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A veces tienes la suerte de encontrar una puerta abierta
raras veces encuentras detrás de esta puerta un mundo distinto, un horizonte nuevo

casi nunca consigues pasar por esa puerta.
Una vez tuve la suerte.
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Zusammenfassung

Diffusive Transportprozesse auf der Nanometerskala spielen eine entscheidende Rolle für das Ver-
ständnis von kolloidalen Systemen jeglicher Art — in Anwendungen aus der Biologie sind sie gar
von lebenswichtiger Bedeutung. In dieser Dissertation untersuche ich die Diffusion von Makro-
molekülen in verschiedenen Umgebungen anhand von drei typischen Modellszenarien.

Der zentrale Teil dieser Arbeit beschäftigt sich mit der Dynamik in Suspensionen dünner Stäb-
chen, wobei die Stabform eine Idealisierung anisotroper, länglicher Teilchen mikroskopischer Grö-
ße darstellt. Ein vereinfachtes Modell wird ausgearbeitet, welches das Problem auf die Bewe-
gung eines einzelnen Stäbchens in einem zweidimensionalen Parcours von punktförmigen Hin-
dernissen reduziert. Ich untersuche dieses Modell auf zweierlei Art: Zum einen habe ich Mole-
kulardynamik-Simulationen entwickelt, die die Brownsche Bewegung des Stäbchens über neun
Größenordnungen in der Zeit berechnen. Experimentell relevante Observablen werden dabei in
statistisch exzellenter Qualität erfasst, u.a. die intermediäre Streufunktion mit einem Rauschpegel
von 10−4. Zum Zweiten formuliere ich eine analytische Beschreibung dieser Dynamik auf meso-
skopischer Skala, basierend auf der Smoluchowski-Perrin-Gleichung der freien Diffusion. Erstmals
präsentiere ich hierzu die geschlossene Lösung dieser Gleichung in zwei Dimensionen und zeige,
dass man mithilfe der Messung zweier Diffusionskoeffizienten eine quantitative mesoskopische
Theorie für Systeme mit Hindernissen gewinnt.

Der Vergleich der Simulationen mit der Theorie ermöglicht ein fundiertes quantitatives Ver-
ständnis der Dynamik in Suspensionen von Stäbchen, gekennzeichnet durch mehrere Zeit- und
Längenskalen. Ich belege, dass die effektive Theorie bis hinab zu Längenskalen von der Größe
des mittleren Teilchenabstands gültig ist und untermauere die bisher nicht verlässlich gestützten
skalentheoretischen Vorhersagen von Doi und Edwards. Schließlich finde und erkläre ich ein in-
termediäres Potenzgesetz in den Streufunktionen. Dies interpretiere ich als ein neues generisches
Charakteristikum der anisotopen Dynamik von Stäbchen in ungeordneten Suspensionen mit star-
ker gegenseitiger räumliche Einschränkung.

In Ergänzung dieses Themenkomplexes beschäftigt sich der erste Teil der vorliegenden Arbeit
mit dem diffusiven Transport in heterogenen Umgebungen fraktaler Geometrie — eine Fragestel-
lung, die für die Dynamik beispielsweise in porösen Medien und in der sehr heterogen zusammen-
gesetzten biologischen Zelle relevant ist. Im Rahmen des Lorentz-Modells bilde ich dieses Trans-
portproblem ab auf die Diffusion eines einzelnen, isotropen Teilchens im Leerraum zwischen zu-
fällig angeordneten harten Kugeln. Ich präsentiere umfangreiche Computersimulationen zusam-
men mit einer detaillierten Skalenanalyse der kritischen Dynamik in der Nähe des Perkolation-
sübergangs. In unmittelbarer Nähe des kritischen Punktes beobachte ich anomale Diffusion über
vier Größenordnungen in der Zeit. Diese herausragende Genauigkeit ermöglicht die Darstellung
der universellen dynamischen Skalenfunktion im sehr langsam konvergierenden Übergang zum
anomalen Bewegungsgesetz, unter Einbeziehung universeller Korrekturen des Potenzverhaltens.

Der letzte Teil der Arbeit ist der Dynamik einzelner semiflexibler Filamente gewidmet, die
z.B. im Zytoskelett der Zelle essentielle mechanische Aufgaben erfüllen. Die Bewegungsgleichung
eines solchen Polymers in strömenden Flüssigkeiten drücke ich durch die Dynamik der Eigen-
moden aus, unter Berücksichtigung der Zwangsbedingung longitudinaler Steifigkeit. Eine darauf
aufbauende Analyse der Rotation eines Polymers in Scheerströmungen beleuchtet das charakter-
istische Verhalten der Modenspektren.

Zusammenfassend vertiefen meine Ergebnisse fundamental das Verständnis dynamischer Pro-
zesse bei der Diffusion von Makromolekülen, mit konkreten Vorhersagen für auch experimentell
messbare Größen. Besonders zu nennen ist hier die Streufunktion einer Suspension von Stäbchen,
deren intermediäres Potenzverhalten ich als ein universelles Merkmal der Reptationsbewegung
von Stäbchen ansehe.
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Chapter 1

Introduction

For classical transport processes on the microscopic scale, one of the central paradigms of physics
is in most cases irrelevant: energy conservation. All dynamics taking place in such systems is diffu-
sive, i.e., the moving objects incessantly exchange energy with a heat bath. The resulting stochastic
fluctuations always contribute dominantly to the dynamics, at least as long as lifelike systems are
considered that are not principally driven by some energy input. This thesis is devoted to the the-
oretical understanding of such diffusive processes on the micro- and nanoscale, with the focus on
models for the motion of macromolecules in heterogeneous environments.

Several properties of the molecules and their environment render the dynamics nontrivial and
enrich substantially the picture formed by Robert Brown, Albert Einstein and other in the last cen-
turies. From the point of view of a tagged diffusing macromolecule, the space it explores in real
systems is usually filled with other objects, reducing the accessible volume considerably. Several
materials found in nature even have fractal structure, such that the transport, taking place within,
traverses routes of self-similar geometry. This alters fundamentally the laws of motion and induces
phase transitions in the dynamic processes, in addition to the geometric percolation problem in
the underlying static structure; both are controlled by the fraction of available volume. Turning the
attention from the environment to the moving molecules themselves, their shape changes not only
the individually preferred direction of motion due to friction—even more important, dense collec-
tions of markedly anisotropic objects evoke entanglement effects caused by the steric interactions
among each other. In highly packed situations, the combined influences of shape and excluded
volume also yield a variety of structural and dynamical phase transitions resulting in different nu-
ances of reduced motility. Besides shape of the molecules and structure of the environment, the
last feature we mention here having major influence on the dynamics are internal degrees of free-
dom of the diffusing objects. An example relevant for the motion of macromolecules are elastic
deformations, like bend and twist, which may also have effects back on the aforementioned top-
ics.

Given such an abundance of highly complex dynamic problems, the present work aims to
deepen the understanding of one sample scenery that aggregates several of the mentioned as-
pects. Stiff polymers combine the interesting effects of an extreme shape anisotropy with internal
elastic degrees of freedom—when suspended in solutions they constitute a strongly interacting
system subject to complex dynamic and structural processes. Such highly anisotropic, rod-shaped
objects of micrometer or nanometer size are numerous in nature and technology. Some examples
are the tobacco mosaic virus, a nanometer sized virus of rodlike appearance, carbon nanotubes,
a material remarkably versatile in physical properties, and asbestos fibers, fibrous crystals which
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2 Chapter 1. Introduction

Figure 1.1: Left: TEM of labeled tobacco mosaic viruses. The scale bar represents 200nm in the big photo,
100nm in the small one. The aspect ratio varies from 15 to more than 50 [110]. Right: Optical microscope im-
age of monodisperse Selenium rod-like colloidal particles of length 820nm and aspect ratio 3.6, at a particle
volume fraction of 0.042 [105].

gained notoriety for serious health problems they cause when inhaled. An electron micrograph of
tobacco mosaic viruses is shown in Fig. 1.1, revealing their strongly prolonged profile. In the same
figure, a snapshot of an optical microscope shows ellipsoidal colloids as used for experiments dis-
closing some features of colloidal dynamics. In biology, various types of stiff filaments play a vital
role for the mechanical stability and transport logistics of a cell. F-actin filaments for instance
form the cytoskeleton, a randomly structured scaffold stabilizing the cell; furthermore, they are
responsible for cell locomotion and build the mechanical frame for muscular activity. Microtubuli
are another biological type of stiff rod-like macromolecules; they span across the whole cell, push
it apart during cell division, and constitute a runway for motor proteins that are responsible for
active transport within the cell. Fig. 1.2 exemplifies the emerging filamentous network structures
by an image of a crosslinked F-actin network.

Here we want to concentrate on dynamic aspects of disordered suspensions of stiff polymers.
Relating to the above-mentioned examples, this corresponds to the idealized situation of an iso-
tropic disordered assembly of rodlike objects in solution, free to diffuse around apart from the
steric interactions of the colloidal particles itself. The complexity of the task still is overwhelming,
and this work, too, is not able to present a complete solution that embraces all different facets of
the problem. Instead we deal with three model systems that isolate different fundamental com-
ponents of the overall problem, this way elucidating basic building blocks that are essential for
understanding the full system.

As the pivotal part we present an analysis of the anisotropic diffusion in dense suspensions of
rods. We aim to expound and understand the implications of the dynamic interactions between
the suspended particles; they yield mutual constraints on all partaking rods, restricting severely
the dynamically accessible volume transverse to the orientation of the rods, whereas the longitu-
dinal motility is affected much less. This is termed a spatial entanglement, in the non quantum
mechanical meaning of the word, to be distinguished from structural phase transitions, that arise
in suspensions of densely packed rods when the particle volume fraction becomes appreciable.
These transitions to ordered phases often mask the dynamic entanglement, when not care is taken
of a large enough aspect ratio—as a consequence few is known about these interesting dynamic
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Figure 1.2: Confocal image (projec-
tion of 5µm height) of a F-actin
network with fascin cross-links; the
scale bar denotes a length of 10µm
[134].

effects in isotropic suspensions. Since this is however an indispensable element of understand-
ing suspensions of stiff filaments, we develop and evaluate a model system that pinpoints these
properties. The model neglects elasticity and excluded volume, approximates the interactions by
a single particle dynamics, and moreover reduces the dimension of the embedding space. These
simplifications are a prerequisite to make possible an investigation on all relevant timescales—
thereby we are able to formulate an effective theory that excellently describes the collective dy-
namics, far in excess of the approximations of the model.

In extension of this central part, two related problems with different focus pave the way for a
more complex description of suspensions of stiff polymers. First, a model is evaluated that neglects
the shape asymmetry of the diffusing particles, in favor of an elaborate examination of excluded
volume effects. The model describes the motion of noninteracting isotropic particles in an envi-
ronment with excluded volume of fractal structure. This environment represents the large class
of heterogeneous materials, defined by internal length scales covering wide ranges in magnitude.
The dynamics observed in such systems can be either diffusive, corresponding to a more or less un-
hindered motion, or localized, i.e., spatially constrained, or even anomalous, when the large range
of length scales is reflected in a likewise width of time scales. An example where this becomes im-
portant also for the dynamics of stiff polymers is the internal structure found in biological cells,
as visualized in Fig. 1.3: Apart from filamentous objects, the cell is filled with a large amount of
proteins, membranes, vesicles, etc., such that diffusion within this molecular crowd can be mod-
eled as an obstacle course of self-similar conformation. Usually, the characteristic timescales for
the motion of the obstacles and that of the tracer particle are very different, hence the obstacle
positions can be approximated as fixed on the scale of the moving particle. This leads to percola-
tion problems for the trajectories in the accessible space, dealt with in the context of the Lorentz
model. We exploit this model by computer simulations and a dynamic scaling theory close to the
localization transition, substantiating also the relevance for real systems.

Finally, we examine another fundamental aspect of the dynamics of stiff polymers: the lat-
eral elasticity of their backbone. Here, we consider dilute suspensions of semiflexible polymers,
such that any interaction between different polymers can be neglected and only single filament
dynamics is relevant. The standard model covering elasticity aspects of polymer dynamics is the
wormlike chain model, where the integral of the squared local curvature is drawn on as a measure
of the bending energy. We address a generic problem of computer simulations of this model: Sim-
ulations of stiff polymers in discretized real space encounter difficulties to follow the short time
stochastic dynamics on the smallest contributing spatial scale, when simultaneously properties
are to be measured that are relevant on timescales of several orders of magnitude larger. As an
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Figure 1.3: Three-dimensional visual-
ization of an electron tomogram of a
yeast cell, showing plasma membrane,
microtubules and light vacuoles (green),
nucleus, dark vacuoles and dark vesi-
cles (gold), mitochondria and large dark
vesicles (blue) and light vesicles (pink)
[75].

alternative, we work out a formulation in mode space that naturally deals with the dynamics in
the stiff rod limit. In this spatially continuous representation, the deviations of the conformation
of a semiflexible polymer from the limit of a straight rod are calculated by accounting for the dy-
namics of the eigenmodes of successively smaller wavelength. This formulation might serve as an
option to introduce flexibility effects in the theory of rod suspensions. As an additional benefit, it
opens up the possibility for the simulation of the dynamics of bundles of stiff filaments, by means
of the effective stiffness that can be attributed to a bundle of filaments. This way, the multi-particle
dynamics of bundles is reduced to an effective single particle system.

The models under consideration in this theoretical work have in common the reduction of
multi-particle dynamics to effective systems with only one particle moving. In the main part, this
allows for the formulation of an effective theory for the dynamics of stiff rods, which we manifest
to grasp all dynamic aspects above certain length and timescales. We argue in detail for the validity
of these effective approaches, supported by preliminary simulations that inspect dynamic proper-
ties of the environment. Hydrodynamic interactions, and more specific, hydrodynamic backflow
effects, are not discussed in any of the systems under consideration. Although of long-range, we
expect them not to be of major influence on the problems in question [126]. Summarizing all the
above, the findings of this thesis are gathered to contribute to the theoretical understanding of
properties connected to, but not only relevant to the dynamics within suspensions of stiff poly-
mers.

In the remaining part of this introduction we briefly summarize the contents of each of the
three major parts of this thesis. The publications compiled so far from it are listed in Appendix D.

1.1 Diffusion in heterogeneous environments

In Chapter 2, we investigate the dynamic properties of a classical tracer particle in a random, disor-
dered medium. In particular, we focus on the critical dynamics close to the localization transition,
i.e., when the excluded volume in the disordered medium becomes so large that the particle gets
trapped. To this end, we study a versatile model for transport in disordered environments that
goes back to Lorentz: A pointlike particle moves in a three-dimensional environment randomly
filled with hard spheres that can overlap each other.

For Lorentz models obeying Newtonian and diffusive motion at the microscale, we have per-
formed large-scale computer simulations, covering up to 10 decades in simulated time. We demon-
strate that universality holds at long times in the immediate vicinity of the transition, and deduce
the critical power law of the diffusion coefficient. A thorough analysis of the dynamic scaling func-
tion of the mean-square displacement is worked out, describing the crossover from anomalous
transport to diffusive motion. The dynamic scaling function is found to vary extremely slowly, and
spans at least 5 decades in time. For its extraction, one has to allow for the leading universal correc-
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tions to scaling, due to the slow convergence to the asymptotic regime. When comparing diffusive
motion with Newtonian dynamics, the former is characterized by considerably longer transient
regimes in the approach to the critical power laws, and requires also a substantially larger correc-
tion amplitude for the dynamic scaling.

Our findings suggest that apparent power laws with varying exponents generically occur and
dominate experimentally accessible time windows as soon as the heterogeneities cover a decade
in length scale—only the large range of time covered by our simulations allows for the reliable
identification of the correct critical exponents. We extract the divergent length scales, character-
istic for the continuous phase transition, and quantify the spatial heterogeneities in terms of the
non-Gaussian parameter.

1.2 Anisotropic diffusion of strongly hindered rods

Slender rods in concentrated suspensions constitute strongly interacting systems with rich dynam-
ics: Transport slows down drastically, caused by the topological constraints that neighboring fila-
ments impose upon each other, and as a consequence, the anisotropy of the motion can become
arbitrarily large. We set up a model system for the entanglement dynamics of stiff polymers, in
which an infinitely thin needle explores a planar course of point obstacles. The model includes the
essential interaction mechanism between rods, but still is simple enough to allow for the in-depth
analysis by as well computer simulations as analytical methods.

A comprehensive theory for the dynamics of suspensions of rods is an open problem, and even
the free diffusion of a single rod in a plane has not been solved until now. In Chapter 3, we present
the solution of the Smoluchowski-Perrin equation for the diffusion of a rod in a two dimensions,
anticipating its later evaluation as an effective theory. Complementary to the solution for the in-
termediate scattering function obtained this way, we work out a perturbative approach, yielding
simple expressions for the moments. The chapter is completed by computer simulations of the
free diffusion of a rod, validated in comparison with the analytical results.

The constrained dynamics of the entanglement model is scrutinized in Chapter 4. Large-scale
simulations provide a quantitative foundation of the tube concept for stiff polymers, by proving
the conjectured scaling relations from the fast transverse equilibration to the slowest process of
orientational relaxation. We determine the rotational diffusion coefficient of the tracer, its angular
confinement, and the tube diameter.

Based on the exact solution of the Smoluchowski-Perrin equation, we develop a mesoscopic
description of the dynamics down to the length scale of the interparticle distance. It is in quan-
titative agreement with the Brownian dynamics simulations in the dense regime. In examining
the mean-square displacement we exhibit the dynamic transitions between constrained motion
inside the tube, anisotropic diffusion with strong coupling of rotation and translation, and ulti-
mately, isotropic diffusion with density-dependent diffusion coefficients. The anisotropic motion
entails notably non-Gaussian statistics, as revealed by a comparison of the non-Gaussian param-
eter with the predictions from the theory. In exploring the mesoscopic description we discuss in
detail several experimentally relevant scattering functions. In particular, we show that the tube
confinement is characterized by a power law decay of the intermediate scattering function with
exponent 1/2.
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1.3 Mode dynamics of a semiflexible polymer

Chapter 5 presents a novel method to investigate the dynamics of a single semiflexible polymer,
subject to anisotropic friction in a viscous fluid. In contrast to previous approaches, we do not
rely on a discrete bead-rod model, but introduce a suitable normal mode decomposition of a con-
tinuous space curve. Elastic energy of lateral bending is assigned to the filament according to the
wormlike chain model, and boundary conditions are chosen to allow for free fluctuations in the
solvent.

By means of a perturbation expansion for stiff filaments we derive a closed set of coupled
Langevin equations in mode space for the dynamics in two dimensions. The formulation takes
into account exactly the local constraint of inextensibility, and is evaluated to linear order in the
mode amplitudes, but quadratically in the expansion parameter. The stochastic differential equa-
tions obtained this way are solved numerically, with parameters adjusted to describe the motion of
actin filaments. We analyze the mode spectrum as well as the mean square displacement, the lat-
ter displaying the power law expected for semiflexible filaments. For the tumbling motion in shear
flow, we find transient algebraic decays in the power spectral densities, and identify a crossover
regime in the scaling of the tumbling frequency.



Chapter 2

Critical dynamics of Brownian particles

in a heterogeneous environment

Heterogeneous materials abound in synthetic products and in nature; they are composed of do-
mains of different materials or phases, with characteristic dimensions covering a wide range of
length scales. A physical understanding of their macroscopic properties, such as mechanical elas-
ticity, electrical conductivity, particle transport, or fluid permeability has far reaching consequen-
ces for applications in material science, nano-chemistry, oil recovery, and even biology. Examples
include anomalous transport of tracers in porous soil columns [24], slow diffusion of sodium ions
in sodium silicates [109, 158], and transport in colloidal gels close to gelation [1, 28, 125, 130, 167]
In biology, the dense packing of differently sized proteins, lipids, and sugars in the cell cytoplasm
is summarized as macromolecular crowding [36, 37, 60]. It leads to a suppression of diffusion with
increasing molecular weight [6] and to anomalous diffusion [132], observed in eukaryotes [21, 59,
102, 148, 161] and bacteria [53].

Transport of tagged ions, macromolecules, or nanoparticles in such heterogeneous environ-
ments is strongly hindered, since the presence of a variety of components reduces the accessible
volume to a small fraction of three-dimensional space. In computer simulations, one observes a
drastic suppression of the diffusion coefficient by up to several orders of magnitude upon decreas-
ing the porosity, i.e., the fraction of the non-excluded volume. There, the medium is often modeled
by randomly placed obstacles [82, 143, 149, 157], but recent studies investigate also realistically re-
constructed media, e.g., Vycor glass [77] and North Sea chalk [78].

In the above examples, three major transport phenomena are observed: normal diffusion,
immobilization or localization, and anomalous transport. We will demonstrate in the following
that all three aspects may be unified into the concept of transport in a disordered, heterogeneous
medium with a percolation transition; such a transition entails a critical point with a divergent
correlation length. The asymptotic behavior of this length scale in the critical region, together with
the intrinsic properties at criticality, is encoded in the renormalization group flow; therefrom, all
macroscopic observables (such as the diffusion coefficient) can be inferred in principle. This leads
to the postulate of universality: systems sharing the same critical point exhibit the same univer-
sal scaling laws in the critical regime. Consequently, one expects a generic mechanism for slow,
anomalous transport in a heterogeneous environment.

In a recent study on the Lorentz model, i.e., for a ballistic tracer in a porous medium, we have
shown that a continuum percolation transition of the accessible volume is responsible for the sup-
pression of the diffusion coefficient [72]. We have successfully applied the theory of critical dy-

7
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namic scaling to explain the dynamics over many decades of time and length scales, covering a
large range of porosities. This analysis will be extended and further substantiated here. In addi-
tion, we present simulation results for Brownian particles in a porous medium, modeling macro-
scopic particles, e.g., proteins, that experience thermal fluctuations from a solvent. Universality
implies that the long-time behavior of dynamic observables close to the transition is independent
of the microscopic details. It predicts that the critical exponents of the anomalous diffusion and
the scaling of the diffusion coefficient are the same and moreover that the scaling functions coin-
cide. The equivalence of ballistic and Brownian particles is well known for molecular and colloidal
glasses [52], and it is expected to hold generally for slow dynamics. By a direct comparison of ballis-
tic and Brownian particles, we test this hypothesis and give an estimate of the asymptotic scaling
regime. The latter is essential for the interpretation of experiments, since it allows to assess the
applicability of the asymptotic laws to a specific measurement window.

Let us summarize the different transport phenomena briefly. Diffusion is well known and un-
derstood since more than a century now [46, 65]. It is connected with Brownian motion, observed
for a large particle kicked around by the surrounding gas or solvent molecules. The corresponding
mean-square displacement grows linearly in time,

δr 2(t ) :=
〈
∆R(t )2〉= 2d Dt , (2.1)

where ∆R(t ) denotes the displacement of the particle after a sufficiently long time lag t , d is the
space dimension, and

〈
. . .

〉
an appropriate average. The phenomenon of localization is reflected

in a plateau in the mean-square displacement, defining the localization length ℓ,

δr 2(t ) = const = ℓ2. (2.2)

Particles may be immobilized due to chemical binding, or they get trapped in cages formed by the
surroundings.

Anomalous transport is certainly the most fascinating phenomenon among the three. Con-
trary to normal diffusion, it is not simply a consequence of the central limit theorem; in particular,
it requires the non-trivial presence of either a broad distribution of time scales or long-ranged cor-
relations [17]. The mean-square displacement exhibits a power law growth with a fractal exponent,

δr 2(t ) ∼ t 2/dw ; (2.3)

here we shall discuss subdiffusion, dw > 2. In most cases, it originates in one of two mechanisms:
binding to finite traps with a broad distribution of binding rates, or confined motion in a spatially
non-uniform, heterogeneous medium. Both scenarios may be easily distinguished experimentally,
since binding rates obey an Arrhenius law in general, and thus, the dynamic coefficients are very
sensitive to temperature changes. Steric interaction in contrast is insensitive to temperature and
often conveniently modeled by hard potentials.

In the following two sections we first introduce the Lorentz model and collect some results
from its connection to the theory of continuum percolation, essential for the subsequent analysis.

2.1 The Lorentz model

The Lorentz model is a generic model covering all of the above aspects of transport in a hetero-
geneous environment. It has attracted the attention of researchers in statistical physics over more
than a century by now and was applied to various contexts. Lorentz introduced the model in 1905



2.1. The Lorentz model 9

as a microscopic justification of the Drude conductivity of a metal [98]: a non-interacting electron
gas is scattered off randomly distributed ions. Equivalently, one may think of a single ballistic and
point-like tracer particle with velocity v = |v |, exploring the void space between randomly, uni-
formly, and independently placed scatterers of number density n. A hard-core interaction with the
scatterers is usually employed, yielding impenetrable obstacles of radiusσ. This interaction poten-
tial is equivalent to a tracer particle and obstacles sharing the same radius σ/2. The kinetic energy
of the particle is conserved, and the unit time and length scales are set by σ and t0 := v−1σ, respec-
tively. The only control parameter of the model is the dimensionless obstacle density n∗ := nσd ; it
is directly linked with the porosity of the medium,

φ= exp(−4πn∗/3). (2.4)

Statistical averages include different initial positions (restricted to the void space) and velocities
(with fixed magnitude) and different realizations of the disorder; in particular, the tracer particle is
not restricted to the percolating cluster.

Although the model is a deterministic system, the initial velocity of the particle is quickly
randomized by subsequent collisions with the obstacles, yielding diffusive motion on large time
scales. Such a stochastic trajectory may be thought of as a hopping process with a general dis-
tribution of waiting times pτ(τ) and displacements pa (a), cf. Ref. 17. Provided that the first and
second moments exist, uncorrelated steps generate diffusive motion on large time scales with dif-
fusion coefficient

D =
〈

a2
〉

2d
〈
τ
〉 =

v2
〈
τ2

〉

2d
〈
τ
〉 ; (2.5)

the second form refers to a ballistic particle with fixed kinetic energy. In the Lorentz model, the
collisions constitute a Poisson process with average rate τ−1

c , thus the waiting time distribution has
first and second moments

〈
τ
〉
= τc and

〈
τ2

〉
= 2τ2

c , respectively. The mean collision rate follows
from the condition to encounter no obstacles in a corridor of volume πσ2(vτc ) = 1/n in d = 3
dimensions, and thus τ−1

c = πn∗v/σ. Since the differential scattering cross-section for a sphere
is isotropic, it corresponds to the transport cross-section describing the transfer of momentum;
subsequent collisions are uncorrelated in the dilute limit, n∗ → 0. Under these conditions, Eq. (2.5)
yields the correct diffusion coefficient [98],

D0 =
vσ

3πn∗ for n∗ → 0, (2.6)

recovering the leading order in an asymptotic low-density expansion [155, 160].
At finite densities, spatial correlations between obstacles induce persistent anti-correlations of

the velocity, which are reflected in a negative tail of the velocity-autocorrelation function [39, 150],
ψ(t ) =

〈
v (t ) ·v (0)

〉
/v2 ∼ −t−d/2−1 for t → ∞. Since the integral over ψ(t ) is related to the diffu-

sion coefficient, such a tail reduces D . The long-time tail can be thought of as a consequence of
backscattering events preferring the return of the particle to its origin, emphasizing the impor-
tance of the topology of the obstacle matrix. The exponent of the tail is universal, i.e., it does not
depend on the density of the scatterers. But as the density is increased, a pre-asymptotic, negative
tail emerges, which suppresses the diffusion coefficient additionally [55, 56, 70, 100]. At a critical
obstacle density n∗

c , the pre-asymptotic tail persists for all times, yielding exactly zero diffusivity.
At higher densities, diffusion is absent too: the tagged particle is trapped, and the mean-square

displacement saturates. The transition from diffusion to localization has the signatures of a contin-
uous phase transition; it exhibits power-law divergences of physical quantities with universal criti-
cal exponents. In particular, the diffusion coefficient vanishes with a power law upon approaching
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the critical density,
D ∼ |n∗−n∗

c |µ. (2.7)

The localization transition was predicted by a mode-coupling approach [55, 56, 108] and by a map-
ping to continuum percolation [81, 104]. The direct link between the Lorentz model and contin-
uum percolation, however, was established only recently [72]; it is substantiated further by the data
presented in Section 2.4. Since the interpretation of the data depends on some results of contin-
uum percolation theory, the next section summarizes briefly its central results; more details are
found in Ref. 72 and Publication D.2.

