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ABSTRACT In this article, a novel digital predistortion (DPD) model based on complex-valued pipelined

Chebyshev functional link recurrent neural network (CPCFLRNN) for joint compensation of wideband

transmitter distortions and impairments is proposed. The functional link neural network (FLNN) model has

attracted much attention from scholars, and many improved models using this structure, such as Chebyshev

FLNN, have been applied in the DPD of power amplifiers (PAs). However, these existing neural network

models cannot deal with complex-valued input signals simultaneously, and the real-valued model structure

will introduce cumbersome training algorithm and result in a long training time. The pipelined recurrent

neural network (PRNN) has been successfully applied to nonlinear signal prediction because of its excellent

ability for dealing with nonlinear nonstationary signals. Therefore, the PRNN model containing Chebyshev

structure is extended to complex domain for the first time to obtain the CPCFLRNN model for DPD

application. Considering the strong correlation of in-phase and quadrature phase (I/Q) components of the

transmitter signal, the real time recurrent learning (RTRL) algorithm based on fully complex activation

function is selected and extended to complex domain to obtain the complex-valued RTRL (CRTRL)

algorithm for CPCFLRNN model training. A GaN PA was employed to verify the effectiveness of the

proposed models. And the input signal is a 30MHz LTE signals which consists of I/Q imbalance and dc

offsets. The experimental results show that the proposed CPCFLRNN model have more accurate modeling

effect and better linearization performance compared with the conventional DPD models.

INDEX TERMS Digital predistortion (DPD), complex-valued pipelined Chebyshev functional link recurrent

neural network (CPCFLRNN), I/Q imbalance, dc offset, power amplifier (PA).

I. INTRODUCTION

In 4G and 5Gmobile communication systems, the demand for

spectrum resources is increasing rapidly. Quadrature Ampli-

tude Modulation (QAM) and Orthogonal frequency division

multiplexing (OFDM)modulation are widely used in modern

communication systems for improving spectrum efficiency.

Such modulation techniques will make it more difficult to

The associate editor coordinating the review of this manuscript and

approving it for publication was Young Jin Chun .

design power amplifier (PA), which play a crucial role in

RF front-end components, and will also result in spectrum

regeneration. At the same time, this kind of modulation sig-

nals also have the higher peak-to-average power ratio (PAPR)

characteristics, which is sensitive to the nonlinear distortion

of the RF PA. In addition, due to the difference between

the I/Q channels, for example, the phase shifter is not the

ideal 90 degrees, and the amplitude and phase response of

the filter are not exactly the same, which will lead to I/Q

imbalance of transmitter. This imbalance will result in the
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serious interactive distortion of the main signals, and will

reduce the dynamic range of the communication system [1].

Digital predistortion (DPD) has become the mainstream

technology of PA linearization because of its advantages of

low cost, good linearization performance and high flexibil-

ity [2]. The basic principle of DPD is to insert a predistorter

before the PA, and the predistorter is inverse to the nonlinear

characteristic of the PA, so as to obtain the linearly amplified

output at the end of the transmitter [3]. Early digital predis-

tortion usually adopted a look-up table (LUT) [4], [5], but the

LUT requires a large storage space and the convergence speed

is slow. In order to reduce the requirement of memory space

and to jointly compensation for PA and I/Q impairments,

the conjugate memory polynomial (CMP) model is proposed

in [6].

On the other hand, artificial neural network (ANN)

is a nonlinear system with powerful intelligent informa-

tion processing function, strong robustness, memory ability

and self-learning ability, and can map complex nonlinear

relations. The combination of neural network and PA pre-

distortion benefits from the powerful approximation effect

of neural network in nonlinear system modeling [7], [8].

The neural network models used for PA behavioral mod-

eling mainly include bidirectional long short-term memory

(BiLSTM) neural network [9], radial basis function (RBF)

neural network [10] and time delay neural network

(TDNN) [8]. However, there are few DPD models to jointly

compensate I/Q imbalance and PA nonlinearities [11]–[13].

The functional link neural network (FLNN) models using

orthonormal functions for functional expansion has been

used to identify nonlinear system. The Chebyshev FLNN

using orthogonal Chebyshev polynomial expansion has been

applied in [14], and shows better fitting ability and faster

convergence speed compared to traditional neural network

models. The combination of Chebyshev polynomial and

recurrent neural network (RNN) is also proved to be effective

for nonlinear adaptive filter [15]. The complex-Chebyshev

FLNN has been successfully applied to power amplifier

behavioral modeling [16].

Meanwhile, the complex-valued domain signal process-

ing have been introduced into current data analysis, and

many learning algorithms have been extended for parameter

extraction. Therefore, the real-valued the real time recurrent

learning (RTRL) should be extended to complex domain for

complex-valued parameter extraction. In complex domain,

the nonlinear activation functions have the two neces-

sary properties: bounded and differentiable everywhere.

According to Liouville’s theorem, the only such function in

complex domain is the constant function [17]. Whereas a

bounded function or an analytic function must be selected,

but if the activation function is analytic, then it must be

unbounded, and if it is bounded, then it should be nonan-

alytic. In order to overcome this conflict, two concepts are

proposed: split complex activation function and the fully

complex activation function. Due to the strong correlation

between I/Q signals, the performance of the split complex

activation function is poor for transmitter modeling [18].

Based on the characteristics of the traditional PA model,

a new model structure aiming at joint compensation for non-

linear memory effects of PA and I/Q impairments is proposed.

The proposed model can directly process the complex-valued

signals, which can provide a new research idea for the trans-

mitter behavioral modeling. For easy reading, Table 1 gives a

list of important abbreviations. In order to evaluate the model

performance, the CMPmodel, the CPRNNmodel, the Cheby-

shev functional link fully connected recurrent neural network

(CFL-FCRNN), and the proposed CPCFLRNN model were

used to compare the performance of transmitter modeling and

nonlinear compensation. Various graphical and numerical

results show that the proposed CPCFLRNN model based

on the CRTRL algorithm can give improved performance

compared to traditional models.

