 3E, . . . , (2V + 1) E, . . .} ,
{ E√� , 3E√�, . . . , (2A + 1) E√� , . . .} , V, A ∈ N. (73)

According to Lemmas 11 and 12, our aim here is to argue
that there are in�nitely many intervals where 
11(�) does not
change sign and has at least two consecutive critical points
inside.

From this point on, take V > 0 to be a �xed integer. If√�(V+1/2)−1/2 ∉ Z, there is an integer A, such that√�(V+1/2) − 1/2 < A < √�(V + 1/2) + 1/2; that is,
√�(V + 12)E < (A + 12)E < √�(V + 12)E + E. (74)


en we have

(A + 12)E = √�(V + 12)E + YE for some Y ∈ (0, 1) .
(75)
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From (74), we have

(2V + 1) E − (2A + 1) E√� < 2E√�. (76)

So (2V + 1)E and (2A + 1)E/√� are two consecutive critical
points of 
11(�). At (2V + 1)E,


11 ((2V + 1) E) = (−1)� cos(√�(V + 12)E)
= (−1)� cos((A + 12)E − YE)
= (−1)�+1 sin (AE − YE)
= (−1)�+� sin (YE) .

(77)

At the critical point (2A + 1)E/√�,

11 ((2A + 1) E√� ) = (−1)�+1√� cos((A + 1/2) E√� )

= (−1)�+1√� cos((V + 12)E + YE√�)
= (−1)�√� sin(VE + YE√�)
= (−1)�+�√� sin( YE√�) .

(78)

We see that the signs of 
11((2V+1)E) and 
11((2A+1)E/√�)
are identical since Y ∈ (0, 1) and√� > 1; that is, 
11(�) cannot
change sign in ((2A + 1)E/√�, (2V + 1)E).

In the casewhen√�(V+1/2)−1/2 ∈ Z, there is an integerA such that

A < √�(V + 12) − 12 < A + 1. (79)

We have

(A + 12)E < √�(V + 12)E < (A + 12)E + E. (80)


en

√�(V + 12)E = (A + 12)E + YE, (81)

for some Y ∈ (0, 1). In the same way as done above, we have
that 
11(�) cannot change sign in ((2V + 1)E, (2A + 1)E/√�).
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