2.2 Transport on percolation networks

In the Lorentz model, the transport of a particle in the percolating void space may be understood
as a random hopping process between the nodes of the network with lattice constant ξ. Hence,
the motion of such a particle is diffusive at scales much larger than the correlation length ξ. Note
that ξ also characterizes the linear dimension of the largest finite clusters. Along the fractal chains
of the network, however, the dynamics is slow and exhibits anomalous transport characterized by
the walk dimension dw > 2, 〈

∆R(t )2〉
chain ∼ t 2/dw . (2.8)

The time scale associated with ξ obeys tx ∼ ξdw , and diffusion is observed for long times, t ≫ tx,
with a coefficient according to Eq. (2.5). If the particle starts at any cluster, the diffusion coefficient
is given by

D = P∞ ξ2/tx ∼ |ǫ|βξ2−dw , (2.9)

where the factor P∞ allows for the zero diffusion coefficient of particles on finite clusters, and the
separation parameter ǫ is defined for the Lorentz model by ǫ := (n∗−n∗

c )/n∗
c . Recalling D ∼ |ǫ|µ

from Eq. (2.7), and with the critical exponent ν of the correlation length, ξ∼ |ǫ|−ν, the conductivity
exponent is related to the walk dimension by

µ= (dw −2)ν+β. (2.10)

In the above calculation, the diffusion coefficients of particles from different clusters were
averaged. Instead of taking the cluster average in the end, one may average already the mean-
square displacement. Then, the relevant dynamic length scale is the root-mean-square cluster
radius [69, 72],

ℓ∼ |ǫ|−ν+β/2, (2.11)

and anomalous transport is characterized by the dynamic exponent z different from dw (Ref. 10),

δr 2(t ) ∼ t 2/z for t ≪ tx. (2.12)

The crossover time scale tx, being the same for all clusters, is not affected by the cluster average.
It holds ℓz ∼ ξdw ∼ tx, and therewith D ∼ ℓ2/tx ∼ ℓ2−z , which yields a scaling relation connecting µ

and z,

z = 2ν−β+µ

ν−β/2
. (2.13)

z is expected to deviate from its universal value on lattices for d ≥ 3; moreover, z can be calcu-
lated from the geometric exponents ν and β which are believed to equal their universal lattice val-
ues [35]; in three dimensions, we use ν= 0.88 and β= 0.41 throughout this work [140], evaluating
Eq. (2.13) to z = 6.25.
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2.3 Simulation details

Molecular Dynamics simulations allow for a direct numerical analysis of the dynamic properties of
the Lorentz model without resorting to random resistor networks. Thus, a quantitative description
over the full density range becomes accessible. Ballistic trajectories are produced by means of a
standard simulation algorithm already employed by Bruin [19]. It is combined with a method for
calculating correlation functions online, optimized for exponentially large time scales. For Brow-
nian particles, we have extended this simulation algorithm to include stochastic forces similar to
recently discussed ideas [133].

2.3.1 Ballistic particles

We use an event-oriented simulation algorithm, since the tracer particle and the obstacles interact
via a hard-core potential. The algorithm propagates the particle freely from collision to collision,
in each case calculating the precise point in time of the next interaction with an obstacle. If the
particle is located at r with velocity v , it possibly hits a single obstacle in the coordinate origin
after the time interval 1

tcoll =− b

v2
− 1

v2

√
b2 − v2(r 2 −σ2), (2.14)

where b = v ·r . If b > 0, the particle departs from the obstacle and no collision will take place. If the
radicand becomes negative, the particle misses the obstacle. The particle is scattered specularly,
its post-collisional velocity is

v ′ = v −2(v · σ̂)σ̂, (2.15)

where σ̂= (v tcoll + r )/σ specifies the surface normal at the collision point.
Therewith, the implemented algorithm is straightforward: In a preparation step, the obstacle

positions and the initial phase space coordinates of the particle are chosen randomly from a uni-
form distribution, under the constraint that the particle starts in the void space and |v | = v . To
reduce the number of collision tests, the simulation box is divided into small cubic cells, on av-
erage containing one or two obstacles; only obstacles from the cell where the particle is located
and from neighboring cells are considered. Then, repeated collision tests and propagation of the
particle to the next collision point yield the trajectory.

Since a single trajectory can consist of several billion collisions, one easily runs out of computer
memory if one would store the complete trajectory. An efficient blocking scheme
(“order-n algorithm”, see Ref. 45) takes care of this issue by arranging the trajectory on a logarith-
mic time grid and simultaneously calculating various correlation functions C (t ; t0). The algorithm
already averages over different time origins t0 (“moving time average”), which are, however, not
necessarily uncorrelated, especially for short time intervals t − t0. Hence, we will not infer any es-
timate of the statistical error from this averaging procedure. Rather, a set of Nt trajectories with
different initial positions for each of Nr different realizations of the obstacle disorder is simulated,
and the statistical error is estimated from Nt × Nr independent measurements. At each density,
we have simulated at least Nr = 20 realizations of the disorder. At intermediate densities, the total
number of trajectories has been chosen Nt ×Nr > 100. This value has been increased up to 600 at
very high densities, where the phase space is highly decomposed into small, disconnected parts.

1The numerical error can be reduced using tcoll = min[q/v2, (r 2 −σ2)/q], where q = −b +
√

b2 − v2(r 2 −σ2) and
b < 0. This formula avoids the calculation of the difference between two almost equal numbers which would occur for
b2 ≫ v2(r 2 −σ2).
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Figure 2.1: Typical particle
trajectory in two dimensions,
demonstrating the Brownian
dynamics algorithm. Collisions
with an obstacle are indicated
by blue circles. Arrows indicate
the direction and magnitude
of the velocity after a collision
(blue/dark) and after drawing a
new velocity from the Boltzmann
distribution (green/gray).

The longest trajectories span about 1010 collisions, the demand on CPU time for such a trajectory
was about 15 hours on a single AMD Opteron 248 processor core.

All numerical results presented in this work refer to fixed dimensionality, d = 3. The simulation
box has periodic boundaries, and its linear size was chosen as L = 200σ. A detailed finite-size
analysis can be found in Publication D.2.

2.3.2 Brownian particles

When the pores between the obstacles are filled with some solvent, the tracer particle performs
Brownian motion on microscopic time and length scales. By another Einstein relation, the sol-
vent’s friction coefficient and temperature yield the coefficient DB

0 of free diffusion. It may be
combined with an intrinsic length scale in the system, e.g., the obstacle radius σ, yielding a mi-
croscopic time scale t0 := σ2/DB

0 . All averages for Brownian particles will refer to the canonical
ensemble throughout the article.

The overdamped dynamics of the tracer may be described by an effective stochastic force,
caused by incessant collisions with solvent molecules. We have extended the above simulation
algorithm by taking advantage of a coarse-grained scheme, where the ballistic trajectory is fre-
quently interrupted by an equilibration with the solvent. After each fixed time interval τB a new
velocity is assigned to the tracer particle, randomly drawn from the normalized Boltzmann distri-
bution,

pv (v ) ∝ exp

(
− mv2

2kBT

)
. (2.16)

Any hydrodynamic interactions are neglected. Such a simulation scheme for Brownian particles
with hard-core interactions was carefully tested recently [133]; a similar approach was already
studied by Alley [4], where the equilibration was restricted to the instants of particle collisions.
Fig. 2.1 exemplifies the motion in two dimensions, demonstrating the velocity changes along the
trajectory caused by events of collision and equilibration.
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Figure 2.2: Convergence of the
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of the Brownian particle for de-
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Without obstacles, the algorithm yields a τB-dependent diffusion coefficient, cf. Eq. (2.5),

DB
0 =

〈
v2

〉
τB

2d
= kBT

2m
τB. (2.17)

The obtained motion is obviously only diffusive for times larger than τB. To model Brownian mo-
tion at all physically relevant time scales, one has to choose τB smaller than the shortest time scale
of the system; in the present problem, this is the average time interval τc between collisions with
obstacles. The dependence of the diffusion coefficient on τB is shown in Fig. 2.2. We consider the
value of τB sufficiently small when the macroscopic diffusion coefficient does not depend on τB

anymore, resulting in τB ≈ 0.3τc at criticality, n∗ = 0.839.
Considering the velocity-autocorrelation function ψ(t ) =

〈
v (0) ·v (t )

〉
/v2 for the combined al-

gorithm of Brownian dynamics and ballistic collisions, one would naively expect that all corre-
lations in the velocity vanish immediately for times t > τB. This seems reasonable, since a new
velocity drawn at random should be uncorrelated to the previous value. The presence of excluded
volume, however, induces correlations for particles sufficiently close to an obstacle if the Brown-
ian update interval and the mean interval between collisions are comparable, τB ≈ τc . As a conse-
quence, ψ(t ) shows periodic anticorrelations for times t > τB, with the periodicity interval τB and
an exponentially decaying amplitude. This effect is demonstrated in Fig. 2.3 for several different
values of τB. Since the focus of this work is on the long-time properties, we defer a more detailed
explanation to Appendix A.

2.4 Simulation results

We have simulated trajectories of ballistic and Brownian tracer particles over a wide range of obsta-
cle densities, above and below the localization transition (Fig. 2.4). The mean-square displacement
exhibits three distinct regimes: at short times, t ≪ t0, transport is not hindered by the obstacles,
and the intrinsic dynamics of the particle is observed, either ballistic or Brownian. In both cases,
this regime is followed by a regime of anomalous transport to be discussed in detail later. At large
time scales, t ≫ tx, and below the localization transition, generic diffusive behavior is recovered.
Above the critical density, the particles are trapped and δr 2(t ) is bounded by ℓ2, the mean-square
cluster size. At the critical density, the dynamics becomes neither diffusive nor trapped, and trans-
port remains anomalous for all times.
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2.4.1 Ballistic particles

Let us discuss ballistic particles first. Diffusion coefficients were extracted from the mean-square
displacements, D = ∂tδr 2(t →∞)/6. They vanish as a critical density n∗

c is approached from below
according to a power law, D ∼ |n∗ −n∗

c |µ. The exponent µ could be fitted to these data; such a
fit, however, depends on a simultaneous determination of the critical density n∗

c . We will rather
use a theoretical prediction for µ that relies on the mapping to random resistor networks [D.2];
therewith, a first test of its validity is obtained. The central hyperscaling relation attained by the
mapping has equivalently been proven by means of an expansion of the renormalization group
equations to arbitrary order in ǫ= 6−d [141], resulting in the relation

µ= max
[

(d −2)ν+ (1−α)−1,µlat
]

, (2.18)

where µlat is the universal exponent for lattice percolation. Eq. (2.18) together with the result
α = 1/2 from Machta and Moore [104] provides µ = ν+ 2 ≈ 2.88. This prediction is clearly cor-
roborated by our results: in Fig. 2.5, the diffusion coefficient obeys the power law over five orders
of magnitude, with a deviation of less than 15%.

The knowledge of µ allows to fit the critical density quite precisely by means of a rectification
plot, showing D1/µ against n∗ on a linear scale; see Fig. 2.5c. We obtain n∗

c = 0.839(4), which co-
incides with the percolation threshold of the void space [35, 80, 129, 152], n∗

perc = 0.8363(24). The
interpretation is that the particle will eventually squeeze through any gap, no matter how narrow.
There are no regions on a cluster which are too improbable to be visited by the particle after an in-
finitely long time. This means furthermore that the particle will diffuse as long as its surrounding
phase space is connected with infinity.

In the localized regime, n∗ > n∗
c , the long-time limit of the mean-square displacement directly

yields the mean cluster radius, δr 2(t ) ≃ ℓ2 for t ≫ tx. Then, the correlation length ξ is easily acces-
sible upon observing that the mean quartic displacement δr 4(t ) :=

〈
∆R(t )4

〉
scales for long times
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Figure 2.5: Critical power law behavior close to the localization transition; black closed symbols refer to
ballistic particles, blue open squares to Brownian ones. (a) As the localization transition is approached,
the diffusion coefficient D vanishes with exponent µ= 2.88. Units are vσ for ballistic and DB

0 for Brownian
particles. (b) The localization length ℓ diverges with exponent ν−β/2 and can clearly be distinguished from
the correlation length, ξ ∼ |ǫ|−ν. (c) Rectification of the diffusion coefficient close to the critical density.
Fitting a straight line to the closest five data points yields the critical density n∗

c . (d) Comparing D with its
asymptotic behavior Dc |ǫ|µ on a semi-logarithmic scale reveals that the deviation from the power law is less
than 10% for ballistic particles, except for the smallest data point.
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as [72]
δr 4(t ) ≃ ξ2ℓ2 for t ≫ tx; (2.19)

this relation is taken as definition for ξ. The extracted length scales ℓ and ξ diverge at the local-
ization transition with exponents ν−β/2 = 0.68 and ν= 0.88, respectively, according to Eqs. (2.11)
and (2.9); see Fig. 2.5b. The values for the exponents are taken from lattice percolation [140], and
thus our data corroborate that the geometric exponents from lattices apply equally to continuum
percolation [35]. Further, the localization length ℓ is identified with the mean-cluster size, as al-
ready anticipated by our notation, and clearly contrasted with the correlation length ξ. Both length
scales are relevant for the dynamics as proposed in Ref. 72. In particular, our results corroborate
the interpretation of the dynamic properties of the Lorentz model in terms of random walks on
percolation clusters.

There is a competing prediction [63] µ= ν+3/2, which is also found in text books [10]. A third,
maybe naive guess suggests µlat ≈ 2.0, the universal value for lattice percolation in d = 3 dimen-
sions [140]. We will allow for these alternative predictions by a sensitive and unbiased test based
on Eq. (2.13), which relates the different values of µ to different exponents z for the anomalous
transport. The latter can be inferred directly at the critical density n∗ = 0.839 from the subdiffusive
behavior of the mean-square displacement, growing as δr 2(t ) ∼ t 2/z for long times, see Fig. 2.6. In
the double-logarithmic plot, our data exhibit a slope manifestly smaller than expected from the
alternative values for z. The data, however, collapse very well with a slope 2/z = 2/6.25 corre-
sponding to µ = 2.88. For t > 105σ/v , we find a deviation of the mean-square displacement from
this asymptotic behavior by less than 7% over time scales spanning 4 decades, see inset. In con-
clusion, only the value µ= 2.88 is consistent with our data, the other two candidates can clearly be
ruled out. Hence, the hyperscaling relation, Eq. (2.18), with the value α= 1/2 holds for the Lorentz
model.
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indicate the estimated long-time limits. The convergence for long times provides compelling support for
this value of µ.
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2.4.2 Brownian particles

For Brownian particles, the different microscopic dynamics becomes immediately apparent in the
short time regime of the mean-square displacement, see Fig. 2.4b. While ballistic particles show
a pronounced bending to diffusive or subdiffusive motion at the time scale of the collisions τc ,
Brownian particles are hardly effected by the obstacles at low densities. At higher densities, the
excluded volume induces a transient subdiffusive regime again; the crossover from microscopic
diffusion to the subdiffusive regime, however, is considerably more spread out.

From universality arguments one expects that the diffusion coefficient vanishes again at some
critical density with a power law that has the same exponent µ as in the case of ballistic particles.
Plotting D1/µ against density n∗ indeed yields a straight line, see Fig. 2.5c. In addition, one infers
that the critical density for Brownian and ballistic particles is the same, emphasizing that the tran-
sition is due to geometric rather than dynamic effects. Yet the asymptotic power law is markedly
slower approached as in the ballistic case.

The slow convergence for overdamped microdynamics is mostly pronounced in the mean-
square displacement at criticality, see Fig. 2.6. For t ≈ 106t0, it is still more than 10% off—about
a factor 100 slower than for ballistic particles. Nevertheless, anomalous diffusion with the same
dynamic exponent z is ultimately observed.

The spatially heterogeneous character of the medium renders the motion non-Gaussian, i.e.,
the distribution of particle displacements after a given time lag deviates from a Gaussian distribu-
tion. In supercooled liquids, dynamic heterogeneities have been quantified in terms of the non-
Gaussian parameter [85], defined as [16]

α2(t ) := 3

5

δr 4(t )
[
δr 2(t )

]2 −1. (2.20)

At moderate densities, the presence of the obstacles lets α2(t ) rise to values around 1 at interme-
diate times, until it decays to a finite value close to zero, see Fig. 2.7. This finite long-time limit
is due to particles trapped in finite clusters; it diverges as criticality is approached. At criticality,
the non-Gaussian parameter is predicted to grow with a power law [72], α2(t ) ∼ tβ/(2ν−β+µ), as a
consequence of the competition between the localization length ℓ and the correlation length ξ.
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Our data provide evidence for a strong increase of α2(t ) close to n∗
c , and a double-logarithmic plot

yields straight lines. The predicted exponent is very small, β/(2ν−β+µ) = 0.097, and difficult to
observe, but compatible with our data.

2.4.3 Dynamic scaling

A more stringent test of the universality of ballistic and Brownian particles compares dynamic scal-
ing functions. The dynamic scaling ansatz for the mean-square displacement reads

δr 2(t ;ǫ) ≃ t 2/z δ̂r 2
±(t/tx) (2.21)

for ǫ→ 0, t ≫ τ0, and with the crossover time scaling as tx ∼ ℓz . Note that the relevant length scale
for the mean-square displacement is the mean cluster size ℓ rather than the correlation length ξ,
due to the infinite life time of the percolation clusters. The subscript ± at the scaling functions
refers to the sign of ǫ, discriminating the different behaviors in the long-time limit. In the following,
we will restrict the discussion to the diffusive regime, ǫ < 0. The scaling function δ̂r 2

−(t̂ ) with t̂ :=
t/tx interpolates between anomalous diffusion at criticality and normal diffusion for long times;
thus

δ̂r 2
−

(
t̂
)
≃

{
A for t̂ → 0,

A′ t̂ 1−2/z for t̂ →∞.
(2.22)

The crossover time may be defined quantitatively by matching both regimes, At 2/z
x = 6Dtx, imply-

ing that tx ∼ Dz/(2−z) for ǫ→ 0. For ballistic particles, the diffusion coefficient observes nicely the
asymptotic law D ∼ |ǫ|µ, see Fig. 2.5d, and plotting δr 2(t )/At 2/z vs. t |ǫ|2ν−β+µ yields a satisfactory
data collapse, see Fig. 2b in Ref. 72. For Brownian particles however, our data for the diffusion
coefficients are not yet in the asymptotic regime and show significant deviations from this behav-
ior. Rescaling the mean-square displacements with tx in terms of ǫ is not expected to lead to data
collapse. Instead, let us rescale time with the measured diffusion coefficients, tx ∝ D−(2ν−β+µ)/µ,
allowing for the deviations of D from its asymptotic behavior, see Fig. 2.8a; the exponent evaluates
to (2ν−β+µ)/µ ≈ 1.47. All curves collapse in the diffusive regime (t̂ ≫ 1) by construction; but in
the critical regime (t̂ ≪ 1), the data fan out, and asymptotic convergence to a constant may only
be anticipated.

Such a behavior hints at corrections to the leading scaling behavior, which carry some fading
reminiscence of the microscopic structure. One has to distinguish between analytic corrections,
which depend, e.g., on the choice of the separation parameter, and universal corrections with non-
integer powers (or logarithmic terms). In the case of ballistic particles [72], we have identified the
leading correction as a universal power law, and excellent data collapse has been achieved in the
critical regime too by allowing for these terms. We have argued that the scaling ansatz for the
mean-square displacement including the leading correction reads

δr 2(t ;ǫ) ≃ t 2/z δ̂r 2
±(t̂ )

[
1+ t−y

∆±
(
t̂
)]

. (2.23)

The exponent y is universal and will be discussed below. The correction function ∆±(t̂ ) is uni-
versal too, but unknown. At criticality, it reduces to a constant, ∆±(0) =: C , and the mean-square
displacement obeys

δr 2(t ;ǫ= 0) ≃ At 2/z
(
1+C t−y

)
. (2.24)

The dynamic correction exponent y can be related to the static correction exponent Ω via the
exponent relation

ydw =Ωdf ; (2.25)
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coefficients. (a) Scaling at leading order: as n∗ → n∗

c , data converge to 1 for small t̂ , and an asymptotic
data collapse may be anticipated. The amplitude A was determined from the inset of Fig. 2.6. (b) Inclusion
of corrections to scaling at leading-order, Eq. (2.23) with ∆−(t̂ ) = C = −9.5t

y
0 , yields excellent data collapse

onto the scaling function δ̂r 2
−(t̂ ). Rescaled and corrected mean-square displacements for ballistic particles

(C = −0.8t
y
0 ) are added in gray from Fig. 2b of Ref. 72. The perfect match of Brownian and ballistic scaling

functions substantiates universality of both systems. Inset: the corrections at criticality, n∗ = 0.839, de-
cay with a power law for long times, see Eq. (2.24). The exponent y = 0.34 is nicely corroborated over two
decades in time, and the amplitude can be limited to the range −9 ≤C t

−y
0 ≤−15 (straight lines).

dw denotes the walk dimension introduced in Eq. (2.3) and df = d −β/ν is the fractal space di-
mension. This relation has been derived by Höfling [69] within a cluster-resolved scaling theory
for percolation. The main idea of the derivation is to consider a propagator for tracer particles
restricted to clusters of size s. Including an irrelevant parameter of the propagator, similar as in
Ref. 72, generates the leading dynamic correction, Eq. (2.23), as well as the leading correction to
the cluster size distribution ns ,

ns ∼ s−τ
[
1+O

(
s−Ω

)]
for s →∞, (2.26)

with the Fisher exponent τ= 1+d/df. For lattice percolation in d = 3, the cluster size distribution
has been analyzed with extensive Monte Carlo simulations [99], and the static correction exponent
has been determined to Ω = 0.64±0.02. Assuming that lattice and continuum percolation share
the same geometric exponents, one calculates for the three-dimensional Lorentz model y = 0.34.

For ballistic particles, the corrections are dominant in the critical regime, and they are well
described by approximating ∆±

(
t̂
)
≈ C . The corrections to the diffusion coefficient are encoded

in ∆−
(
t̂
)

for large t̂ . They are not small for Brownian particles, and such a simple approximation
will fail. But if these deviations are taken into account by hand as above, it seems reasonable to
use ∆±

(
t̂
)
≈ C again. The value of C may be fitted at the critical density by means of Eq. (2.24),

see inset of Fig. 2.8b. Our data corroborate the correction exponent over two decades in time, but
the determination of C is hindered due to statistical noise; the data permit a range 9 ≤ C ≤ 15 (in
units t0 = 1). Note that the correction amplitude is substantially larger than for ballistic particles,
explaining the poor convergence to the long-time asymptote. Away from the critical density, we
have rescaled the mean-square displacements again, taking into account the discussed correc-
tions. Plotting δr 2(t )/At 2/z (1+C t−y ) vs. time rescaled with the measured diffusion coefficients in
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Fig. 2.8b, the data collapse perfectly onto the the scaling function δ̂r 2
−

(
t̂
)
.

The universality hypothesis predicts further that different systems are described by the same
scaling functions, provided the latter encode the renormalization flow between the same two fixed
points; in the present example, the fixed points are given by the critical point and the diffusive
long-time limit. In Fig. 2.8b, we have also included the collapsed mean-square displacements for
ballistic particles from Ref. 72. An excellent match with the data for Brownian particles is observed,
including the crossover regime over more than 5 non-trivial decades in time. Whence the ampli-
tude A and the diffusion coefficients are determined (cf. Figs. 2.5 and 2.6), no adjustable param-
eter enters the plot. One concludes that a single universal scaling function δ̂r 2

−
(
t̂
)

describes the
crossover from anomalous to normal diffusion for both ballistic and Brownian particles.

2.5 Conclusion

The dynamics of ballistic and Brownian particles was investigated in a heterogeneous environ-
ment close to the localization transition. It has been demonstrated that both systems share the
same phenomenology on scales where the microscopic details are not resolved anymore. We have
further corroborated our previous findings that the localization transition is induced solely by a
change in the topology of the medium: the percolation transition of the void space. Most impor-
tantly, our data substantiate that both Brownian and ballistic particles in a percolating medium
belong to the same dynamic universality class. Taking into account the leading corrections to scal-
ing, we have extracted the universal scaling function for the crossover from anomalous, subdiffu-
sive transport to normal diffusion. The crossover is found to vary remarkably slowly, spanning at
least 5 decades in time. In addition, it is an interesting observation that the asymptotic regime is
much slower approached by Brownian particles; this statement refers equally well to the asymp-
totic behavior of the mean-square displacement and to the suppression of the diffusion coefficient
upon approaching the localization transition. As a consequence, to observe the genuine asymp-
totic power law of the anomalous transport is an experimental challenge; very large time windows
are required to distinguish universal behavior from transient crossover phenomena.

Although the divergent length scales ℓ and ξ cover only a decade in the investigated parameter
regimes, we find anomalous transport already over many decades in time. These findings suggest
that in experimentally accessible time windows, it is likely to observe apparent power laws with
varying exponents, even if the spatial heterogeneities extend just over a decade in length scale. In
particular, the Lorentz model provides a generic mechanism for anomalous transport in spatially
heterogeneous media.

As mentioned in the introduction, protein transport in cells is anomalous due to the macro-
molecular crowding. For possible applications to such highly complex systems, the robustness of
the presented scenario has to be discussed. Since the constituents of a cell interact certainly not
via a hard potential, it is tempting to replace the obstacles by soft spheres. As long as the kinetic
energy of the (ballistic) particle is fixed, the dynamics of a single hard particle, however, can be
mapped one-to-one to a soft potential. A canonical ensemble seems more natural for a soft po-
tential, but subsequent averaging with the Boltzmann weight smears out the transition and the
critical properties since some fast particles can always overcome the obstacles. We have checked
for the two-dimensional Lorentz model that this approach indeed reproduces simulation data for
the diffusion coefficient [112].



Chapter 3

The Smoluchowski-Perrin equation for

the diffusion of rods

Brownian motion of highly anisotropic particles is considerably more complex than the diffusion
of spherical objects, which is essentially understood since the seminal works by Einstein and von
Smoluchowski. A shape anisotropy results in diffusion coefficients that depend on the direction
of motion in the body frame, thus inducing a coupling of translation to the orientation. This an-
isotropic dynamics has been investigated in recent experiments measuring diffusion coefficients
of micrometer sized ellipsoids and rods by single particle tracking [12, 64, 116]; in particular, non-
Gaussian statistics has been observed [64]. Likewise in dynamic light scattering, the rotational and
translational diffusion coefficients were determined simultaneously [26]. For these dilute systems,
the ratio of diffusion parallel and perpendicular to the long symmetry axis was limited to values up
to D∥/D⊥ ≈ 4 in quasi two-dimensional confinement.

Considerably higher values of this ratio have been observed in simulations of semi-dilute sus-
pensions of slender rods, yielding D∥/D⊥ up to values of 50 [14, 23]. This increase in anisotropy
is caused by the steric constraints imposed by surrounding rods; thereby the transverse and ro-
tational motion is suppressed, whereas the longitudinal transport is barely influenced [144]. An
intermediate regime of anisotropic diffusion has been derived for ballistic needles within kinetic
theory [119] and was observed in simulations [73].

For a finite width b, the rods undergo a phase transition to the nematic phase at densities of
the order of 1/bL2 as predicted by Onsager [118]. The dynamics in this ordered phase becomes
trivially anisotropic and splits into a fast diffusion along the nematic director axis and slower dif-
fusion perpendicular to it. Such a pronounced anisotropic diffusion has been observed in simu-
lations of nematic elongated ellipsoids [3] and spherocylinders [83, 101]. Experiments have also
clearly demonstrated orientation-dependent diffusion in colloidal nanorods in the isotropic and
nematic phase [151] and in various liquid crystalline phases of fd viruses [96, 97]. The phenomena
connected with the nematic phase transition are essentially understood and will not be discussed
here.

In the isotropic phase, experiments and computer simulations have been restricted to deter-
mine the diffusion coefficients from the mean-square displacements. The complex interplay of
translational and rotational motion as exemplified for a single free ellipsoid [64] has not been stud-
ied for the strongly hindered motion in solution yet. In principle, one should characterize the dy-
namics in terms of an intermediate scattering function or a van Hove correlation function, as has
been done recently for the smectic phase [96].

21
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A general theory for the anisotropic motion of rods in entangled suspensions is a long-standing
problem, due to the intricacy of the many-body interaction. In particular, such a theory should in-
clude memory effects from the translation-rotation coupling and explain the emergence of new
macroscopic time and length scales. To account for phenomena which depend on the simultane-
ous interaction with many particles, a non-perturbative approach is required. Substantial progress
would be achieved in terms of an effective one-particle theory that allows for quantitative predic-
tions.

For this purpose, we work out in detail in the present chapter the single particle theory for a
rod diffusing freely in a two-dimensional embedding space (Secs. 3.1-3.3), and the corresponding
simulations of an unhindered motion (Sec. 3.4). In the subsequent Chapter 4 we then argue and
substantiate quantitatively that this free theory can in fact serve as an excellent effective descrip-
tion for the dynamics in suspensions.