TABLE 1. A list of important abbreviations.

This article is organized as follows: In Section II, the

CFL-FCRNN structure is firstly proposed, and then the

CPCFLRNN structure is proposed based on this structure.

In Section III, the CRTRL learning algorithm of the two struc-

tures is derived, and the weight update equation is obtained.

Section IV introduces the optimal model parameters and sim-

ulation results of the four models, and then the experimental

results are given. The full paper is summarized in section V.

II. BEHAVIORAL MODEL FOR PAS

A. CFL-FCRNN MODEL FOR PAS

The precondition that the PA model can be constructed is

that the amplitude and phase information can be extracted

from the complex-valued waveform. The most common solu-

tion is to introduce dual-input and dual-output neural network
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structure [19]. During the training process, the coefficients of

two networks are determined independently by the amplitude

and phase of the input and output signals. The basic network

structure shown in Fig. 1, which can be used for PAmodeling

with high nonlinear degree by using the I/Q components. This

kind of topological structure can be used tomodel the PAwith

high degree of nonlinearity. For PA with a strong memory

effect, the modeling effect will be poor. In addition, as the

two neural networks are trained separately, asynchronous

convergence may occur [8].

FIGURE 1. Basic neural network structure for PA.

Considering the effect of PA nonlinear memory, TDNN

model shown in Fig. 2 was used for PA modeling. Due to

the memory effect of the system, the output of the ampli-

fier depends on the input values at the current and previ-

ous moments. Therefore, the delay lines should be added to

extract information from the current and past inputs, and the

FIGURE 2. RVTDNN model for PA.

topological structure of input with in-phase and quadrature

information is adopted [8]. Although this network topology

takes memory effect into account through input delay, it does

not actually take into account the feedback delay of the

network output, which will cause the delay effect of this

incomplete structure, and also increase the complexity and

instability of the system. Based on the TDNN model, a new

PA model structure, the real-valued focused time-delay neu-

ral network (RVFTDNN), was proposed in [7]. This model

considers the output feedback delay by introducing tap delay

line (TDL). However, when the input signal is complex, this

structure will inevitably encounter the problem of overtrain-

ing or undertraining.

The application of CFLNN in the recognition of non-

linear systems has been proved to have greater advantages

than traditional neural network models such as multilayer

perceptron (MLP) and RNN [20], [21]. Since the baseband

input and output data of PA are complex signals, the most

suitable method is to use complex neural network structure

and the complex training algorithm [16]. In complex-valued

neural networks, the inputs, the weights, and the outputs

are all complex-valued, and the training algorithm directly

extends to the complex domain. Fig. 3 shows CFL-FCRNN

model, consisting of N neurons with P external inputs and

N feedback connections. The ‘‘FE’’ is the function extension

to increase the dimension of the input pattern, so it is easier

to identify complex nonlinear dynamic systems. The neuron

input and its expansion using Chebyshev polynomial are

given

S(k) = [s(k − 1), s(k − 2), . . . , s(k − p)]T

= Sr (k) + jS i(k) (1)

SFE (k) = FE (s(k − 1), s(k − 2), . . . , s(k − p))

= [SFE,1(k), SFE,2(k), . . . , SFE,p(k)]
T

= Sr
FE
(k) + jS i

FE
(k) (2)

FIGURE 3. CFL-FCRNN model for PA.
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The approximate formula of Chebyshev polynomial of any

order is [16]

Cb(ω) =

[b/2]
∑

m=0

(−1)m
(

b

2m

)

ωb−2m(1 − ω2)m (3)

where [b/2] is the integer part of (b/2), and b is the order of

Chebyshev polynomial expansion. The Chebyshev expansion

is given as

C0(ω) = 1

C1(ω) = ω

C2(ω) = 2ω2 − 1

C3(ω) = 4ω3 − 3ω

. . .























(4)

Chebyshev polynomials are used to expand the input signal

into any order, and the enhanced input is [14]

SFE,b(k)

= Cb(S(k))

= [1 |C1(s(k − 1)) ,C1(s(k − 2)), . . . ,C1(s(k − p)) |

× |C1(s(k − 1)) C1(s(k − 2)), . . . ,

C1(s(k − (p− 1)))C1(s(k − p)) |,

|C2(s(k − 1)) ,C2(s(k − 2)), . . . ,C2(s(k − p)) |,

. . .

|Cb(s(k− 1)) ,Cb(s(k− 2)), . . . , Cb(s(k − p))|]T (5)

To simplify the calculation, take b = 3 to get the third-order

function expansion input

SFE,3(k) = [1,C1(S(k)),C1(S(k)),C1(S(k − 1)),

C2(S(k)),C3(S(k))]
T

= [1, s(k − 1), s(k − 2), . . . , s(k − p),

s(k − 1)s(k − 2), . . . , s(k − (p− 1))s(k − p),

2s2(k − 1) − 1, . . . , 2s2(k − p) − 1,

4s3(k − 1) − 3s(k − 1), . . . ,

4s3(k − p) − 3s(k − p)]T (6)

The application of neural network for PA modeling also

needs to take into account the nonlinearity of PA, which

is reflected in the conversion of AM/AM and AM/PM.