3.1 Unhindered anisotropic motion

Already at the level of a single, free rod the problem is involved; the theoretical description of the
diffusion of rods goes back to the thirties of the previous century, when Perrin developed a theory
for the motion of ellipsoids [123, 124], based on the work of Einstein [34] and Smoluchowski [139].
The full statistical information on the dynamics of a diffusing rod is encoded in the probability
distribution

Ψ(R ,u, t ;R0,u0) =
〈
δ
(
R − r (t )

)
δ
(
R0 − r (0)

)
δ
(
u −eu(t )

)
δ
(
u0 −eu(0)

)〉
, (3.1)

with the the center of mass position R , the orientational unit vector u, and the initial coordinates
R0 and u0 at time t = 0, respectively. The corresponding time dependent variables for specific
realizations of the ensemble are denoted by r (t ) and eu (t ). The central equation governing the
time evolution of Ψ(R ,u, t ;R0,u0) is the Smoluchowski equation, combining rotational diffusion
and anisotropic translational diffusion [11, 31],

∂tΨ=−DrotL̂
2
Ψ+∂R ·

[
(D∥−D⊥)u u +D⊥1

]
·∂RΨ, (3.2)

where L̂2 denotes the angular part of the Laplacian. All microscopic parameters, i.e., temperature,
length and diameter of the rod, and viscosity of the medium, are condensed in three transport
coefficients: the diffusion coefficients for motion parallel and perpendicular to the instantaneous
orientation eu , D∥ and D⊥, and the corresponding one for rotation, Drot. The single time proba-
bility of a freely diffusing rod is a constant, since the problem is time-translation invariant as well
as isotropic and homogeneous in a statistical sense, Ψ0 := Ψ(R ,u) =

〈
δ
(
R − r (t )

)
δ
(
u −eu(t )

)〉
=

1/(volume of phase space). We focus in the following on the dynamics of the two-point conditional
probability density Ψ(R ,u, t |u0) =

〈
δ
(
R − r (t )

)
δ
(
u −eu(t )

)〉
f =Ψ(R ,u, t ;R0,u0)/Ψ0, where the re-

stricted average 〈·〉f includes only trajectories starting at the origin, R0 = 0, at time t = 0 with an ori-
entational vector u0; correspondingly, the initial condition reads Ψ(R ,u, t = 0|u0) = δ(R)δ(u−u0).

The full formal solution for the Fourier transform of Ψ in three dimensions was given in Ref. 5;
its quantitative evaluation is still missing, although certain aspects are well understood [11, 31].
Equation (3.2) is trivially solved for isotropic diffusion, D⊥ = D∥, and at macroscopic time scales,
t ≫ 1/Drot, where the translation-rotation coupling is relaxed. Then, the second term may be
averaged over u, yielding the average diffusion coefficient. To the best of our knowledge, the solu-
tion Ψ(R ,u, t ) of the Smoluchowski-Perrin equation has not been discussed for two-dimensional
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systems—this gap is filled in the present chapter. The angular configuration in two dimensions
is represented by a single angle ϑ, with the orientational vector u = (cosϑ, sinϑ) and the differ-
ential operator L̂2 = −∂2

ϑ
. Note furthermore that the initial condition for the probability density,

Ψ(R ,ϑ, t = 0|ϑ0) = δ(R)δ(ϑ,ϑ0), contains a δ-function that is 2π-periodic in its argument.

3.1.1 The scattering function

The central quantity to be measured in simulations and scattering experiments is the constrained
self-intermediate scattering function Fµν(k , t |ϑ0), representing the angle-resolved scattering re-
sponse of the center of mass of the rod [11]; at the same time it serves as generating function for
the moments of Ψ. The intermediate scattering function is the two-point correlation function of
the Fourier transform of the particle density ̺(R ,ϑ) = δ(R − r (t ))δ(ϑ−θ(t )),

Fµν(k , q , t ) =
〈
̺µ(k , t )̺ν(q ,0)∗

〉
=

〈
e−ik ·r (t )eiq ·r (0)e−iµθ(t )eiνθ(0)

〉
. (3.3)

Several symmetry properties simplify the analysis of the intermediate scattering function. Trans-
lational invariance requires that the function does not change when the spatial coordinates are
shifted by a constant vector a,

Fµν(k , q , t ) =
〈

e−ik ·[r (t )+a]eiq ·[r (0)+a]e−iµθ(t )eiνθ(0)
〉

= e−i(k−q)·a
〈

e−ik ·r (t )eiq ·r (0)e−iµθ(t )eiνθ(0)
〉

.
(3.4)

Hence we conclude that the two scattering wavevectors measured from the initial and the final
position have to coincide, k = q , and Fµν(k , t ) is translational invariant in the center of mass. In
the following, we usually set the initial position to the origin, r (0) = 0, so the scattering function
with unconstrained initial angle relates to the constrained one by

Fµν(k , t ) = 1

2π

∫2π

0
dϑ0 Fµν(k , t |ϑ0) =

〈
e−ik ·r (t )e−iµθ(t )eiνϑ0

〉
, (3.5)

with the constraint one defined by Fµν(k , t |ϑ0) =
〈

e−ik ·r (t )e−iµθ(t )eiνϑ0
〉

f. A similar symmetry argu-
ment concerning rotational invariance is less powerful, since a rotation Rξ of the probe about an
angle ξ couples changes in the center of mass vector and the angles,

Fµν(k , t ) =
〈

e−ik ·(Rξ·r (t ))e−iµ(θ(t )+χ)eiν(θ(0)+χ)
〉
= ei(ν−µ)χ

〈
e−i

(
R−1
ξ

·k
)
·r (t )e−iµθ(t )eiνθ(0)

〉
. (3.6)

One concludes that Fµν(k , t ) is diagonal in the helicities µ, ν only if k = 0, and that the nondiagonal
expressions are not translational invariant in the angle. We can, however, halve the number of
matrix elements by considering the invariance of the two-dimensional dynamics of a symmetric
rod with respect to a rotation about π:

Fµν(k , t ) =
〈

e−ik ·r (t )e−iµ(θ(t )+π)eiν(θ(0)+π)
〉
= ei(ν−µ)π

〈
e−ik ·r (t )e−iµθ(t )eiνθ(0)

〉
. (3.7)

Thus ν−µ = 2n,n ∈ Z, so Fµν(k , t ) has only components with either µ and ν both even, or both
odd.

Some more important symmetry relations for the scattering function in two dimensions can
be found,

Fµν(−k , t ) = Fµν(k , t ), (3.8a)

F−µ,−ν(k , t ) = Fµν

(
(kx ,−ky ), t

)
, (3.8b)

Fµν(k , t ) = Fνµ

(
(−kx ,ky ), t

)
. (3.8c)
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The first one follows from the fact that a change of the sign of k is equivalent to a rotation about π,
and the dynamics is invariant under such a rotation, as already utilized above. The second relation,
Eq. (3.8b), is derived by a change of sign in the angles, which equals a reflection about the x-axis.
Eq. (3.8c) finally exploits a change of sign in the angles and a reversal of time. The latter imposes a
sign change in ∆r (t ), or, equivalently, in k .

The dynamics of Fµν(k , t ) is analytically accessible via the characteristic function Gk (ϑ, t |ϑ0),
the spatial Fourier transform of the probability density,

Gk (ϑ, t |ϑ0) =
∫

e−ik ·R
Ψ(R ,ϑ, t |ϑ0)d2R =

〈
e−ik ·r (t )δ

(
ϑ,θ(t )

)〉

f
. (3.9)

The scattering function relates to the characteristic function by essentially a Fourier transforma-
tion in the orientation,

Fµν(k , t |ϑ0) =
∫2π

0
e−iµϑeiνϑ0Gk (ϑ, t |ϑ0)dϑ. (3.10)

Whenever the angular information is not in our focus, we will refer to the case µ = ν = 0 by
F (k , t |ϑ0) := F00(k , t |ϑ0). Similarly, for diagonal helicities one index is skipped, Fµ(k , t |ϑ0) :=
Fµ=ν(k , t |ϑ0).

The equation of motion of Gk is obtained from the Smoluchowski-Perrin equation (3.2),

∂tGk = Drot∂
2
ϑGk −

[
D⊥k2 + (D∥−D⊥)(k ·u)2]Gk . (3.11)

This is the basic equation for all subsequent analysis.

3.1.2 Orientational relaxation

The pure rotational diffusion described by the Smoluchowski-Perrin equation (3.11) is solved
straightforwardly, since it does not couple to the spatial degrees of freedom—a statement only
valid in this direction. The decay of the correlation with respect to the initial orientation is obtained
from the characteristic function for k = 0, resulting in a diffusion equation, ∂tG0 = Drot∂

2
ϑ

G0, with
the initial condition G0(ϑ, t = 0|ϑ0) = δ(ϑ,ϑ0). The solution is found by a separation of variables

G0(ϑ, t |ϑ0) = 1

2π

∞∑

m=−∞
e−m2Drott eim(ϑ−ϑ0), (3.12)

where the summation over integer values of m reflects the periodicity in ϑ. Useful observables are
those which share this property, hence all expectation averages are obtained as functions of

〈
e−inθ(t )

〉

f
=

∫2π

0
e−inϑG0(ϑ, t |ϑ0)dϑ= e−n2Drott e−inϑ0 . (3.13)

For measurable observables, only the real part of this expression is of concern. As an example, the
orientational correlation function is obtained from n = 1, 〈eu (t ) ·eu (0)〉f = e−Drott , provided ϑ0 = 0.

3.2 Perturbation theory for the characteristic function

Important information can already be obtained from Eq. (3.11) in the limit of kL ≪ 1. This leads,
e.g., to exact expressions for the moments 〈[∆r (t )]n〉. A perturbation theory in kL will serve this
purpose.
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3.2.1 The integral equation with a force acting longitudinally

Before proceeding to formulate Eq. (3.11) in a way suitable for a perturbative approach we briefly
introduce an additional feature. The Smoluchowski-Perrin equation (3.2) can be extended to con-
tain Hamiltonian or non-Hamiltonian external forces acting on the rod. Since experiments have
been performed in which the rod is driven by a constant force F acting parallel to its axis [29], we
include such a force in the analysis of this section; other forces can be treated similarly. To account
for the parallel force f := F /kB T , the term − f D∥u ·∂RΨ has to be added on the right-hand side of
Eq. (3.2). Correspondingly, the time evolution of the characteristic function becomes

∂tGk = Drot∂
2
ϑGk −

[
D⊥k2 + (D∥−D⊥)(k ·u)2]Gk − i f D∥k ·u Gk . (3.14)

In defining the operators Ĥ0 := −Drot∂
2
ϑ

and V̂ = V̂ (ϑ(t )) := D⊥k2 + (D∥−D⊥)(k ·u)2 + i f D∥k ·u,
the characteristic function obeys a Schrödinger equation in imaginary time,

∂tGk =−Ĥ0Gk − V̂ Gk . (3.15)

We formalize the theory by introducing a Dirac notation, in which the characteristic function is
the angular representation of a time-dependent operator, Gk (ϑ, t |ϑ0) = 〈ϑ|Ĝk (t )|ϑ0〉. The bras and
kets are orthonormal and complete, 〈ϑ|ϑ′〉 = δ(ϑ,ϑ′) and

∫2π
0 dϑ |ϑ〉〈ϑ| = 1. It is favorable to change

to a countable basis |m〉, by

〈ϑ|m〉 = 1
p

2π
eimϑ. (3.16)

One checks that with these definitions 〈m|n〉 = δmn , and
∑∞

m=−∞ |m〉〈m| = 1. This basis is chosen
to represent an eigenbasis of the unperturbed operator in Eq. (3.15),

Ĥ0|n〉 = n2Drot|n〉. (3.17)

In terms of the matrix elements of the operator Ĝk , the intermediate scattering function is ex-
pressed as

Fµν(k , t |ϑ0) =
∞∑

n=−∞
〈µ|Ĝk (t )|n〉e−iϑ0(n−ν). (3.18)

The Schrödinger equation (3.15) may conveniently be transformed into an integral equation, in-
cluding the initial condition Ĝk (t = 0) = 1,

Ĝk (t ) = e−Ĥ0t −
∫t

0
e−Ĥ0(t−s)V̂ Ĝk (s)ds. (3.19)

This will serve as the starting point of a time-dependent perturbation theory in V̂ .

3.2.2 Perturbative solution

The integral equation (3.19) may be iterated similar to the Born series in quantum mechanics,

Ĝk (t ) = e−Ĥ0t −
∫t

0
ds e−Ĥ0(t−s)V̂ e−Ĥ0s +

∫t

0
ds

∫s

0
ds′e−Ĥ0(t−s)V̂ e−Ĥ0(s−s′)V̂ e−Ĥ0s′ +O (V̂ 3).

Then the matrix elements of interest are obtained to second order in V̂ as1

〈ν|Ĝk (t )|n〉 = e−ν
2Drott

{
δνn −〈ν|V̂ |n〉τn2−ν2 (t )+

∞∑

m=−∞
〈ν|V̂ |m〉〈m|V̂ |n〉D−2

rotT
m2−ν2

n2−m2 (t )

}
, (3.20)

1Within the perturbation calculation, the helicities in Eq. (3.18) have a different sign, and similarity all other indices
of the countable basis Eq. (3.16). This effects the Equations (3.20), (3.23), (3.25), (3.26), (3.32), and (3.38), as well as
Eqs. (B.1) and (B.2).
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with the integrals

τ j (t ) :=
∫t

0
e− j Drotsds =

{
t , j = 0,

1
j Drot

(
1−e− j Drott

)
, j 6= 0,

(3.21)

T
j

l
(t ) := D2

rot

∫t

0

∫s

0
e− j Drotse−lDrots′ds′ds =






1
2 D2

rott 2, l = 0∧ j = 0,
Drot

j

(
τ j (t )− te− j Drott

)
, l = 0∧ j 6= 0,

Drot
τ j (t )−τ j+l (t )

l
, l 6= 0.

(3.22)

For the explicit formulation of the solution Eq. (3.20) we still need the matrix elements of the per-
turbation operator:

〈m|V̂ |n〉 = D̄k2δmn + Da

2

(
k2
−δm+2,n −k2

+δm−2,n
)
+ i f

D∥
2

(
k−δm+1,n +k+δm−1,n

)
, (3.23)

where we have introduced the complex wavevector components k± := kx ± iky , and the isotropic
and anisotropic diffusion coefficients

D̄ :=
D∥+D⊥

2
, Da :=

D∥−D⊥
2

. (3.24)

In case of a vanishing force we obtain five matrix elements,

〈ν|Ĝk (t )|n〉| f =0 = e−ν
2Drott

{[
1− D̄k2t + D̄2k4 t 2

2
+

D2
ak4

4D2
rot

(
T 4(1+ν)

n2−(ν+2)2 (t )+T 4(1−ν)
n2−(ν−2)2 (t )

)]
δν,n

+ Da

2

[
−τ4(1+ν)(t )+ D̄k2

D2
rot

(
T 4(1+ν)

0 (t )+T 0
n2−ν2 (t )

)]
k2
−δν+2,n

+ Da

2

[
−τ4(1−ν)(t )+ D̄k2

D2
rot

(
T 4(1−ν)

0 (t )+T 0
n2−ν2 (t )

)]
k2
+δν−2,n

+
D2

a

4D2
rot

(
T 4(1+ν)

n2−(ν+2)2 (t )k4
−δν+4,n +T 4(1−ν)

n2−(ν−2)2 (t )k4
+δν−4,n

)}
+O

(
k6) , (3.25)

leading to the second order correlation function with diagonal helicities

Fν(k , t |ϑ0)| f =0 = e−ν
2Drott

{[
1− D̄k2t + D̄2k4 t 2

2
+

D2
ak4

4D2
rot

(
T 4(1+ν)
−4(1+ν)(t )+T 4(1−ν)

−4(1−ν)(t )
)]

+ Da

2

[
−τ4(1+ν)(t )+ D̄k2

D2
rot

(
T 4(1+ν)

0 (t )+T 0
4(1+ν)(t )

)]
k2
−ei2ϑ0

+ Da

2

[
−τ4(1−ν)(t )+ D̄k2

D2
rot

(
T 4(1−ν)

0 (t )+T 0
4(1−ν)(t )

)]
k2
+e−i2ϑ0

+
D2

a

4D2
rot

(
T 4(1+ν)

4(3+ν) (t )k4
−ei4ϑ0 +T 4(1−ν)

4(3−ν) (t )k4
+e−i4ϑ0

)}
+O

(
k6) . (3.26)

The additional terms for nonzero force are given in Appendix B.1, together with an explicit ex-
pression for ν = 0. Note that the dependence of Eq. (3.26) on ϑ0 is always given by powers of
k±e∓iϑ0 —this property originates from rotational symmetry and holds to all orders in k.
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From F (k , t |ϑ0) all moments are obtained by derivatives, e. g., 〈∆x(t )2〉f = −∂2
kx

F (k , t |ϑ0)|k=0;
when ν 6= 0 this yields observables measuring the coupling of translation and rotation. Some of
the moments for zero force have been calculated by Han et al. [64] from the Langevin equations
equivalent to Eq. (3.2). The mean displacements vanish unless a nonzero force is present,

〈∆x(t )〉f = f D∥τ1(t )cos(2ϑ0), 〈∆y(t )〉f = f D∥τ1(t )sin(2ϑ0). (3.27)

For the higher moments we simplify the notation by δxn(t ) := 〈∆x(t )n〉f, and correspondingly for
y . So the second moments in the space-fixed frame read

δx2(t ) = 2D̄t +2Daτ4(t )cos(2ϑ0)+
f 2D2

∥
Drot

[
t −τ1(t )+ τ1(t )−τ4(t )

3
cos(2ϑ0)

]
, (3.28)

δy2(t ) = 2D̄t −2Daτ4(t )cos(2ϑ0)+
f 2D2

∥
Drot

[
t −τ1(t )− τ1(t )−τ4(t )

3
cos(2ϑ0)

]
, (3.29)

〈∆x(t )∆y(t )〉f =
[

2Daτ4(t )+
f 2D2

∥
3Drot

(
τ1(t )−τ4(t )

)
]

sin(2ϑ0), (3.30)

δr 2(t ) = 4D̄t +2
f 2D2

∥
Drot

(
t −τ1(t )

)
. (3.31)

As an example for a correlation function that includes orientational degrees of freedom,

〈
∆x(t )2e−iν[θ(t )−ϑ0]

〉

f
= e−ν

2Drott
{

2D̄t +Da

[
τ4(1+ν)(t )ei2ϑ0 +τ4(1−ν)(t )e−i2ϑ0

]}
. (3.32)

This and the remaining results of this section are given for vanishing force. The expression for y

corresponding to Eq. (3.32) differs only by the sign in front of Da . The moments of fourth order are
obtained by

δx4(t )

4!
= D̄2 t 2

2
+ D̄Da tτ4(t )cos(2ϑ0)+

D2
a

8Drot

{
t −τ4(t )+ τ4(t )−τ16(t )

3
cos(4ϑ0)

}
, (3.33)

δy4(t )

4!
= D̄2 t 2

2
− D̄Da tτ4(t )cos(2ϑ0)+

D2
a

8Drot

{
t −τ4(t )+ τ4(t )−τ16(t )

3
cos(4ϑ0)

}
, (3.34)

〈
∆x(t )2

∆y(t )2〉
f = 4D̄2t 2 +

D2
a

Drot

[(
t −τ4(t )

)
−

(
τ4(t )−τ16(t )

)
cos(4ϑ0)

]
. (3.35)

Additional insight in the statistics is gained by combining the preceding results to non-Gaussian
parameters,

δx4(t )

3
−

(
δx2(t )

)2 =
D2

a

Drot

[
t −τ4(t )−2Drotτ4(t )2]+

D2
a

Drot

[
τ4(t )−τ16(t )

3
−2Drotτ4(t )2

]
cos(4ϑ0)

= δy4(t )

3
−

(
δy2(t )

)2
, (3.36)

δr 4(t )

2
−

(
δr 2(t )

)2 = 4
D2

a

Drot

(
t −τ4(t )

)
. (3.37)

Several of these results are displayed and discussed in more detail in Sec. 3.4, in combination with
data from computer simulations of the stochastic process that corresponds to the Smoluchowski-
Perrin equation.
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3.2.3 Unconstrained initial angle

When the constraint of a fixed initial orientation is released, the problem is isotropic with respect
to k . Then the scattering function is considerably simpler, since an integration over ϑ0 removes all
angular dependencies,

Fν(k , t ) = e−ν
2Drott

{
1− D̄k2t +

D2
ak4

4D2
rot

(
T 4(1+ν)
−4(1+ν)(t )+T 4(1−ν)

−4(1−ν)(t )
)
− f 2

D2
∥k2

4D2
rot

(
T 1+2ν
−2ν−1(t )+T 1−2ν

2ν−1 (t )
)
}

+O
(
k6, f k5, f 2k4, f 3k3) (3.38)

All moments of a specific are identical apart from numerical factors, e.g., δx2(t ) = δy2(t ) = 2D̄t +
f 2D2

∥
(
t −τ1(t )

)/
Drot, and, for f = 0,

〈
∆x(t )4

〉

4!
=

〈
∆y(t )4

〉

4!
=

〈
∆x(t )2

∆y(t )2
〉

8
= D̄2 t 2

2
+

D2
a

8Drot

(
t −τ4(t )

)
. (3.39)

The square of the displacement, ∆r (t )2, is spatially isotropic by definition, thus all observables
derived from it are in any case independent of the initial direction, e.g., Eqs. (3.31) and (3.37) .

3.3 Full solution for the intermediate scattering function

In the previous section we obtained a perturbative solution of the Smoluchowski-Perrin equation.
It becomes already quite messy in the second order, and will necessarily fail for |kL| & 1. A full
analytic solution of Eq. (3.11) is possible in terms of a series expansion of Mathieu functions. From
this, the only remaining step towards the solution for the probability density Ψ(R ,ϑ, t |ϑ0) is a Fou-
rier back transform.

The spatial Fourier transform of the Smoluchowski-Perrin equation, Eq. (3.11), may be rewrit-
ten

∂tGk = Drot∂
2
ϑGk −k2 [

D̄ +Da cos2(ϑ−ϕ)
]

Gk ,

by introducing polar coordinates for the wave vector, with tanϕ := ky /kx . Since k is a fixed para-
meter in this equation and the whole system π-periodic in the angle ϑ, we may shift ϑ such that
ϑ′ :=ϑ−ϕ ∈ [0,2π], and obtain

∂tGk = Drot∂
2
ϑ′Gk −k2 [

D̄ +Da cos2ϑ′]Gk . (3.40)

For convenience, we rename the new angle ϑ′ → ϑ. We could equally choose the coordinate sys-
tems such that k = k êx and thus directly arrive at Eq. (3.40). A separation of the time dependence
by the ansatz

Gk (ϑt |ϑ0) = gk (ϑ|ϑ0)e−λt

results in the Mathieu equation [2, 7]

0 = ∂2
ϑgk (ϑ|ϑ0)+

[
a −2q cos2ϑ

]
gk (ϑ|ϑ0), (3.41)

with the parameter

q = Dak2

2Drot
, (3.42)
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and the eigenvalue

a = λ− D̄k2

Drot
.

The eigenfunctions of the Mathieu equation fall into four classes: the even functions, ce j (ϑ, q),
and the odd functions, se j (ϑ, q), with period π for j even, and period 2π for j odd, respectively.2

The general solution of Eq. (3.41) is thus a linear combination of the even and odd eigenfunctions

gk (ϑ|ϑ0) =
∞∑

j=0

[
A j (ϑ0)ce j (ϑ, q)+B j (ϑ0)se j (ϑ, q)

]
. (3.43)

For beginning both parts of the sum at j = 0, we define here and in the following se0 ≡ 0. Due to
orthogonality, the coefficients can be determined by

A j (ϑ0) =
∫2π

0
ce j (ϑ, q)gk (ϑ|ϑ0)dϑ, B j (ϑ0) =

∫2π

0
se j (ϑ, q)gk (ϑ|ϑ0)dϑ. (3.44)

We obtain a representation of the δ-function,

δ(ϑ,ϑ′) =
∞∑

j=0

[
ce j (ϑ, q)ce j (ϑ′, q)+ se j (ϑ, q)se j (ϑ′, q)

]
. (3.45)

The coefficients A j (ϑ0) and B j (ϑ0) are fixed by the initial condition for the generating function,

Gk (ϑ, t = 0|ϑ0) ≡ gk (ϑ|ϑ0)
!= δ(ϑ,ϑ0). (3.46)

From comparing Eq. (3.45) and Eq. (3.43) we get A j (ϑ0) = ce j (ϑ0, q), B j (ϑ0) = se j (ϑ0, q), hence the
full solution of the time dependent generating function reads

Gk (ϑ, t |ϑ0) =
∞∑

j=0

[
e−λ(a j ,k)t ce j (ϑ0, q)ce j (ϑ, q)+e−λ(b j ,k)t se j (ϑ0, q)se j (ϑ, q)

]
. (3.47)

The decay rate λ = λ(a,k) = aDrot + D̄k2 depends on the corresponding even and odd eigenval-
ues, a → a j (q) and a → b j (q), respectively. The constrained intermediate scattering function
Fµν(k , t |ϑ0) is now calculated by an integration over ϑ, and the unconstrained function by an ad-
ditional average over ϑ0:

Fµν(k , t ) = e−k2D̄t
∞∑

j=0

{
e−an j

(q)Drott
A

(n j )
µ (q)A

(n j )
ν (q)+e−bn j

(q)Drott
B

(n j )
µ (q)B

(n j )
ν (q)

}
, (3.48)

with the coefficients

A
( j )
ν (q) := 1

p
2π

∫2π

0
cos(νϑ)ce j (ϑ, q)dϑ, (3.49a)

B
( j )
ν (q) := 1

p
2π

∫2π

0
sin(νϑ)se j (ϑ, q)dϑ. (3.49b)

2We use the normalization
∫2π

0 ce2
j
(ϑ, q)dϑ = 1 and

∫2π
0 se2

j
(ϑ, q)dϑ = 1. The eigenfunctions are complete and or-

thonormal in the interval 0 ≤ϑ≤ 2π [2].
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The relevant indices n j depend on the values of the helicities. From symmetry we know that µ and
ν are either both even or both odd, see Eq. (3.7). For µ,ν even, only even j contribute, and when
µ,ν are odd, j must be odd, too. So

n j =
{

2 j , µ,ν even,

2 j +1, µ,ν odd,
(3.50)

including b0 ≡ 0 and B (0)
ν ≡ 0 for simplicity in the summation. Note that although se2 j+1(·) is 2π-

periodic, the integrand of B
(2 j+1)
ν (·), ν odd, has a period of π, and thus correctly reflects the sym-

metry of the problem.

3.3.1 Scattering from the center of mass

When the center of mass only is observed, i.e., the helicities are set to zero, the unconstrained
scattering function reduces to

F (k , t ) = e−k2D̄t
∞∑

j=0
e−a2 j (q)Drott

[
A

(2 j )
0 (q)

]2
. (3.51)

The convergence of the sum in Eq. (3.51) is determined by the magnitude of q . The eigenval-

ues a j (q) and b j (q) are ordered ascendingly in j ; furthermore, the coefficients fulfill A
(2 j )
0 (q) =

O (q j ). Hence for q ≪ 1, the low- j terms yield the major contributions to the sum, F (k , t ) =
e−k2D̄t

[
eq2Drott/2

(
1−q2/8

)
+e−4Drott q2/8+O

(
q4

)]
representing the first correction to isotropic dif-

fusion. Thus q2 . 1 defines the macroscopic regime, corresponding to (kLrot)4 . 4, and Lrot :=p
Daτrot is derived as the relevant macroscopic scale.