Therefore, it is necessary to apply appropriate conjugate

transformation to the above equation [16], so that the non-

linearity of passband can be expressed under the baseband as

follows

SFE (k) = [1, s(k − 1), s(k − 2), . . . , s(k − p),

s(k − 1)|s(k − 2)|, . . . , s(k − (p− 1))|s(k − p)|,

2s(k − 1)|s(k − 1)| − 1, . . . ,

2s(k − p)|s(k − p)| − 1,

4s(k − 1)|s2(k − 1)| − 3s(k − 1), . . . ,

4s(k − p)|s2(k − p)| − 3s(k − p)]T (7)

The entire network is a two-layer structure, which includes

the external delay input layer and output feedback layer.

The external complex-valued input is delayed and then

extended by Chebyshev function, the bias input is the 1 + j,

and the complex output of each neuron is represented by

yl(k). The total input of the whole network is composed of

Chebyshev functional expansion input, bias and feedback,

expressed as follows

X (k) = [SFE (k), 1+ j, y1(k− 1), y2(k− 1), . . . , yN (k− 1)]T

= X rn (k) + jX in(k), n = 1, . . . , p+ N + 1 (8)

The output of the lth neuron can be written as:

yl(k) = ψ r (url (k)) + jψ i(uil(k))

= yrl (k) + jyil(k), l = 1, . . . ,N (9)

ul(k) =

p+N+1
∑

n=1

wl,n(k)Xn(k) (10)

ψ represents the complex-valued nonlinear activation func-

tion of the neuron, and (10) is the input of the activation

function at time k , that is, the linear sum of all the inputs of

node after the weights are applied. The weight matrix of the

whole neural network is

W = [w1, . . . ,wN ] (11)

where the weight vector of the lth neuron is

wl = [wl,1, . . . ,wl,p+N+1]
T (12)

The length of the whole weight matrix is (p+ N + 1) ∗ N .

B. CPCFLRNN MODEL FOR PAS

A nonlinear adaptive prediction model called pipelined recur-

rent neural network (PRNN), which deals with real-valued

non-stationary signals, has been successfully applied to non-

linear systems and has achieved remarkable effects [22]. Due

to its spatial representation of time and feedback connection

within the structure, the PRNN structure can better deal with

the gradient vanishing problem, and has strong robust neural

network prediction ability. The advantage of PRNN is that it

is composed of M neural networks with the same structure,

and can reduce the computational complexity.

It has been proved through analysis that CFL-FCRNN has

better modeling performance than RVFTDNN. In this article,

the complex-valued PRNN is introduced as an extension of

real-valued PRNN, and each module adopts CFL-FCRNN

structure shown in Fig. 4. Each module is designed as a

CFL-FCRNN with N neuron, in which the previous M − 1

module is a non-fully connected CFL-FCRNN. The N − 1

outputs of its output neurons are used to feed back to the input,

and the output of the remaining neurons (i.e. the output of the

first neuron) is passed directly to the next module. The last

module is a fully connected CFL-FCRNN, where the output

of all neurons is fed back to the input. In the CPCFLRNN

structure, all modules use the same complex-valued weight

matrix

W (k) = [w1(k), . . . ,wl(k), . . . ,wN (k)] (13)
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FIGURE 4. CPCFLRNN model for PA.

Refer to (9), the mathematical expression of CPCFLRNN is

yt,l(k) = ψ r (url (k)) + jψ i(uil(k))

= yrt,l(k) + jyit,l(k), t = 1, 2, . . . ,M (14)

yt,l(k) represents the output of the lth neuron of module t

at time k . The input expression of each module is given as

follows

XTt (k) = [SFE,t (k), 1 + j, yt+1,1(k − 1), yt,2(k − 1), . . . ,

yt,N (k − 1)] (15)

XTM (k) = [SFE,M (k), 1 + j, yM ,1(k − 1), yM ,2(k − 1), . . . ,

yM ,N (k − 1)] (16)

where XTt (k) represents the input vector by the module t

at time k . XTM (k) is input vector of the Mth module. It can

be easily seen that the input of the ahead M − 1 modules

contains the output yt+1,l(k − 1) of the latter module and

replaces the feedback delay of the first output of this module.

Since the last moduleM has no input from the latter module,

the input retains the feedback delay of all the output of this

module. Therefore, the final output signal of CPCFLRNN

is represented by the output of the first neuron of the first

module

yout (k) = y1,1(k) (17)

III. COMPLEX-VALUED RTRL ALGORITHM

After deriving the output expression of the neuron, the opti-

mal weight parameters should be obtained according to the

learning process. Since the CPCFLRNN structure contains

CFL-FCRNN structure, the CRTRL algorithm applicable to

CFL-FCRNN is firstly deduced in this section, and then the

CRTRL algorithm for CPCFLRNN is derived in the similar

way.

A. CRTRL ALGOTITHM FOR CFL-FCRNN

Define the output of each neuron in the CFL-FCRNN is yl(k).

The error signal can be obtained by subtracting the output of

the model from the reference signal provided by the external

information source [23]. The error signal at time k is given as

follows

εl(k) = d(k) − yl(k)

= d r (k) − yrl (k) + d i(k) − yil(k) (18)

d r (k) and d i(k) are the real and imaginary parts of the actual

output, respectively, and the cost function can be defined as

J (k) =
1

2

N
∑

l=1

|εl(k)|
2

=
1

2

N
∑

l=1

εl(k)ε
∗
l (k)

=
1

2

N
∑

l=1

[(εrl )
2 + (εil)

2] (19)

the CRTRL algorithm extracts the weight coefficients based

on the gradient descent algorithm recursively. It can be seen

that J (k) is a non-constant function, and it is need to calculate

its complex-valued reciprocal, so its gradient to weight w can

be calculated as

∇wl,nJ (k) =
∂J (k)

∂wrl,n
+ j
∂J (k)

∂wil,n
(20)

Then the real and imaginary parts can be separated as

∂J (k)

∂wrl,n(k)
=
∂J

∂yrl

(

∂yrl (k)

∂wrl,n(k)

)

+
∂J

∂yil

(

∂yil(k)

∂wrl,n(k)

)

(21)

∂J (k)

∂wil,n(k)
=
∂J

∂yrl

(

∂yrl (k)

∂wil,n(k)

)

+
∂J

∂yil

(

∂yil(k)

∂wil,n(k)

)

(22)

The above expression with sensitivity can be defined as

3rr
l,n(k) =

∂yrl (k)

∂wrl,n(k)
= ψ ′r (ul(k))

∂url (k)

∂wrl (k)
(23)

3ir
l,n(k) =

∂yil(k)

∂wrl,n(k)
= ψ ′i(ul(k))

∂uil(k)

∂wrl (k)
(24)

3ri
l,n(k) =

∂yrl (k)

∂wil,n(k)
= ψ ′r (ul(k))

∂url (k)

∂wil(k)
(25)

3ii
l,n(k) =

∂yil(k)

∂wil,n(k)
= ψ ′i(ul(k))

∂uil(k)

∂wil(k)
(26)

To calculate the gradient in the complex domain, a complex

activation function is required to be resolved in the complex

domain to satisfy the Cauchy-Riemann equation. Therefore,

the partial derivative along the real and imaginary axes, that

is the sensitivity, must be the same

3t
l,n(k) = 3

t,rr
l,n (k) + j3

t,ir
l,n (k) = 3

t,ii
l,n (k) − j3

t,ri
l,n (k) (27)

3
t,rr
l,n (k) = 3

t,ii
l,n (k)

3
t,ir
l,n (k) = −3

t,ri
l,n (k) (28)
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Bring formula (21)-(28) into (20), and (20) becomes

∇wl,nJ (k) = 3rr
l,n(k)

∂J

∂yrl
+3ir

l,n(k)
∂J

∂yil

+ j3ri
l,n(k)

∂J

∂yrl
+ j3ii

l,n(k)
∂J

∂yil

=

(

∂J

∂yrl
+ j

∂J

∂yil

)

(

3rr
l,n(k) + j3ri

l,n(k)
)

= −

N
∑

l=1

εl(k)(3
rr
l,n(k) − j3ir

l,n(k))

= −

N
∑

l=1

εl(k)
(

3l,n(k)
)∗

(29)

(

3l,n(k)
)∗

=

[

3rr
l,n(k) 3ri

l,n(k)

3ir
l,n(k) 3ii

l,n(k)

]

=











∂yrl (k)

∂wrl,n(k)

∂yrl (k)

∂wil,n(k)

∂yil(k)

∂wrl,n(k)

∂yil(k)

∂wil,n(k)











(30)

where (30) is called sensitive function. Expand it to get

(

3l,n(k)
)∗

=

[

ψ ′r (k) 0

0 ψ ′i(k)

]

×











∂url (k)

∂wrl,n(k)

∂url (k)

∂wil,n(k)

∂uil(k)

∂wrl,n(k)

∂uil(k)

∂wil,n(k)











(31)

[

3rr
l.n(k) 3ri

l.n(k)

3ir
l.n(k) 3ii

l.n(k)

]

=

[

ψ ′r (k − 1) 0

0 ψ ′i(k − 1)

]

×























N
∑

α=1













[

wrl,α+p+1(k − 1) −wil,α+p+1(k − 1)

wrl,α+p+1(k − 1) wil,α+p+1(k − 1)

]

×

[

3
α,rr
l.n (k − 1) 3

α,ri
l.n (k − 1)

3
α,ir
l.n (k − 1) 3

α,ii
l.n (k − 1)

]













+

[

δlnX
r
n (k − 1) −δlnX

i
n(k − 1)

δlnX
i
n(k − 1) δlnX

r
n (k − 1)

]}

(32)

By extending the method in [24] from real-value to complex-

value, the updating formula of complex sensitive function can

be given as (32). Its simple expression form can be written as

(3l,n(k))
∗ =

{

ψ∗(k)
}′

×

[

N
∑

α=1

w∗
l,α+p+1(k)

(

3αl,n(k−1)
)∗

+ δlnX
∗
n (k)

]

(33)

where

δln =

{

1, l = n

0, l 6= n
(34)

is the Kronecker delta [15]. The weight update equation is

wl,n(k + 1) = wl,n(k) +1wl,n(k) (35)

1wl,n(k) = η

N
∑

l=1

εl(k)
(

3l,n(k)
)∗

(36)

The weight update of CFL-FCRNN is finally shown in the

following formula

wl,n(k + 1) = wl,n(k) + η

N
∑

l=1

{

εl(k) ×
{

ψ∗(k)
}′

×

N
∑

α=1

w∗
l,α+p+1(k)

(

3αl,n(k − 1)
)∗

+ δlnX
∗
n (k)

}

(37)

B. CRTRL ALGORITHM FOR CPCFLRNN

According to the above method, the CRTRL learning algo-

rithm for CPCFLRNN can be derived. Let yt,1(k) be the

output of module t , and the error of this module at time k

can be obtained by subtracting the model output signals from

the PA output signals

εt (k) = d(k − t + 1) − yt,1(k) = εrt (k) + jεit (k) (38)

εrt (k) = d r (k − t + 1) − yrt,1(k)

εit (k) = d i(k − t + 1) − yit,1(k) (39)

Since the baseband output signal is complex, the cost function

should be extended to complex domain, which is given as

follows

J (k) =

M
∑

t=1

γ t−1(k)|εt (k)|
2

=

M
∑

t=1

γ t−1(k)[εt (k)ε
∗
t (k)]

=

M
∑

t=1

γ t−1(k)[(εrt )
2 + (εit )