The opposite limit, q ≫ 1, is relevant when Drot becomes very small; this will be important for
the analysis in Sec. 4.5. The asymptotic expansion a j (q) ≃−2q +(4 j +2)

p
q +O (1) reveals a reduc-

tion of the exponential prefactor in Eq. (3.51) to e−k2D⊥t , and a large number of terms contribute.
Then, the terminal relaxation is ruled by an exponential with decay rate

τ−1
term := k

√
2DaDrot +k2D⊥. (3.52)

3.3.2 Scattering from the whole rod

In the theory for the intermediate scattering function we have so far considered the scattering re-
sponse from the center of mass r (t ) of a rod. To account for a response from an arbitrary position
along the rod, one needs to find the correlations of the Fourier transformed density for a certain
position s ∈ [−L/2,L/2] along the contour, ̺rod(k , t , s) := e−ik ·[r (t )+su(t )]. The corresponding scat-
tering function reads

F rod(k , t , s, s′) :=
〈
̺rod(k , t , s)̺rod(k ,0, s′)∗

〉
=

〈
e−ik ·[r (t )+s u(t )]eik ·[r (0)+s′u(0)]

〉
. (3.53)

When the full rod induces a response in the measurements, as is the case, e.g., in neutron scatter-
ing, the contour parameter is integrated out [31],

̺rod(k , t ) := 1

L

∫L/2

−L/2
e−ik ·[r (t )+su(t )]ds = e−ik ·r (t ) sinc

(
k ·u(t )

L

2

)
. (3.54)
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The sinc-function employed here is defined by sinc(x) := sin(x)/x. This leads to the normalized
intermediate scattering function

F rod(k, t ) :=
〈
̺rod(k , t )̺rod(k ,0)∗

〉
〈∣∣̺rod(k ,0)

∣∣2
〉 (3.55)

=
〈

e−ik ·∆r (t ) sinc
(
k ·u(t ) L

2

)
sinc

(
k ·u(0) L

2

)〉

N

(
kL
2

) , (3.56)

with the norm given by a hypergeometric function pFq (·),

N

(
kL

2

)
:= 1F2

(
1

2
;

3

2
,2;−

(
kL

2

)2)
. (3.57)

The expression (3.56) can conveniently be measured in simulations.3

For the analytical description it is useful to find a formulation in terms of the Mathieu eigen-
functions and the results of the previous section. We rotate the coordinate system such that k is
directed along the x-axis, k = k êx , and translate to r (0) = 0. Then Eq. (3.53) is simplified to

F rod(k, t , s, s′) =
〈

e−ikx(t )e−ik[s cosθ(t )−s′ cosθ(0)]
〉

. (3.58)

The exponentials containing the contour parameters are Fourier transformed, reflecting their 2π-
periodicity,

e−iks cosθ(t ) =
∞∑

ν=−∞
(−i)ν Jν(ks)e−iνθ(t ), (3.59)

with the Bessel functions4 (−i)ν Jν(z) = Iν(−iz) =
∫2π

0 eiνθe−iz cosθdθ/2π. When inserted into
Eq. (3.58), we get

F rod(k, t , s, s′) =
∞∑

µ,ν=−∞
(−1)(µ+3ν)/2 Jµ(ks)Jν(ks′)Fµν(kex , t ), (3.60)

by taking advantage of the unconstrained intermediate scattering function Fµν(k êx , t ) as given in
Eq. (3.5). Note that symmetry requires that the indices µ and ν are either both even or both odd,
as proven in Eq. (3.7), thus µ+3ν is always even. We conclude that the knowledge of the center of
mass scattering functions Fµν(k , t ) is sufficient to determine the scattering response from arbitrary
positions s, s′ along the rod.

To obtain a result for scattering from the rod as a whole, we have to integrate the arclength
parameters in Eq. (3.60) over the length of the rod. Only the summands with both indices even
contribute,

F rod(k, t ) = 1

N (kL/2)L2

∫L/2

−L/2
ds

∫L/2

−L/2
ds′F rod(k, t , s, s′)

=N

(
kL

2

)−1 ∞∑

µ,ν=−∞
Iµ

(
kL

2

)
Iν

(
kL

2

)
F2µ,2ν(k êx , t ). (3.61)

3A numerical analysis of the norm N (x) in the interval x ∈ [10,200] reveals as the major contribution a hyperbola,
N (x) ≈ 1/x. It is modified by a rapidly oscillating term of small amplitude, which furthermore decays with increasing x.

4Useful symmetries of the Bessel functions Jν(z) and modified Bessel functions Iν(z):

Jν(−z) = (−1)ν Jν(z), Iν(−z) = (−1)νIν(z),

J−n (z) = (−1)n Jn (z), I−n (z) = In (z), n ∈Z.
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The integrated Bessel functions In(x) :=
∫x
−x I2n(iu)du/2x can be expressed in terms of the gener-

alized hypergeometric function pFq (·),

In(x) = (−1)n

2n +1

1

(2n)!

( x

2

)2n

1F2

(
n + 1

2
;n + 3

2
,2n +1;−

( x

2

)2
)

. (3.62)

The evaluation of the expression (3.61) is simplified by inserting Eq. (3.48) and interchanging the
summations. From the definitions of the Mathieu coefficients, Eqs. (3.49), we infer the symmetries

A
( j )
−µ = A

( j )
µ and B

( j )
−µ = −B

( j )
µ , and conclude that the sums containing the odd eigenfunctions B

(2 j )
2µ

vanish. The sums over the even eigenfunctions are rearranged, and with the abbreviation k̃ := kL/2
we obtain the result

F rod(k, t ) = e−k2D̄t

N (k̃)

∞∑

j=0
e−a2 j (q)Drott

{
I0(k̃)2

(
A

(2 j )
0

)2
+4I0(k̃)A

(2 j )
0

∞∑

µ=1
Iµ(k̃)A

(2 j )
2µ

+ 4
∞∑

µ=1
Iµ(k̃)2

(
A

(2 j )
2µ

)2
+8

∞∑

µ=2

µ−1∑

ν=1
Iµ(k̃)Iν(k̃)A

(2 j )
2µ A

(2 j )
2ν

}
. (3.63)

Although more complex than Eq. (3.48), this expression poses no new fundamental difficulties,
since all terms in curly brackets are time independent.

3.4 Brownian dynamics simulations of a freely diffusing rod

To sample trajectories from the probability distribution Ψ(R ,ϑ, t ;ϑ0), the Smoluchowski-Perrin
equation (3.2) is transformed into the equivalent Langevin equations for the center of mass r (t )
and the angle of orientation θ(t ) [153]. The center of mass motion is conveniently written in the
body-fixed frame, in terms of the longitudinal displacement r∥(t ) :=

∫t
0 ṙ (t ′)·u(t ′)dt ′, and the trans-

verse one r⊥(t ) :=
∫t

0 ṙ (t ′) ·u⊥(t ′)dt ′, with u⊥ = (−sinθ,cosθ) in two dimensions. In this represen-
tation, the dynamics decouples,

∂t r∥(t ) =
√

2D0
∥ ξ∥(t ), (3.64a)

∂t r⊥(t ) =
√

2D0
⊥ ξ⊥(t ), (3.64b)

with zero mean Gaussian noise
〈
ξ∥(t )ξ∥(t ′)

〉
= δ(t − t ′), and

〈
ξ⊥(t )ξ⊥(t ′)

〉
= δ(t − t ′), as well as a

vanishing crosscorrelation
〈
ξ∥(t )ξ⊥(t ′)

〉
= 0. An Einstein relation fixes the amplitude of the noise,

D0
∥ = kB T /γ∥, with the friction constant γ∥ for longitudinal motion, and correspondingly for the

transverse diffusion, D0
⊥ = kB T /γ⊥.5 Equivalently, an integration of Eqs. (3.64) relates the diffusion

coefficient to the mean-square displacement,
〈
∆r 2

∥ (t )
〉
= 2D0

∥∆t ,
〈
∆r 2

⊥(t )
〉
= 2D0

⊥∆t . (3.65)

5One possibility to derive this Einstein relation is to consider Brownian motion in a potential U ; the Langevin equa-
tion corresponding to Eqs. (3.64) is

∂t x(t ) =− 1

γ
∂xU (x)+

p
2Dξ(t ).

From the equivalent Smoluchowski equation,

∂tΨ(x, t ) = 1

γ
∂x

(
∂xU (x)

)
Ψ(x, t )+D∂2

xΨ(x, t ),

one obtains an equilibrium solution which has to equal the Boltzmann distribution, Ψeq(x) ∝ e−U (x)/kB T , thus D =
kB T /γ, as given in the main text.
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The rotational motion is formulated along the same lines,6

∂tθ(t ) =
√

2D0
rot ξr (t ),

〈
ξr (t )ξr (t ′)

〉
= δ(t − t ′). (3.67)

For the friction constants we use the result of first order hydrodynamics of a slender rod [31]; they
yield for the diffusion coefficients the relations

D0
⊥ = D0

∥
/

2, D0
rot = 6D0

∥
/

L2. (3.68)

Eqs. (3.64) and (3.67) are integrated numerically to obtain representative trajectories [64, 145, 146].
The simplest iteration scheme is sufficient, i.e., the Euler forward iteration, since the dynamics
is exclusively determined by additive noise [84]. The timestep i + 1 of size τB then reads, in a
dimensionless notation,

∆r
∥
i+1

L/2
=

√

2
D0

∥
(L/2)2

τB ξ∥
i
,

∆r⊥
i+1

L/2
=

√
D0

∥
(L/2)2

τB ξ⊥i , ∆θi+1 =

√

3
D0

∥
(L/2)2

τB ξr
i , (3.69)

with three uncorrelated Gaussian noise contributions of unit variance, 〈ξiξ j 〉 = δi , j . The size of
the time step, τB , sets a lower bond for the validity of the results with reference to the theory of
diffusion. τB has to be chosen sufficiently small such that the processes in observation do not
depend on it any more. This will be discussed in more detail in Sec. 4.2, when other timescales
enter the problem. The transformation of the position increment to the lab frame is a rotation
about the angle θi ,

∆r i ≡
(
∆xi

∆yi

)
= S ·

(
∆r

∥
i

∆r⊥
i

)
, with the rotation matrix S :=

(
cosθi −sinθi

sinθi cosθi

)
. (3.70)

In Sec. 3.2.1 the free diffusion has been amended by a force acting on the rod longitudinal to its
orientational unit vector u. This is easily introduced also into the Langevin equations in the body
frame, by addition of the force F /γ∥ = f D0

∥ on the right-hand side of Eq. (3.64a),

∂t r∥(t ) = f D0
∥ +

√
2D0

∥ξ∥(t ). (3.71)

From this and Eqs. (3.64b), (3.67) one obtains the Smoluchowski-Perrin equation (3.14). In Ap-
pendix B.2, some more details are given concerning the transformation between the Smoluchow-
ski and the Langevin equations referred to above.

3.4.1 Comparison of simulations and Smoluchowski-Perrin theory

As a crosscheck, we evaluate by Brownian dynamics simulations several of the observables derived
theoretically in Secs. 3.2 and 3.3. First, we consider the time dependence of the diffusion coeffi-
cients, as derived from the mean-square displacement. The observation of the diffusion of a rod

6The Einstein relation for Drot can also be obtained by regarding Brownian motion of θ(t ) to be derived by coarse
graining the stochastic process in the angular velocities ω= ∂tθ. In three dimensions, the time evolution of the angular
momentum L = Iω is

∂t L =−γr ω+γr

√
2Drotξr ,

〈
ξr (t )ξT

r (t ′)
〉
= 1δ(t − t ′), (3.66)

with the moment of inertia I = mL2/12. From the solution of this Ornstein-Uhlenbeck process one obtains

limt→∞〈Ω(t )Ω(t )〉 = 1γr Drot/I , consistent with equipartition for each component, I
〈
Ω

2
j

〉
/2

!= kB T /2, if Drot ≡ kB T /γr .

In an overdamped environment, the inertia term of Eq. (3.66) can then be neglected.
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Figure 3.1: Deviation of diffusion
coefficients in the space-fixed
frame from the isotropic values.
The rod is initially oriented along
the x-axis. For very small times,
t ≈ τB , reminders of the mi-
croscopics of the algorithm are
still visible in the approach of
the parallel and perpendicular
plateaus (shaded). Blue lines
display the analytic expressions,
Eqs. (3.28) and (3.29).

-1.5

-1

-0.5

 0

 0.5

 1

10-5 10-3 10-1 101 103

Time t/τ0
τB

τrot

parallel

perpendicular

isotropic

m
ic

ro
sc

op
ic

[Dx(t) – ̄D ]/Da
[Dy(t) – ̄D ]/Da
τ4(t)
–τ4(t)

in the body-fixed frame intrinsically shows different diffusion coefficients in the longitudinal and
transverse directions, by construction of Eqs. (3.68). In contrast, the dynamics in the space-fixed
frame with fixed initial orientation only shows a transient anisotropy, since the memory of the
initial orientation is lost when the rod starts to rotate. In the mean-square displacements given
in Eqs. (3.28) and (3.29) this is reflected in the exponential decays at the timescale τrot := D−1

rot,
hidden in τ4(t ). Fig. 3.1 displays this transition from anisotropic to isotropic diffusion in the time-
dependent diffusion coefficients Dx (t ) := δx2(t )/2t , and correspondingly for D y (t ). They are nor-
malized such that the anisotropic motion is represented by the values ±1, and the isotropic part
converges to 0 for t ≫ τrot.

Correlations between the mean-square displacement of the center of mass and angular dis-
placements can be measured by taking the real part of Eq. (3.32), e.g.,

〈
∆x(t )2 cos[ν∆θ(t )]

〉
. This

is displayed in Fig. 3.2 for ν= {1,2,3}. The results show maxima at t = τ0/ν2Drot, i.e., in the transi-
tional region where the rotational dynamics sets in and drives the loss of the memory of the initial

Figure 3.2: Mixed correlation
functions of center of mass
and angular displacement
in the space-fixed frame, for
three values of the helicity
ν, in units (L/2)2. The ana-
lytic curves (lines) are derived
from Eq. (3.32). Arrows point
to the ν-dependent position
of the maxima, 1/ν2Drot. In
case of ν = 2, the plateau
value ±Da cos(2ϑ0)/4Drot is
approached at large times, i.e.,
Drott ≫ 1.
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Figure 3.3: Several non-
Gaussian parameters in com-
parison between simulations
(symbols) and analytic curves
(lines). The analytic expressions
can essentially be found in
Eqs. (3.36) and (3.37).

orientation. Fig. 3.3 shows various non-Gaussian parameters. The center of mass non-Gaussian
parameter has the plateau value (Da/D̄)2/2 for time t ≪ τrot, and decays algebraically, ∼ t−1, in
the opposite regime. At the same timescale τrot, the lab frame non-Gaussian parameters show a
peak, indicating a non-Gaussian time window in the transition between short time Gaussian dy-
namics close to the initial position, and long term isotropic statistics, when the rod rotated away
from its initial orientation. The rotational dynamics finally is a purely Gaussian process, hence it’s
non-Gaussian parameter equals zero for all times.

3.4.2 Intermediate scattering functions

Finally, we validate the results for the intermediate scattering function F (k , t ) ≡ F0(k , t ).7 Scatter-
ing measurements introduce as an additional length scale the wavevector k , defining the inverse
of the spatial scale that is probed. A variation of k then allows for a full spatial and temporal char-
acterization of the system. The macroscopic results, q2 . 1, are governed by a simple exponential,
as argued for in Sec. 3.3.1. Since both Drot and Da are of order one for free diffusion, k ≡ |k | es-
sentially dictates the magnitude of q = Dak2/2Drot, resulting in (kL)2 ≪ 48 for the macroscopic
regime. The scattering function is plotted for various k in Fig. 3.4, displaying also the single ex-
ponential for kL ≤ 2. For larger k, this simple expression is not sufficient, but the Smoluchowski-
Perrin theory correctly coincides with the simulation results. With the rescaling used in Fig. 3.4,
the curves coincide again for kL ≫ 1, since the the quadratic term in the asymptotic expression
Eq. (3.52) dominates; the difference between both limiting cases however is small, since all diffu-
sion coefficients of the same order one.

Nonvanishing helicities in Fµν(k , t ) open up an interplay between spatial and orientational
degrees of freedom, as can already be inferred from the macroscopic limit of the Smoluchowski-
Perrin equation. In this limit, the asymmetry of the center of mass diffusion can be neglected,
Da = 0, and the equation of motion (3.40) is much simpler,

∂tGk = Drot∂
2
ϑGk −k2D̄Gk . (3.72)

7We calculate the series expansion in terms of Mathieu functions with Wolfram Mathematica® within arbitrary pre-
cision arithmetics. The evaluation of the series is truncated when the relative contribution of the last n terms is smaller
than a threshold ǫ. We usually choose n ∈ [10,40] and ǫ= 0.1%.
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Figure 3.4: Intermediate scatter-
ing function of the center of
mass of a freely diffusing rod,
with symbols displaying simu-
lations results, and color-coded
lines Smoluchowski-Perrin the-
ory, Eq. (3.51). Time is rescaled
by k2D̄ , such that the initial
decay coincides for all curves.
The red curve is undistinguish-
able from the simple exponen-

tial e−k2D̄t ; all scattering func-
tions with k/L ≤ 2 fall onto this
curve.
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With the initial condition Gk (ϑ, t = 0|ϑ0) = δ(ϑ,ϑ0) this yields as solution for the characteristic
function,

Gk (ϑ, t |ϑ0) = 1

2π

∞∑

m=−∞
e−(m2Drot+k2D̄)t eim(ϑ−ϑ0), (3.73)

where the periodicity in the angle requires m ∈Z. Eq. (3.73) is a slight extension of the solution for
free rotation, Eq. (3.12), with the isotropic diffusion of the center of mass amended by an exponen-
tial. By integration we obtain the scattering function,

Fµν(k, t ) = e−(ν2Drot+k2D̄)tδµν , (3.74)

diagonal in the helicities. In this macroscopic description, the center of mass and angular degrees
of freedom can only be differentiated when ν2Drot ≈ k2D̄ . As soon as one of the two terms is
considerably larger than the other, it dominates the exponential decay, and the other contribution
will not be visible in the scattering function.

In a parameter range where both factors are relevant, Fig. 3.5 shows the diagonal part of the
scattering function for free diffusion. As expected, deviations from the macroscopic formulation
are visible when k is sufficiently large for resolving the slight microscopic anisotropy in the free
diffusion, kL/2π & 1; in addition, the scattering from the orientational degrees of freedom must
not dominate to be able to distinguish this microscopic property.

An interpretation similar to that given in the context of Fig. 3.4 can be repeated for the scatter-
ing from the whole rod, shown in Fig. 3.6. For the unhindered motion displayed here, the single
exponential e−k2D̄t governs the time evolution of Eq. (3.63) as long as kL . 1, although the coeffi-
cients are more complex. In the figure this is visible for kL ≤ 4. Even for wavenumbers of bigger
magnitude the deviations from the single exponential are small; the curves are however not a sim-
ple exponential. Results for large k again fall onto the same curve, since the diffusion coefficients
are all of order one; this is still worth a note since it will change drastically in the next chapter.
Interestingly, the curve for a wavevector in the transitional region, kL = 10, interpolates in time
between the two limit cases: For k2D̄t . 1 it coincides with the functions of larger k-values, and
for k2D̄t & 4 it follows those for smaller k. As expected, the Smoluchowski-Perrin theory matches
excellently also in Fig. 3.6.
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From the present and the preceding section we deduce that the Brownian dynamics algorithm
based on Eqs. (3.69) perfectly generates trajectories according to the Smoluchowski-Perrin theory
presented in Secs. 3.2 and 3.3, and that the evaluation of the scattering functions in terms of Math-
ieu eigenfunctions reliably gives the correct results.
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Figure 3.5: Fν(k, t ) for different
wavenumbers k and helicities
µ = ν, at n∗ = 0. Symbols: sim-
ulation, lines: Perrin theory. The
black lines display the macro-
scopic approximation Eq. (3.74),
respectively. A linear axis for
Fν(k, t ) in the inset emphasizes
the single exponentials.
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Figure 3.6: Scattering response
from the whole rod, for unhin-
dered diffusion. Data points
show simulation results, color-
coded lines the corresponding
Perrin theory. The red and ma-
genta curves are undistinguish-
able from the simple exponen-

tial e−k2D̄t .





Chapter 4

Anisotropic diffusion in semi-dilute

suspensions of rods

The dynamics of semi-dilute suspensions of rods is a highly complex many-body problem due to
the interactions of the suspended particles. Even the most basic step, the probability density for
the propagation of two interacting particles, has only been solved for isotropic objects [156]. In the
preceding chapter we have however solved analytically the single particle diffusion for a rod, up
to a Fourier transformation. According to this Smoluchowski-Perrin theory, the dynamics of the
rod is completely determined by the three diffusion coefficients D∥, D⊥, and Drot. In the present
chapter we will demonstrate that the complex many body problem can be described by an effective
single particle system, by using the measured diffusion coefficients of semi-dilute systems as input
parameters. This is a remarkable step yielding a new level of understanding of complex anisotropic
diffusion processes, and we work out in detail the spatial and temporal constraints for the validity
of this approach.

We study a model for the sterically constrained dynamics of rods that naturally induces aniso-
tropic diffusion of arbitrarily large ratios D∥/D⊥. The model is set up in a two-dimensional envi-
ronment, as explained in Sec. 4.1; the dynamic properties we focus on are however equally present
in a three-dimensional embedding space. The model and therefore this whole chapter addresses
isotropic suspensions of rods far from phase transitions that are caused by a significant ratio of
excluded volume. This is implied by the term “semi-dilute” in the spirit of Doi and Edwards [31];
we however will synonymously use “dense” in the following, since the context has already been
expounded in Chapter 1 and the introduction of Chapter 3. Extensive computer simulations of the
two-dimensional model (Sec. 4.2) make possible an analysis of the dynamics over nine decades in
time. They allow for the first time for a quantitative discussion of the tube model of Doi and Ed-
wards [30], proposed 30 years ago; this is presented in Sec. 4.3. In the subsequent Secs. 4.4 and 4.5
the simulations set the reference for the validation of the effective theory. In particular, we com-
pare mean-square displacements and the intermediate scattering function with their exact results
from Chapter 3. Furthermore, we have discovered an intermediate algebraic decay in the scatter-
ing function, characteristic for the anisotropic sliding motion.

4.1 A model for sterically interacting rods

The dynamic processes of entangled solutions of, e.g., biopolymers cover many decades in time,
posing a tremendous challenge both to experiments and simulations. For flexible polymers, the

39
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reptation concept is well established; in the case of biopolymers, only the confining tube has been
observed experimentally [79]. Computer simulations of entangled polymer solutions encounter
major difficulties to follow the reptation motion; yet they give insight into the relaxation within the
tube [128]. Progress beyond simple scaling arguments depends crucially on the design of generic
models, which are as simple as possible to follow the dynamics for sufficiently long times, yet com-
plex enough to display key aspects of the underlying microscopic processes.

We propose the following class of models to explore single-filament transport in polymer net-
works: consider the motion of a tagged polymer in a plane, entangled in a course of immobilized
obstacles; the latter represent the topological constraints due to the neighboring filaments. The
reduction of dimensionality still captures the physics of entanglement since the reptation motion
is essentially one-dimensional [27, 33]. Stiff polymers are rather straight and therefore can be em-
bedded in a plane, neglecting the torsion of their space curve. The orientation of the confining
tube is persistent on the longest time scale of interest; thus in video microscopy experiments, the
non-trivial reptation motion of a labeled polymer found initially in the focal plane takes place in
this plane. As a benefit of the simplification, the computational complexity is lowered substan-
tially, permitting a thorough investigation of slow dynamic processes.

It is essential to characterize and understand several limiting cases. Specifically, we aim to a
description of the effects of dynamic entanglement that arise in suspensions of highly anisotropic
object, like rods. The physics of entanglement is singled out in the limit of hard-core interaction,
vanishing width of the polymers, and zero extension of the obstacles. Then, all ramifications of
excluded volume are eliminated, all configurations are permitted and equally likely, and all non-
trivial dynamic correlations are due to entanglement. In particular, the limit circumvents the ne-
matic phase transition.

In summary, the model considers the overdamped motion of a single rod with zero width, ex-
ploring a plane with point-like, and hard obstacles; see Fig. 4.1. The latter are distributed randomly,
independently, and uniformly in the plane with an average number density n. Then, the topology
of the network of obstacles is characterized by the mesh size ξ := n−1/2, i.e., the typical distance
between obstacles. The degrees of freedom of the needle encompass the center-of-mass position
R and the unit vector of orientation u = (cosθ(t ),sinθ(t )), parametrized by a single angle θ. The
physical properties of this system are controlled by a single dimensionless parameter, the reduced
density n∗ := nL2, where L denotes the length of the rod. Equivalently, the entanglement index

pE :=− log10(ξ/L) quantifies the relative importance of entanglement. The model is closely related

Figure 4.1: Illustration of an entangled
needle in a plane. The relevant length
scales are the length of the needle L

and the mesh size of the network ξ.
The surrounding point obstacles con-
fine the needle to a tube (shaded ar-
eas) of width d , a renewed tube (green)
is tilted against the old one (red) by an
angle ǫ = d/L. (Illustration by Felix
Höfling)

L

ξ

dε
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to three-dimensional suspensions of rods when considering a planar section. A tagged rod found
initially in this plane is approximately confined to it by the neighboring rods for times shorter than
the orientational relaxation time, t ≪ τrot := D−1

rot, the largest time scale present in the system. The
constrained motion of the rod then corresponds to diffusion in a planar course of localized inter-
section points.

4.2 Simulations of Langevin dynamics with point-like obstacles

For the simulation of models of rod suspensions, the Brownian dynamics algorithm presented
in Sec. 3.4 has to be expanded to include an interaction mechanism. One possibility is to in-
troduce short-range potentials that approximately avoid overlaps and the crossing of trajecto-
ries [14, 23, 126, 145]. In a different approach, Ramanathan and Morse [128] combined Brownian
dynamics of wormlike threads with Monte Carlo methods to reject dynamic moves that are steri-
cally not possible. The major problem occurring with these techniques is that it is difficult to obtain
data for dense systems and sufficiently long times, i.e., until the rotational dynamics is relaxed. To-
wards these aims, event driven dynamics is better suited; it is adapted to Brownian dynamics by
introducing pseudo velocities for the propagation between two timesteps of the Brownian dynam-
ics algorithm. In this spirit, Tao et al. [146] have worked out a close approximation to an event
driven algorithm for three-dimensional rodlike colloids.

For the model we present here, the random displacements drawn according to Eqs. (3.69) are
divided by the time interval τB and this way interpreted as pseudo velocities. These random veloc-
ity changes in time intervals τB represent the coarse-grained interaction with the solvent—in be-
tween these intervals, the simulated motion of the rod is ballistic, and collisions with the hard ob-
stacles in the neighborhood are calculated from momentum and energy conservation. The pseudo
velocities are only a technical tool and have no physical meaning. By construction, the diffusion
coefficients in the simulations are independent of the size of the Brownian time grid τB , e.g.,

δr 2
∥ (t )

2t
=

N
〈(

∆r
∥
i

)2 〉

2NτB
= D0

∥ .

As a consequence, the mean pseudo velocities are inversely proportional to τB ,

〈
v2
∥

〉
:=

〈(
∆r

∥
i

τB

)2〉
=

2D0
∥

τB
, (4.1)

which is an unphysical side effect.
The crucial step of the collision part of the algorithm is the exact calculation of the next col-

lision times. This amounts to the solution of a highly nonlinear equation, which is in this case
analytically not possible. The numeric solution, however, can be obtained reliably and to any nu-
merically representable precision by taking advantage of interval arithmetics. For this purpose we
have implemented an interval Newton algorithm [66], as explained in detail in the PhD thesis of
Höfling [69].1

The calculation of the collision times is also the most time-consuming part of the algorithm.
Apart from the obstacle density n∗ = nL2, the timestep τB has major influence on the duration of

1The algorithm uses the interval arithmetic library of the boost C++ library project, in combination with the correctly
rounded mathematical library CRlibm. This guarantees the accurate computation of the collision times. To increase
efficiency, a dynamic cell list reduces considerably the amount of necessary calculations.

http://www.boost.org/
http://lipforge.ens-lyon.fr/www/crlibm/
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this calculations. This is founded by the frequent velocity changes, making necessary new calcu-
lations for the next collisions each time. Thus it is indispensable to find a reliable criterion such
that τB can be chosen as large as possible, while still guaranteeing physically correct results. The
Langevin algorithm is designed to correctly generate diffusive dynamics for t ≫ τB . The pres-
ence of obstacles introduces new length scales, which are translated to timescales by dividing by a
velocity. Hence the timestep τB has to be chosen in relation to the relevant timescale induced by
the obstacles, in a way that the simulations correctly produce diffusive trajectories in confined sys-
tems. This can be validated on the microscale by observing features of the velocity-autocorrelation
function, and on the macroscopic scale by the measurement of diffusion coefficients. The next two
paragraphs are devoted to these subjects.

4.2.1 Velocity-autocorrelation function

The dynamics of the rod in the two-dimensional model system is very different for the two com-
ponents in the body frame, the longitudinal and the transverse motion. The longitudinal diffusion
is completely independent of the obstacle density, since the excluded volume of the obstacles van-
ishes as well as the diameter of the rod. Thus the autocorrelation function of the parallel velocity is
not affected by a nonzero n∗, and may serve as a generic example for the velocity-autocorrelation
function of Brownian dynamics simulations. Physically, this observable always vanishes, since
there are no correlations in the velocity of freely diffusing objects. Computationally, this is true for
t > τB , as shown in Fig. 4.2. For 0 ≤ t ≤ τB , the velocity-autocorrelation decays linearly from 〈v2

∥〉
to zero—a consequence of the moving time window of the average calculation in the simulations.

In contrast, the transverse motion of the rod is strongly affected by the presence of obsta-
cles. The microscopic timescale introduced by the obstacles is the mean time between subse-
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Figure 4.2: Autocorrelation function of the perpendicular velocity in the body frame, v⊥(t ) := v (t ) ·u⊥(t ),
at n∗ = 120 and for different values of the simulation timestep τB . The negative tails are a consequence of
the collision dynamics and vanish if τB /τcoll ≪ 1. The black triangles and the black line display the auto-
correlation of the parallel velocity, v∥(t ) := v (t ) ·u(t ). Inset: Mean time between obstacle encounters, τc ,
rescaled with

p
τB . Red bullets show simulation data; for the functional from represented by the gray line

the prefactor has been fitted.
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quent encounters of obstacles by the rod, τc . Only when τB ≪ τc , the perpendicular velocity-
autocorrelation function approaches the generic case of no correlations for t > τB and a linear
decay before. For larger timesteps, τB ≈ τc , the microscopic collision dynamics of the algorithm
becomes visible by negative tails indicating the reflections of v⊥. Note that even for t > τB the per-
pendicular velocity-autocorrelation does not vanish, but weakly oscillates at negative values with
period τB . This is a consequence of the inaccessible volume in phase space, in the same manner
as already mentioned in Sec. 2.3.2. A detailed explanation is given in Appendix A.

We conclude that a choice τB . τc should be sufficient for the simulations to generate valid
physics on timescales much larger than τB . One has to bear in mind, however, that the rate of
encounters itself depends on the magnitude of τB via the pseudo velocities, cf. Eq. (4.1). For a
derivation of the functional form of τc it is useful to refer to the tube model by Doi and Edwards
[31]: The constraints of the obstacles surrounding the rod are interpreted as an effective “tube” in
which the rod moves by sliding longitudinally, and only very small steps in the rotation are possible.
The diameter d of the tube is estimated by allowing only one obstacle inside of it, nLd ≈ 1. With
this,

τcoll ≈
d

〈v⊥〉
=

√√√√τB L2

D0
∥

1

n∗ . (4.2)

The inset of Fig. 4.2 displays the density dependence of this result, and the values obtained from
the simulations for different τB .

4.2.2 Convergence of the diffusion coefficients

The size of the timestep not only has consequences for the microscopic dynamics, but also influ-
ences macroscopic observables. From the simulations one can obtain density-dependent diffu-
sion coefficients by measuring the long time asymptotic form of the mean-square displacements.
The results thereof may spuriously depend on the size of τB , if it is not chosen small enough, as
explained in the previous section. As an example, the rotational diffusion constant is defined from
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Figure 4.3: Convergence of the
long-time limit of the rotational
diffusion coefficient with de-
creasing microscopic Brownian
timestep τB . For this data, D0
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24D∥/L2.
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the mean-square angular displacement δθ2(t ) := 〈∆θ(t )2〉 by

Drot(n∗) := lim
t→∞

δθ2(t )

2t
. (4.3)

Other diffusion coefficients are defined accordingly. Only for the body frame longitudinal motion
the relation is trivial; this direction of motion is not affected by obstacles as long as the excluded
volume vanishes, hence D∥ ≡ D0

∥ . The full time dependence of Drot is displayed in Fig. 4.3, i.e.,
Eq. (4.3) without evaluating the limit. The asymptotic value for large times becomes indepen-
dent of τB for τB /τc < 1; otherwise, the simulations give incorrect results. The maximum visible
in the data for τB /τc ≥ 0.60 indicates the transition in the simulations algorithm from free bal-
listic flights to overdamped Brownian motion. The value of the maximum grows in approaching
Drot(t → 0)/D0

rot → 1 due to the increasing pseudo velocity, as given in Eq. (4.1).
The computational costs per simulated time unit scale approximately ∼ n∗2 for n∗ ≫ 1, com-

prising the appropriate adjustment of the timestep.

4.2.3 The emergence of anisotropic diffusion

Whereas the preceding two sections dealt with the correct handling of the algorithm at a fixed den-
sity, physically most interesting effects are observed in varying n∗—more precisely, in the regime
towards large n∗. Already a visual inspection of the center of mass trajectories of a rod points to a
central peculiarity. Three sample trajectories for different number densities n∗ = nL2 in are shown
in Fig. 4.4. In case of n∗ = 4, the motion still is quite isotropic on the scale of this figure. When the
density becomes higher, the rod is more and more restricted to the direction parallel to its local ori-
entation. The isotropy of the trajectory is lost, and at n∗ = 400, the rod can only proceed by large
zigzag moves enforced by the constraining obstacles close to the rod. Note that this anisotropy
does not in any way go back to the slight anisotropic friction of the rod in a solvent, as introduced
by slender rod hydrodynamics, Eq. (3.68). The observed phenomenon is an obstacle-induced dy-
namic entanglement effect and can be explained in terms of the tube concept, subject of the next
section.

n* = 4 n* = 40 n* = 400

Figure 4.4: Typical trajectories of the center of the needle for overdamped dynamics; the obstacles are omit-
ted for clarity. With increasing entanglement, the needle is confined to a narrowing “tube”, and reptation
dynamics emerges. In terms of the entanglement index pE :=− log10(ξ/L), introduced in Sec. 4.3: n∗ = 4 is
equivalent to pE = 0.3, n∗ = 40 to pE = 0.8, and n∗ = 400 to pE = 1.3.
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4.3 Entangled dynamics and the tube concept

For a three-dimensional suspension of needles of number density n, Doi and Edwards [30] con-
jectured an asymptotic suppression of the rotational diffusion coefficient, Drot ∼ n−2 as n → ∞.
The slow dynamics at long times is expected to be universal irrespective of the microscopic mo-
tion; so far, research focused on ballistic needles, i.e., without solvent. Early molecular dynamics
simulations of such needle liquids [43, 44, 106] show substantial deviations from Enskog theory.
It was pointed out that the Doi-Edwards scaling of Drot is approached only very slowly and dif-
ficult to observe. Semiquantitative agreement was found using a pseudo-dynamics [32]; yet, the
Doi-Edwards scaling has not been validated by a simulation of the dynamics. Within an elaborate
Boltzmann-Enskog theory [119], the onset of anisotropic diffusion from the dilute regime has been
explained recently.

Large scale simulations of the model set forth in Sec. 4.1 make possible for the first time to
analyze quantitatively the constraint dynamics and the predicted scaling behavior. We compare
ballistic [69] and overdamped micro-dynamics of the needle. In the ballistic case, the total kinetic
energy is conserved, and its value sets the overall time scale τ0 := L/v of the problem; v denotes
the root mean-square velocity. For overdamped dynamics, the time scale τ0 is defined via the co-
efficient of unhindered diffusion along the axis of the needle, τ0 = L2/D0

∥ . Diffusion coefficients
of the rotational motion have been extracted from the long-time behavior of the mean-square an-
gular displacement δθ2(t ) :=

〈
∆θ(t )2

〉
≃ 2Drott and are shown on a double-logarithmic plot in

Fig. 4.5a. In the investigated density range, the diffusion coefficient Drot varies over seven non-
trivial decades. For dilute systems, n∗ ≪ 1, it depends on the micro-dynamics: In the ballistic case,
the diffusion coefficient is suppressed in quantitative agreement with a Boltzmann theory [69],
Drot = 10.5/n∗τ0. For overdamped motion, the needle is unaffected by the obstacles, and the dif-
fusion coefficient is just given by D0

rot. Once the mesh size becomes comparable to the length of
the needle, ξ≈ L, the isotropy of rotational dynamics breaks down and a different transport mech-
anism develops [113]. With growing entanglement, the needle is increasingly caged by the obstacle
array, and eventually, its rotational motion is strongly hindered. Fig. 4.4 illustrates the emergence
of reptation-like dynamics, accompanied by a drastic suppression of the diffusion coefficient Drot.
For nL2 ≥ 102, the data follow an asymptotic power law, Drot ∼ (n∗)−2, over more than four decades
in the diffusion coefficient. As a most sensitive test, Fig. 4.5b compares Drot to its asymptotic be-
havior for increasing entanglement. Our results show that the mechanism of reptation is universal
for ballistic and overdamped motion of the needle, which will be substantiated further in the sub-
sequent analysis.

The asymptotic suppression of Drot is rationalized by employing the concept of a confining
tube [30]. In this picture, the surrounding obstacles reduce the accessible volume of the needle to
a tube of diameter d and length L. The diameter is estimated from the requirement to encounter no
obstacles in the tube, d ≈ 1/nL = ξ2/L. The constrained motion is illustrated in Fig. 4.4 and 4.6: the
transverse and rotational degrees of freedom are essentially frozen, permitting only displacements
along the axis of the tube. After traveling half its length, the needle is confined to a new tube tilted
against the previous one on average by an angle ǫ≈ d/L. The time τd to disengage from a current
tube is estimated from the free longitudinal motion inside the tube, τd ≈ τ0, independent of the
density. Eventually, the orientation performs a random walk with step size ǫ and constant rate
1/τd; hence, the diffusion coefficient scales as

Drot ≃ D∞
rot := ǫ2

2τd
∼ 1

n2L4τ0
for n∗ →∞. (4.4)
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The given arguments apply likewise to ballistic and overdamped dynamics of the needle. In both
cases, our data in Fig. 4.5 provide ample evidence for such a behavior, unprecedented in the liter-
ature.

The quality of our data allows us to verify and quantify the assumptions of the tube model in
detail on the basis of the mean-square displacements. Fig. 4.7 visualizes mean-square displace-
ments in the semi-dilute regime, n∗ ≫ 1. We define the displacement in the body-fixed frame
along the axis as ∆R∥(t ) :=

∫t
0 Ṙ(t ′) ·u(t ′)dt ′, and similarly the transverse part ∆R⊥(t ). The par-

allel mean-square displacement, δr 2
∥ (t ) := 〈∆R∥(t )2〉, is not affected by the obstacles at all, due

to zero excluded volume. Consequently, the parallel diffusion coefficient is independent of the
density, D∥ ≡ D0

∥ . In contrast, the perpendicular mean-square displacement δr 2
⊥(t ) and the mean-

square angular displacement δϑ2(t ) enter a plateau beyond a density-dependent time scale τconf.
The plateau reflects the local confinement to an effective cage built up by the surrounding obsta-
cles, i.e., the tube. Its diameter d ≈ 1/nL leads to a relation for the time when the confinement
becomes effective, τconf := d 2/D0

⊥ ≈ 1/n2L2D0
⊥. At the time scale τ0 = L2/D∥, the rod moves a

distance comparable to its length L, hence it leaves the tube and the mean-square displacements
become diffusive again. From the long-time asymptotes, the diffusion coefficients are read off,

Figure 4.5: Simulation results
for the rotational diffusion
coefficient. (a) Dashed lines
are asymptotic fits to the
predicted Doi-Edwards scal-
ing, D∞

rot = A(n∗)−2; the red
solid line shows the result
from a Boltzmann theory,
Drot = 10.5/n∗τ0 [69]. (b) De-
viation from the asymptotic
behavior; note the different
prefactors A in D∞

rot for ballistic
and overdamped dynamics.
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Figure 4.6: Reptation dynamics of an entangled needle; three snapshots from the supplementary movie of
Publication D.3. The movie illustrates the typical motion on three different time and length scales for density
n∗ = 120 (pE = 1.04). In the first part, the stochastic fluctuations of the overdamped micro-dynamics as well
as the individual collisions with the obstacles are resolved. One observes the confinement of the needle to a
tube by the obstacles. The translational motion on this time scale is much smaller than the extension of the
needle. The second part is sped up by a factor of 256 and shows the back and forth sliding of the needle and
the remodeling of the tube. The orientational relaxation becomes apparent in the third part of the movie
in which time elapses yet 64-times faster. Several hundred tube renewals occur before the needle rotates
significantly. The blue line maps out the trajectory of the center of the needle as time progresses; positions
of successive frames are joined by straight lines ignoring the intermediate displacements. At the bottom,
the time lapse is displayed in units of τ0 = L2/D0

∥ .

10-6

10-4

10-2

100

10-6 10-4 10-2 100 102

Time t/τ0

δR||
2/D||

0τ0
(all n*)

δθ2/D0
rotτ0

δR⊥
2/D⊥

0τ0

~ t

τconf

Density n*
12
40
120
400
1200

12

1200

Figure 4.7: Simulated body-
frame mean-square displace-
ment in the entangled regime.
For each density, three observ-
ables are shown: The mean-
square displacement parallel to
the rod’s axis (topmost, dash-
dotted), perpendicular (solid),
and the mean-square angular
displacement (broken). Arrows
at the bottom indicate τconf for
the corresponding density; the
diffusive regime is shaded.

ftp://ftp.aip.org/epaps/phys_rev_e/E-PLEEE8-77-R20806/entangled-needle.mov
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Figure 4.8: Density dependence
of the diffusion coefficient of the
center of mass (right axis), of
rotational motion, and of per-
pendicular diffusion in the body
frame (both at the left axis).
Data for Drot are identical with
the overdamped dynamics data
from Fig. 4.5. The constant
value approached asymptotically
by Dcm(t )/D0

cm is derived in
Eq. (4.5).
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e.g., D⊥(n∗) = limt→∞∂tδr 2
⊥(t )/2, as done in the context of Fig. 4.5 for the rotational diffusion.

Fig. 4.8 demonstrates the huge suppression of the perpendicular and rotational diffusion coeffi-
cients: both scale with obstacle density as n−2, as has been argued by Szamel [144]. The amplitude
of the perpendicular diffusion is smaller than that of Drot, by a ratio D⊥/Drot ≈ 0.05L2. A conse-
quence of the vanishing perpendicular component is the saturation of the center of mass diffusion,

Dcm(t )

D0
cm

=
D∥+D⊥(t )

D∥+D0
⊥

n∗≫1−→ 2

3
; (4.5)

the numerical value relates to the slender rod approximation, as given in Eq. (3.68). For the largest
simulated density, n∗ = 2240, the anisotropy ratio approaches a value of D∥/D⊥ ≈ 105. Note again
that these large ratios in dense systems do not require an anisotropy on the microscale; rather the
anisotropic motion is generated dynamically from the strong interaction with many obstacles.

The square root of the plateau values in the mean-square angular displacement and the trans-
verse mean-square displacement can be used as definitions of the tilt angle ǫ and the plateau di-
ameter d . Both follow the expected scaling laws over two decades in Fig. 4.9, with the measured
prefactors d = 1.3/nL, and ǫ= 1.3/n(L/2)2 = 4.0d/L.

4.3.1 Conclusion

Our results unambiguously prove the conjectured scaling relations for Drot, ǫ, and d . Thus, the
model reflects the generic Doi-Edwards scenario, demonstrating that the essential physics due to
entanglement is captured. The predicted scaling behavior is, however, only observed in highly
entangled systems with large entanglement index, pE & 1. In this regime, the trajectories indeed
exhibit pronounced reptation with the typical sliding motion, see Fig. 4.4. The scaling is also robust
with respect to a variation of the ratio L2D0

rot/D0
cm, as demonstrated in Appendix B.3.

For weaker entanglement, 0 < pE . 1, the rotational dynamics is still suppressed due to topo-
logical constraints, but the Doi-Edwards scaling is obscured by crossover phenomena. The devia-
tions from the predicted behavior are highlighted in Fig. 4.5b by extracting the apparent amplitude
of the power law. At pE = 1, where the filament length already exceeds the mesh size by a factor 10,
the amplitude is still 15% below its true asymptotic value. One concludes that in order to observe
the scaling with an accuracy of 1%, even stronger entanglement is required, pE & 1.6.
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In real polymer solutions, the entanglement constraints are dynamically released and gener-
ated on a time scale comparable to τd. Within an extended model accounting for this renewal
process of the obstacles, we have checked that the observed Doi-Edwards scaling is robust [71].

For highly entangled networks, the finite filament width in experimental situations may be-
come relevant. Eventually, a phase transition to a nematic order occurs for long rods at n3dbL2 ≃ 1
as has been estimated by Onsager, where n3d denotes the three-dimensional number density of
rods of diameter b. The density of obstacles of our two-dimensional representation is then calcu-
lated to n ≈ n3dL, hence the nematic regime is expected for n∗b/L = nbL & 1. For reconstituted
F-actin solutions with filaments of L ≈ 50µm [79] and b = 7 nm, we estimate that nematic effects
are relevant only for n∗ & 7000 or pE & 1.9, provided one can neglect the small bending flexibility.

A finite stiffness for the polymer introduces another length scale, the persistence length, quan-
tifying the distance over which the polymer appears as a straight rod. Due to thermal noise, there
are transverse undulations which effectively blow up the width of the polymer. It is an open ques-
tion if the finite flexibility assists for the tube remodeling resulting in an enhanced rotational dif-
fusion, or if the additional effective volume leads to further slowing down.
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4.4 Effective Perrin theory

The tube concept yields a very successful theoretical description in two respects: First, it offers
an explanation for the effects of entangled dynamics in suspensions of rods on a coarse grained
microscopic scale, proven by the correct scaling of the parameters of the local constraints, ǫ and d .
Second, based on this coarse grained microscopics it explains the asymptotic long time behavior in
terms of diffusion coefficients. By construction, however, it is not a dynamic theory. We will prove
in the remaining parts of this chapter that the Smoluchowski-Perrin theory serves this purpose,
although originally set up for unhindered diffusion. This way, the large gap in time scales is filled,
too, which is present in between the dynamics at the coarse grained microscopic scale, and the
macroscopic regime of the diffusion constants, see Fig. 4.10.
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Figure 4.10: Time domains found in mean-square displacements from simulations; complement to Fig. 4.7
for fixed n∗ = 120. Spatial displacements are shown in units of (L/2)2.

(I): t < τB . Ballistic regime of technical origin; the algorithm calculates the trajectories ballistically until the
diffusive dynamics becomes effective at t = τB . Cf. Sec. 4.2.

(II): τB ≤ t . τconf. Microscopic diffusive regime, governed by the Langevin equations given in Sec. 3.4.

(III): τconf < t . D⊥/4DaDrot. Dynamics inside the tube. Its diameter d defines the transition between the
regimes (II) and (III), by setting a spatial constriction to the perpendicular motion, τconf := d 2/D0

⊥.
The transverse and rotational motion are suppressed, therefore at a plateau. Cf. Sec. 4.3.

(IV): D⊥/4DaDrot < t < τrot. Transitional region between confined motion inside the tube and fully relaxed
long time limit. δr 2

⊥(t ) and δθ2(t ) cross over to diffusion, indicating that the rod now has gained
the possibility to rotate and move sideways, by means of a zigzag motion that couples rotation and
translation. A rotation or transverse motion with unchanged center of mass is not possible, but lon-
gitudinal displacements of length L within a time τ0 := L2/D∥ enable the rod to rotate step-by-step.
δy2(t ) increases ∼ t 2 in the transition from plateau to isotropic diffusion. The timescale for the onset
of this region is derived in Sec. 4.4.

(V): t & τrot. Diffusive long time dynamics—all relaxation processes had time to evolve. The slowest relax-
ation is given by the rotational dynamics, hence τrot := D−1

rot defines the onset of regime (V). Diffusion
coefficients can be measured in this domain, as done in Sec. 4.3.
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The idea is to use the solutions of the Smoluchowski-Perrin equation with the measured dif-
fusion coefficients D∥,D⊥(n∗),Drot(n∗) also in the presence of obstacles to obtain a prediction for
time-dependent mean-square displacements, and later also the intermediate scattering function.
Such an effective Perrin theory is obviously valid on macroscopic time and length scales, i.e., for
t ≫ τrot and k−1 ≫ Lrot :=

p
Daτrot. We will show that in fact it constitutes a quantitative meso-

scopic theory in the dense regime, n∗ ≫ 1. That such an approach should work in principle has
been anticipated earlier for dense needle liquids [119].

4.4.1 Anisotropic diffusion

As a first exemplification, the effective theory elucidates the remarkable time evolution associ-
ated with the huge anisotropy, as generated by the model for entangled rods in Sec. 4.3. A char-
acteristic crossover between anisotropic and isotropic dynamics is seen clearly when plotting the
time-dependent diffusion coefficients in a space-fixed frame, Dx (t ) := ∂t 〈∆x(t )2〉f/2 and D y (t ) :=
∂t 〈∆y(t )2〉f/2, where the subscript ‘f’ indicates that the initial orientation is fixed to the x-axis. The
memory of the orientation is lost only at times larger than τrot ∼ n2, resulting in a time window
of anisotropic diffusion that is significantly prolonged with increasing density, see Fig. 4.11. The
analytic expressions for the comparison with simulated mean-square displacements have been
derived in Eqs. (3.28) and (3.29). For the model in discussion here, the effective Perrin approach re-
quires the measurement of only two parameters in the simulations, D⊥(n∗) and Drot(n∗); the third
diffusion coefficient D∥ ≡ D0

∥ is a constant, due to the lack of excluded volume. Fig. 4.11 reveals
excellent agreement between effective Perrin theory and simulations, down to the time scale τ0.
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Figure 4.11: Diffusion coefficients of the center of mass in the space-fixed frame, relative to the isotropic val-
ues D̄(n∗). Filled symbols display the simulation results for the coefficient of diffusion parallel to the fixed
initial orientation, Dx (t )/D̄ ≥ 1, open symbols the corresponding perpendicular diffusion, D y (t )/D̄ ≤ 1.
Color-coded lines show the Smoluchowski-Perrin theory, and the dashed black lines the interpolation be-
tween the space-fixed frame and the body frame, Eq. (4.8). Color-coded arrows at the bottom axis indicate
τrot for the different densities. The broken gray line represents the measured D⊥(t )/D̄ at n∗ = 12 for com-
parison.
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For short times, t ≪ τ0, the space- and body-fixed frames coincide, implying Dx (t ) ≃ D∥(t ) and
D y (t ) ≃ D⊥(t ). In this regime, only the density independent motion longitudinal to the initial ori-
entation matches to the effective theory; the double logarithmic plot exposes large discrepancies
for the transverse motion. This is to be expected due to the large suppression of the coefficient
of perpendicular diffusion, compare Fig. 4.8. Microscopically starting with a dynamics accord-
ing to the free diffusion constants, Eqs. (3.68), the simulation data can converge to the predic-
tions of the effective picture only after a sufficiently large number of encounters of obstacles in
the environment. This happens in the region beyond, but still close to the minimum in the mea-
sured D y (t ). The position of this minimum can approximately be determined by expanding the
result from the Perrin theory, D y (t ) = D⊥ + 4DaDrott +O

(
t 2

)
. The minimum in the simulations

results is located in the proximity of the transition from the constant to a linear increase in the
expression from Smoluchowski-Perrin theory, thus at t ≈ D⊥/4DaDrot; this timescale defines the
beginning of region (IV) in Fig. 4.10. Since D⊥(n∗) and Drot(n∗) scale identically for large densi-
ties with a ratio D⊥/Drot ≈ 0.2D0

⊥/D0
rot, we can approximate the position of the minimum further,

t ≈ (D⊥/Drot)/2D∥ ≈ 0.0083τ0. This position is indicated at the bottom axis of Fig. 4.11, and a vi-
sual inspection of simulation data and effective Perrin theory suggests that the latter constitutes
the correct quantitative description beyond a time in the region 0.0083 < t/τ0 < 1.

To understand the transition that appears in the dynamics with the onset of rotation close
to the minimum in the measured D y (t ), it is useful to work out an approximation for the mean-
square displacement in the space-fixed frame that implements both the constrained dynamics
at short times and the loss of the initial orientation at larger times. The velocities in the space-
fixed frame are obtained from the body frame Langevin equations by the rotation given already in

Eq. (3.70), ṙ (t ) = S ·
(
ṙ∥(t ), ṙ⊥(t )

)
T. In the body frame, the stochastic dynamics is decoupled, hence

the averages factorize when writing the squared displacement in the space-fixed frame in terms of
the body frame variables,

〈
∆y(t )2〉

f =
∫t

0
ds

∫t

0
ds′

[〈
ṙ∥(s)ṙ∥(s′)

〉〈
sinθ(s)sinθ(s′)

〉
f +

〈
ṙ⊥(s)ṙ⊥(s′)

〉〈
cosθ(s)cosθ(s′)

〉
f

]
. (4.6)

The processes we want to elucidate here are the dynamics inside the tube and the tube renewal, i.e.,
a regime with still small angular displacements. Thus we expand the trigonometrics, and exploit
the invariance of the parallel dynamics by using the delta correlated parallel velocities, Eq. (3.64a),

δy(t )2 = δr 2
⊥(t )+2D∥

∫t

0
ds

〈
θ(s)2〉

f +O
(
θ3, ṙ 2

⊥θ
2) . (4.7)

This expression relates the transverse mean-square displacement in the space-fixed frame to the
corresponding one in the body frame and the mean-square angular displacement. A derivative
with respect to time yields an approximation for the diffusion coefficient,

D y (t ) ≈ 1

2
∂tδr 2

⊥(t )+D∥
〈
θ(t )2〉

f , (4.8)

correctly interpolating the mesoscopic regime in Fig. 4.11.
A crosscorrelation of spatial and angular displacements is shown in Fig. 4.12. As long as there

is essentially no rotation, i.e., for t ≪ τ0, the features of the center of mass displacements are
preserved: in the microscopic regime

〈
∆y2(t )cos∆θ(t )

〉
f starts diffusive, proportional to 2D0

∥ t ,
and enters a plateau, indicating the confinement at large identities. Around t = D⊥/DrotD∥ ≈
0.017τ0, a time window of strong rotation-translation coupling sets in, commencing in a slope
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Figure 4.12: Crosscorrelation of
the angular displacement with
the center of mass displacement
perpendicular to the initial ori-
entation, in units (L/2)2. The
corresponding plot for free dif-
fusion is given in Fig. 3.2. The
inset shows the same observ-
able for displacement longitu-
dinal to the initial orientation;
in this case, the results from
the Smoluchowski-Perrin equa-
tion (lines) match the simulation
data (symbols) at all times.

2Drot(D∥ − 2D⊥)t 2 that is obtained from a quadratic expansion of Eq. (3.32). With the onset of
the rotational relaxation at t = τrot the maximum is approached, and by then, the freely diffusing
orientation suppresses further correlations exponentially.

From the preceding analysis we conclude that the effective Perrin theory quantitatively repre-
sents the dynamics of rod suspensions for times t ≫ (D⊥/Drot)/2D∥ ≈ 0.0083τ0 in the observables
analyzed so far. Conversely this also means that the density dependent diffusion coefficients uti-
lized within the effective theory may be used for Brownian dynamics simulations of free systems,
displaying identical dynamics as suspensions, if considered on sufficiently large timescales. For
a qualitative visual analysis this is indicated in Fig. 4.13 by displaying parts of two trajectories:
one obtained in a system with density n∗ = 400 and microscopic diffusion constants according
to Eqs. (3.68), and the other without obstacles, but with diffusion coefficients measured from the
n∗ = 400-system. There is no salient visible difference in the qualitative features, which again sup-
ports the effective approach.

Drot(n*=400), D⊥(n*=400)

n* = 0

Drot(n*=0), D⊥(n*=0)

n* = 400

Figure 4.13: Left: center of mass
trajectory at zero density, with
diffusion constants Drot(n∗ =
400) and D⊥(n∗ = 400). Right:
trajectory at density n∗ = 400,
with D0

rot, D0
⊥. Spatial resolution

and time window are identical;
the shortest resolved timestep
here is 0.05τ0.
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4.4.2 Driving by a longitudinal force

Introducing a longitudinal force in the Langevin equations of a rod yields a ballistic component in
the longitudinal displacement, compare Eq. (3.71). In δr 2

∥ (t ), it will always be the dominant contri-
bution for large times, t ≫ τ0; other observables are influenced depending on the relative magni-
tude of the force. Fig. 4.14 exemplary displays the center of mass displacement. Three time regimes
are visible: diffusive motion for short times, t ≪ 4D̄/ f 2D2

∥ , and long times, t ≫ 4D̄/ f 2D2
∥ +2/Drot,

and in between an intermediate force-driven ballistic regime, enlarging with the magnitude of the
force. Theory matches excellently, hence the superdiffusive motion observed in experiments [29]
can probably be accounted to the simple propulsion mechanism included in our model.

Fig. 4.15 shows the variation of the diffusion coefficients with the longitudinal driving, for a
fixed medium density. There is no obvious simple scaling visible in the displayed parameter region,
so this behavior might deserve a more detailed analysis in a future work.