2] (40)

where γ (k)(0 < γ ≤ 1) is a forgetting factor for determine

the weight of the individual modules. Updating the weight in

the steepest descent direction

1wl,n(k) = −η
∂

∂wl,n(k)

(

M
∑

t=1

γ t−1(k)|εt (k)|
2

)

(41)

With reference to (23)-(26), the expression of sensitive func-

tion at the time k of each module in CPCFLRNN can be given

as

[

3
rr,j
l,n,t (k) 3

ri,j
l,n,t (k)

3
ir,j
l,n,t (k) 3

ii,j
l,n,t (k)

]

=











∂yrt,j(k)

∂wrl,n(k)

∂yrt,j(k)

∂wil,n(k)

∂yit,j(k)

∂wrl,n(k)

∂yit,j(k)

∂wil,n(k)











(42)

The element in the sensitive function matrix represents the

degree of change of the output of lth neuron relative to the
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weight at time k . Referring to (32), the update equation of

sensitive functions of each module is
[

3rr
l.n,t (k) 3ri

l.n,t (k)

3ir
l.n(k) 3ii

l.n(k)

]

=

[

ψ ′r (k − 1) 0

0 ψ ′i(k − 1)

]

×























N
∑

α=1













[

wrl,α+p+1(k − 1) −wil,α+p+1(k − 1)

wrl,α+p+1(k − 1) wil,α+p+1(k − 1)

]

×

[

3
rr,α
l.n,t (k − 1) 3

ri,α
l.n,t (k − 1)

3
ir,α
l.n,t (k − 1) 3

ii,α
l.n,t (k − 1)

]













+

[

δlnX
r
n (k − 1) −δlnX

i
n(k − 1)

δlnX
i
n(k − 1) δlnX

r
n (k − 1)

]}

(43)

Simplify it to:

(3t
l,n(k))

∗ =
{

ψ∗(k)
}′

×

[

N
∑

α=1

w∗
l,α+p+1(k)

(

3
t,α
l,n (k − 1)

)∗

+ δlnX
∗
t,n(k)

]

(44)

Finally, the weight update equation of CPCFLRNN can be

given as

wl,n(k + 1)

= wl,n(k)

+ η









M
∑

t=1

λt−1(k)et (k){ψ
∗(ut,l(k))}

′

×

[

N
∑

α=1

w∗
1,α+p+1(k)

(

3
t,α
l,n (k − 1)

)∗

+δlnX
∗
t,n(k)

]









(45)

C. COMPLEXITY ANALYSIS

On the other hand, the CRTRL algorithm also has some

certain limitations. When the number of total neurons is N ,

its computational complexity increases as O(N 4). As the

total number of neurons increases, so does the complexity

increases too. Therefore, the structure of the selected neu-

ral network needs to reduce the complexity of the learning

algorithm. For the total number of MN neurons in complex

PRNN (CPRNN) model using the CRTRL, it needs O(MN 4)

arithmetic operations. By contrast, the computational require-

ment of conventional fully connected recurrent neural net-

work (FCRNN) with the CRTRL algorithm isO(M4N 4) [23].

Therefore, the modular and recursive structure of CPRNN

keeps the memory size from increasing with the length of the

training sequence, which is suitable for real time processing.

According to (44) and (45), the calculation requirement of

the proposed model can be calculated as O(M4N 4 + 3MP+

7M + 3). Although the computational complexity is slightly

increased, the model can provide the better compensation

performance.

IV. SIMULATION AND EXPERIMENTAL RESULTS

In order to verify the modeling performance of the above neu-

ral network and the appropriate model parameters, the first

step is to carry out forward modeling for PA. Forward model-

ing also called the behavioral model of the PA, which refers

to using the input signal and the measured PA output signal

to conduct the model under the same sampling rate of the

system [7]. Under the condition that the model is sufficiently

accurate, the calculated model output signal will

NMSEdB = 10 × log10

1
10

N
∑

j=1

|yest (n) − yrea(n)|
2

1
10

N
∑

j=1

|yrea(n)|2

(46)

approach the actual output of the PAwith aminor error. As the

popular metrics, the normalized mean square error (NMSE)

between the expected signal and the estimated signal is

adopted to evaluate the model accuracy [16]. The NMSE

is defined as (46). The CMP model, the CPRNN model,

the CFL-FCRNNmodel and CPCFLRNNmodel are selected

for PA model performance comparison. The sample signal

comes from the actual measured GaN Class-F PA signals,

with a total of 20000 data. The signal is a dual carrier LTE

signal with 30MHz bandwidth, where the peak-to-average

power radio (PAPR) of the signal is 9.91 dB. Both the I/Q

imbalance, dc-offset and PA nonlinear distortions are pre-

sented in the transmitter. The amplitude imbalance is 2 dB,

as well as the I /Q phase imbalance is 3o. And the dc-offset

values of 3% and 5% are set for the I and Q channel, respec-

tively. In the model process, 10000 data from the sample

signals are used for transmitter modeling, another 4000 data

are used to verify the model performance of different models.

A. SETTING AND SIMULATION

The neural network model has good approximation ability

for nonlinear system by introducing activation function with

nonlinear factors. Therefore, how to determine the activation

function is the first step. In order to process the complex PA

signals, the complex form of log sig, which is commonly used

in neural networks, together with the elementary transcen-

dental function (ETF) tanh, which is provided by [18], are

compared as activation functions.

log sig(z) =
1

1 + e−z
(47)

tanh(z) =
ez − e−z

ez + e−z
(48)

The model was trained in MATLAB environment, and the

performance of the model was compared and observed.