Figure 4.14: Mean-square dis-
placement of the center of mass
of a rod, with varying force di-
rected longitudinal to its orien-
tation, at a density n∗ = 40. Sym-
bols show simulation results,
color-coded lines the effective
Perrin theory, Eq. (3.31).
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Figure 4.15: Diffusion coef-
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4.4.3 Correlation functions of fourth order: non-Gaussian parameter

The three microscopic stochastic processes that generate the diffusion of the rod in the body frame
are Gaussian processes, cf. Eqs. (3.64) and (3.67). Nevertheless, already the freely diffusing rod
shows non-Gaussian statistics for t . τrot due to the transformation to the space-fixed inertia
frame, as demonstrated in Fig. 3.3. At nonzero density, this is considerably more pronounced:
Fig. 4.16 displays a strongly non-Gaussian time window τconf . t . τ0 even in the rotational dy-
namics, an observable that is strictly Gaussian when the diffusion is unconfined. This time window
corresponds to the plateau regime in the mean-square displacement, thus the obvious conclusion
is that the suppression of rotational motion inside the tube accounts for the non-Gaussian statis-
tics. The center of mass non-Gaussian parameter shows a prolonged plateau decaying only at
t & τrot, in accordance with the effective Perrin theory. The plateau value is

(
Da/D̄

)2/2, converg-
ing to 1/2 for large densities. Towards the microscopic regime, the center of mass non-Gaussian
parameter leaves the plateau of the effective theory when t . τconf, to approach for smaller times
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Figure 4.16: Non-Gaussian pa-
rameter for the center of mass
motion (continuous lines) and
the rotational diffusion (dashed
lines). The effective Perrin the-
ory for the center of mass ac-
cording to Eq. (3.37) is displayed
by gray lines.
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Figure 4.17: Non-Gaussian pa-
rameter for the motion perpen-
dicular to a fixed initial orienta-
tion. Symbols are simulation re-
sults, color-coded lines the cor-
responding functions from the
effective Perrin theory. The
timescale that corresponds to
the onset of the plateau and that
of the terminal decay are indi-
cated at the bottom for the ex-
ample of n∗ = 400.
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the microscopic plateau
(
D0

a/D̄0
)2/

2 that is also visible in Fig. 3.3.

In the space-fixed frame, the non-Gaussian parameter of the transverse motion is remarkable,
see Fig. 4.17. Here, the effective Perrin theory only holds when t ≫ τ0, especially at large densities.
The theory predicts a peak broadening towards a plateau around t ≈ τ0; in contrast, in the simula-
tion data a different plateau emerges in the confined regime, τconf < t ≪ τ0. Furthermore, a sharp
peak develops, located at t ≈ 0.1τ0 independent of n∗. The height of this peak seems to converge
to the value 3 at very large densities. Asymptotically, the non-Gaussian parameter decays to zero
proportional to t−1 for t & τrot, as expected for a stochastic process with cumulants linear in time.

4.5 Self-intermediate scattering function

Based on the simulation results for the intermediate scattering function, we test the range of valid-
ity of the effective Perrin theory in Fig. 4.18. The quality of our data, approaching a signal-to-noise
ratio of 10−4 in the scattering function, allows for a clear distinction of features on a large range of

Figure 4.18: Time and
wavenumber dependence
of the intermediate scatter-
ing function for densities (a)
n∗ = 40, and (b), (c) n∗ = 400.
Symbols represent simulation
results, lines the effective Perrin
theory, Eq. (3.51), and time is in
units of k2D̄ . By rescaling time
with τterm, inset (c) visualizes
the terminal relaxation.
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Figure 4.19: Intermediate
scattering function for fixed
wavenumber and varying den-
sity. Increasing confinement is
manifested in the simulations
(symbols) by the development of
a power law decay. Lines show
the effective Perrin theory; the
first order perturbative solution,
Eq. (4.15), is indicated by the
thick black line for n∗ = 1200.

time and length scales.2 The agreement of theory and data becomes increasingly accurate as the
wave number decreases [panels (a) and (b)]. Second, deviations are shifted to larger wavenum-
bers for higher densities. We conclude that there is a density-dependent length scale determining
the validity of our coarse-grained approach. From all simulated densities, we have identified this
length scale as the typical distance between obstacles, ξ := n−1/2; for the shown densities, n∗ = 40
and n∗ = 400, the corresponding wavenumbers 2π/ξ are 40L−1 and 126L−1, respectively. The rele-
vance of ξ is corroborated further in Figs. 4.20 and 4.21. From the first set of plots we deduce that
the measured intermediate scattering function, displayed as a function of time, is in fact accurately
described by the effective theory when kξ/2π . 1. Above this threshold, a distinct microscopic
regime separates out at short times, resulting from the free Brownian motion inside the tube. At
larger times, the confinement by the surrounding obstacles becomes effective, and the exponential
decay of the free microscopic motion crosses over to the transitional power law t−1/2. When the
scattering function is displayed as a function of the wavenumber, the quantitative and qualitative
change as compared to the Perrin theory is directly visible, once a length scale of the order of 2πL/ξ
is approached. Fig. 4.21 exemplifies this for a medium and a large density—as long as k ≪ 2π/ξ,
the effective approach is appropriate, especially for high densities.

The slowing down of the dynamics with increasing confinement is displayed in Fig. 4.19. For
high wavenumbers k ∼ 2π/d the intermediate scattering function probes the formation of the tube
at time scales τconf, see Figs. 4.18a and 4.19. Once the tube confinement becomes effective, an in-
termediate algebraic decay emerges, F (k , t ) ∼ 1/kt 1/2, which we attribute to the sliding motion in-
side the tube. This power law is cut off by an exponential relaxation at τterm as derived in Eq. (3.52),
see Fig. 4.18c.

2To achieve sufficient statistics, we collected at least 350 trajectories for each density. For the largest densities, the
simulation of a single trajectory took about 13 days of CPU time on an AMD Opteron® 2.6 GHz core.



58 Chapter 4. Anisotropic diffusion in semi-dilute suspensions of rods

Figure 4.20: Intermediate scat-
tering function measured with
four different wave vectors k

(increasing from top panel to
bottom panel), each for vari-
ous densities n∗. Symbols are
simulation results, color-coded
lines the corresponding curves
from the effective Perrin theory.
For each of the four panels, the
data for the density highlighted

by a box in the corresponding
key is just not grasped correctly
anymore by the effective theory,
since kξ/2π is slightly too large.
For reference, the free motion,
n∗ = 0, is also shown for each
k. The gray lines show the power
law according to the asymptotic
expansion in Eq. (4.9). Note that
each time axis is rescaled with
the corresponding k2D̄ .
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Figure 4.21: Intermediate scat-
tering function as a function
of the wavenumber k, for two
densities, top and bottom, and
several fixed times each. Pro-
nounced differences between
the simulations (symbols) and
the Smoluchowski-Perrin theory
(lines) are visible for k & 2π/ξ,
i.e., in the shaded regimes. In
case of the medium density,
n∗ = 40, the scattering function
for large times is still dominated
by a single Gaussian, given
by the prefactor of Eq. (3.48),
exp

(
− k2D̄t

)
; for comparison,

this function is displayed as a
gray line for t/τ0 = 22.

4.5.1 Origin of the power law

The power law is hidden in Eq. (3.51) in the sum of many exponentials for q ≫ 1. For strongly
suppressed perpendicular and rotational motion, Eq. (3.40) is approximated by the ordinary dif-
ferential equation ∂tGk =−k2D∥ cos2(ϑ)Gk , which yields

F (k , t ) = e−k2D∥t/2I0
(
k2D∥t/2

)
≃

(
πk2D∥t

)−1/2
. (4.9)

The second relation results from an expansion of the modified Bessel function of the first kind I0(z)
for large argument; it quantitatively reproduces the scattering function in the power law regime,
shown in Figs. 4.18b and 4.20.

Eq. (4.9) can be improved systematically by a perturbation expansion in terms of Drot. The
zeroth order solution for the characteristic function,

G (0)
k

(ϑ, t |ϑ0) = e−k2(D̄+Da cos2ϑ)tGk (ϑ,0|ϑ0), (4.10)
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with the initial condition Gk (ϑ,0|ϑ0) = δ(ϑ,ϑ0) yields the scattering function

Fµν(k , t ) = 1

2π

∫2π

0
dϑ0

∫2π

0
dϑe−iµϑeiνϑ0Gk (ϑ, t |ϑ0)

= (−1)ne−k2D̄t In

(
k2Da t

)
+O (Drot), 2n :=µ−ν. (4.11)

In(z) is the modified Bessel function of the first kind, with the integral representation∫2π
0 cos(nϑ)e−z cosϑdϑ/2π = (−1)n In(z). The result only depends on the difference of the helici-

ties, which must be an even number for symmetry reasons, as shown in Eq. (3.7). An asymptotic
expansion of the Bessel function in Eq. (4.11) and D⊥ = 0 then reproduces the power law already
anticipated in Eq. (4.9). The first order equation for the characteristic function,

∂tG (1)
k

= ∂2
ϑG (0)

k
−k2(D̄ +Da cos2ϑ

)
G (1)

k
, (4.12)

is solved by

Gk (ϑ, t |ϑ0) = e−k2
(

D̄+Da cos2ϑ
)

t

[
1+4DrotDak2t 2

(
1

2
cos2ϑ+ 1

3
Dak2t sin2 2ϑ

)]
Gk (ϑ,0|ϑ0)+O

(
D2

rot

)
,

(4.13)
corresponding to the scattering function

Fµν(k , t ) = (−1)ne−k2D̄t

{
In

(
k2Da t

)(
1− 8

3
n2Drott

)

− 1

3
DrotDak2t 2 [

In−1
(
k2Da t

)
+ In+1

(
k2Da t

)]}
+O

(
D2

rot

)
. (4.14)

This expression now contains three successive Bessel functions. The helicities again reduce to
2n := µ−ν; in first order perturbation theory, the diagonal elements of the scattering function are
thus independent of the orientational dynamics,

Fµ=ν(k , t ) = F (k , t ) = e−k2D̄t

{
I0

(
k2Da t

)
− 2

3
DrotDak2t 2I1

(
k2Da t

)}
+O

(
D2

rot

)
. (4.15)

Figure 4.22: Intermediate scat-
tering function as a function
of the wavenumber k, at n∗ =
400. Here the horizontal axis
is rescaled such that the initial
exponential decay coincides, in
difference to the presentation in
the bottom panel of Fig. 4.21.
The power law (πk2D∥t )−1/2 is
shown by the broken gray line.
For this data, τconf/τ0 ≃ 2.5·10−5.
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This function is shown Fig. 4.19. Apart from the short time exponential and the power law itself, it
also captures the terminal relaxation at large times. The corresponding timescale has been derived
from an asymptotic expansion of the eigenvalues in Eq. (3.52); it is also visible when expanding the
Bessel functions in Eq. (4.14) for k2Da t ≫ 1, which yields the algebraic expression

Fµν(k , t ) = (−1)n e−k2D⊥t

√
2πk2Da t

{
1− Drott

3

[
8n2 +2k2Da t

]}
+O

(
1/k2Da t ,Drot

)
. (4.16)

For n = 0, the second term in curly brackets dominates the first one when τ−2
termt 2 ≫ 1, with τ−1

term ≈
k
p

2DaDrot. Fig. 4.22 displays the wave number dependence of the scattering function, rescaled
such that data coincide at the power law. Once again the transient nature of the algebraic decay is
visible; it is not observed both at very short times, t . τconf, as well as very long times, t ≫ τ0.

4.5.2 Angle-resolved scattering

In the intermediate scattering functions displayed so far all information about the orientation has
been integrated out; the helicities, i.e., the conjugated variables of the angle, have been chosen to
zero. Fig. 4.23 displays the scattering function with three helicities ν 6= 0, for a highly entangled
system. When the sliding motion inside the tube is resolved, i.e., for kL ≫ 1 and t . τ0, the rod
does not rotate and the curves for different ν coincide. For larger times, the curves for different
ν drift apart; specifically, the smaller kL, the more the curves fan out, due to the more and more
pronounced rotational motion. In any case, the Perrin theory accurately matches the data, since
k ≪ 2π/ξ≃ 126/L at the shown density. The macroscopic approximation is only adequate at kL ≪
1, otherwise it only reproduces the initial decay.

4.5.3 Scattering from the whole rod

The interpretation of the intermediate scattering function becomes more subtle when the whole
rod is labeled. At a medium density, see Fig. 4.24, the picture is qualitatively similar to the center of
mass scattering displayed in Fig. 4.18a: The simple exponential for small wavevectors crosses over
at large spatial resolution to three separate regimes. First, the short time exponential resolving the
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Figure 4.23: Fν(k, t ) for three
wavenumbers k and helicities ν,
with n∗ = 400. The macroscopic
approximation, Eq. (3.74), is
shown by black lines for ν= 5.
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Figure 4.24: Time dependence of
the scattering response from the
whole rod, for a medium density,
n∗ = 40. Data points show sim-
ulation results, color-coded lines
the corresponding Perrin theory.
The magenta curve for kL = 0.4
coincides with the exponential

e−k2D̄t .
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microscopic free diffusion, second, the intermediate power law caused by the constrained sliding
motion, and finally the terminal decay. The exponent of the power law however is different from
the asymptotic approximation derived in Sec. 4.5.1.

The situation changes at larger densities, exemplified in Fig. 4.25. Although the familiar power
law emerges with rising k until kL ≈ 2, it then disappears again for still larger wavenumbers. This
is in strong contrast to the center of mass scattering as shown in Fig. 4.18, where the power law
monotonously enlarges with k until the microscopic motion becomes visible. The disappearing
power law is connected to the observation that the timescale of the initial decay does not shrink
with k−2 anymore, but appears to be independent of k.

The essential features of this intermediate scale-free regime, transient both in the wavenumber
and in the time, can be reproduced for strongly confined systems at the level of the perturbation
approach for vanishing rotational diffusion. To this end, we rewrite the scattering function for the
rod by taking advantage of the statistic formulation of the characteristic function, given in Eq. (3.9),
Gk (ϑ, t |ϑ0) = 2π

〈
e−ik ·r (t )δ

(
ϑ,θ(t )

)
δ
(
ϑ0,θ(0)

)〉
. By means of two integrals over the angles we find a

relation to the scattering function Eq. (3.55),

F rod(k , t ) = 1

2πN (kL/2)L2

∫L/2

−L/2
ds

∫L/2

−L/2
ds′

∫2π

0
dϑ

∫2π

0
dϑ0 e−ik ·u(t )seik ·u(0)s′Gk (ϑ, t |ϑ0).

The integrals over the contour parameters are easily evaluated, for simplicity again in a coordinate
frame with k = kex . This yields

F rod(k , t ) = 1

2πN (kL/2)

∫2π

0
dϑ

∫2π

0
dϑ0 sinc

(
kL

2
cosϑ

)
sinc

(
kL

2
cosϑ0

)
Gk (ϑ, t |ϑ0). (4.17)

The characteristic function can now be inserted, e.g., as obtained in Eqs. (4.10) and (4.13); then,
the δ-function in the initial condition reduces the evaluation of Eq. (4.17) to a single integral. With
the help of the zeroth order approximation, Eq. (4.10), we can extract the power law by exploiting
the fact that the major contribution to the integral will be located around ϑ= π/2. There the sinc-
function is roughly approximated by 1, and one again ends up with the result from Eq. (4.11) with
µ= ν= 0, only modified by the norm N (kL/2). Fig. 4.25 demonstrates that this matches the scat-
tering function in the power law regime as obtained in the simulations. A numerical calculation
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Figure 4.25: Scattering from the whole rod, for a large density, n∗ = 1200. Data points show simulation
results, color-coded lines the corresponding Perrin theory. For kL = 2, two results from perturbation theory
are shown: the straight gray line indicates the asymptotic power law 1/N k

√
πD∥t , i.e., the result from the

center of mass scattering, Eq. (4.9), with the amplitude given by the norm N = N (kL/2) of Eq. (3.57). The
continuous black line represents the first order perturbation theory for the scattering from the whole rod,
Eq. (4.17) with the characteristic function Eq. (4.13). Note that the horizontal axis is not rescaled with k2, in
contrast to the preceding Figs. 4.24 and 4.18. This presentation is chosen due to the different initial decay of
the curves for kL ≥ 2 in the present figure.

of the integral (4.17) with the first order characteristic function Eq. (4.13) improves this result in
the convergence to the correct value at short times, and the termination of the power law at τterm,
see the black line in Fig. 4.25. The significance of the first order result is preserved also for larger
wavenumbers, when the power law fades away and the terminal decay dominates.

To shed some more light on the alteration of the power law as compared to the center of mass
results, Fig. 4.26 visualizes the scattering function for two fixed wavevectors, with each of the two
plots covering two decades in the range of sample densities. At kL = 2, the intermediate power
law 1/k

p
t arises as expected with increasing density, similar to Fig. 4.19 for the scattering from

the center of mass. For this wavenumber, the effective description of the Perrin theory works ex-
cellently, since the probed length scale is beyond the typical mesh size for all displayed densities,
i.e., k ≪ 2π/ξ. With a wavenumber nearly two orders of magnitude larger, kL = 112, the behav-
ior is qualitatively inverted. For medium densities, the transient power law is visible in the time
window between microscopic dynamics and terminal relaxation—the exponent however gradually
weakens with rising density. Instead of shifting towards the asymptotic power law, as observed in
Fig. 4.19, the scattering function bends over to approach a time lapse that appears to be a stretched
exponential. Here, Perrin theory becomes appropriate only at the largest displayed densities due
to the large k.

From the preceding we infer that the difference in the fully-labeled scattering as compared
to the center of mass results seems to propose a varying mechanism in the representation of the
strongly confined, anisotropic motion. As expected, the way of labeling the rod is irrelevant at
large length scales, kL ≪ 1, since the observed motion will be increasingly similar, the more the
spatial resolution is coarse grained. In contrast, the entangled dynamics in the mesoscopic regime
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Figure 4.26: Scattering from the whole rod, for two fixed wavenumbers, left and right, each for various den-
sities. Left: At kL = 2, the intermediate power law ∼ 1/k

p
t arises with increasing density. For visualization of

the power law at the maximum density consult also Fig. 4.25. Right: When kL = 112, the power law weakens
in the exponent with increasing density, while keeping approximately constant the affected time window.

yields different characteristics, when analyzed based on the motion of the whole rod. The detailed
understanding of these features is still an open problem.

4.6 Conclusion

From our analysis we conclude that the motion of thin rods in semi-dilute suspensions exhibits
a rich interplay of time and length scales, as exemplified in the mean-square displacements and
intermediate scattering function. The hindered motion leads to a strong anisotropic dynamics
manifested in a significant translation-rotation coupling which persists up to macroscopic length
and time scales, Lrot and τrot. This dynamically induced coupling is an emergent phenomenon
with long memory effects. The confinement in the tube gives rise to a well separated spectrum of
length scales d ≪ ξ≪ L ≪ Lrot. The tube becomes effective once the rod encounters new steric
constraints—thus the interparticle distance ξ constitutes the lower length scale of a mesoscopic
window, where an effective theory with renormalized parameters becomes valid; this regime ex-
tends up to Lrot. Note that such a window opens only in the strongly anisotropic regime and is
absent for, e.g., ellipsoids with moderate aspect ratio. Since the orientation changes only gradu-
ally by tube renewals, it has to be included in the set of slow degrees of freedom in addition to the
translation. The effective Perrin theory constitutes a Markov process in these variables, and the
long memory observed in the intermediate scattering function is generated by integrating out the
slowly varying orientation. This mesoscopic description is independent of the details of the tube
generation; in particular, the obstacle may also fluctuate in time and space, or even disappear.

The Perrin approach fails to capture the fact that strongly confined needles have to diffuse
along their axis a distance L to relax the tube constraint. However, since the rotational diffusion
Drot is much slower than D∥/L2, this appears to be negligible, at least on the scales investigated
here.

It is straightforward to extend the concept of an effective Perrin theory to three-dimensional
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suspensions of long, thin rods since the motion in the tube is essentially one-dimensional. The
formal solution is then provided in terms of spheroidal wave functions [5, 119], which serves as a
starting point to calculate the intermediate scattering function. In particular, the confined motion
of rods is characterized again by a power law decay of the intermediate scattering function, which

we predict to F (k , t ) ≃
(
4k2D∥t/π

)−1/2
. This algebraic decay constitutes a generic feature of the

sliding motion and should be observable directly in scattering experiments.





Chapter 5

Dynamics of dilute semiflexible polymers

in a flow field

In the course of evolution, nature found a both amazingly simple and robust way to sustain the
mechanical stability of biological cells, while at the same time providing them with extraordinary
dynamic capabilities, like growing, moving, and dividing. The basic structure elements making this
possible are semiflexible polymers, in the cytoskeleton present in form of F-actin, intermediate
filaments and microtubuli. Two characteristic properties distinguish them from most of the other
natural and synthetic polymers: They possess a certain stiffness which energetically suppresses
bending, and they are to a high degree inextensible, i.e., their backbone cannot be stretched or
compressed. Moreover, electric charge and polarity effects as well as the ability to assemble and
disassemble are essential for the dynamics of the whole cytoskeleton network.

In the last 15 years enormous progress has been made in experimental observation and the-
oretical description of these physical aspects. To give some examples, fluorescence video mi-
croscopy of labeled filaments has allowed for the detailed study of statistic properties of F-actin
[91], DNA [107], and microtubules [120]. Quantities like the end-to-end distance [165] and force-
extension relations [88] have been calculated and verified experimentally [20, 95], the latter being
accessible by means of optical and magnetical tweezers. Furthermore, fluorescence correlation
spectroscopy [103, 137, 166] and light scattering [89] have been used to obtain, e.g., the mean-
square displacement and dynamic structure factor.

In this work we concentrate on the theoretical description of the dynamics of a single semi-
flexible polymer. This is the relevant model not only in the dilute limit, but also essential for the
understanding of the medium and high frequency response of networks of semiflexible filaments
[48]. Concerning the theory, the textbook models of Rouse and Zimm [31] have to be extended,
since they apply to Gaussian chains only and thus fail to incorporate the effects of semiflexibility.
A systematic analysis of the dynamics was limited in this field to the linear regime until recently,
when the dynamic propagation and relaxation of tension could be elucidated [15, 61], and a com-
prehensive, unified theory worked out [62]. The numerical approach usually adopted for poly-
meric systems is to construct a polymer from a finite number of beads, each of which is connected
with two neighbors by a stiff rod or spring [13]. Our goal is to set up a different method more
suited to the subtleties of semiflexibility, such that the numerical description of these filaments
becomes tractable when they are subjected to fluid flow. The purpose of this work is twofold: First,
we want to establish a new method that covers the above-mentioned goals, and second, the results
we present in applying this technique are directly relevant to experiments with polymers in a shear
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flow.
Many authors have addressed systems with semiflexible polymers by means of different bead–

rod/spring based techniques [38, 42, 58, 74, 114]. However, maintaining the mechanical constraint
of a constant bond length becomes complicated with increasing resolution, since it couples the
motion of all beads. The controversial question arises whether this requirement has to be imple-
mented as a literally rigid constraint or by an infinitely stiff potential, since these two cases differ
in their statistical mechanics [154]. One often chooses to address an infinitely stiff bead-spring
chain by means of a rigidly constrained system, which is more feasible concerning computational
time. Then, an additional pseudo-potential has to be applied to guarantee the correct equilibrium
Boltzmann distribution [68, 121]. Moreover, timescales present major limitations when solving
stiff systems numerically [40]. The characteristic relaxation time of a bending mode imposed on
the filament is inversely proportional to the fourth power of the corresponding wavenumber. The
largest wavenumber that can be resolved by discretized models is proportional to the number of
beads. Hence the time step one has to choose is inversely proportional to the quartic number of
monomers, for the shortest wavelength undulations to be sampled correctly. At the same time, the
longest mode needs to have enough time to relax to equilibrium, and since these two times dif-
fer by the fourth power of the resolution of the spatial discretization, the necessary computational
time can become prohibitively long.

As a consequence, the numerical approach has been limited, when semiflexible systems with
constraints were to be investigated. Some dynamic properties could be grasped by a suitable com-
bination of multiple short runs [40], but this is not possible when further external timescales enter,
which do not match the intrinsic limitations. For instance, this is the case when the polymer is
subject to a fluid flow. Corresponding simulations have been reported with a quite small resolu-
tion of nine beads [111]. On the other hand, experiments of this type have already been carried out
for DNA [50, 122, 136, 138, 147], and simulations have been presented to examine their findings
[76, 127, 135]. Indeed, the latter have always been done with models that allow for a finite or even
infinite extensibility of the chains. This might be a suitable approach for coil–like DNA molecules,
but it would miss important physics, if applied to stiffer filaments like F-actin or (pre–)stretched
DNA [117].

Recently, a new idea has been presented [164] for an alternative approach that avoids these
difficulties for two-dimensional systems. This concept starts from a continuous model for the
semiflexible polymer and uses a suitable normal mode analysis. Some of these ideas have been
utilized before to describe the deterministic [9], linear behavior of semiflexible filaments in a vis-
cous solution [162]. However, the extension to the nonlinear case at finite temperature has proven
to be subtle, and it is the goal of this work to consistently establish the approach and explore some
of the possibilities it can offer.

5.1 A spectral method for single filaments

In our model, a semiflexible polymer is represented by a space curve r (s, t ), parametrized by the
arclength s (Fig. 5.1). The minimal model for the description of a semiflexible polymer in this
representation is the wormlike chain [87, 131], valid when the detailed properties on the atomic
and monomeric scale are not important anymore [31]. Then, the Hamiltonian for the elastic energy
is given by the integral of the squared curvature c(s, t ), multiplied with the bending modulus κ,

Hel =
κ

2

∫L

0
ds c2. (5.1)
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t(s,t) Figure 5.1: Sketch of a polymer of length
L, represented by a continuous space curve
r (s, t ). An example is shown for the local unit
tangent vector t̂ (s, t ), as well as the end-to-end
distance vector R .

The bending modulus can be expressed in terms of the persistence length ℓp , the characteristic
length for the exponential decay of the tangent autocorrelation [92, §127]:

κ= kB Tℓp (dim−1)/2, (5.2)

where “dim” denotes the dimension of the embedding space. For synthetic polymers, the persis-
tence length is typically of the order of the polymer’s diameter, ℓp ≈ a. The tangential correla-
tions thus decay very fast, hence these polymers are called flexible. Semiflexible are polymers with
ℓp ≫ a, which is the case for the biopolymers inside the cell. Depending on the ratio of contour
length and persistence length we can distinguish different regimes: In case of DNA one usually
deals with the flexible limit, L ≫ ℓp ; in this work however we are exploring the stiff regime, where
ℓp ≥ L. The latter matches in nature, e.g., to the properties of F-actin and microtubuli.

Due to low Reynolds numbers, the motion of µm-sized objects like biopolymers in solution is
overdamped, i.e., friction exceeds inertia by several orders of magnitude [46]. As a consequence,
inertia terms can safely be neglected, and the equations of motion are of first order in time. The
stochastic dynamics of a polymer in a quiescent solvent can thus be described by the Langevin
equation [31, 90]

∂

∂t
r (s, t ) =

∫L

0
ds′ H[∆r ]

{
−δH [r (s′′, t )]

δr (s′, t )
+ξ(s′, t )

}
. (5.3)

Here H[∆r ] is the mobility tensor, with ∆r ≡ r (s, t )− r (s′, t ), and ξ the noise, which we assume to
be Gaussian distributed with mean zero. The energetic part of the Hamiltonian H [r ] is given by
Hel, and we will discuss necessary additions below.

Concerning hydrodynamics, we adopt the free draining approximation, i.e., neglect all nonlo-
cal interactions. This approximation can be justified by evaluating the Fourier transformation of
the Green’s function of a hydrodynamic force field (Oseen tensor), which gives only a very weak,
i.e. logarithmic, mode dependence of the mobility [47]. The underlying physical rationale is the
mostly straight conformation of a stiff filament. For the same reason, excluded volume effects can
safely be neglected. We implement the local friction of the polymer by using the anisotropic mo-
bility of a stiff rod, which differs by a factor of two for the motion parallel and perpendicular to its
tangent vector t̂ = ∂s r . Hence H[∆r ] →P (r (s, t ))δ(s − s′), with the local mobility [8, 31]

P =µ⊥n̂ ⊗ n̂ +µ∥ t̂ ⊗ t̂ . (5.4)

Here, n̂ denotes the unit normal vector. The tangent and normal vector are related by the Frenet-
Serret-equations, which in two dimensions read ∂s t̂ = cn̂, ∂s n̂ = −c t̂ . The friction coefficients
(per length) are obtained from the solvent viscosity η and polymer diameter a by µ⊥ = 1

2µ∥ =
ln(L/a)/2πη.
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Due to the presumed Gaussian nature of the noise we only need to specify the second mo-
ment of ξ. By relating Eq. (5.3) to the appropriate Smoluchowski equation [49] and requiring a
Boltzmann distribution in equilibrium we obtain

〈
ξ(s, t )⊗ξ(s′, t ′)

〉
= 2kB T P

−1δ(s − s′)δ(t − t ′). (5.5)

Based on physical considerations given in appendix C.1 we will interpret the noise according to
Ito [153]. In fact, some of the algebra necessary in the following relies on this interpretation.