The number of input neurons and output neurons in the

CFL-FCRNN is 4, the forgetting factor γ = 0.5, and

the learning rate η = 0.05. The CPCFLRNN contains M

CFL-FCRNN modules, and the structure and parameter set-

tings of each module are the same. In order to achieve the

optimal modeling effect, the appropriate values of M need

to be selected. Here, the range of M value is set to 2-6, and

the simulation results are shown in Table 2. According to
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TABLE 2. Performance of different parameters.

the simulation results, as the value of M increases, the mod-

eling effect of CPCFLRNN will be moderately better, but

the increasing number of modules will increase the computa-

tional complexity of the model, thus increasing the modeling

run time. But the modeling performance will actually only

be slightly improved. After comprehensive consideration,

the value of M is set to 4. In addition, the simulation results

also prove that it has better performance to use the elementary

transcendental function, which can satisfy the requirements

for dealing with the signal with I/Q imbalance using the fully

complex activation function. Therefore, the complex value

form of tanh function is selected as the activation function.

The M, N parameters is (3, 7) for CMP, which is deter-

mined by the optimization process. The CPRNN model

parameter settings are the same as CPCFLRNN model.

The NMSE value of the four models is shown in Table 3.

Compared with the CMP model, the CPRNN and

CFL-FCRNN model can give 2 dB improvement of NMSE.

And the CPCFLRNN model has more accurate and better

modeling effect, can give 4 dB improvement of NMSE.

TABLE 3. Performance of different models.

The notable characteristic of PA in the transmitter is the

nonlinear with memory effects. Under the influence of

the nonlinear characteristic, the amplitude and phase of the

transmitter output signals do not change linearly with the

amplitude of the input signal, which will take on nonlinear

distortions. Therefore, the the dynamic AM/AM and AM/PM

curves are intuitively used to describe the characteristics

of the transmitter, which are given in Fig. 5 and Fig. 6.

As can be seen from the figures, the nonlinear character-

istics of the transmitter are reflected in the following fea-

tures. That is to say, when the amplitude of input signal

is small, the amplitude of output signal increases linearly.

And when the amplitude of the input signal increases to a

certain extent, the amplitude of the output signal no longer

grows linearly, and the slope of the curve is reduced. At the

same time, the signal enters the nonlinear area of the PA.

Finally, the amplitude of the output signal stops growing,

and it enters the saturation area of the PA. The memory

effect of PAs is reflected in the divergence of the AM/AM

and AM/PM curves. As the signal amplitude increases, the

divergence degree decreases, which appears a compression

trend. This phenomenon is called ‘‘gain compression’’ [25].

It can be seen that the CPCFLRNN model can not only well

describe the nonlinear memory effects of the PA, but also

prove that the I/Q imbalance and dc offset have the influence

FIGURE 5. The dynamic AM/AM characteristics of the transmitter system
from the measurement output and model output.

FIGURE 6. The dynamic AM/PM characteristics of the transmitter system
from the measurement output and model output.
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on the gain and phase of transmitter. In order to observe

the accuracy of the model more directly, the model results

can also be described by the power spectrum density (PSD)

of the signals. The CPCFLRNN model prediction outputs,

the measurement outputs and error signals between the model

and the measurement output for the two-carrier LTE signals

are given in Fig. 7. It can be seen that the PSD can be well

matched in both in-band channels and alternate channels, and

the PSD of the error signals are below −50dBm /Hz.

FIGURE 7. The measured and modeled PSD of the transmitter output
using CPCFLRNN model.

The modeling performance of CMP degrades to a certain

extent. The CPRNN model can deal with complex-valued

signals, which do not have Chebyshev polynomial struc-

ture and cannot map the nonlinear relation of input signal,

so the performance is slightly better. The CFL-FCRNN

and CPCFLRNN models, which has the ability to process

complex-valued signals, and can better represent the nonlin-

ear memory effects of the transmitter. Moreover, the CRTRL

algorithm using the fully complex activation function can

process the I/Q signal concurrently, which can give optimal

performance.

B. EXPERIMENTAL MEASUREMENT RESULTS

The feasibility of the CPCFLRNN model in transmitter

behavioral modeling has been verified by the simulation

results. Theoretically, the higher the accuracy of the model,

the better the DPD linearization effect. However, the behav-

ioral model is only an abstract model that is close to the

transmitter, and it does not prove that the DPD can work

well. In order to verify the performance of the model in the

DPD system, the proposed model is applied to a complete

DPD experimental system. The experimental system includes

RF PAs, computer, vector signal generator (VSG), vector

signal analyzer (VSA). The single-device GaN Class-F PA

worked at 2.1GHz was used in the experimental validation.

Two-carrier LTE signal with 30MHz bandwidth can be gener-

ated through ADS2017, which is further downloaded to VSG

FIGURE 8. DPD comparison of different models for LTE signal.

and modulated to the RF frequency. Meanwhile, the different

I/Q imbalance value can be set in the VSG to mimic the

real modulator. Then, the RF signals pass through the target

PA to obtain the output signals, which are attenuated by the

attenuator to enable the VSA (N9010A) to collect the signal

for conducting DPD model. The Matlab can perform the

inverse model according to the input and output signals of

the transmitter. The signal is processed through the inverse

model to get the DPD signal. Then, the DPD output signals

pass through the PA according to the above process, so as to

get the output data of the PA after the DPD.

In order to compare the linearization performance of the

different models, the same LTE signals are used for the

predistortion verification using the CMP model, the CPRNN

model, the CFL-FCRNN model and the CPCFLRNN model,

respectively. Fig. 8 shows the compensation effect of four

models for the transmitter with I/Q imbalance and dc offset.

It can be seen from that all four models have the ability

to compensate the transmitter distortions and impairments.

The output signals of transmitter without linear compen-

sation have the high out-of-band distortion compared with

the input signal. The CMP model presents the worst com-

pensation effect. The compensation results of the CPRNN

and the CFL-FCRNN model almost coincide, and the cor-

rection ability is similar, while the compensation curve of

the proposed CPCFLRNN model is the closest to the input

signal, and the compensation effect is the best. These conclu-

sions are also consistent with those obtained by simulation.