A further important ingredient to the wormlike chain model is the inextensibility of the fila-
ment: We assume the local length to be constant by imposing the constraint ∂s r 2 ≡ t̂ 2 = 1. To sat-
isfy it, we introduce a Lagrange multiplier function Λ(s, t ) such that the full Hamiltonian reads [54]

H =Hel −
1

2

∫L

0
dsΛ(s, t )[∂s r (s, t )]2. (5.6)

Although the constraint is identically satisfied in the arclength parametrization, we do need a La-
grange multiplier function here to make the variation of the coordinates in Eq. (5.3) independent
of each other 1. In the following, we will be able to solve the equations of motion perturbatively
for the Lagrange multiplier Λ(s, t ), hence the validity of the inextensibility constraint is guaranteed
locally for all times. Physically, Λ(s, t ) corresponds to the tension acting against forces that would
elongate or compress the filament’s backbone.

In evaluating the functional derivative of Eq. (5.6) we obtain from Eq. (5.3) the nonlinear equa-
tion of motion

ṙ −Γ · r =P
{
−κr ′′′′− (Λr ′)′+ξ

}
. (5.7)

On the left hand side we have subtracted the incompressible, homogeneous 2 flow u = Γ · r to
account for the influence of an externally driven flow field. In Eq. (5.7) and the following, a prime
indicates a derivative with respect to the arclength.

When constrained systems similar to Eq. (5.7) are approximated by discrete bead–rod models,
one has to introduce a pseudo-potential (also called metric force) for the system to evolve into the
correct equilibrium state [42, 68, 111]. In contrast, we use a spectral approach, in which the ar-
clength dependence is continuous (before explicitly evaluated on a computer, of course), but we
truncate the expansion in terms of a finite number of wavelengths. Evaluating the metric determi-
nant by means of the recursion relation proposed in Ref. 41 leads to contributions proportional to
powers of the spatial resolution. Thus in case of a continuous representation, we do not need to
bother corrections of this kind.

To grasp the essential physics we will from now on consider the two-dimensional motion of a
filament in a three-dimensional embedding fluid. This is actually a standard situation for exper-
iments [107, 147], since the interesting dynamics is often restricted to two dimensions, while still
allowing for a three-dimensional transfer of momentum to the environment. Note that this is dis-
tinct from systems where the hydrodynamics is confined to two dimensions. Thus in the following,
the analysis will be presented for dim = 2, cf. Eq. (5.2). The tangent and normal vectors then are
given by (Fig. 5.1) t̂ = (cosθ, sinθ), and n̂ = (−sinθ,cosθ). To transform the equation of motion
to variables which are scalar, we differentiate Eq. (5.7) with respect to the arclength and project

1For the thermodynamics, a Smoluchowski equation chosen appropriately leads to a constraint fulfilled exactly [31].
This has to be contrasted with the thermodynamic approach of Lagrange transformations, which only enforce mean
values.

2A homogeneous flow can be parametrized linearly in Cartesian coordinates.
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the result onto the normal and tangent vector, respectively. Using the Frenet-Serret-Equations, we
arrive at

θ̇ = n̂ ·Γ · t̂ +µ⊥
{
−κ

[
c ′′′− (d +1)

(
c3)′]− (d +1)Λ′c −Λc ′+

[
n̂∂s + (d −1)c t̂

]
·ξ

}
, (5.8a)

0 = t̂ ·Γ · t̂ +µ⊥
{
−κ

[
c4 −3d(cc ′)′− cc ′′

]
+ c2

Λ−dΛ
′′+

[
d t̂∂s + (d −1)cn̂

]
·ξ

}
. (5.8b)

These equations describe the motion of a semiflexible filament in its center of mass inertia frame,
since the information on the absolute coordinate gets lost in evaluating the additional derivative of
Eq. (5.7). The constant d gives the ratio of parallel and perpendicular friction, µ⊥ =µ∥/d . Slender-
body hydrodynamics is described by the anisotropic case (d = 2), physically corresponding to the
difference in drag between normal and tangential motion of a slender body in Stokes flow. The
simpler isotropic equations are obtained with d = 1.

5.1.1 Normal mode analysis

The leading contribution governing the elastic dynamics of Eq. (5.8a) is the second term on the
right hand side, −κ∂3

s c(s, t ) =−κ∂4
sθ(s, t ). For a suitable normal mode decomposition of the equa-

tions (5.8a) and (4.5) we thus may use the eigenfunctions of the biharmonic operator ∂4
s . Here, we

consider free boundary conditions r ′′(0) = r ′′(L) = 0, r ′′′(0) = r ′′′(L) = 0 [93, 163], corresponding
to the situation of a filament fluctuating freely in flow. In angular coordinates this translate into

θ′(0) = θ′(L) = 0, and θ′′(0) = θ′′(L) = 0. (5.9)

Furthermore, the tension has to vanish at the boundaries, Λ(0) =Λ(L) = 0.
The biharmonic operator is not Hermitian with respect to a single set of eigenfunctions obey-

ing (5.9); however, it is Hermitian with respect to a biorthogonal set of functions, where the first set
wα(s) obeys the boundary conditions of Eqs. (5.9), and the second set wα(s) satisfies

wα(0) = wα(L) = 0, and w ′′′
α (0) = w ′′′

α (L) = 0. (5.10)

These functions are solutions of the eigenvalue problems ∂4
s wα = k4

α/L4 wα, ∂4
s wα = k4

α/L4 wα, re-
spectively, with identical eigenvalues k4

α, to be found from the solvability condition
coskα coshkα = 1. The general solutions wα(s), wα(s) are linear combinations of trigonometric
and hyperbolic functions [93], and a polynomial of third order for the zeroth eigenvalue k0 = 0.
They are explicitly given in Appendix C.2. Some nice experimental snapshots of the mode dynam-
ics of F-actin can be found in Ref. 159.

The completeness of these two sets of eigenfunctions has not been shown yet. Neither a varia-
tional approach [25] nor a comparison with a complete basis [18] seem to work in our case. How-
ever, we do not regard this as a major issue, since the failure is only due to our specific nonstan-
dard set of boundary conditions—for other boundary conditions completeness can be shown [25].
Furthermore, in order to implement the spectral approach, we will have to truncate all mode ex-
pansions, anyway.

We make use of the two sets of eigenfunctions to obtain normal mode expansions of the angle
and tension (latin indices always start from 1, greek ones from 0):

θ(s, t ) = θ0(t )+ǫ
∞∑

j=1
θ j (t )w j (s), (5.11)

Λ(s, t ) =
∞∑

ν=0
Λ

ν(t )wν(s). (5.12)
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In the first line we have separately written the zeroth mode θ0(t ), since it is independent of the
arclength; it describes the motion of a stiff rod. The higher modes include undulations with suc-
cessively smaller wavelength. The perturbation parameter ǫ will be defined by equipartition, as
illustrated below. Equivalently, the zeroth tension mode Λ

0(t ) gives the tension distribution in a
straight rod. By using the spectral expansion of the tension in the second line we assigned two
additional boundary conditions to the tension [rightmost part of Eq. (5.10)]. We do not expect this
vanishing cubic contribution to be a noticeable restriction to the tension at the edges. However,
there is no simple physical interpretation to it.

As a first application of the mode expansions we insert Eq. (5.11) into the wormlike chain
Hamiltonian (5.1), which in two dimensions can be written as

Hel =
κ

2

∫L

0
ds (∂sθ)2.

By means of the equipartition theorem and Eq. (5.2) we get an expression for the mean size of the
mode amplitudes (cf. Appendix C.2), dependent only on the relative persistence length:

ǫ

√〈
θ2

j

〉
=

√
2

L

ℓp

1

k j
. (5.13)

This suggests to define a flexibility parameter ǫ =
√

L/ℓp , which is small for stiff filaments. In the

following section we will use ǫ to set up a perturbation expansion for the equations of motion. By
definition Eq. (5.11), all angular modes θβ are of order 1 with respect to this expansion.

5.1.2 Perturbation expansion

The temperature T enters the equation of motion in two ways: First, in the amplitude of the noise,
Eq. (5.5), and second, in the expression for the bending stiffness, Eq. (5.2). A perturbation theory
with respect to a single independent parameter ǫ will thus in general lead to different results, de-
pending on the choice of the dependent parameter, κ or T . However, a difference only appears in
the expressions of cubic order in ǫ. Since we aim to a solution in second order, this is of no con-
cern for us. For concreteness, we choose the example of a constant curvature. Then, ǫ enters the
equations only via the temperature in the noise correlator. We make all variables dimensionless
by t κµ⊥/L4 → t , ξL3/ǫκ→ ξ, ΛL2/κ→Λ, P

−1µ⊥ →P
−1, and γ̇L4/κµ⊥ → γ̇, insert the expansions

(5.11), (5.12) into the equations of motion and project them on mode wβ. The projection, if not
evaluated, is abbreviated by

[. . .]β :=
∫L

0
ds wβ . . . .

We furthermore introduce for the flow dependent terms

γ̇g
∥
β

:= [t̂ ·Γ · t̂ ]β/L, γ̇g⊥
β := [n̂ ·Γ · t̂ ]β/L,

where γ̇ is the strength of the flow in units of inverse seconds. gβ are dimensionless, θ-dependent
functions that have to be expanded to the appropriate order. In these terms we obtain the following
equations of motion:

ǫ∂tθ j =−ǫk4
j θ j −ǫ

∑

ν=0,i=1
Λ

νθiΞ
i
jν+ǫη⊥j + γ̇g⊥

j +O
(
ǫ3) , (5.14a)

∂tθ0 =−ǫ
∑

ν=0,i=1
Λ

νθiΞ
i
0ν+ǫη⊥0 + γ̇g⊥

0 +O
(
ǫ3) , (5.14b)

0 = dk̃2
βΛ

β+ǫη∥
β
+ γ̇g

∥
β
+O

(
ǫ2) . (5.14c)
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Here, a threefold overlap integral of eigenfunctions is abbreviated by

Ξ
α
βν =

1

2

[
(d +1)

∫1

0
ds wα

(
k̃2
νwνwβ− k̃2

βwβwν

)
+ (d −1)k2

α

∫1

0
ds wαwβwν

]
, (5.15)

and the projected noise is expressed as

η⊥β =
[(

n̂∂s + (d −1)(∂sθ)t̂
)
·ξ

]
β ,

η∥
β
=

[(
d t̂∂s + (d −1)(∂sθ)n̂

)
·ξ

]
β .

(5.16)

Note its dependence on ǫ, via θ and via the unit vectors t̂ , n̂. Furthermore we would like to mention
that g⊥

j
has no contribution to zeroth order in ǫ, thus all terms of Eq. (5.14a) are at least linear in ǫ.

A linear stability analysis of the bending modes described by Eq. (5.14a) is obtained by expanding
g⊥

j
[164]. Finally, the dimensionless noise has the second moment

〈
ξ(s, t )⊗ξ(s′, t ′)

〉
= 2P

−1δ(s − s′)δ(t − t ′).

Since the tension contribution to Eqs. (5.14a) and (3.73) is always of first order in ǫ, it is suf-
ficient to expand it to one order less than the angular equations. For this reason Eq. (5.14c) is an
algebraic equation. To obtain the given expression we have furthermore taken advantage of the
eigenfunction’s property w ′′

α =−k̃2
αwα (see Appendix C.2). The tension modes Λ

β can thus be in-
serted directly into the angular equations. 3

Concerning the noise, one obvious method to simplify Eqs. (5.16) would be to evaluate the pro-
jection integrals and find an expression for the correlation of the integrated noise. However, there
are some complications in our case. It turns out that the correlation of the integrated noise is nei-
ther diagonal with respect to the mode projection (subscript β) nor with respect to the direction
of the vector projection (superscripts ⊥, ∥). Furthermore, the order of the nondiagonal corrections
is such that they have to be accounted for in an expansion up to order ǫ2. Thus a computational
solution would have to include a numerical diagonalization of the conformation dependent noise
in each step. To avoid this we diagonalize the inverse mobility matrix P

−1 analytically and calcu-
late the arclength integrals in each time step by numerical means. As a drawback this includes the
necessity of a fast random number generator, but still the implementation seems to us to be easier
and faster.

The eigensystem of P
−1 = n̂ ⊗ n̂ + t̂ ⊗ t̂/d can immediately be read off, and the corresponding

transformation matrix S is used to rotate the noise locally, ξ̃ := S · ξ. For the calculation of the
second moment of the rotated noise we necessarily need it to be of Ito type, since the matrix S is
nonanticipating only in this case. We obtain

〈
ξ̃(t , s)⊗ ξ̃(t , s)

〉
= 4P

−1
D δ(t − t ′)δ(s − s′), (5.17)

where the diagonalized mobility matrix

P
−1
D = S ·P −1 ·S =

(
1 0
0 1/d

)
.

3Using Eq. (5.14c) for the case of a vanishing background flow, one can calculate the correlation of the tension:

〈
Λ(s, t )Λ(s′, t ′)

〉
=

(kB T )3ℓ2
pµ⊥

2dL7
δ(t − t ′)

∑

α=0

wα(s)wα(s′)

k̃2
α

.

This might give a hint for estimating a reasonable size of the spring constant of bead-spring systems, when calculating
their Brownian dynamics.
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The new stochastic variable ξ̃ simplifies the stochastic integrals (5.16) of the equations of motion:

η⊥β =
∫1

0
ds

(
d wβ(∂sθ)ξ̃2 −w ′

βξ̃1

)
, (5.18)

η∥
β
=−d

∫1

0
ds w ′

βξ̃2 +O (ǫ). (5.19)

Using this in Eqs. (5.14) allows us to conveniently solve the coupled stochastic differential equa-
tions by numerical integration [84]. The final equations without flow are a coupled set of linear

equations (although of quadratic order in ǫ) with multiplicative noise. Nevertheless, they cannot
be solved analytically, due to the complicated structure of the coefficients.

5.2 Results from Brownian dynamics simulations

5.2.1 Verification without flow field

We have computed equilibrium averages of the squared mode amplitudes to compare them with
the equipartition result, Eq. (5.13). This is to check the validity of the approximations we made in
the previous section and of the numerical solution technique. For the first eleven modes shown
in Fig. 5.2, the agreement is excellent in case of ℓp /L ≥ 9, i.e. ǫ ≤ 1/3. Slight deviations due to the
limited validity of the ǫ-expansion become visible at ǫ= 1/3; in case of ǫ= 1, results differ by about
14%. To analyze these errors in more detail, we have plotted the relative differences of analytical
and numerical values for the mean square mode amplitudes versus ǫ−1 in Fig. 5.3. These relative
errors decrease like ǫ2, as shown by the gray bar. This is consistent with our second order pertur-
bation expansion, since the first terms we neglected are of third order, thus their contribution to
the relative error is proportional to ǫ2.

In addition to that, Fig. 5.3 shows the relative errors of the mean end-to-end distance R of
the polymer. The corresponding exact result is 〈R2〉 = L2 fD (L/ℓp ), with fD (x) = 2(e−x −1+ x)/x2

[87, 131]. The deviations again decrease as expected proportional to ǫ2.
To validate dynamic properties, we compare the scaling behavior of fluctuations of the mean-

square end-to-end distance ∆R (t ) =
〈

[R(t )−R(0)]2
〉

with the analytically known and experimen-

Figure 5.2: Mean squared am-
plitudes of normal modes for
different persistence length.
Open circles are numerical
results, “+” interconnected by
lines are given by Eq. (5.13).
Significant deviations be-
tween both are visible only for

ǫ =
√

L/ℓp = 1. They are of

order ǫ3, terms neglected in the
perturbative solution Eq. (5.14a)
(cf. also Fig. 5.3).
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Figure 5.3: Relative errors of
some mean-square mode am-

plitudes ǫ
√
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α〉 (colored) and
mean end-to-end distance (black
circles) versus inverse expansion
parameter ǫ. Lines are shown to
guide the eye. As expected from
the order of the expansion of the
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tally verified [57, 95] behavior: For short times, ∆R (t ) grows subdiffusively like t 3/4, for long times it
approaches the equilibrium value of ∆R (t →∞) = 2(L/ℓp )2/45. Our numerical results in Fig. 5.4 re-
produce this pattern in excellent quality; effects of the perturbation expansion can only be seen in
slight deviations from the expected plateau value at long times. Comparing Fig. 5.4 to correspond-
ing experimental results (Fig. 3 of Ref. [95]) even shows a similar downturn for times t/τ1 < 10−3.
In case of Ref. 95 this is due to insufficient statistics at small times because of a limited observa-
tion period. In our case, the finite number of modes accounted for causes a slight suppression of
fluctuations at these short times. 4

To summarize this part, we find that our method reproduces all tested equilibrium and dy-
namic observables very well within the accuracy expected from the perturbation expansion. In
principle, one could think of even enhancing the accuracy of the equations. However, in spite of
the simplicity of the equipartition expression, such a correction by means of an additional drift
term is quite involved. This is caused by the strongly coupled nature of the equations, coming
from the Lagrangian constraint and the noise projection. We dismissed such additions for this
work, since the deviations are of minor importance for the applications we have in mind.

In the following section we will turn to an example of a nonequilibrium system that can nicely
be worked out by means of the technique presented above. We always present results for fila-
ments with persistence length ℓp /L ≥ 4, thus the systems show the correct equilibrium behavior,
as demonstrated by now.

5.2.2 Motion in shear flow

A shear flow is a laminar flow with a velocity field as depicted in Fig. 5.5. In terms of the velocity
gradient matrix Γ this reads Γ= γ̇

(
0 1
0 0

)
, with respect to the coordinate axes of Fig. 5.1.

To gain some understanding of the basics we briefly discuss the case of a stiff rod exposed to
shear. By re-implementing dimensionalized quantities in Eq. (5.14b) and afterwards taking the
limit ǫ→ 0 we obtain the equation of motion (cf. Ref. 127)

∂tθ0(t ) =−γ̇sin2θ0(t )+
p

Dη(t ). (5.20)

4For very short times, local fluctuations parallel to the tangent show a t 7/8 behavior [40, 94]. However, this is a
property of terms of the order ǫ3 and higher in the equations of motion, and hence cannot be seen from our calculations.
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Figure 5.4: Time dependence of the mean-square displacement ∆R (t ) of the end-to-end distance. The
calculations are done in 12-dimensional mode space. Symbols are replaced by lines were they would be-
come very dense. The rescaled data for different persistence length collapses onto one master curve, which
behaves ∝ t 3/4 for short times. τ1 is the relaxation time of the longest mode, τ1 = k−4

1 , in our units (cf.
Eq. (3.58), and Ref. 95). The inset shows a magnification of the long-time behavior. The stiffer the filament,
the closer the numerical results are to the correct equilibrium value 1.

Here, the noise is δ-correlated in time, and the diffusion constant D = 2µr kB T /L, with the rota-
tional mobility of a rod µr = µ⊥12/L2 [31]. In the deterministic case, i.e. η ≡ 0, Eq. (5.20) can be
solved easily and results in a single rotation of the rod, which reaches the stall line at θ = 0 for long
times like t−1. In terms of stability analysis the deterministic dynamics corresponds to a flow on
a circle with a half stable fixed point at θ = 0. When noise is present, η is the control parameter
of a saddle node bifurcation at η = 0 [142]. The effect of this is that the stochastic forces drive the
rod across the stall line after some time, such that a new rotational cycle begins. Driven by the
shear and the noise, the rod will now rotate again and again, such that one can e.g. measure the
rotational times to characterize the stochastic process.

For finite ǫ, we have the additional influence of the bending modes. Apart from shear-induced
bending this can also change the behavior close to the stagnation line, since filaments with curved
conformations might wiggle easier across this threshold.

Figure 5.5: Sketch of a semiflexible fil-
ament in shear flow. The two gray ar-
rows indicate walls moving with con-
stant speed, black arrows the velocity
of the fluid. At the fluid–wall interface,
the fluid is transported with the veloc-
ity of the wall, due to no-slip boundary
conditions.
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In Fig. 5.6 we show a sample trajectory of a filament with relative stiffness ℓp /L = 6.5. Here the
rotations appear as a flip of the angular mode θ0 from −π/2 to +π/2. These flips are usually accom-
panied by a peak in the first mode θ1, indicating a sudden bending event triggered by the rotation.
Furthermore, the end-to-end distance often shows a short dip corresponding to this intermediate
bending.

Extensive experimental [50, 136, 138, 147], numerical [76, 111, 127, 135], and some theoretical
work [22, 127] has been presented to characterize the motion of DNA in shear flow. However, the
relative persistence length ǫ−2 of DNA is typically about two to three orders of magnitude smaller
than that of F-actin, as already denoted in the beginning of Sec. 5.1. Consequently, the physics of
these two kinds of semiflexible polymers will be quite different. When rotating in shear, for exam-
ple, DNA more or less crawls along itself [136], whereas F-actin shows a clear stretch-out in our
computations even at intermediate conformations, i.e., when the end-to-end distance is oriented
perpendicular to the flow direction. Due to the different physics, the numerical methods used for
DNA in the references above are not applicable in case of stiffer filaments like F-actin. In contrast
to those techniques, our method always guarantees the local inextensibility of the filament.

A useful observable to get insight into the periodic and stochastic behavior is the power spectral
density (PSD) P ( f ), the Fourier transformation of the autocorrelation function of an observable x:

P ( f ) :=FT {〈x(t )x(0)〉}.

In Fig. 5.7 we show the PSD of the end-to-end distance R of a filament with persistence length
ℓp /L = 6.5, both with shear and without. The strength of the flow is γ̇= 1.03/s or Wi = 0.55, where
Wi = γ̇τc is the dimensionless Weissenberg number, the product of flow rate and characteristic
relaxation time τc of the system. For τc one may choose the mean exponential decay rate of the
autocorrelation function of the end-to-end distance. In terms of the dimensionless formulation
chosen in Sec. 5.1.2, the bending stiffness κ is constant, and only temperature varies when chang-
ing the stiffness parameter ǫ. Thus in this formulation the relaxation rate is identical for all ℓp . Our
data result in a mean of τc = 0.53± 0.02 s, so flow rates γ̇ have to be multiplied by this factor to
obtain them in Wi-units.

Without shear, the PSD shows a characteristic Lorentz-like behavior, where the only timescale
in the system separates the long time plateau from the short time decay. In case of the end-to-end
distance R, the short time regime obeys the power law P ( f ) ∝ f −7/4 [51, 115], which immediately
follows from the mean square displacement ∝ t 3/4. With shear, there is first of all a pronounced
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θ1 Figure 5.6: Sample trajectories

of the end-to-end distance R

and the first two angular modes,
for a flow of strength γ̇= 1.03/s
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Figure 5.7: Power spectral densities P ( f ) of the end-to-end distance without flow, and with a shear of
strength γ̇ = 1.03 (Wi = 0.55). Green ‘x’: ℓp /L = 49, red ‘+’: ℓp /L = 6.5. The smooth black curve is a fit of
the result in quiescent solvent with the appropriate Lorentzian [51, 115], used for the plot of the relative PSD
in Fig. 5.9. With shear, a bump between 0.05 and 0.09 Hz shows the characteristic time of rotation of the
filament. A different scaling regime appears for frequencies smaller than 1 Hz, with an exponent depending
on properties of the filament. PSD-data for ℓp /L = 49 have been multiplied by a factor 60 for the purpose of
an easier visualization. Calculated with 10 (ℓp /L = 6.5) and 8 (ℓp /L = 49) modes resolution. Inset: Nonlog-
arithmic version of the region around the bump for ℓp /L = 6.5, with estimated error bars. The number of
data points has been reduced by averaging.

increase in correlations at small frequencies, indicating stronger long-time correlations due to pe-
riodic tumbling events. A shallow bump appears in the region between 0.05 and 0.09 Hz, indicat-
ing a typical frequency of rotation for the given flow strength. This bump is visible more clearly in
Fig. 5.9, where we show the ratio of the PSDs with and without flow.

Coming back to Fig. 5.7, we identify an additional timescale in the decay for frequencies below
1 Hz, separating the high frequency power law f −7/4 from a regime with an exponent with a larger
absolute value. This intermediate sharp decay arises due to a subtle interplay between thermal
fluctuations and frictional driving of the shear flow [76, 135]. However, the power law of this decay
is not generic—it depends on ℓp in a nontrivial manner. The detailed study of this phenomenon is
deferred to a later work.

In the experiments with DNA cited above, the end-to-end distance itself could not be measured
due to the limited optical resolution; instead, the molecular extension was recorded, as measured
by the mean projected extension in flow direction. However, it is reported that this observable does
not show a typical frequency for a deterministic cycle associated with the tumbling motion in flow,
in contrast to our results for the end-to-end distance of F-actin. We conjecture that this relatively
weak effect might also be connected to the inextensibility of the filament.

Fig. 5.8 shows PSDs of the first two modes for the angle and tension. In the absence of flow, the
stiff filament mode θ0 is to first order given by the rotational diffusion of a stiff rod. This leads to
a f −2 decay in the PSD with nonperiodic boundary conditions (not shown), which still gives the
high frequency regime of the results in shear. The bumps of the PSDs of R and θ0 are located at
about the same frequency—in this regard it is interesting to note that the end-to-end distance is
independent of θ0.
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0, Λ
1,
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still increases correlations at low
frequencies.

In a quiescent solvent, Eqs. (5.14) give Ornstein-Uhlenbeck behavior for the higher angular
modes θi , with small deviations due to the coupling of the equations and the multiplicative noise.
In Fig. 5.8 we only show the first mode θ1, where the case without flow has been fitted to a Lo-
rentzian, whose coefficients differ from the Ornstein-Uhlenbeck process by at most some percent.
The differences between observables recorded with and without flow are better visible in Fig. 5.9,
where we identify an increase below 0.3 Hz and a slight decrease for higher frequencies. The in-
crease of the plateau for θ1 is a characteristic of filaments with a relative persistence length of the
order one: Stiffer filaments do not buckle at all during a rotation, and floppier ones show a differ-
ent behavior for strong flows (crawling near the stall line), or thermally fluctuate so heavily that a
buckling due to shear cannot be identified. The next mode θ2 still shows a similar behavior, but in
an already much weaker manner.

The tension modes finally only show noise fluctuations around zero when no flow is present
(not shown), which is obvious from Eq. (5.14c). In shear flow the power spectrum changes towards
a behavior as characteristic to Lorentzian curves for low and high frequencies. This is caused by
the fact that there is a strong linear coupling between each tension mode Λ

β and its corresponding
angular mode θβ, visible by expanding the flow dependent part of Eq. (5.14c). The intermediate
frequency region of the PSDs of the tension modes clearly shows signs of driving by shear: A bump,
indicating a typical correlation time, followed by a sharp decay. These properties are even more
pronounced in the tension modes, when comparing to the angular mode with the same index, re-
spectively. In case of Λ0 we identify a strong peak at the very same position of maximum height
already mentioned for the PSDs of θ0 and R, and a sharper power law decay f −3.6 towards higher
frequencies. We conclude from this that the periodicity of the tumbling events can be found di-
rectly in the autocorrelation of the tension modes. This is very reasonable, since it follows that a
rotation in shear triggers specific frictional forces acting on the backbone of the polymer, which
have to be withstand by the constraining forces. In Fig. 5.9 we show the PSD of Λ0 relative to a
Lorentzian fitted to the generic short- and long-time behavior to demonstrate the flow specific
peak.
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Figure 5.9: Ratio of power spectral density P ( f ) with shear flow to that without flow, for the data of Figs. 5.7
and 5.8. Correlations of R are increased by a factor of more than 10 at frequencies of 0.3 Hz and below, with
a peak between 0.05 and 0.09 Hz. Similarly, correlations of the first angular mode θ1 are pronounced by a
factor of 2 below 0.1 Hz, and slightly decreased around 1 Hz. This is a signature of the semiflexible nature of
the polymers under investigation, since it refers to the buckling events occurring periodically during their
rotation in shear. Concerning the second angular mode θ2 (not shown in Fig. 5.8), there is still a change
from decreased to increased correlations visible when going from f = 1 Hz to 0.1 Hz and below. The tension
mode Λ

0 shows a strong tenfold peak at 0.1 Hz when compared to a Lorentzian which has been fitted to the
generic short- and long-time behavior.

5.2.3 Statistics of tumbling in shear

A further point of interest is the mean time it takes the polymer to rotate. Experiments with DNA
report a power law increase of the tumbling frequency with shear strength proportional to Wi0.67,
confirmed by appropriate simulations and scaling analysis [136]. Furthermore, analytic results for
Brownian rods in strong shear consistently give Wi2/3 [127].