As can be seen from Table 4, the CMP model gives the

worst effect, which can only give the adjacent channel power

ratio (ACPR) improvement about 15 dB. And the CPRNN

and the CFL-FCRNN models can give the similar ACPR

improvement of 16 dB. The proposed CPCFLRNN model

can give the best compensation effect, where the ACPR can

be improvement about 19 dB. Both the graphical and quan-

titative results prove that the CPCFLRNN model has satis-

factory compensation effects for transmitter with nonlinear

distortions and impairments.
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TABLE 4. ACPR performance of different models.

V. CONCLUSION

The CPCFLRNNmodel including theM -order CFL-FCRNN

module is proposed in this article, and the CRTRL learning

algorithm for the model parameter extraction is derived in

detaill. The Chebyshev structure is used to fit the nonlin-

earity of the transmitter input, and the PRNN structure is

used to process the complex-valued signals. The simulation

and experiment results prove that the proposed CPCFLRNN

structure can achieve the obvious advantages compared with

the other models. The optimal model order M and the best

fully complex activation function of the CPCFLRNN model

can be obtained through simulations. To verify the lineariza-

tion ability of the proposed model, the class-F PA driven

by the 30MHz LTE signals including I/Q imbalance and dc

offset is used for the experimental verication. Experimental

results show that the CPCFLRNN DPD model can not only

process complex-valued signals including I/Q imbalance and

dc-offset, but also achieve better linearization compensation

for the transmitter compared with the other models.

REFERENCES

[1] Z. Zhu, X. Huang, and H. Leung, ‘‘Joint I/Q mismatch and distortion

compensation in direct conversion transmitters,’’ IEEE Trans. Wireless

Commun., vol. 12, no. 6, pp. 2941–2951, Jun. 2013.

[2] S. Wang, M. Roger, J. Sarrazin, and C. Lelandais-Perrault, ‘‘An efficient

method to study the tradeoff between power amplifier efficiency and digital

predistortion complexity,’’ IEEE Microw. Wireless Compon. Lett., vol. 29,

no. 11, pp. 741–744, Nov. 2019.

[3] X. Yu and H. Jiang, ‘‘Digital predistortion using adaptive basis functions,’’

IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 60, no. 12, pp. 3317–3327,

Dec. 2013.

[4] P. Jardin and G. Baudoin, ‘‘Filter lookup table method for power amplifier

linearization,’’ IEEE Trans. Veh. Technol., vol. 56, no. 3, pp. 1076–1087,

May 2007.

[5] J. Ren, ‘‘Digital predistorter for short-wave power amplifier with improv-

ing index accuracy of lookup table based on FPGA,’’ IEEE Access, vol. 7,

pp. 182881–182885, 2019.

[6] L. Anttila, P. Handel, and M. Valkama, ‘‘Joint mitigation of power ampli-

fier and I/Q modulator impairments in broadband direct-conversion trans-

mitters,’’ IEEE Trans. Microw. Theory Techn., vol. 58, no. 4, pp. 730–739,

Apr. 2010.

[7] M. Rawat, K. Rawat, and F. M. Ghannouchi, ‘‘Adaptive digital predistor-

tion of wireless power Amplifiers/Transmitters using dynamic real-valued

focused time-delay line neural networks,’’ IEEE Trans. Microw. Theory

Techn., vol. 58, no. 1, pp. 95–104, Jan. 2010.

[8] Y. Zhang, Y. Li, F. Liu, and A. Zhu, ‘‘Vector decomposition based time-

delay neural network behavioral model for digital predistortion of RF

power amplifiers,’’ IEEE Access, vol. 7, pp. 91559–91568, 2019.

[9] J. Sun, W. Shi, Z. Yang, J. Yang, and G. Gui, ‘‘Behavioral modeling and

linearization of wideband RF power amplifiers using BiLSTM networks

for 5G wireless systems,’’ IEEE Trans. Veh. Technol., vol. 68, no. 11,

pp. 10348–10356, Nov. 2019.

[10] M. Isaksson, D. Wisell, and D. Ronnow, ‘‘Wide-band dynamic modeling

of power amplifiers using radial-basis function neural networks,’’ IEEE

Trans. Microw. Theory Techn., vol. 53, no. 11, pp. 3422–3428, Nov. 2005.

[11] D. Wang, M. Aziz, M. Helaoui, and F. M. Ghannouchi, ‘‘Augmented real-

valued time-delay neural network for compensation of distortions and

impairments in wireless transmitters,’’ IEEE Trans. Neural Netw. Learn.

Syst., vol. 30, no. 1, pp. 242–254, Jan. 2019.

[12] P. Jaraut, M. Rawat, and F. M. Ghannouchi, ‘‘Composite neural network

digital predistortion model for joint mitigation of crosstalk, I/Q imbalance,

nonlinearity in MIMO transmitters,’’ IEEE Trans. Microw. Theory Techn.,

vol. 66, no. 11, pp. 5011–5020, Nov. 2018.

[13] S. Lajnef, N. Boulejfen, A. Abdelhafiz, and F. M. Ghannouchi, ‘‘Two-

dimensional Cartesian memory polynomial model for nonlinearity and I/Q

imperfection compensation in concurrent dual-band transmitters,’’ IEEE

Trans. Circuits Syst. II, Exp. Briefs, vol. 63, no. 1, pp. 14–18, Jan. 2016.

[14] H. Zhao and J. Zhang, ‘‘Functional link neural network cascaded with

chebyshev orthogonal polynomial for nonlinear channel equalization,’’

Signal Process., vol. 88, no. 8, pp. 1946–1957, Aug. 2008.

[15] H. Zhao and J. Zhang, ‘‘Pipelined chebyshev functional link artificial

recurrent neural network for nonlinear adaptive filter,’’ IEEE Trans. Syst.,

Man, Cybern. B. Cybern., vol. 40, no. 1, pp. 162–172, Feb. 2010.

[16] M. Li, J. Liu, Y. Jiang, and W. Feng, ‘‘Complex-chebyshev functional link

neural network behavioral model for broadband wireless power ampli-

fiers,’’ IEEE Trans. Microw. Theory Techn., vol. 60, no. 6, pp. 1979–1989,

Jun. 2012.

[17] T. Needham, Visual Complex Analysis. Oxford, U.K.: Oxford Univ. Press,

1997.

[18] T. Kim and T. Adalá, ‘‘Approximation by fully complex multilayer percep-

trons,’’ Neural Comput., vol. 15, no. 7, pp. 1641–1666, Jul. 2003.

[19] E. G. Lima, T. R. Cunha, and J. C. Pedro, ‘‘A physically meaningful

neural network behavioral model for wireless transmitters exhibiting PM–

AM/PM–PM distortions,’’ IEEE Trans. Microw. Theory Techn., vol. 59,

no. 12, pp. 3512–3521, Dec. 2011.

[20] J. Zhang, P. Lei, S. Hu, M. Zhu, Z. Yu, B. Xu, and K. Qiu, ‘‘Functional-link

neural network for nonlinear equalizer in coherent optical fiber communi-

cations,’’ IEEE Access, vol. 7, pp. 149900–149907, 2019.

[21] S. Zhang and W. X. Zheng, ‘‘Recursive adaptive sparse exponential

functional link neural network for nonlinear AEC in impulsive noise

environment,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 9,

pp. 4314–4323, Sep. 2018.

[22] D. G. Stavrakoudis and J. B. Theocharis, ‘‘Pipelined recurrent fuzzy neural

networks for nonlinear adaptive speech prediction,’’ IEEE Trans. Syst.,

Man, Cybern. B. Cybern., vol. 37, no. 5, pp. 1305–1320, Oct. 2007.

[23] S. Lee Goh and D. P. Mandic, ‘‘Nonlinear adaptive prediction of complex-

valued signals by complex-valued PRNN,’’ IEEE Trans. Signal Process.,

vol. 53, no. 5, pp. 1827–1836, May 2005.

[24] S. Haykin, Kalman Filtering and Neural Networks. Hoboken, NJ, USA:

Wiley, 2001.

[25] R. W. Santucci, M. K. Banavar, C. Tepedelenlioalu, and A. Spanias,

‘‘Energy-Efficient Distributed Estimation by Utilizing a Nonlinear Ampli-

fier,’’ IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 61, no. 1, pp. 302–311,

Jan. 2014.

MINGYU LI (Member, IEEE) received the

Ph.D. degree in electronic engineering from

the University of Electronic Science and Technol-

ogy of China (UESTC), Chengdu, China, in 2009.

From 2012 to 2013, he was a Research Fellow

with The University of Kitakyushu. He is cur-

rently an Associate Professor with the School of

Microelectronics and Communication Engineer-

ing, Chongqing University, Chongqing, China. His

current research interests include RF/microwave

transceiver design, statistical and adaptive signal processing for wireless

communications, and behavioral modeling and linearization for RF power

amplifiers.

VOLUME 8, 2020 159837



M. Li et al.: CPCFLRNN for Joint Compensation of Wideband Transmitter Distortions and Impairments

ZHENDONG CAI received the B.Sc. degree in

opto-electronics information science and engi-

neering from the Hunan University of Science

and Technology, Xiangtan, China, in 2018. He is

currently pursuing the master’s degree with the

School of Microelectronics and Communication

Engineering, Chongqing University, Chongqing,

China.

His research interests include communica-

tion signal processing, artificial intelligence, and

digital predistortion implementation in FPGA.

YAO YAO received the M.S. degree from the

School of Electronic Engineering, Chengdu Uni-

versity of Technology, Sichuan, China, in 2011,

and the Ph.D. degree in circuits and systems from

the University of Electronic Science and Technol-

ogy of China (UESTC), Chengdu, China, in 2019.

She is currently a Lecturer with the School

of Intelligent Technology and Engineering,

Chongqing University of Science and Technology,

Chongqing, China. Her current research interests

include digital predistortion techniques and software defined radio.

CHANGZHI XU (Member, IEEE) received the

B.E. degree in electronic information engineering

and the M.S. degree in biomedical engineering

from Xidian University, Xi’an, China, in 2006 and

2009, respectively. He is currently pursuing the

Ph.D. degree with the State Key Laboratory of

Millimeter Waves, Southeast University, Nanjing,

China.

He is with Xi’an Branch of China Academy

of Space Technology, Xi’an. His research inter-

ests include satellite communications, laser communications, and software

defined radio systems.

YI JIN received the B.E. degree in communication

and information engineering from the Nanjing

University of Information Science and Technol-

ogy, Nanjing, China, in 2005, and the Ph.D. degree

in communication and information engineering

from Southeast University, Nanjing, in 2013.

He is currently with Xi’an Branch of China

Academy of Space Technology, Xi’an. His

research interests include communication sig-

nal processing, satellite communications, and

networking.

XUGUANG WANG received the B.Sc. degree in

electronic engineering from the Hunan Univer-

sity of Science and Technology, Xiangtan, China,

in 2019. He is currently pursuing the master’s

degree with the School of Microelectronics and

Communication Engineering, Chongqing Univer-

sity, Chongqing, China.

His research interests include communication

signal processing and digital predistortion imple-

mentation in FPGA.

159838 VOLUME 8, 2020