Fig. 5.10 shows our results for the mean rotating frequency of filaments with various persis-
tence lengths. We defined a flip to be a single half turn of an angle π. As a check of consistency, the
frequency of rotation of a filament corresponding to Figs. 5.7 and 5.8 is 0.066±0.002 Hz, which lies
very well within the observed peak width of these figures.

The maximum flow strength for which we can obtain results numerically is limited by the ǫ-
expansion we have exploited in Sec. 5.1.2. Since this expansion requires a small curvature, it breaks
down when a powerful flow strongly bends the filament. For comparison we also plotted numerical
results for a rotating stiff rod, which obeys the expected γ̇2/3 power law. The exponent shows a
slight crossover behavior in the semiflexible regime, in deviation from both the stiff and the flexible
limit: As an example, the rotational frequency of a filament with persistence length ℓp /L = 6.5
scales like γ̇0.72±0.01. The data of Fig. 5.10 furthermore demonstrate that the exponent becomes
closer to 2/3 the stiffer the filament, as expected from the stiff rod limit. Note that this relatively
weak crossover effect does not vanish ∝ ǫ3, and thus seems not to be caused by deviations due to
the perturbation expansion.
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Figure 5.10: Tumbling frequency
of semiflexible polymers with
different persistence length
versus strength of shear flow.
The change of the power law
form γ̇0.72 at ℓp /L = 6.5 towards
γ̇2/3 for a stiff rod indicates a
crossover behavior between
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amplitude shift appears due to
the parametrization we have
chosen (cf. Sec. 5.1.2) and has
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5.3 Effective bundle dynamics

The spectral analysis of the wormlike chain Hamiltonian not only allows for the efficient simula-
tion of single filament dynamics, but also makes possible the description of bundles of wormlike
chains, by means of an effective mode-dependent bending stiffness. Heussinger et al. [67] have
shown that the three contributions of the wormlike bundle Hamiltonian, i.e., the stretching energy
and the shear energy, in addition to the bending term Eq. (5.1), can be condensed into a simple
expression for a renormalized bending stiffness in Fourier space,5

κn(N ,λ) = Nκ

[
1+

(
1

N −1
+ (knλ)2

)−1]
. (5.21)

Apart from the bundle size N there is only a single new parameter λ, which is a length scale com-
prising all microscopic properties of the bundle, e.g., the shear stiffness, the cross-link spacing, the
stretching stiffness, and the interfilament distance. Three different elastic regimes have been iden-
tified and explained by this effective bundle theory: First, in the decoupled regime with k−1 ≪λ, the
bending stiffness is constant, κn = Nκ, since all filaments can move laterally independent. Second,
at larger wavelength λ

p
N ≫ k−1 ≫ λ, an intermediate shear-dominated regime follows, in which

the full mode dependence of Eq. (5.21) has to be accounted for, such that modes with smaller
wavelength become floppier. Lastly, for even larger wavelength, the bending becomes fully cou-

pled, and the bundle elasticity is equivalent to that of a homogeneous beam with κn ∼ N 2. These
three regimes are visualized in Fig. 5.11 by a plot of κn(N ,λ) as a function of the cutoff length λ;
the intermediate regime is the most interesting one, since here N and λ can be chosen such that
the effective stiffness varies considerably for different wave numbers kn .

The implications of this effective theory for the equilibrium statistical mechanics of semiflexi-
ble bundles are large, altering fundamentally, e.g., the scaling properties of the force extension rela-
tion and the shear modulus, as well as the elasticity of networks [67]. Complementary, the spectral
method presented in the preceding sections constitutes a framework to analyze the dynamics of
such semiflexible bundles. The only change that is necessary for computer simulations of effective

5Eq. (5.21) is identical to Eq. (6) of Ref. 67, with κ̂ f = 1/12 from continuum elasticity.
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Figure 5.11: Mode dependent
stiffness κn(N ,λ) of a semiflexi-
ble bundle, for three values of the
bundled size N , and two mode
numbers n each. Each curve is
normalized with respect to the
corresponding one for n = 1. Ar-
rows at the bottom axis indicate
the regime boundaries for the ex-
ample of n = 9 and bundle size
N = 500.
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bundle dynamics instead of single semiflexible polymers is the inclusion of the mode dependent
stiffness, Eq. (5.21). We use the notation κn(N ,λ) =: Nκκ̃n(N ,λ); then, in place of Eq. (5.13), we
redefine the perturbation parameter ǫ2 := L/ℓp N κ̃1. The units given in Sec. 5.1.2 are changed ac-
cordingly, such that the unit of time is rewritten as t Nκκ̃1µ⊥/L4 → t , the noise ξL3/ǫNκκ̃1 → ξ, the
tension ΛL2/Nκκ̃1 →Λ, and the strength of the flow γ̇L4/Nκκ̃1µ⊥ → γ̇. In Eq. (5.14a), the prefactor
of the term for the bending stiffness changes,

∂tθ j =−
κ̃ j

κ̃1
k4

j θ j −
∑

ν=0
i=1

Λ
νθiΞ

i
jν+η⊥j +

γ̇

ǫ
g⊥

j +O
(
ǫ3) ; (5.22)

Eqs. (5.14c) and (5.14b) are unchanged. In these terms, the equations of motion describe the mode
dynamics of a semiflexible bundle relative to the stiffness of the first mode, and different bundle
sizes N enter via the ratio κ̃ j /κ̃1, and via ǫ.

As a proof of principle, we explore one sample system covering some of the emergent phe-
nomena of bundle dynamics. In an elongational flow field, the initial orientation of the filament
is chosen to the compressional direction of the flow. Within a deterministic propagation in time,
the rod buckles under the compressional force, and then rotates by π/2 to finally line up along
the elongational direction. This well-defined cycle is evaluated for bundles with fixed size N , but
varying cutoff length λ. By integrating the squared mode amplitudes in time over such a cycle, one
obtains a measure for the bending energy that is transferred from the flow to the bundle and vice
versa. A set of curves obtained this way is displayed in Fig. 5.12, for an initial configuration with
only the first mode set to a small nonzero value. The normalization with respect to the behavior
of a single filament reveals a large variation of the stored bending energy with respect to λ within
the shear-dominated regime. In this parameter window the higher modes become increasingly
softer, based on the effective stiffness, Eq. (5.21). The detailed quantitative behavior, however, is
not generic, but depends strongly on the choice of the initial conditions. Thus though the softness
of the modes with small wavelength is a qualitatively persistent future, the peak structure in the
shear-dominated regime is not.

Several interesting future projects derive from the framework of effective bundle dynamics. An
analysis of the stochastic motion should also directly show the implications of the effective stiff-
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Figure 5.12: Squared mode am-
plitudes of a bundle with N =
36, integrated in time over a ro-
tation cycle in elongational flow,
and normalized with respect to
the same evolution of a single
filament. The plot displays the
variation of this observable with
respect to the cutoff length of
the bundle, λ. To guide the
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points of the results of the de-
terministic simulations. The ini-
tial conditions are set to θ1(0) =
0.01, θi≥2(0) = 0, and θ0(0) is set
such that the filament is oriented
along the compressive direction
of the flow.

ness, e.g., for a system in shear flow, as worked out in Sec. 5.2.2. Moreover, the spectral dynamics
equations analyzed so far are limited to linear order in the angular modes. Various important non-
linear effects are thus not grasped, e.g., the Euler buckling instability, and tension propagation.
They should be accounted for in the mode dynamics by considering the higher order contribu-
tions in Eqs. (5.8).

5.4 Conclusion

We have presented a newly developed method for describing the dynamics of single semiflexible
filaments in a viscous solution, subject to external flow fields. Due to the mainly elongated confor-
mations, hydrodynamic backflow effects are marginal and thus the dynamics can be formulated
in the free draining approximation. In contrast to previous approaches based on bead-rod/spring
models in real space we have adopted a spectral method of the equations of motion. A further sim-
plification can be achieved upon using an angular representation of the polymer conformations.
This has the advantage that there is no approximation in the bending energy. All of the above al-
lows us to give an efficient computational approach for calculating Brownian trajectories for the
polymers, and to include nonlinear effects of the environment without inherent limitations.

The computational time necessary for these numerical solutions is proportional to the fourth
power of the mode number, and linear in the spatial resolution of the noise along the space curve.
The main advantages regarding numerics are, compared to bead–rod models, first, mode dynam-
ics offers a natural approach to the long-time dynamics, since the high wavenumber fluctuations
are increasingly irrelevant (cf. Fig. 5.2). Second, the additional time necessary to satisfy the local
constraint of constant length is very small. One reason for this is that no pseudo–potentials have to
be calculated. Finally, one could even enhance the speed by adapting time and spatial resolution
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appropriately to each individual mode, a technique we did not apply, yet. In summary, we are able
to monitor conformational properties very precisely, while taking account to all modes that give
essential contributions to the dynamics of stiff semiflexible filaments.

Conceptually, our approach should be understood as being complementary to bead-rod and
bead-spring models. In some cases the latter are advantageous, e.g. when dealing with dense so-
lutions of flexible polymers, such that excluded volume effects are important.

Quantitative tests of the numerical solution show that the method correctly describes the fluc-
tuations of semiflexible filaments in a quiescent solvent. We have demonstrated that our technique
is capable of describing the long time dynamics in a sheared environment within reasonable com-
putational time. For the first time we have calculated power spectral densities and mean rotational
frequencies of F-actin in shear, taking into account exactly the local inextensibility constraint. The
results have enabled us to point on two crossover phenomena still to be described in more detail.
For the future, extensions of the method should be possible to include e.g. charge effects or differ-
ent boundary conditions. A more challenging task is to extend the analysis to three dimensions.

An experimental test of the behavior of Actin filaments in shear or elongational flow has not
been reported, to our knowledge. However, the setup used for sheared DNA [136, 138] might
also work for F-actin, and elongational flows are constructed easily by means of microfluidic tech-
niques [86]. Thus experiments could in principle be possible without too much technical effort.



Chapter 6

Summary and outlook

Diffusive transport processes on the nanometer scale play an essential role for understanding col-
loidal systems of any kind—in applications of biological origin they are of vital importance. In this
dissertation I have examined the diffusive motion of macromolecules in different environments,
based on three typical model scenarios.

The central part of this work investigates the dynamics of thin rods in suspensions. Here, the
shape of a rod constitutes an idealization of elongated anisotropic particles on the microscale.
A simplified model is presented, reducing the problem to the motion of a single rod in a two-
dimensional course of point-like obstacles. I explore this model in two ways: First, I have devel-
oped molecular dynamics simulations that calculate the Brownian motion of the rod, covering up
to nine decades in time. Experimentally relevant observables are measured in statistically excellent
quality, e.g., the intermediate scattering function with a noise level of 10−4. Second, I formulate an
analytical description of this dynamics on a mesoscopic scale, based on the Smoluchowski-Perrin
equation for free diffusion. To this end, I present for the first time the full solution of this equa-
tion in two dimensions, and demonstrate that the measurement of two diffusion coefficients is
sufficient to obtain a quantitative mesoscopic theory for systems with obstacles.

A comparison of the simulations with the theory allows for a thorough quantitative under-
standing of the dynamics in suspensions of thin rods, characterized by various time and length
scales. I substantiate the validity of the effective theory down to length scales of the order of
the mean distance between the particles, and corroborate the so far unproven predictions of the
scaling theory of Doi and Edwards. A discussion of several observables calculated from the time
dependent spatial displacement reveals the strongly anisotropic motion of the constrained rod,
with longitudinal and transverse diffusion coefficients differing by up to five orders of magnitude.
Markedly non-Gaussian dynamics is observed for the constrained diffusion inside the tube, and
also in the dynamic transitions towards a stepwise relaxation of this constraint. Furthermore, I
identify and explain an intermediate power law in the scattering functions. This is interpreted as
a generic characteristic of the anisotropic dynamics of rods in disordered suspensions with strong
mutual steric constraints. It is visible in all calculated intermediate scattering functions, indepen-
dent of which part of the rod responds to the scattering, e.g., only the center of mass, its ends, or
the whole rod.

In addition to this topic, the first part of this work addresses the subject of diffusive transport in
heterogeneous environments of fractal geometry. This is relevant for the dynamics in, e.g., porous
media and biological cells, the latter characterized by a very crowded and heterogeneous interior.

This chapter is an extended translation of the “Zusammenfassung” in german on page v.

85



86 Chapter 6. Summary and outlook

In the context of the Lorentz model I represent this dynamics by the diffusion of a single isotropic
particle in the void space between randomly distributed hard spheres. Large scale computer sim-
ulations are presented, in connection with a detailed scaling analysis of the critical dynamics close
to the percolation transition. In the vicinity of the critical point I observe anomalous diffusion in
a time interval covering four orders of magnitude. This outstanding precision enables us to ex-
tract the universal dynamic scaling function from the transition to the asymptotic behavior; since
the convergence to the anomalous regime is very slow, the inclusion of an universal correction to
the power law is necessary. Simulation results calculated with two different microscopic laws of
motion yield identical behavior at criticality, corroborating the notion of universality.

The last part of this thesis is devoted to the dynamics of a single semiflexible filament, which
constitute, e.g., an essential ingredient of the cytoskeleton of the cell. The equation of motion
of such a polymer in a flowing solvent is expressed in terms of the two-dimensional dynamics of
the eigenmodes of the polymer, taking into account the constraint of longitudinal inextensibil-
ity. Based on this formulation, I analyze the rotation of a semiflexible polymer in shear flow, and
elaborate corresponding properties of the mode spectra and the end-to-end distance. A first ex-
amination of bundle dynamics by means of an effective mode-dependent stiffness opens up an
additional perspective for applications of this theory.

In summary, my results deepen fundamentally the knowledge of dynamic processes of diffus-
ing macromolecules, and give predictions for experimentally relevant observables. Specifically,
the intermediate power law found in the intermediate scattering functions of a suspension of thin
rods is considered as a general property of the reptation motion of rods.

Combinations of the model systems subject of this work promise a rich class of highly inter-
esting models at the interfaces between statistical physics, biological physics and the physics of
colloidal systems. As an outlook, I would like to mention three possible examples that go further
steps towards understanding the complex dynamics of suspensions of rods:

• In the Lorentz model, the tracer particle can be substituted by a rod. This combines the steric
hindrance effects of a heterogeneous environment with the reptation motion of a rod—both
contributions should be visible in the dynamics, in terms of effects described in Chapters 2
and 4 of this thesis.

• The simulations of the thin rod can be extended to three dimensions. For this, the two-
dimensional array of pointlike obstacles has to be substituted by a three-dimensional net-
work of rods of finite or infinite length. The results will probably not be substantially different
from those presented here, as already stated in Sec. 4.6; however, this is the basic building
block of future investigations of more realistic systems.

• A finite bending flexibility can be introduced into the dynamics of the rod in the obstacle
course. This is either possible in real space, in terms of a finite number of connected ele-
ments that possess a certain degree of flexibility with respect to each other. Alternatively,
one may utilize the mode dynamics elaborated in Chapter 5. We expect different kinds of
creeping motion to emerge, since a semiflexible rod will explore trajectories in dense collec-
tions of obstacles that a stiff rod cannot pass. The dynamics predicted by the tube concept
might change depending on the degree of flexibility.
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Appendix A

Short-time velocity correlations

In Secs. 2.3.2 and 4.2, we have pointed to the effect of non-vanishing velocity correlations for t > τB

in the Brownian dynamics simulations. Here we explain this behavior quantitatively within a toy
model.

The essential components for the derivation are, first, a random walk which is continuous in
space but evaluated on a fixed time grid, and second, a hard wall restricting the available volume
through ballistic reflections. The most simple configuration is given by a point-like particle per-
forming a two-dimensional random walk between two parallel walls with a fixed absolute value v

of the velocity.

The calculation of the velocity-autocorrelation function ψ(t ) is elementary for the first two
time steps τB. Choosing a coordinate system with the walls parallel to the y-axis, we parametrize
the velocity during time step n by an angle ϕn to the x-axis, v n(t ) = v n(nτB < t < (n + 1)τB) =
v(cosϕn , sinϕn). There are four cases to be distinguished, depending on whether the particle col-
lides with the wall or not during the first and the second time step, respectively. Symmetry reduces
this to two cases, differentiated by the propagation within the first time interval; the geometry is
sketched in Fig. A.1.
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(I) (II) (III)

xx00
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l0l1

l 0

l0

Figure A.1: Geometry of the trajectory within the first time step,. (a): with a collision; (b): without a collision,
and the particle starting in region (I).
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Collision within the first time interval

We calculate the correlation between the initial velocity v 0(0) and the velocity one time step later,
v 1(t > τB), when a collision happens both in the first and in the second time interval τB :

〈v 0(0) ·v 1(τB +∆t )〉 = v2(sinϕ0 sinϕ1 −cosϕ0 cosϕ1).

= 2

L
v2

l0∫

0

dx0 2

ψ0∫

ϕ0

dϕ′
0

2π

2π−ϕ1∫

ϕ1

dϕ′
1

2π

(
sinϕ′

0 sinϕ′
1 −cosϕ′

0 cosϕ′
1

)
. (A.1)

li (t ) = v∆t is the distance traveled in one direction during the time interval i . The lower bounds ϕ0

and ϕ1 are the minimum angles which lead to a collision with the wall within the corresponding
time interval. There is no contribution from the y-component of the velocity to the innermost
integral of Eq. (A.1), so

〈v 0(0) ·v 1(τB +∆t )〉 = 2v2

Lπ2

l0∫

0

dx0

ψ0∫

ϕ0

dϕ′
0 cosϕ′

0 sinϕ1. (A.2)

Since cos(π−ϕ1) = x1/l1(∆t ) = (−v0xτB −x0)/v∆t , we find as condition for ϕ1:

cosϕ1 =
τB

∆t

(
cosϕ0 +

x0

vτB

)
(A.3)

If the first collision happens too early, a second is not possible in the interval τB < τB +∆t ≤ 2τB,
since x1(x0,ϕ0) ≤ l1(t ). From x1 = l1(∆t ) we obtain the upper bound ψ0 for ϕ′

0,

cosψ0 =−∆t

τB
− x0

vτB
(A.4)

If the absolute value of the right-hand side of Eq. (A.4) is bigger than 1, ψ0 is fixed to π. The sin in
Eq. (A.2) can now be expressed as a function of cosϕ′

0, yielding

〈v 0(0) ·v 1(τB +∆t )〉 = 2v3τB

Lπ2

1∫

0

d y

ψ0∫

ϕ0

dϕ′
0 cosϕ′

0

√
1−

(τB

∆t

)2(
cosϕ′

0 + y
)2, (A.5)

where L is the distance between the walls, and the boundaries of the inner integral are defined by

cosϕ0 =−y ; cosψ0 =
{
−

(
y + ∆t

τB

)
, y + ∆t

τB
< 1,

cosπ, y + ∆t
τB

≥ 1.

No collision within the first time interval

The integrands are the same as above, only the upper bound of the outer integral changes to l0+l1.
Concerning the bounds of the integral over ϕ′

0, the lower bound for ϕ′
0 is for all three regions of x0

cos[ϕ0(x0)] = l1 −x0

l0
= ∆t

τB
− x0

vτB
.
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For the upper bound we get

cos[ψ0(x0)] =
{
−x0/l0, x0/l0 < 1 (I, II),

cosπ, x0/l0 ≥ 1 (III).

The result thus reads

〈v 0(0) ·v 1(τB +∆t )〉 = 2v3τB

Lπ2

1+∆t/τB∫

0

dy

ψ0(y)∫

ϕ0(y)

dϕ′
0 cosϕ′

0

√
1−

(τB

∆t

)2 (
cosϕ′

0 + y
)2, (A.6)

with the boundaries

cos[ϕ0(y)] =−y + ∆t

τB
, cos[ψ0(y)] =

{
−y, y < 1,

cosπ, y ≥ 1.

Eqs. (A.5) and (A.6) can be evaluated numerically; they coincide for symmetry reasons. The re-
sults obtained from this calculations are in excellent agreement with simulations of the toy model,
see Fig. A.2. In principle, ψ(t ) can be obtained for longer times t > 2τB too, but the calculations are
quite involved.
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Figure A.2: Velocity-autocorrelation function for the two-dimensional motion of a point-like particle mov-
ing between two walls oriented parallel to the y-axis. The walls are separated by a distance L in x-direction.
The particle is reflected ballistically at the walls, and the direction of the velocity is changed randomly in
intervals τB. The inset displays a magnification of the regime τB < t < 2τB on the linear scale. The analytic
curve responding to Eq. (A.5) is shown for L = 2vτB; it matches perfectly the simulation results.





Appendix B

Supplementary material for the

dynamics of a rod

B.1 Perturbation theory for the characteristic function: longitudinal

force

For a nonzero force, the results for the characteristic function and the scattering function given in
Sec. 3.2 have to be supplemented by additional terms. The full expression for the matrix elements
of the characteristic functions, cf. Eq. (3.25), reads:

〈ν|Ĝk (t )|n〉 = 〈ν|Ĝk (t )|n〉| f =0 +e−ν
2Drott

{
− f 2

D2
∥k2

4D2
rot

(
T 1+2ν

n2−(ν+1)2 (t )+T 1−2ν
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δν,n

+ i f
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2
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(
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(
T 0

n2−ν2 (t )+T 1+2ν
0 (t )

)
+ Da

2

(
T 4(1+ν)
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n2−(ν−1)2 (t )

))]
k−δν+1,n

+ i f
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2
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−τ1−2ν(t )+ k2
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0 (t )

)
+ Da

2

(
T 4(1−ν)
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n2−(ν+1)2 (t )

))]
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−
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The scattering function, Eq. (3.26), then adds up to

Fν(k , t |ϑ0) = Fν(k , t |ϑ0)| f =0 +e−ν
2Drott
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∥

4D2
rot

[
T 1+2ν

3+2ν (t )k2
−ei2ϑ0 +T 1−2ν

3−2ν (t )k2
+e−i2ϑ0

]

+ i f
D∥Da

4D2
rot

[(
T 4(1+ν)

5+2ν (t )+T 1+2ν
4(2+ν)(t )

)
k3
−ei3ϑ0 +

(
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4(2−ν)(t )

)
k3
+e−i3ϑ0

]}

+O
(

f k5, f 2k4, f 3k3) . (B.2)

For a specific value of ν, the preceding formula is simplified by inserting the explicit expression for

the integrals T
j

l
(t ) as given in Eq. (3.22). In case of ν= 0, the results is

F (k , t |ϑ0) = 1− D̄k2t + D̄2

2
t 2k4 + Da

2
τ4(t )

(
−1+ D̄tk2)(k2

−ei2ϑ0 +k2
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)

+
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a
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k4 + τ4(t )−τ16(t )

6
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)

−
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12Drot
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τ1(t )−τ4(t )
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−ei2ϑ0 +k2
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)

+ i
f D∥Da

160Drot

(
8τ4(t )−13τ9(t )+5τ1(t )

)(
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−ei3ϑ0 +k3
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)

+O
(
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B.2 Equivalence of Smoluchowski and Langevin formulation

The Smoluchowski-Perrin equation (3.2) can be rewritten in a standard formulation in two dimen-
sions,

∂tΨ= Drot∂
2
ϑΨ+ 1

2

2∑

i , j=1
∂i∂ j B i jΨ, (B.4)

with the matrix of the second jump moments

B = 2D̄ 1+2Da

(
cos2ϑ sin2ϑ
sin2ϑ −cos2ϑ

)
. (B.5)
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The indices i , j in Eq. (B.4) indicate the Cartesian components x, y . From this formulation one can
read of the corresponding Langevin equation for the center of mass in textbooks [49, 153],

∂t r (t ) = ξ(t ), (B.6a)
〈
ξ(t )ξT(t ′)

〉
= B δ(t − t ′). (B.6b)

The matrix B can be diagonalized by the rotation matrix S given in Eq. (3.70). Then, a multiplica-
tion of Eq. (B.6a) with S−1 from the lefthand side results in the body frame equations (3.64).

To obtain the correct Smoluchowski-Perrin equation including a force that acts longitudinal to
the orientation of the rod we rewrite the Langevin equations in the space-fixed frame by multiply-
ing Eqs. (3.71) and (3.64b) with S from the lefthand side,

S ·∂t

(
r∥(t )
r⊥(t )

)
= ∂t r (t ) = f D0

∥u(t )+ξ(t ), (B.7)

with the same noise correlation as already given in Eq. (B.6b). Thus the diffusion term in the corre-
sponding Smoluchowski-Perrin equation equals that of Eq. (B.4), and we have one additional drift
term:

∂tΨ=− f D0
∥u ·∂RΨ+ 1

2

2∑

i , j=1
∂i∂ j B i jΨ. (B.8)

B.3 Varying the microscopic ratio of the diffusion coefficients

In Sec. 4.3, Fig. 4.8, we have shown data for the density dependence of diffusion coefficients. Cobb
and Butler [23] have proposed that the power law approached for n∗ ≫ 1 depends on the ratio of
the microscopic diffusion constants, L2D0

rot/D0
cm. We have tested the validity of this conjecture,

since it is in severe contradiction to the predictions of the tube theory of Doi and Edwards [31].
Our data strongly disagrees with the proposal of Cobb and Butler, as seen in Fig. B.1. Instead, the
power law of the tube theory is preserved, and the conjecture of Cobb and Butler can be attributed
to an insufficient range of simulated densities.
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Figure B.1: Density depen-
dence of the rotational dif-
fusion coefficient, for differ-
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cm, with
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⊥. Our data prove
that the asymptotic power law
Drot ∼ n−2 is independent of
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the simulated parameter range.
The conjecture of Cobb and
Butler [23] that the exponent
approaches 1 for small ratios
cannot be supported.





Appendix C

Supplementary material for the

dynamics of a semiflexible polymer

C.1 The Stochastic integration

Stochastic equations are of Stratonovich type when the white noise they imply constitutes an ap-
proximation to a noise with finite correlation time. This seems to apply to us, since physically
realistic random forces are never completely uncorrelated. However, this is not the only criterion
for the decision, we also have to grasp correctly the physical relationship between the stochastic
variable r and the noise ξ present in our specific system [153]. The term we have to decide about is
the mobility P , since it multiplies the noise in Eq. (5.7). Its physical meaning is to separate locally
the velocity of the filament into a component parallel to its local tangent and another perpendic-
ular to it. This separation will always refer to the current conformation and velocity of the space
curve at that very moment of time; it will be unaffected by any stochastic forces in the future. This
amounts to the definition of a nonanticipating function [49], and is equivalent to the demand to
interpret the noise according to Ito.

C.2 Eigenfunctions

The normalized biharmonic eigenfunctions obeying the boundary conditions of Eqs. (5.9) and
(5.10) are

w0 = 1, (C.1)

w i = coski −coshki

sinki − sinhki

(
cos

ki

L
s +cosh

ki

L
s

)

+ sin
ki

L
s − sinh

ki

L
s ,

(C.2)

w0 = 6
s

L

(
1− s

L

)
, (C.3)

wi =
coski −coshki

sinki − sinhki

(
cos

ki

L
s −cosh

ki

L
s

)

+ sin
ki

L
s + sinh

ki

L
s .

(C.4)
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They are biorthonormal, ∫L

0
ds wαwβ = Lδαβ . (C.5)

A useful property of these eigenfunctions is

wα′′ =−k2
α/L2 wα, w ′′

α =−k̃2
α/L2 wα.

Here, k̃2
0 ≡ 12, and k̃i ≡ ki .
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List of publications

Parts of the material of this thesis have been published or prepared for publishing in the following
journals:

[D.1] T. Munk, O. Hallatschek, C. H. Wiggins, and E. Frey. Dynamics of semiflexible polymers in a
flow field. Phys. Rev. E, 74(4):041911, 2006. URL http://link.aps.org/abstract/PRE/v74/e041911.

Contains most parts of Chapter 5.

[D.2] F. Höfling, T. Munk, E. Frey, and T. Franosch. Critical dynamics of ballistic and Brownian
particles in a heterogeneous environment. J. Chem. Phys., 128(16):164517, 2008. URL http:

//link.aip.org/link/?JCP/128/164517/1.

Chapter 3 constitutes the main part of this publication.

[D.3] F. Höfling, T. Munk, E. Frey, and T. Franosch. Entangled dynamics of a stiff polymer. Phys.

Rev. E, 77(6):060904(R), 2008. URL http://link.aps.org/abstract/PRE/v77/e060904.

Contains Secs. 4.1 and 4.3. The supplementary material available online furthermore offers
a movie that visualizes on three different length and time scales the constrained motion of a
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[D.4] T. Munk, F. Höfling, E. Frey, and T. Franosch. Effective Perrin theory for the anisotropic diffu-
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